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The symmetry to reality inference (StRI) is concerned with how
fundamental theories in physics describe/represent genuine features of the
world. StRI asserts that symmetry related models of a theory
describe/represent /correspond to the same physical reality. Accepting
StRI implies that theories in mathematical physics routinely involve
redundancy in their descriptive apparatuses since it is a commonplace that
the symmetries of field equations/equations of motion are not shared by
typical solutions. There is a good motivation for StRI in cases that
physicists would classify of gauge symmetries; namely, if the gauge variables
had worldly counterparts then determinism in guise of a good Cauchy
problem for the field equations/equations of motion would fail. It is argued
that outside of such cases StRI leads to a distorted picture of how theories
of mathematical physics represent the physical world. However, the way I
propose to draw the line between gauge and non-gauge symmetries can be
blurred by clever reformulations of theories. In particular, in some instances
it appears to be all too easy to make diffeomorphism invariance look like a
gauge symmetry. It seems more productive to discuss such issues than to
tilt with the special pleading for StRI.

1 Introduction

As construed here the symmetry to reality inference (StRI) is concerned
with how fundamental theories in physics describe/represent genuine fea-
tures of the world. StRI asserts that symmetry related models of a theory
describe/represent /correspond to the same physical reality. In all of the ex-
amples considered here the laws of the theory are in the form of differential
equations, and a “model” of the theory can be taken to mean a solution of
these equations. The StRI is accompanied by a principal that can be viewed



either as a corollary of StRI or as a motivating posit; namely, P: Only the
symmetry invariant quantities in the theory have worldly counterparts, i.e.
only these invariant quantities can represent /correspond to real properties of
the world. An apparently liberalized version of P appeals to the notion of
supervenience.! P*: Only those quantities in the theory that supervene on
the symmetry invariant quantities have worldly counterparts. Full throated
and unhedged endorsement of StRI and P/P* is hard to find in the philo-
sophical literature.? My strategy here is to take on the full-on versions of
StRI and P/P* and try to determine how much backtracking and hedging
is called for.?

There is one class of symmetries—gauge symmetries—where physics sup-
plies a clear motivation for StRI and P/P* and where it is pellucid that and
why StRI and P/P* are correct. Some philosophers want to deploy StRI and
P/ P* for what practicing physicists would not count as gauge symmetries,
such as Galilean invariance for Newtonian theories or Poincaré invariance for
special relativistic theories, where neither the physical theories themselves
nor the way they are applied supplies this motivation. Philosophers try to
make up the deficit by special pleadings. But while these pleadings lead to
interesting issues, they have little to do with Galilean invariance or Poincaré
invariance symmetries per; and worse, the attempt to enforce StRI and P/P*
for these non-gauge symmetries lead to a distorted picture of how theories of
mathematical physics represent the physical world.

'Roughly the supervenience notion is captured by the slogan that X supervenes on Y
just in case no difference in X is possible without a difference in Y. Such supervenience
comes in different strengths depending on what sense of possibility is used. Here the
relevant sense of possibility would seem to be possible according to the laws of physics.

2Dasgupta’s endorsement of P is cautious and hedged: “The idea is that if a putative
feature is variant in laws that we have reason to think are true and complete, then this is
some reason to think that the feature is not real” (Dasgupta 2016, 840). Saunders (2007,
453) identifies spacetime relationism with commitment to what he calls the invariance
principle: “only quantities invariant under exact symmetries are real.” See also Greaves
and Wallace (2014) and Baker (2010) for other endorsements. Baker was once an enthusiast
for StRI and P; he now has a much more nuanced view (see Baker 2023).

3The focus here is on Newtonian and classical relativistic theories. Quantum theories
require a separate treatment.



2 Some reasons for pause

There is something undeniably attractive about StRI and P/P*: they pro-
vide tools philosophers can use to interrogate the symmetry properties of
physical theories that, on the assumption those theories are true and com-
plete, would allow the identification of the real properties of the physical
world. But before blindly applying these tools take a deep breath and let it
out slowly while reflecting on some reasons to hesitate.

One reason for pause is the realization that some equations of motion
admit as symmetries a group of transformations that act transitively; that
is, for any two solutions there is an element of the group that takes one
solution to the other (see Belot 2013). One is reminded here of Hermann
Weyl’s remark:

If nature were all lawfulness then every phenomenon would share
the full symmetry of the laws of nature as formulated by the
theory of relativity. The mere fact that this is not so proves that
contingency is an essential feature of nature. (1952, 26)

The advocate of StRI may wish to bravely declare the courage of his* con-
victions (and disbelieve his lying eyes), exclaiming “If the theory in question
were true and complete then there would be no contingency—all would be
lawfulness in the strongest sense that, despite surface appearances, there
would be only one physically distinct situation allowed by the laws since, by
StRI, all of the solutions describe/represent/correspond to the same physi-
cal reality.” Indeed a brave stance but also one that is potentially unstable
since any indication that different solutions correspond to different physics
can bring it tumbling down.

Less brazenly, the advocate of StRI may note that examples of the sort
under discussion tend to occur for simple “toy” systems and then opine that
the examples are unlikely to be repeated for the laws that govern the more
complex systems that make up our world. While this may prove to be the
case, the usefulness of toy systems in providing a test drive for StRI and
P/ P* should not be downplayed.

The symmetries to be discussed below are of the continuous variety. But
if StRI works then it should work as well for discrete symmetries, such a
time reversal invariance and mirror image reflection. Such an application,

4“His” not “her” since only toxic masculinity can produce such boastfulness.
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however, has jarring consequences. It would imply, for example, that if the
true fundamental physical laws all obey time reversal invariance then not only
would it be the case that “running the film of the 20th century backwards”
would produce a scenario that is compatible with the laws; but it would
also be the case that while it would be true to say that WW II occurred
temporally between WW I and the Korean War, it would not be true say
that WW I, WW II, and the Korean War occurred in that time order rather
than the reverse order. Since, by StRI, the time reversed models correspond
to the same physical reality, that reality cannot on pain of inconsistency
include an earlier-to-later ordering. Again the advocate of StRI may simply
declare the courage of his convictions. Alternatively, StRI can be saved
from embarrassment by giving an account of how events acquire their time
order that does not make the order hostage to StRI; or one could opine that
although events are perceived to be time ordered the events themselves are
not so ordered. Take your choice, and welcome to it.

This is all by way of pot-shotting. Let us begin serious discussion with
an example where StRI and P/P* are transparently correct. Identifying the
features that make them correct will help us to see where and how P/P* can
go wrong, bringing StRI into question.

3 Maxwell source-free electromagnetism (on
Minkowski spacetime) as a gauge theory

The symmetries of interest here are symmetries of the laws of a theory, as-
sumed to take the form of differential equations. A symmetry transformation
is a transformation of the variables in the laws such that solutions of equa-
tions are carried to solutions. But not every willy-nilly one-one mapping of
the set of solutions onto itself will count as a symmetry transformation in
the intended sense. What conditions are necessary and sufficient to capture
the intended sense is a difficult question to answer in full generality. Here
a partial answer is provided by the decision to focus on laws that are deriv-
able from an action principle so that the laws are the Euler-Lagrange (EL)
equations resulting from extremizing the action. So the focus here will be
on divergence symmetries—transformations that leave the action invariant
up to a total divergence 9, X* where X* vanishes on the boundary of the
domain of integration defining the action. Such a symmetry carries solutions



of the EL to solutions.’

There are more gentle introductions to gauge theories using toy examples.
But let’s not be timid—Iet’s jump right in with source-free Maxwell theory,
which is arguably the simplest among the physically interesting examples
of a gauge theory. Notation: Greek indices u,v,... run from 0 to 3 while
Latin indices i, j, ... run from 1 to 3. Raising and lowering of indices is
done with the Minkowski metric 7,,, which in inertial coordinates reads
N, = diag(—=1,1,1,1).

Introduce the electromagnetic four-potentials A, (z) = A, (a° 2!, 2%, 23)
(or in other commonly used notation A,(¢,x)) and define the Maxwell field
tensor F),, by

F, = 0,Ay (1)

From this definition we have the Bianchi identity

Oy b =0 (2)
The Lagrangian density for the source-free Maxwell field is
1 uw
Lo = =3Pk ®)

and the action is

AM(nmn F,ul/) = /EM\/__Ud4I (4)

where 7 := det(n,,,). The resulting Euler-Lagrange equations are

9, F" =0 (5)

The equations (2) and (5) are the Maxwell equations governing the source-
free electromagnetic field. A model of the theory has the form (M, n,,, F.,),
where M ~ R* is the manifold on which the Minkowski metric N, and the
Maxwell field tensor F),, reside and where F), satisfies the Maxwell equa-
tions.5

5The reverse inference from symmetry of the EL equations to a divergence symmetry
of the action is not valid in general, as illustrated by scaling transformations.
For details see Torre (2020, Ch. 5).



There is a problem with this formulation of Maxwell electromagnetism
if the potentials A, represent/correspond to real properties of electromag-
netic reality: determinism fails in the sense that there is not a good Cauchy
problem in terms of the A,. The transformations

Ay Ay = A, + 0,A, (6)

where A(z°, 21, 2%, 21) is an arbitrary function of the spacetime coordinates,
leave the Maxwell tensor invariant—?u,, = (‘%E,] = F,. Further, these
transformations are divergence symmetries of A,; and, therefore are sym-
metries of the Euler-Lagrange (EL) equations. Such transformations are
referred to in the literature as “local” or “non-rigid”: the former because the
transformation can be different at different spacetime locations and non-rigid
because the transformation can be chosen to be the identity for 2° < 0 but
non-identity for 2° > 0. The non-rigidity plus the fact that the transforma-
tions (6) are symmetries of the EL equations means that there are solutions
of (2) and (5) that have the same Cauchy data for the A,—the same values
of A, and 9yA,—at 2° = 0 but different values of A4, for 2° > 0.

An example of “non-local” (aka “global”) or “rigid” transformations are
the Poincaré transformations (= inhomogeneous Lorentz transformations)
which compose the symmetry group of the background Minkowski spacetime.
Because of the rigidity of this symmetry group, Minkowski spacetime is a
priori friendly to a good Cauchy problem—when formulated in terms of the
right variables.

There is no canonical account in the physics literature of what counts
as a gauge theory and a gauge symmetry, but for theories that admit a La-
grangian/Hamiltonian formulation there are two generally accepted markers
for gauge freedom. Most authors count a theory as a gauge theory if the La-
grangian admits as a symmetry an infinite dimensional Lie group involving
arbitrary functions of the independent variables—in the present example, the
spacetime coordinates. As we have seen, this feature makes for a problem
with determinism. In addition Noether’s second theorem applies and the
conservation laws entailed by the infinite dimensional symmetry group are
trivial. A conservation law has the form d,N* = 0 where N* is constructed
locally from the field variables. The law is said to be “trivial” if I: V,N* =0
or I1: N* =0 on all solutions to the EL equations. The conserved Noether
current in the source-free Maxwell case is N* = 9, F'*, and the conservation
law is trivial in both senses. The Noether charge (Js, associated with any



Cauchy surface ¥ of Minkowski spacetime (e.g. the hypersurface 2° = 0
with (20, 2", 2%, 2*) an inertial coordinate system), Qx := [ N7dY,, is zero
for any solution. For a finite dimensional Lie group Noether’s first theo-
rem applies and the associated symmetry is non-trivial—in the case of the
Poincaré group the entailed conservation laws include conservation of energy
and momentum.

Other physicists take as necessary and sufficient for non-trivial gauge free-
dom the condition that the symmetry group of the Lagrangian implies that
the Lagrangian (or more particularly the Hessian of the Lagrangian) is singu-
lar (which will be the case if the Lagrangian admits as a symmetry an infinite
dimensional Lie group involving arbitrary functions of the independent vari-
ables), generating constraints on the canonical momenta in the Hamiltonian
version of the theory. The topic of constraints and gauge transformations
is fraught with formidable technical and interpretational issues. Even what
was once considered a cornerstone of the approach—Dirac’s principle that
primary first class constraints generate gauge transformations—is open to
debate (see Barbour and Foster 2008). I will keep clear of these controversies
here, and will not discuss Hamiltonian formulations of theories.”

Once gauge is acknowledged, the interpretative move of taking gauge
variables as involving descriptive redundancy provides a route to restoring
a good Cauchy problem. In the case of source-free Maxwell theory the idea
would be that, yes, initial Cauchy data for the gauge variables—the values of
A, and 9pA, at 2° = 0—fail to fix a unique evolution; but this failure is not
indicative of a failure of determinism for source-free electromagnetic fields
because solutions of the Maxwell equations (2) and (5) that are connected
by a gauge transformation (6) correspond to/represent the same physical
process.

This idea can be substantiated in the present case by a constructive de-
gauging of the theory. Begin by noting that the Maxwell field strength tensor
F,, is gauge invariant. Then instead of using the potentials A, as the field
variables, use the electric and magnetic fields, where in any inertial frame
the components of the electric and magnetic fields are given respectively by
E':= F% and B’ := ¢U*F}; with €% the totally antisymmetric tensor with
¢! = +1. Using these variables equation (5) can be pulled apart into a
pair of equations more readily recognizable as two of the source-free Maxwell

"This dodge does not work when quantizing classical gauge theories via the route of
canonical quantization.



equations

ﬁ
dvE = 0 (5a)

— —
curl B — 0o = 0 (5b)

Similarly, equation (2) can be separated into another pair of equations more
readily recognizable as the other two of the source-free Maxwell equations:

ﬁ
divB = 0 (2a)

— —
curl E+0yB = 0 (2b)

Equations (2a) and (5a) impose constraints on the Cauchy data, which now
consists of the values of the gauge invariant quantities ﬁ, B and their time
derivatives C%E), 80§ at 2° = 0. For any such Cauchy data satisfying the
constraints at z° = 0 there is a unique solution to the evolution equations (2b)
and (5b) for 2 > 0 and, furthermore, this solution satisfies the constraint
equations at each 2° > 0. The Cauchy problem doesn’t get any better than
this.

In the present example the StRI and P/P* have a clear and compelling
motivation: if P/P* is rejected for the gauge symmetries of source-free
Maxwell then determinism in the form of a good Cauchy problem fails;
accepting P/P* secures determinism and makes StRI transparently valid.
However, once we move beyond symmetries that physicists would classify as
gauge symmetries StRI and P/P* become contentious. In effect, the propo-
nents of StRI and P/P* want to treat other symmetries, such as Galilean
invariance for Newtonian theories and Poincaré invariance for special rel-
ativistic theories, as gauge symmetries in the sense that these symmetries
relate solutions having the same worldly counterparts. They are in for a
heap of trouble in promoting such want-a-be gauge symmetries.

4 Want-a-be gauge

Once we move away from symmetries falling under the semi-official definition
of gauge symmetries as involving an infinite dimensional symmetry group
with arbitrary functions of the spacetime variables, the motivation of avoiding



a failure of determinism by seeing redundancy of descriptive apparatus of the
theory is lost. Furthermore, as already noted, finite dimensional symmetry
groups fall under Noether’s first theorem and lead to non-trivial conservation
laws. This leaves the proponent of applying the StRI and P/P* to such
symmetries the unpleasant task of explaining how non-trivial conservation
laws can follow from descriptive redundancy in the theory.

The untenability of applying P/P* to Galilean and Poincaré invariance
is easily demonstrated. Here we concentrate on Poincaré invariant field the-
ories in the special relativistic context, but similar morals can the drawn for
Galilean invariant particle theories in the Newtonian context. Symbolizing a
Poincaré transformation by P = (a, L) where a and L stand respectively for
a spacetime translation and a proper Lorentz transformation (rotations and
velocity boosts), the action of P on the Maxwell field tensor is given by

D Fu(x) = LILLFyp(L 7 (& — a) (7)

(see Combe and Sorba 1975). If F,, (=) is a solution to Maxwell’s equations
then so is (@D F,, (z). But in general *DF,, (z) # F,, (). The equality
required for invariance under spatiotemporal translation requires that the
fields are constant in time and uniform in space, and the invariance under
proper Lorentz transformations further narrows the adgissib_l? ﬁelds_—)tli()e
Lorentz invariants are all functions of the two invariants B?— E? and B - £
(see Escobar and Urrutia 2014).

In short, the subset of Maxwell fields exhibiting Poincaré invariance is a
very meager set, and presumably the fields one would expect to encounter
in a source-free electromagnetic world would rarely belong to this subset.?,’
Again one is reminded of Weyl’s remark quoted above. Here the point being

8What needs to be provided is: a precise characterization of a “generic” solution to
the Maxwell equations; a demonstration that the Poincaré invariant solutions are non-
generic; and an argument for the assumption that the type of solution one would typically
encounter is generic. This is a large promissory note, but I am confident that an able
researcher can cash it.

9The point applies to what one would expect to encounter on a local basis as well as
in the large because Maxwell’s equations have the locality property that if the F},, of
the model (M, n,,,, Fj.,) satisfies Maxwell’s equations and O C M is an open subset then
F,v|o also satisfies Maxwell’s equations.

Using hypothetical source-free electromagnetic worlds admittedly weakens the point, but
the same point could be made in terms of more realistic cases by adding electromagnetic
sources, as for example by coupling the Maxwell field and a charged scalar field.



that contingency of nature as expressed in the variety of typical electromag-
netic fields satisfying the Maxwell equations speaks against the notion that
electromagnetic phenomena must share the full symmetry of the laws and,
thus, speaks against the application of P which implies that the worldly
counterparts of solutions of Maxwell’s equations can differ only in values of
the Poincaré invariants of F},,(z). To put the point in terms of P*, the su-
pervenience basis of Poincaré invariants is too slender to support what one
expects to see in source-free electromagnetic WOI‘ldi Talg the case oi null
electromagnetic fields where the Lorentz inLariants _)B2 — E?and B - E are
both equal to 0 and, consequently, where B and F are perpendicular and
equal in magnitude, as in the case of plane wave solutions of the source-free
Maxwell equations. With B and E constant in time and uniform in space, as
required by Poincaré invariance, the Poincaré-invariant supervenience basis
can’t support differences in the array of null fields solving Maxwell’s equa-
tions. (Of course, this line of criticism needs to be supplemented by an
account of how non-Poincaré invariant elements of the electromagnetic fields
are measured. This matter will be taken up shortly.)

If electromagnetic worlds were governed by strengthened Maxwell laws
that have as solutions only Poincaré invariant [, then electromagnetic na-
ture would be all lawfulness, and the proponents of P/P* would be correct
that super-Maxwell theory represents the world by means of Poincaré invari-
ants. But our world is Maxwellian not super-Maxwellian, and Maxwell theory
represents the world not primarily by means of Poincaré invariant quantities
but by the gauge invariant but non-Poincaré invariant Fj,,, which is con-
structed from the non-Poincaré invariant and, indeed, non-Lorentz invariant
quantities ﬁ and § Although non-Lorentz invariant these quantities are
Lorentz covariant, and their transformation properties under change of in-
ertial coordinates guarantees that the form of Maxwell’s equations (2a)-(2b)
and (Ha)-(bb) is preserved.

The principles P/P* should not be confused with the legitimate empiricist
demand that physical theories represent the world by means of quantities de-
noting observable/measurable features. But if P/P* is rejected for Maxwell
theory, how is the theory to be squared with the empiricist demand? The
answer emerges from answering another question: How do observers make
contact with features of Maxwell worlds? Not by possessing a magic meter
that records values of the Poincaré invariants of the electromagnetic field. In
minimalist terms an observer can be modeled by a timelike world line or the

10



tangent vector field V# of the worldline.! The introduction of an inertial ob-
server breaks Poincaré and Lorentz invariance by introducing a distinguished
reference frame (the rest frame of the observer) and a distinguished location
in space (the location of the observer in her rest frame) making it possible
for the observer to measure non-Poincaré and non-Lorentz invariant quan-
tities. The observer can measure E and B by using a test charge ¢ that
is sufficiently small that its backreaction on the field can be neglected and
then using the Lorentz force law, which for a unit mass test charge with
four-velocity U” has the form ¢F**U,.!! In three-vector notation this force
is q(ﬁ + U x ﬁ) where W is the three-velocity of the test charge. If the
charge’s instantaneous rest frame (% = 0) coincides with the rest frame of
the said inertial observer then the Lorentz force divided by ¢ serves as a mea-
sure of E for said observer. In the case of a purely magnetic field (E) =0)
measuring the value of Lorentz force and_:che velocity ' of a moving test
charge suffices to determine the Val_>ue of B for said observer. In more gen-
eral cases determining the value of B is a more elaborate_) proced_u)re, but this
need not detain us here. The covariance properties of £ and B determine
what values other observers will measure.

In response one m §ht say | that what is being measured are invariants;
namely, the values of £ and B relative to an observer /reference frame. But
this way of preserving idea that only invariant quantities are measurable
changes the game. Accompanying the idea is the insinuation that because
quantities lying on the variant side of the variant vs. invariant distinction
are not measurable they do not have worldly counterparts, as P asserts. But
now it turns out that to account for the fact that physics courses and lab-
orag)ry re%rts speak of measuring non-Poincaré invariant quantities, such
as E and B in electromagnetism and (three-) momenta of particles in par-
ticle mechanics, these quantities are described in a way that pushes them
from the variant to the invariant side of the line. This seems to be a re-
treat from the original claims that only the Poincaré invariants of ), have
worldly counterparts and that, therefore, (R*,7,,,, Fj.,) and (R*, 7,2 F,, )

10Tn measuring vector valued quantities even more structure needs to be associated with
the observer; in particular an orthonormal tetrad T(a), = 0,1,2,3, of vectors parallel
propagated along the observer’s worldline with T‘(L = V#. Let this nicety be understood
in what follows without adding it explicitly to an already complicated notation.

"'Here we are drawing on an auxiliary theory. But in interpreting one theory it is typical
to require the help of another.
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represent /correspond to the same physical situation even when the equality
E,(z)=@LF, (z) does not hold for all z. The worry here is not so much
that P is false but rather that that in defending P from falsity it is rendered
murky:.

A favorite example used to motivate the idea that only invariant quan-
tities are measurable is absolute velocity. Granted, absolute velocity is not
measurable in either the setting of Newtonian or special relativistic physics.
But it is misleading to say that it is not measurable because it is variant
under Galilean or Poincaré transformations. It is not measurable because
there is nothing to measure. Absolute velocity means velocity relative to
absolute space in the guise of a distinguished inertial frame, which is not to
be found in either neo-Newtonian or Minkowski spacetime.!? One could add
additional structure to these spacetimes to mark out a distinguished inertial
frame, reducing the spacetime symmetry groups so that velocity boosts are
killed, making absolute velocity a symmetry invariant. Occam’s razor mil-
itates against such a move since the additional structure is not needed to
support the laws of Newtonian or special relativistic physics. In short, the
story of absolute velocity can be made into a morality play about what goes
wrong when there is a mismatch between the symmetries of the laws and the
symmetries of the background spacetime. But when there is no mismatch—
as in the cases discussed here—the morals of the story have little to say about
which quantities are measurable and which have worldly counterparts.

5 The symmetry to reality inference assessed

P/P* was found wanting. What of StRI and the idea that symmetry re-
lated models represent /correspond to the same physical situation? For our
Maxwell example there are two readings of StRI, one straightforward but
nocuous, the other less direct and innocuous but also unhelpful. If the
symmetry at issue is Poincaré invariance then the straightforward reading
is that (R* 7, F.) and (R @Dy, @LDF ) (= (R 7, " F,) since
(“’L)nW = 1),,) represent/correspond to the same physical situation. All
would be well if P/P* were true and only Poincaré invariant Maxwell fields
where @D F, (z) = F,,(z) for all x € R* have worldly counterparts. But
we concluded above that even non-Poincaré invariant F,, (z) do have worldly

12Gee Sec. 7 below for a description of neo-Newtonian spacetime.
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counterparts, and since the counterparts of (““F, (z) and F,,(z) attribute
incompatible properties to any spatiotemporal location p € R*, z(p) =
(2%(p), 2*(p), 22(p), 2*(p), x*(p)), when @LIF,, (x) # F(x), (R*,9,,, F.u)
and (R* (=L p (=) F, ) cannot, on pain of inconsistency, represent the
same physics.

The less direct and innocuous reading simply repeats in the present set-
ting familiar truisms about model isomorphisms. For any model (R*, 7 o Fyw)
of Maxwell theory and any Poincaré transformation P = (a, L) (construed
as a point mapping of R* onto itself) we can create an isomorphic copy
by “shifting” F,,(z(p)) to F,,(z(P(p))) for all p € R*. Anything true
in the model (R‘l,nwj, F,,) about electromagnetic happenings at p will be
true in the shifted model about the electromagnetic happenings at its coun-
terpart x(P(p)), and vice versa. This can be generalized to include ob-
servers. Include our inertial observer as represented by the velocity field
V*# in the models and consider the effect of a pure Lorentz velocity boost
¢: any model (R* n,,,V* F,,) is transformed to (R*,7,,, @0V COE, )
and the boosted inertial observer will experience the same electromagnetic
physics in her inertial frame as her unboosted counterpart experienced in her
frame. In this sense the Lorentz velocity boost symmetry related models rep-
resent /correspond to the same physics; but this sense does not get us StRI
or P/P*.

What holds for Maxwell theory is just a special case of a much more gen-
eral feature of any theory whose models have the form (M, X1y, X(2), ..., X(3))
where the X(,) are geometric object fields—scalar, vector, tensor fields—
on M. Let d : M — M be a diffeomorphism (a one-one onto C'*° map
whose inverse d~! is C*). We can use d to create an isomorphic copy
(M. X1y, X2), ....," X)) by d-shifting the X(,) so that anything true in
(d(M), X(l), X(g), ceny X(N)) (: (./\/l, X(l), X(Q), ceey X(N)) since M and d(./\/l)
have identical manifold structure) about p € M will be true in (M,% X(1),% X(g), ...," X))
about d(p), and vice versa.'®

By themselves these truisms about model isomorphisms cut no ice with
respect to the issue of how to use facts about the symmetries of laws of
a theory to draw conclusions about which quantities in the theory repre-
sent /correspond to real worldly properties. To reach such conclusions re-
quires some special pleading. The pleading used by StRI proponents some-

13For detailed construction of the d-shift operation on tensor fields see Appendix C.1 of
Wald (1984).
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times takes the form of an indistinguishability argument. It asserts that
the worlds represented by the shifted models are physically indistinguishable
from the original and from each other—i.e. indistinguishable by means of any
physical measurement—and then in good positivist fashion it concludes that
because they are observationally indistinguishable there is no distinction—
they are all the same world. For good measure accuse those who say oth-
erwise of committing a sin with a Latin name—believing in haecceitism.*
Finally, note that when (“F,, # F,, the isomorphic models (M, N Py
and (M, (@F) nw,(“’L) F,,,) can represent the same world only if only the shift
invariants of F},, have worldly counterparts, underwriting P.

I want to do a modus tollens where the proponent of StRI wants us to
do a modus ponens. I see a reductio of the special pleading for Maxwell
theory since we have agreed (I trust) that non-shift invariant £, do have
worldly counterparts. The proponent of StRI must give a non-question
begging and convincing reason to break this agreement along with an ac-
count of what quantities do have worldly counterparts. The challenge (call
it the StRI challenge) to those who want to treat Poincaré invariance as a
gauge symmetry—as connecting the same real physical state under different
descriptions—is to reformulate Maxwell theory in a form which (i) rejects
the tensor-fields-on-manifolds formulation of classical field theory in favor
of a different set of variables on which the Poincaré transformations act as
the identity while (ii) showing that the modified theory functions to pre-
dict and explain electromagnetic phenomena at least as well as the standard
theory; or else (i') modifies the natural semantics for theories formulated in
terms of tensor fields on manifolds—in particular, it would have to reject the
Tarskian condition “F},, ()" is true iff the value of the Maxwell field tensor
at = is F,(x), while (ii’ ) showing that under the new semantics the theory
is able to predict and explain electromagnetic phenomena at least as well as
under the standard semantics. There is an implied research program here
that might bear fruit not only for philosophy of physics but also for physics
itself. It is up to the proponents of ST'RI to carry out the program.

Alternatively the proponents of ST RI might try to finesse the challenge
by stipulating that the (timeless) state of a source-free electromagnetic sys-

tem corresponds to an equivalence class of Poincaré related F},,, and then

14Sins with Latin names are presumed to be especially egregious. Haecceitism has truck
with “bare particulars” and holds that worlds can differ non-qualitatively without differing
qualitatively.
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declaring job well done and declining to say anything further.!® But qui-
etude here is unacceptable. The natural question arising is: what are the
truth conditions for the obtaining of the worldly counterpart corresponding
to an equivalence class of Poincaré related F),,7 If the truth conditions are
stated in terms of the values of a set of variables then those variables are the
very ones that are to be used to answer to the challenge, and so the chal-
lenge has not been finessed.'® If the truth conditions are specified in another
manner, what is it and how does it illuminate how the theory represents real
features of the world?

I have a suggestion for an alternative to trying to use StRI and P/P* to
get insight into what theories of mathematical physics are trying to tell us
about what is real. Proceed as follows. Work with the semi-official sense of
gauge freedom sketched above to identify the gauge freedom in the theory;
and having identified it, factor it out.!” Then find the smallest subset of the

15One is reminded here of some versions of the view labeled “sophistication about sym-
metries”; see Dewar (2019).

16Yet another alternative for the proponents of StRI is to escape some of the problems
raised above by playing up the anti-haecceitism angle and asserting that spatiotemporal
locations, points p € R* or neighborhoods thereof, have no self-identity apart from the
roles they play in the description of the electromagnetic field; conclude that since x(p) in
the original model and z(P(p)) in a Poincaré P = (a, L)-shifted model play qualitatively
identical roles in their respective models they denote the same spatiotemporal location
and, thus, the original model and all of its P-shifted counterparts represent the same
world. Note that if the F),, in (R4,77W, F,,) is a Poincaré invariant Maxwell field then
any p,p’ € R* are qualitatively identical; but this hardly means that z(p) and x(p’)
denote the same spatiotemporal location. We can and do specify spatiotemporal locations
independently of specifying the values of physical fields at these locations. A (not very
precise) spatiotemporal location is picked out by Lucy’s declaration “The time is now
and the spatial location is where I stand,” and when she adds “Here now in my rest
frame the magnetic field is zero and the electric field is intense and rapidly oscillating”
she has given a (not very precise) specification of the value of the electromagnetic field
at a designated spatiotemporal location. And in doing so she has not committed any
sin, Latin or otherwise. And Lucy knows perfectly well that she is making an assertion
about the electromagnetic field values at, say, x(p) (her here-now) rather than z(P(p))
(her there-later).

1"There is an obvious motivation for taking this step in the context of explanation where
we are looking for the difference makers for the occurrence or non-occurrence of a physical
effect: a difference in the values of gauge variables cannot be such a difference maker since
it involves only a difference in description and not a difference in physical state. This
is entirely compatible with retaining the gauge variables for future developments of the
theory. For example, the gauge variables discussed above in source-free Maxwell electro-
magnetism serve (in Carlo Rovelli’s phrase) as handles for coupling the electromagnetic
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remaining variables that have a good Cauchy problem. If there is a unique
such smallest set assume as a defeasible working posit that these variables
have worldly counterparts.'® Use the theory and any needed auxiliary the-
ories to explain how observers can measure values of these counterparts. If
successful, conclude that the posit is correct. If unsuccessful rethink. This
procedure lacks the elegance and simplicity of StRI and P/P*. But it has
the virtue of being deaf to the siren song sung by StRI and P/P* of a quick
and easy an easy path to a knowledge of what the theory is trying to tell us
about what is real. While the procedure makes no overt appeal to symmetries
and symmetry invariants, they play an indispensable role in determining the
outcome since they are baked into the equations of motion.

6 The devil’s advocate

Having criticized StRI let me now play the devil’s advocate. Where there
is genuine gauge symmetry StR[ is golden. The devil whispers that gauge
symmetry for the types of theories under discussion is easy to come by and,
in particular, the diffeomorphism group ®gs of R* is a gauge group of source-
free Maxwell theory. Any d € Bps is a symmetry of the action—indeed, we
have An (R, 7, Flw) = Au(R* %7, F,,,)—and, thus, it is a symmetry of
Maxwell’s equations. And since g4 involves arbitrary smooth functions of
the spacetime coordinates B4 comprises gauge symmetries. And from the
meaning of gauge, it follows that the d-shift related models (R, Ny Fv) and
(R*,%7,,,," F,,) represent/correspond to the same physical state of affairs,
just as StRI would have it. Those who follow the devil’s line need to provide
an account of what the diffeomorphic invariants are and how the worldly
counterparts of these quantities serve as a basis for explaining the phenomena
of Maxwellian worlds.

Resistance to the devil’s line starts from the sentiment that it fails to take
seriously the intended interpretation of special relativistic theories, wherein
Minkowski spacetime serves as a fixed backdrop against which phenomena
perform. On this picture, a d-shift should be applied to the Maxwell field
tensor F,, but not to the Minkowski metric 7, yielding (R* n,,.* Fj.)
rather than (R*%7,,.* F,,) as the d-shift counterpart of (R* 7, Fj,). Of
course, if d is a symmetry of 1, (ie. ‘g, =mn,,) then Ay (R* 1, F.,) =

field to other fields.
I81f there is more than one smallest subset some choices have to be made.
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Au(RY,n,,," Fy). But in general Ay (R*,n,,,Fu.) # Au(RY,7,,." F.),
not even up to a total divergence; and in general with 7, held fixed it
need not be the case that (R?, nuy,d F,,) is a solution to Maxwell’s equations
whenever (R*,7,,,, Fl,,) is.

Such resistance has an appeal. But the resistance fades as the strength
of the fixed background structure fades, until no resistance is left when a
fixed background structure becomes non-existent. This is a theme that will
be explored in the following sections. The exploration, I claim, raises issues
about how theories of mathematical physics represent the world that are
more interesting than any amount of sparing with the advocates of StRI.

7 Finding more gauge freedom

The proponents of St RI and P/P* should be on the hunt for legitimate gauge
freedom, as signaled by something other than a question-begging loyalty to
StRI and P/P*. Where to look for it? How to create it if you don’t initially
find any? A return to basics is in order.

We saw that a principal reason to treat the electromagnetic potentials in
Maxwell’s theory as gauge variables is that if they did represent/correspond
to genuine physical magnitudes then a good Cauchy problem is not possible.
And correspondingly a reason not to treat Galilean invariance in Newtonian
theories and Poincaré invariance in special relativistic theories as gauge sym-
metries is that a good Cauchy problem is at hand without the need to posit
redundancy in the descriptive apparatus of the theory. The reason that a
good Cauchy problem is thus attainable is that in these setting there is a fixed
spacetime background—mneo-Newtonian spacetime and Minkowski spacetime
respectively—and that these spacetimes have sufficient structure so that the
symmetry groups of the background spacetime—the inhomogeneous Galilean
group and the Poincaré group respectively—have the property that if a group
element is the identity on an initial value hypersurface t = 0 (say)—a plane of
absolute simultaneity in neo-Newtonian spacetime or a plane of simultaneity
for an inertial frame of Minkowski spacetime—and thus preserve the initial
data, then it is the identity for ¢ > 0.

If the background spacetime structure is weakened the possibility of a
good Cauchy problem can be undercut, and the restoration of the possi-
bility can be sought in the detection of gauge freedom. The point can be
illustrated by a toy example that starts with neo-Newtonian spacetime and
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then weakens its structure. The structure of neo-Newtonian spacetime is
much more complicated than Minkowski spacetime which is characterized
by a single geometric object, the Minkowski metric. Neo-Newtonian space-
time has several pieces—a preferred foliation of time slices (absolute simul-
taneity), a Euclidean E? spatial metric for the simultaneity slices, a metric
that gives the time lapse between events on different simultaneity slices (ab-
solute time/duration), and a family of inertial frames. When these pieces are
carefully assembled and fitted together the resulting symmetry group of the
spacetime is composed of the inhomogeneous Galilean transformations

x—x = Rx+4ut+a (Gal)
t — t'=t+b

where ¢, x are inertial coordinates with ¢ now absolute time, R is a constant
Euclidean rotation matrix, and u, a, b are constants.

An appropriate Lagrangian density for a Newtonian system of non-interacting
unit mass point particles is

dx,

1 N
x__ ) n: 8
R di ®)

where x,, is the position of the nth particle. The Galilean transformations
are divergence symmetries of £, and, therefore, symmetries of the EL equa-
tions, which in this instance are Newton’s equations of motion for free parti-
cles. Since the Galilean transformations are “rigid”/“global” there is a good
Cauchy problem with the values of the positions x,, and velocities x,, of all
the particles at ¢ = 0 fixing a unique solution of the EL equations for ¢ > 0.
Noether’s first theorem applies, yielding the familiar conservation laws for
energy and momentum.

The dreary story of the griefs of attempting to apply StRI and P/P* to
the Poincaré symmetry of Maxwell theory can be retold here for an attempt
to apply StRI and P/P* to the Galilean invariance of Newtonian particle
theory. But this is left as an exercise to the reader who will undoubtedly
conclude that the theory represents a Newtonian particle world world not
exclusively by means of Galilean invariant quantities, such as magnitude of
particle acceleration X,,, but also by means of Galilean covariant quantities
X, and X,,.

19 At least locally in time. Global existence and uniqueness of solutions is another matter.
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Rather than trying to use StRI and P/P* promote x,, and x,, to gauge
quantities, let’s do a legitimate promotion by changing the background space-
time structure to accommodate the notion that all motion is the relative
motion of bodies, a notion that found many followers among natural philoso-
phers in the 17th-19th centuries. We can do this by removing the inertial
structure from neo-Newtonian spacetime while leaving the other structures
intact. In the resulting spacetime there is no “absolute” (invariant) notion
of acceleration for individual particles. To further simplify the discussion
suppress two spatial dimensions. The symmetry group of the resulting two-
dimensional spacetime is composed of transformations of the form

r — =x+ f(t) (Rel)
t — t'=t+b

where f(t) is an arbitrary function of t. A modified Lagrangian density that
admits (Rel) as a symmetry group is

Y 1 N1 . . 2
Em = 5 2_31 <£Un+1 — l’n) . (9)

(Here I am adopting the example given in Rovelli 2014. Rovelli does not
discuss the spacetime setting for his example, but I am assuming that he
would find congenial my situation of his example.) Since the transformations
(Rel) are “local” /“non-rigid” we are in the land of gauge because the EL
equations for the x,, do not have a good Cauchy problem.

We can restore determinism by recognizing the z, as gauge variables
and by reformulating the theory using the gauge invariant quantities a,, :=
Tnt1 — Tn. The Lagrangian density L, of (8) can be rewritten as

N-1
L, = Z ai <10)
n=1

There are N — 1 EL equations, d,, = 0 for the N — 1 gauge invariant a,,,

giving a good (if physically uninteresting) Cauchy problem.

8 General relativity theory

All of the examples considered thus far concern the behavior of fields or
particles in a fixed spacetime background. In Einstein’s general theory of
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relativity (GTR) and related theories there is no fixed background spacetime,
and the spacetime metric g,, becomes a dynamical variable that evolves
according to the theory’s field equations. The original source-free Einstein
field equations read

1
R/_w - §Rg/,w =0 (11)

where R, is the Ricci curvature tensor (defined in terms of g, and its first
and second derivatives) and R := R/, is the Ricci curvature scalar. Einstein

later considered the addition of a cosmological constant term that changes
(11) to

1
R;w - ERQ;W + )‘g,uu =0 (12)

where ) is a constant. This complication will be ignored for present purposes.

When Einstein presented his gravitational field equations in 1915-16 the
concepts of gauge freedom and gauge invariance were not part of the physics
vocabulary.?’ Nevertheless, his desire to explain gravitational phenomena in
terms of a dynamical spacetime metric led him to what, by our lights, counts
as a gauge theory.?!

Consider a general relativistic spacetime M, g,, where M is a four-
dimensional C* manifold and g,, is a Lorentzian metric defined on all of
M. (Minkowski spacetime is the special case where M ~ R* and g, = 17,,,.)
One sees directly that if d : M — M is a diffeomorphism and g,, satisfies
the Einstein equations for all z € M then so does the d-shifted %g,,, although
in general g,,(z) # g, (z). Furthermore, the Einstein equations (11) are
the EL equations of the Einstein-Hilbert action with Lagrangian density

Lpy = Ry/—g, g:=det(g.) (13)
and g, — %g,, is a divergence symmetry of Lpy and, thus, a symmetry of
the EL equations (11).?? So for given M the group of diffeomorphisms &

208ee O’Raifeartaigh (1997) for the history of gauge theories.

2lFor an account that situates GTR within the class of gauge theories, see Lee and
Wald (1990). The Hamiltonian formulation of GTR supports the classification of GTR as
a gauge theory. But which of the Hamiltonian constraints generate gauge is under dispute.

22 Actually, because of the second-order nature of the Einstein equations the Einstein-
Hilbert action has to be slightly modified to get rid of an unwanted boundary term that
appears in the extremization of the action under variations of g, with dg,, vanishing on
the boundary. See Wald (1984, p. 458).
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of M may be considered the gauge group of the theory.

Since the gauge group involves arbitrary smooth functions of spacetime
position there is not a good Cauchy problem for the gauge variable g,,.
Posing the Cauchy problem for GTR is much more delicate and involved
than for theories with a fixed spacetime background. Here I will give only a
brief outline, and readers wanting more details are referred to Wald (1984,
Section 10.2). The Cauchy data for Einstein’s equations is specified by a
three-dimensional C*° manifold S, a Riemannian metric h,, on S (which
gives the spatial geometry of S), and a symmetric tensor field K, on S, called
the second fundamental form or extrinsic curvature of S (which specifies the
“time derivative” of h,,). In analogy with Maxwell’s equations, Einstein’s
equations imply constraints on the initial data. So take a Cauchy data set to
be a triple (S5, hy,, K,,) with hy,,, K, satisfying the constraints. A Cauchy
development of a Cauchy data set (.S, h,,, [,,) consists of a spacetime M, g,,,
with g,,, satisfying the Einstein equations (11) for all x € M together with an
embedding of S into M as a spacelike hypersurface such that g,, induces on
(the imbedded image of) S the metric h,, and the extrinsic curvature K,,,,,
and such that every inextendible causal curve in M, g, intersects S (making
S a “Cauchy surface” of M, g,,,). Choose a d € &, that is the identity on a
neighborhood N(S) C M of S but non-identity otherwise. Then M, g, is
a Cauchy development of the same Cauchy data set that agrees with M, g,
on N(S) but disagrees outside N(S). However, as a saving grace there is
gauge-good Cauchy problem: it is proved, first, that for any given Cauchy
data set (S, hyu, K,,) there is Cauchy development and, secondly, that that
there is a unique up to diffeomorphism (i.e. up to a gauge transformation)
maximal Cauchy development (again see Wald 1984 for details).

The no-go result for a good Cauchy problem is not peculiar to Einstein’s
GTR but applies to any spacetime theory which does not use a fixed space-
time background and which has the diffeomorphism group as its gauge group.
Whether not such a theory has a gauge-good Cauchy problems depends, of
course, on the details of the theory.

9 Still more (much more) gauge?
In the above examples the distinction between gauge symmetries (in the semi-

official sense) and non-gauge symmetries as well as the distinction between
theories formulated against a fixed background spacetime and theories in
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which the spacetime structure is dynamical were presented as if are they are
clean cut. But this was before reckoning without clever reformulations of
theories, as is illustrated by the Sorkinizing our running example of source-
free Maxwell theory which.?

In reformulating the theory, instead of raising and lowering indices using a
fixed Minkowski metric 7, use a general Lorentz signature metric g,,, which
is treated as a dynamical variable whose value is not specified a priori but
is to be determined by the field equations, and replace derivatives 0, with
respect to inertial coordinates by covariant derivatives V,, determined by the
metric g,,. Introduce a tensor field M7 having the same symmetries as
the Riemann tensor R,,,s of g, and add the term )\“”WdRWW; to the the
Lagrangian density (13) to give a total Lagrangian

1

—Z/FM,,FW\/—gd‘l:U —i—/)\“wauwp\/—gd‘lx (14)

where the components of the tensor fields are expressed in an arbitrary coordi-
nate system.?* This action admits diffeomorphism invariance as a divergence
symmetry, which makes it a gauge symmetry of the equations of motion.
Variation of the action with respect to A**?° gives

Ryrp = 0 (15)

implying that g,, is a flat Minkowskian metric. Equation (2) (the Bianchi
identity) is still in force as a consequence of (1) but now with the derivatives
0, replaced by covariant derivatives V. Variation of the action with respect
to the potentials A, gives a version of (5) again with covariant derivatives
replacing ordinary derivatives and indices raised by ¢g*” and lowered by g, .
But in both of these cases the equations reduce to their Minkowski form after
taking into account R,,., = 0.

The only new equation of motion results from varying the modified action
(14) with respect to the spacetime metric g,,. In parallel with Sorkin’s
example this variation yields the equation

23Here 1 apply the techniques described by Sorkin (2002) for the scalar Klein-Gordon
field. As the title of Sorkin’s paper indicates his example was directed towards the issue
of the status of the requirement of general covariance, whether the requirement is a sub-
stantive constraint or mere formal/notational constraint on theories. Here the example is
repurposed to probe the distinction between gauge and non-gauge symmetries.

24 Aficionados of action principles will recognize that A**7” is serving as a Lagrangian
multiplier.
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T = V.,V N0 (16)

where T" is the the stress-energy tensor of the electromagnetic field given
1

by FrREY — Zg“”ngF"/’ 25 In view of symmetries of ¥ (16) yields the

conservation law

v, =0 (17)

And, again taking into account R,,; = 0, this law reduces to its Minkowskian
form.

If the source-free Maxwell electromagnetic theory sketched in Section 3
were physically equivalent to the Sorkinized theory outlined in the present
section then the status of diffeomorphism invariance as a gauge symmetry
along with the distinction between a gauge and non-gauge symmetry would
be shown to be slippery and murky matters indeed.?® But arguably the
two theories are physically distinct in interesting ways. Most notably the
Sorkinization of Maxwell theory was achieved by the introduction of what is,
in effect, a new physical field M**?° which is sourced by the electromagnetic
field and whose response to this source is governed by the field equation
(16), much like the Einstein gravitational field’s response to the presence of
matter-energy fields is described by putting the stress energy-energy tensor
of these fields on the rhs of equation (11).

However, the need to introduce the field \**?° was driven by the demand
that the field equations be derivable from an action principle, a demand that
physicists have generally accepted since early in the 20th century and has
been accepted as the basis of our discussion. While an action formulation is
certainly desirable if one has an eye towards quantization, it would require
more than a little argumentation to establish that an action formulation is a

25This expression for the stress-energy tensor of the electromagnetic field comes from

taking the functional derivative with respect to g,, of the first term (the “matter

Iuv

term”) of the action integral in (f4) This definition of the stress-energy tensor T*”
guarantees that it is symmetric with respect to p and v. The stress-energy tensor arising
from Noether’s theorem need not be symmetric, but it can be made symmetric by adding
a “trivial” conservation term.

26Sorkin (2002) remained noncommittal about the physical equivalence of the theories in
his original example—a scalar Klein-Gordon field in Minkowski space and its Sorkinized
counterpart—but then he goes on to make the point I am about to make for Maxwell
example.
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priori essential to a theory that aspires to the status of a fundamental physical
theory or that it is essential to understanding the physical status of variables
in the theory. If the demand is rejected we could do a skinny Sorkinization
that obviates the need to introduce the field A**?° by taking the theory to
consist of equations (2) and (5), with a general Lorentz signature metric g,
in place of the Minkowski metric and covariant derivatives with respect to g,
in place of ordinary derivatives, and equation (15). Admittedly this skinny
version has the air of a mathematical trick that does nothing but produce a
not very well disguised version of the standard Minkowski spacetime version
of Maxwell theory. But something has gone seriously amiss if the seemingly
substantive issues that have concerned us turn on judgments of what is or
isn’t a mathematical trick.

In any case, if either the fat or the skinny Sorkinization of Maxwell theory
is accepted as a true and complete theory of source-free electromagnetism
and diffeomorphism invariance is a gauge invariance of these theories then
the StRI applies. But this victory entails the obligation to respond to an
analog the STRI challenge outlined above in Section 5; and the obligation
falls not just on the proponents of StRI but to all who accept these theories
as true and complete.

10 Conclusion

Theories of mathematical physics do not interpret themselves. Philosophers
of physics are eager to offer a helping hand; indeed some of them see it as
their main function to lay out the interpretive options and to adjudicate
their merits and demerits. In this enterprise philosophers are under no oblig-
ation to follow the opinions of physicists on these matters, but it would seem
prudent to take heed of these opinions and pause when the interpretative
principles they propose to follow do not comport with practices in physics.
In their rush to endorse StRI and P/P* philosophers ignore this caution in
two related ways. First, they propose to treat a wide array of symmetries as
gauge symmetries in the broad sense of connectioning different descriptions
of the same physical state of affairs, whereas physicists are apt to see gauge
freedom in a much narrower range of cases. Second, a familiar fact about
theories in mathematical physics is that the laws of theory—in the form of
field equations/equations of motion—exhibit symmetries that are not exhib-
ited by typical solutions. Physicists generally do not find this disconcerting;
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Hermann Weyl, for example, took this commonplace to be an expression of
contingency in nature. But the proponents of StRI and P/P* think that it is
a symptom of the redundancy in the mathematical apparatus these theories
use to represent the world.

I agree, of course, with the ethos of P/P* and the StRI for gauge sym-
metries in the narrow sense used by physicists, where the gauge variables are
identified by the fact that taking different values of these variables to imply a
difference in the physical state would entail that the field equations/equations
of motion do not have a good Cauchy problem. But for other symmetries I
can find no good motivation for P/P* and the StRI. However, I recognize
that the way I propose to draw the line between gauge and non-gauge sym-
metries can be blurred by clever reformulations of theories. In particular, in
some cases it appears to be all too easy to make diffeomorphism invariance
a gauge symmetry by Sorkinizing the theory. My plea is to devote energy to
discussing such issues and leave those enamored of P/P* and the StRI alone
to seek therapy.
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