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Abstract

Working inside the control-theoretic framework for understanding ther-
modynamics, I develop a systematic way to characterize thermodynamic
theories via their compatibility with various notions of coarse-graining,
which can be thought of as parametrizing an agent’s degree of control of
a system’s degrees of freedom, and explore the features of those theories.
Phenomenological thermodynamics is reconstructed via the ‘equilibration’
coarse-graining where a system is coarse-grained to a canonical distribu-
tion; finer-grained forms of thermodynamics differ from phenomenological
thermodynamics only in that some states of a system possess a free energy
that can be extracted by reversibly transforming the system (as close as
possible) to a canonical distribution. Exceeding the limits of phenomeno-
logical thermodynamics thus requires both finer-grained control of a sys-
tem and finer-grained information about its state. I consider the status
of the Second Law in this framework, and distinguish two versions: the
principle that entropy does not decrease, and the Kelvin/Clausius state-
ments about the impossibility of transforming heat to work, or moving
heat from a cold body to a hotter body, in a cyclic process. The former
should be understood as relative to a coarse-graining, and can be vio-
lated given finer control than that coarse-graining permits; the latter is
absolute, and binds any thermodynamic theory compatible with the laws
of physics, even the entirely reversible limit where no coarse-graining is
appealed to at all. I illustrate these points via a discussion of Maxwell’s
demon.

1 Introduction

Dynamical theories are concerned with what physical systems spontaneously
do: they provide dynamical equations and dynamical laws relating a state of a
system at one time to a state at another, all independent of outside intervention.
Thermodynamics, the misleading name notwithstanding, is not a dynamical
theory in this sense: if it has a dynamical law, it is simply that systems left
to themselves go to equilibrium and stay there. Most of its content involves
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transitions between equilibrium states, and since equilibrium states by definition
do not carry out any transitions at all if left to themselves, those transitions
must be understood as externally induced. Thus understood, thermodynamics
is a control theory, concerned not with what transitions spontaneously happen
but with what externally-induced transitions are and are not possible, or put
another way, what control operations can or cannot be performed.1

Viewed as a control theory, thermodynamics is predominantly concerned
with a somewhat more specific problem. Given some additive, conserved quan-
tity — usually energy, but it could be angular momentum, or charge, or any
other such quantity — how much of that quantity can be extracted from a given
system by a given class of control operations?

An immediate answer might be: none of it. These are conserved quantities,
after all: the quantity might flow from one part of the system to another, but
it cannot increase or decrease. But of course among our control operations
might be couplings of the collection to other systems — batteries, flywheels,
lifted weights, or other storage devices — so that the collection’s share of the
quantity decreases even while the amount of it in the larger world remains fixed.
Indeed, that is just what ‘extract’ means for an overall-conserved quantity: the
extractor has acquired some of it, so less of it remains.

That suggests a second answer: all of it. If the only constraint on extraction
is compliance with the conservation laws, then the most we can extract is the
difference between the actual amount of the quantity, and the minimum amount
— for energy, for instance, the difference between the actual energy of the system
and the energy of its ground state.

Phenomenological thermodynamics tells us that at least in some circum-
stances, the constraints are more stringent. If our system consists of a box of
gas at uniform temperature, and in our control operations we are obliged to
return the gas to the same volume at which it begins, then none of the gas’s
energy can be extracted. If the system instead consists of two such gases at
different temperatures, we may run a heat engine between the two gases and
extract some of the energy that thus flows — but not all of it, and only until the
temperatures equalize. Indeed, the lesson of thermodynamics is that all such
constraints can be systematized into two principles: that all control processes
conserve energy (the First Law), and that no control process decreases ther-
modynamic entropy (the Second Law). And the irreversibility of equilibrium
thermodynamics is often said to lie in the fact that the Second Law’s inequal-
ity need not be saturated: that there although there are no control processes
that decrease entropy, there are some which increase it, and so their are some
operations which, once done, cannot be undone.

The First Law sits on a solid microphysical foundation: thermodynamic
energy is identified with dynamical energy (that is: the conserved quantity as-
sociated with time translation symmetry) and the principle that it is conserved
is inviolate, no matter how sophisticated our control processes might be: any

1The control-theory way of understanding thermodynamics is defended by Wallace (2014)
and Myrvold (2020); it has been widely discussed in the recent physics literature under the
title of ‘resource theory’ (for a review, see, e. g. , Gour et al (2015).)
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increase in energy in some external storage device we operate must be com-
pensated, exactly, by a decrease of energy elsewhere, either in another external
device or in the system on which we operate. (And the same applies mutatis
mutandis to the extraction of other conserved quantities, albeit this is seldom
a focus of equilibrium thermodynamics.)

The Second Law, on the other hand, is often attributed to the macroscopic
nature of equilibrium thermodynamics, and/or to the crude limitations of the
control operations that clumsy creatures like us have access to. The point
was made vividly by Maxwell (1867; 1871, ch.12) at the dawn of statistical
mechanics: his infamous ‘demon’ is a microscopic being, capable of tracking
the movements of individual molecules in a gas and steering them, ever so
delicately, so as to reduce the gas’s entropy and allow work to be extracted.
And ever since Maxwell’s proposal the possibility has been raised and reraised
that a subtler control theory, appropriate to a subtler agent, might transcend its
limitations. This conception of the Second Law is closely tied to the idea that
thermodynamics is in some way a higher-level, emergent, approximate theory,
useful for large-scale systems no doubt but only statistically true even then,
breaking down entirely on sufficiently small scales.

This way of thinking is in tension with another tradition, just as old, of
seeing thermodynamics as exact and universal. Einstein (1949, p.33) famously
described thermodynamics as “the only physical theory of universal content con-
cerning which I am convinced that, within the framework of applicability of its
basic concepts, it will never be overthrown”; more recently, the physics consen-
sus2 about Maxwell’s demon is that reasons of principle and not just practice
make it impossible, and the defenders of that consensus consider microscopic
systems in states far from equilibrium; meanwhile, recent advances in statistical
mechanics3 have seen physicists apply thermodynamics to extremely small sys-
tems, not just to macroscopically large ones, and to obtain theoretical results
which are then confirmed empirically.

This paper has several goals. Firstly, I aim to disentangle these two aspects
of thermodynamics: the emergent, high-level, large-system, approximate fea-
tures, from the exact, microscopically derivable features. I do so by introducing
the idea of a coarse-graining (a formal transformation of a system’s state which
washes out certain fine details of its microstructure) and of a control theory
defined by that coarse-graining, not in the sense that any control operation ac-
tually performs the coarse-graining but that control operations are indifferent to
details that the coarse-graining washes out. Each coarse-graining then specifies a
class of control theories, and the finer the coarse-graining, the more powerful the
control theory. The coarsest grain, which defines equilibrium thermodynamics,
just replaces every system with its equilibrium state; the finest, which defines
reversible thermodynamics, does not coarse-grain at all. I offer this framework
as a general method both to the derivation of phenomenological thermodynam-
ics from microphysics, and to generalize to finer-grained control theories where

2See section 11 for details and references.
3See, e. g. , (Jarzynski 1997; Crooks 1998; Collin et al 2005; Bustamante, Liphardt, and

Ritort 2005); for a conceptual discussion, see (Wallace 2020).
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agents have control options not present in phenomenological thermodynamics.
Secondly, I explore the microphysical origins of irreversibility in thermo-

dynamic control theory (to be distinguished from the irreversibility of non-
equilibrium statistical mechanics, which I do not consider here). This (I will
argue) is closely tied to the limitations of our control of a system, and hence to
our choice of coarse-graining.

Thirdly, I attempt to provide some clarity on the vexed question of how
information connects to thermodynamic entropy. In some corners of physics,
it is a commonplace that information and entropy are one and the same, but
the idea has been met with skepticism in other corners and even more so in
philosophy. In my account, gaining information about a system decreases its
entropy, and allows us more control over it, only when that information tells
us about the coarse-grained features of a system: coarse-grained, that is, with
respect to the coarse-graining that characterizes an agent’s particular control
theory.

Finally, I argue that there are hard limits on what can be done to thermody-
namic systems even by an agent with total, microscopic, control of the system,
limitations that apply not because of our limited ability to influence systems
at the microscopic level but because of microscopic physics itself. Specifically,
the most important phenomenological versions of the Second Law continue to
apply, even in the case of a fully reversible thermodynamics.

The structure of the paper is as follows. In sections 2 and 3 I review first
the structure of phenomenological thermodynamics (with an emphasis on the
central role of the equation of state) and then the ‘canonical recipe’ by which the
equation of state is derived from a system’s microphysics (which at this stage
I simply state without defense). In section 4 I provide a general framework
for discussing thermodynamic control theories, and in section 5 I introduce
the idea of coarse-graining in general and the equilibration coarse-graining that
justifies the canonical recipe in particular. In sections 6–8 I further develop
the microphysical basis for phenomenological thermodynamics, in the process
introducing the important concepts of ‘free energy of equilibration’ (section 7)
and ‘heat baths’ (section 8) which apply in a much more general context. In
sections 9–10 I consider some more powerful thermodynamic control theories,
firstly one inspired by Boltzmannian statistical mechanics and secondly a fully
reversible thermodynamics in which the controlling agent can apply arbitrary
unitary (or, in a classical context, Hamiltonian) transformations. In section 11
I consider the circumstances in which collecting information about a system can
be thermodynamically useful; in sections 12–13 I return to the Second Law in
the context of the very general notions of thermodynamics I am considering,
and then distinguish ways in which Maxwell demons are or are not possible.
Section 14 is the conclusion.

This paper builds on previous work by myself and others. Wallace (2014)
defends the idea of thermodynamics as control theory, and develops the mi-
croscopic details in the specific context of equilibrium thermodynamics. Myr-
vold (2011, 2020) offers a similar defense, but introduces the important idea
that there are different forms of thermodynamics corresponding to different lev-
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els of control an agent might have (or rather, reintroduces it, since he provides
strong historical evidence that the idea was well understood by many of the
physicists who developed thermodynamics and statistical mechanics); he too
works in the context of equilibrium thermodynamics. Maroney (2007) develops
a fully reversible form of thermodynamics, separated entirely from considera-
tions of equilibrium, and my development here of ‘reversible thermodynamics’
is indebted to his version. The physics I discuss is very standard and I do not
attempt to provide original references; for textbook discussions see, e. g. , (Tol-
man 1938; Landau and Lifshitz 1980; Kittel and Kroemer 1980; Blundell and
Blundell 2010; Throne and Blandford 2017).

Four technical notes. Firstly, I work in natural units in which Boltzmann’s
constant kB is set to 1. Secondly, I develop my account for the most part neu-
trally as to whether the underlying dynamical theory is classical or quantum,
though for certain technical proofs I specialize to quantum mechanics. (In most
cases there is an analogous classical proof, but in any case classical mechanics is
valid only insofar as it successfully approximates quantum mechanics.) Thirdly,
when discussing quantum mechanics I assume (i) that the normal quantum for-
malism is complete; (ii) that closed-system dynamics are always unitary; (iii)
that processes of observation and measurement can in principle be modelled
mechanically within the quantum formalism. In my view (Wallace 2012) this
more or less amounts to assuming the Everett (many-worlds) interpretation,
but I make no use of Everett-specific ideas and most of what I say here can
probably be taken over to other approaches to quantum mechanics with little
change. Finally, by ‘phenomenological thermodynamics’ I mean the macroscop-
ically developed theory of thermodynamics, understood in isolation from its
microphysical roots; I will later construct a microscopic control theory, (par-
tial) equilibrium thermodynamics, which provides a microphysical justification
of phenomenological thermodynamics.

2 Phenomenological thermodynamics

Phenomenological thermodynamics is concerned with those transitions which
can be induced by an external agent (put another way, those control opera-
tions) that move the a physical system or collection of systems from one equi-
librium state to another), where ‘equilibrium’ is understood operationally as
the state to which an undisturbed system settles down to after some period of
time. Different possible states of a thermodynamic system are labeled by the
system’s total energy U , by some (possibly empty) set of parameters describing
externally-controllable features of the system, and by some (possibly empty) set
of conserved quantities other than energy. For instance:

� The thermodynamic state of a piece of rock of fixed size and shape is
characterized by its energy alone.

� The thermodynamic state of a fixed quantity of gas in a box is character-
ized by the energy of the gas and the volume of the box. If the amount of
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gas in the box is also adjustable, the thermodynamic state is in addition
characterized by the total number of particles (or, equivalently, moles) of
the gas.

� The thermodynamic state of black-body radiation in a box is characterized
by its energy and the box volume (but not by the number of photons, since
that is not a conserved quantity).

� The thermodynamic state of a ferromagnet in an external magnetic field
is characterized by its energy and the field strength.

� The thermodynamic state of a black hole, described in its rest frame, is
characterized by its mass (=energy), charge, and angular momentum.

For simplicity I will usually write as if there was one parameter, V , and one
conserved quantity, N ; everything that follows generalizes straightforwardly to
the case of none or several parameters and/or conserved quantities.

The quantitative features of a thermodynamic system are determined — at
least as far as phenomenological thermodynamics is concerned — entirely by
one function, the state function (or equation of state), which is a real-valued
function S(U, V,N) of U , V andN whose value for a particular state is called the
thermodynamic entropy of the state. It is normally assumed that (for fixed V,N)
S is a strictly increasing function of U , so that this may be inverted to write U =
U(S, V,N) (‘state function’ is often used to describe this function also). Given
a system that can be decomposed into non- or weakly-interacting subsystems,
each has its own equation of state and the entropy of the total system is the
sum of the entropies of its subsystem; energy and the other conserved quantities
are likewise assumed to be additive. (The approximate additivity of the energy
is more or less constitutive of two systems being weakly interacting.)

The operational significance of this machinery is then given by the two laws
of phenomenological thermodynamics and by a secondary accessibility principle:

The First Law: For any transition (U, V,N) → (U ′, V ′, N ′) induced on an
otherwise isolated system by an agent, the net energy required by the
agent to perform the transition equals (U ′ − U), the change in energy
of the system. That is: the sum of system energy and controller energy
is conserved. (As is standard in phenomenological thermodynamics, this
assumes that we have an antecedent understanding of the energy of a
mechanical system.)

The Second Law: Any transition (U, V,N) → (U ′, V ′, N ′) induced on an oth-
erwise isolated system satisfies S(U ′, V ′, N ′) ≥ S(U, V,N).

The Accessibility Principle: If two states have entropies S, S′ with S′ > S,
there is an transition from the first to the second.

Other thermodynamic quantities are definable from the equation of state. We
can define the temperature T (S, V,N), the generalized pressure P (S, V,N), and
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the generalized potential µ(S, V,N), via the differential expression

dU(S, V,N) = T (S, V,N)dS − P (S, V,N)dV + µ(S, V,N)dN (1)

so that (for instance),

T =

(
∂U

∂S

)
V,N

. (2)

We define the work done to a thermodynamic system in a control process
as the increase in the system’s energy caused by the process. If the work done
is negative, we speak of work extracted. If we think of a control process as ulti-
mately physically realized in a larger system in which total energy is conserved,
the work done by a control operation is the energy that the controller must
provide in order to perform it, and the work extracted, conversely, is the energy
gain to the controller in carrying out the control operation (which is often op-
erationalized via some energy-storage device such as a raised weight, flywheel,
or battery).

If, as is often the case, a thermodynamic system can be broken into some
number of (for simplicity, let’s say two) approximately-isolated subsystems, it
is generally possible to consider the total work W done as the sum of the work
W1 done on system 1 and W2 done on system 2. If the energy changes in the
two systems are ∆U1, ∆U2, then we define the heat flow Qi into the ith system
as

Qi = ∆Ui −Wi. (3)

We have Q1 = −Q2, so that heat can be thought of as flowing from one system
to the other; definitionally, the total heat flow into our system is zero. (It
is possible to construct versions of thermodynamics involving heat baths in
which net heat flow can be nonzero — and I discuss these later in section 8
— but for our purposes we can think of these as effective theories, reducible to
phenomenological thermodynamics by including the heat bath as a subsystem
of the thermodynamic system.)

It is worth noting that (except in the special case of an overall quasistatic,
reversible process, which I will not need to consider here) the machinery of
thermodynamics does not itself have the resources to cleanly define work and
heat for subsystems, since it does not seek to characterize control processes
directly, but only to constrain them via the Second Law.

As an illustration of how this framework has phenomenological consequences,
let us define a transition as cyclic if it leaves parameters and conserved quantities
(other than energy) unchanged. Then a cyclic transition operating on a single
system which extracts a small amount of net work from that system satisfies

TδS = δU ≤ 0 (4)

and so if T is positive no such transition is possible. A small cyclic transition
operating instead on a pair of systems (1 and 2) in which zero net work is done
will have as its only effect the transfer of a small amount of heat between the
systems; it satisfies

0 = δU = δU1 + δU2 (5)
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so that T1δS1+T2δS2 = 0. The Second Law requires that δS1+δS2 ≥ 0, so that
if δS1 < 0, T1 ≥ T2. That is: no cyclic process can induce heat flow from a cold
body to a hotter body without some expenditure of external energy or other
change in the systems. These two results can be recognized as, respectively, the
Kelvin and Clausius statements of the Second Law (I discuss them further in
section 12.)

If we instead consider allowing heat d̄Q to flow from a higher-T to a lower-
T body, while siphoning some quantity −d̄W of it out altogether as extracted
work, we have (assuming T2 > 0)

δS1 = −d̄Q/T1 (6)

and
δS2 = +(d̄Q+d̄W )/T2 (7)

so that

0 ≤ T2(δS1 + δS2) = d̄Q

(
1− T1

T2

)
+d̄W (8)

or

−d̄W ≤ d̄Q
(
1− T1

T2

)
(9)

which is the well-known Carnot limit on the efficiency of a heat engine. The
accessibility principle tells us that this limit can be approached to arbitrary
accuracy; we can define reversible processes (aka Carnot processes) as idealized
limits of real processes which generate less and less entropy increase, and which
in that limit obtain the Carnot efficiency. Carnot efficiency.

3 Deriving the equation of state

While it is contested to what extent equilibrium statistical mechanics offers a
conceptual underpinning of phenomenological thermodynamics, there is no room
to doubt that it provides methods to quantitatively calculate the thermodynamic
description of a system from its microphysics. The recipe for doing so — let’s
call it the canonical recipe4 (it would be premature to call it a ‘derivation’)
is well known, and can be used both in quantum and classical mechanics: it
will be helpful to adopt as far as possible a notation neutral between the two.
For these purposes, let’s define a dynamical state space as either a phase space,
i. e. a symplectic manifold (classical) or a separable Hilbert space (quantum),
and a quantity for a dynamical state space as either a smooth real function on
the space (classical) or a self-adjoint operator on the space (quantum). Any
such quantity induces a time-indexed flow on the dynamical state space, either
under Hamilton’s equations (classical) or the Schrödinger equation (quantum),
in either case using the quantity as a Hamiltonian. And a distribution on a

4There is also an microcanonical recipe, which I will not discuss here; in practice the
canonical recipe is almost always the one used.
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dynamical state space is either a probability distribution on the space (classical)
or a density operator on the space (quantum). For any quantity X, the symbol∫

X

represents either the integral of X over phase space (classical) or the trace of X
(quantum), and by definition the expectation value of a quantity X with respect
to a distribution ρ is

⟨X⟩ρ =

∫
Xρ. (10)

The canonical recipe can now be summarized as follows:

1. An isolated thermodynamic system is represented by a dynamical state
space and a parameterized family H(V ) of Hamiltonians for the space:
each Hamiltonian is a quantity, and V → H(V ) is a smooth map from
the space of parameters into the space of quantities. Any other conserved
quantity is represented by another such parameterized family N(V ) of
quantities, which are conserved in the usual sense: for each V , N(V ) is
invariant under the dynamical flow induced by H(V ). (Which is to say
that the Poisson bracket or commutator, as appropriate, vanishes for each
V between H(V ) and N(V ).)

For future purposes, I take this as the definition within statistical me-
chanics of a thermodynamic system.

2. For given values U , V , N of the energy, parameter, and conserved quantity,
the canonical distribution ρc(U, V,N) is the distribution

ρc(U, V,N) =
1

Z(T, µ)
exp

(
−H − µN

T

)
(11)

where the partition function

Z(T, µ) =

∫
exp

(
−H − µN

T

)
(12)

is a normalizing factor, and T and µ are functions of U, V,N defined
implicitly by the requirements that

U = ⟨H(V )⟩ρ (13)

and
N = ⟨N(V )⟩ρ. (14)

(The generalization to several or no conserved quantities is trivial; it is
common to call this expression the grand canonical distribution where
conserved quantities other than energy are present, but I eschew this as
adding unneeded complexity.)
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3. The equation of state for a thermodynamic system is given by

S(U, V,N) = SG[ρc(U, V,N)] (15)

where SG[ρ] is the Gibbs entropy,

SG[ρ] = −
∫
ρ ln ρ. (16)

(The notation continues to be systematically ambiguous between classical
and quantum: in the quantum case this is the von Neumann entropy.)

4. Explicit calculation from (15) gives

S = U/T + lnZ (17)

and hence (
∂S

∂T

)
V,N

=
1

T

(
∂U

∂T

)
V,N

. (18)

By comparison with (1), T is indeed the thermodynamic temperature, as
my notation suggests; a similar calculation shows that µ is likewise the
generalized potential.

Why the canonical recipe works is contested. That it works is amply demon-
strated by the last century of work in equilibrium statistical mechanics.

4 Characterizing control theory

To explain why the canonical recipe works, we need to consider the control the-
ory of a thermodynamic system in microphysical terms. That theory ought to
consist of a set of allowable transformations, the control operations, on micro-
physically characterized states of the thermodynamic system; the hope would
be to find some independently-justified way of specifying the allowable control
operations such that the resultant control theory explains the recipe’s success.

What are the ‘microphysically characterized states’ of a thermodynamic sys-
tem? A natural guess (working for the moment specifically in classical mechan-
ics) would be that they are the points of phase space, each of which describes
exactly the properties of the system (say, the positions and momenta of all its
composite particles). A slightly more careful guess would be that the states are
ordered pairs (x, V ), where x is a phase space point and V is a parameter value,
since we ought to include the parameter values as part of the specification of
the state.5

5In the case of volume in particular, it may seem strange to think of the volume as a
parameter in the Hamiltonian, rather than just part of the specification of the phase space.
But ultimately, the particles are confined to the box not by a priori kinematics but by their
dynamical interaction with the walls, and we can model this conveniently by treating the box
as a potential, zero within the box and then increasing extremely rapidly to a value much
larger than any relevant particle kinetic energy outside the box. Any particle position is then
kinematically possible, but positions outside the box will be dynamically prohibited. Thanks
to Katie Robertson for pressing me on this point.
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This is not in fact the normal practice in (at least contemporary) statistical
mechanics. Here the standard move is instead to treat the state as a probability
distribution, giving the probability density for the system to be represented by
any given phase-space point (again, in our framework the more careful move
would be to take a state as an ordered pair (ρ, V ) where ρ is a distribution
and V a parameter value). Often, especially in textbooks and foundational
presentations, this distribution is given an epistemic gloss: it represents the
controlling agent’s partial knowledge of the system’s true state.

This move to a probabilistic characterization of the state has been heavily
criticized by philosophers. David Albert, for instance,6 writes:

Can anyone seriously think that our merely being ignorant of the ex-
act microconditions of thermodynamics plays some part in bringing
it about, in making it the case, that (say) milk [mixes into7] coffee?
(Albert 2000, p.64)

However:

1. The epistemic interpretation of the probabilities is for the most part8

optional. There are numerous ways to interpret them as objective —
as long-run relative frequencies (Tolman 1938); as the result of a Hume-
Lewis best-systems analyis (Lewis 1980; Loewer 2002; Ismael 2009); as the
consequence of primordial chance events (Demerast 2016); as the classical
limit of quantum indeterminacy (Albert 2000; Wallace 2016).

2. In any case, Albert’s criticism applies to statistical-mechanical explana-
tions of what systems do by themselves. In the present paper, I am con-
cerned with the control theory of mechanical systems, not their sponta-
neous behavior — and there is nothing inherently paradoxical about the
fact that my having more information about a system gives me better
ability to control it. (Of course, whether a piece of information about a
system’s state is useful to me depends on whether I have access to control
operations that can exploit that particular piece of information; this is a
theme which will recur several times in my analysis.)

3. Use of distributions in at least the formal sense is unavoidable once we
start doing quantum rather than classical mechanics. The classical limit
of a quantum state (even a pure state) is a classical probability distri-
bution, not a classical microstate; and even if a system’s state is pure,
its subsystems’ states are in general mixed; even if a composite system
begins in a product state, dynamical evolution will generically entangle
those states. (For more on this point, in the context of non-equilibrium
statistical mechanics, see (Wallace 2016).)

6For other examples, see, e. g. , (Goldstein 2001; Callender 2001).
7Albert writes ‘dissolves in’ here, but milk is not water-soluble.
8In statistical mechanics (as distinct from thermodynamics) it is entirely optional. In

thermodynamics the existence of an agent who intervenes on a system on the basis of their
information about the system means that some notion of the state as partly representing an
agent’s information about the system cannot entirely be dispensed with.
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For these reasons (and also given the urgent goal of providing a justification
for actually-used methods in physics) I continue to follow physics orthodoxy:
by definition a state of a thermodynamic system is an ordered pair (ρ, V ) of a
distribution and a parameter value (where we have returned to our systematic
ambiguity between classical and quantum mechanics: in the quantum case states
are ordered pairs of density operators and parameter values).

We can now give a formal definition of a control theory for a thermodynamic
system (or a thermodynamic control theory):

� A control operation for the system is a triple C = ⟨ΠC , V, V
C⟩ where ΠC ,

the control map of C, is a map from distributions to distributions and
V, V C are parameter values. It defines a partial map on states: C maps
the state (ρ, V ) to C(ΠC , V, V

C) = (ΠCρ, V
C). (I adopt the systematic

notation that ΠC and V C are respectively the distribution map and final
parameter value associated with C.)

Given two control operations C1 = ⟨ΠC1
, V1, V

C1⟩ and C2 = ⟨ΠC2
, V2, V

C2⟩
with V C1 = V2, their composition is

C = C2 · C1 = ⟨ΠC2
ΠC1

, V1, V
C2⟩ (19)

and the compositions of three or more operations can be defined induc-
tively in the obvious way: C3 · C2 · C1 = C3 · (C2 · C1), etc. .

� A control theory for the system consists of

(i) A set of allowable control operations for that theory, containing at
least the identity operations ⟨id, V, V ⟩ for all V .

(ii) A set of allowable initial states for that theory.

(Note that I do not assume the allowable control operations are closed
under composition; indeed, this will generally prove impossible.)

In phenomenological terms, the control operations for thermodynamics include
(but are not limited to) operations like ‘vary the parameters over some period of
time’ and ‘place two isolated subsystems in dynamical contact and allow them
to come partially to equilibrium, then decouple them’.9 Microphysically, we can
characterize the control map of the former operation by dynamical flow under
the time-dependent Hamiltonian H(V (t)), where V (t) is a path through param-
eter space, and of the latter by dynamical flow under a time-dependent Hamil-
tonian that begins and ends at the total Hamiltonian of the isolated subsystems
but passes through a region in quantity space representing Hamiltonians which
dynamically couple the subsystems. More generally, any time-dependent path
h(t) through the space of quantities satisfying h(T ) = H(V ), h(t′) = H(V ′) for
some t′ > t determines a control operation in which the state flows under the

9In some treatments (e. g. , (Myrvold 2020)) these are taken to exhaust the range of avail-
able operations, but normally operations like vigorously stirring a fluid are included in the
range of operations available even in phenomenological thermodynamics.
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time-dependent Hamitonian h(t), applied between times T and T ′. Standard
results of classical and quantum dynamics tell us that a control operation like
this — where the Hamiltonian is varied along some smooth path from H(V ) to
H(V C) and the system evolves under the resultant time-dependent dynamics
— determines a dynamical map which is the push-forward of a symplectomor-
phism (i. e. , a canonical transformations) in the classical case, and the adjoint
action of a unitary operator in the quantum case; I call maps of this kind canon-
ical (continuing with our systematically ambiguous notation). Conversely, any
canonical map that is topologically connected to the identity can be generated
(non-uniquely) by some choice of time-dependent Hamiltonian. We call a con-
trol operation Hamiltonian if its control map is canonical, and a control theory
Hamiltonian if all its control operations are Hamiltonian.

Are Hamiltonian control theories the most general that we can consider? To
some extent it is a matter of definition. There are certainly things we could do
to the systems that are not Hamiltonian control operations: for instance, we can
bring in a new system and let it dynamically interact with the old ones so that
not only does it induce a change in the Hamiltonian of the latter, but it allows
new and old system’s microstates to become correlated. Or we can measure
some properties of the systems and choose our control operation accordingly.
(These are actually quite closely related, as we will see in section 11.) But in
each case we can absorb the operation in our overall framework by zooming
out. In the first case, we can simply choose to include the ‘new’ system as a
subsystem of a larger thermodynamic system, and consider the control theory
of that system. In the second, we can automate the process of measuring and
applying the measurement-dependent operation, and include the machine that
so automates it as one more system in the collection; the externally-applied
control operation just consists of turning the machine on, which can be modelled
just fine in the Hamiltonian class of control operations. So for the most part
we will avail ourselves of these tricks to restrict attention to the Hamiltonian
operations; I develop the details in sections 8 and 11. (It is, however, sometimes
useful to consider certain formal extensions of the class of Hamiltonian control
theories, such as idealized limits of Hamiltonian control operations which are
not Hamiltonian.)

A key feature of a Hamiltonian control map ΠC is that it conserves the
Gibbs entropy: SG[ΠCρ] = SG[ρ]. The converse is not true; we will call a
control operation volume-preserving if it conserves Gibbs entropy, whether or
not it is Hamiltonian (since the underlying mathematical reason that canonical
transformations leave SG invariant is that they conserve phase-space volume or
its analog, Hilbert space dimension), and a control theory as volume-preserving
iff its control operations are all volume-preserving.

5 Justifying the canonical recipe

So much for the general framework for thermodynamic control theory. What
specific assumptions about the theory are needed to recover phenomenological
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thermodynamics? We can get insight by asking why the canonical distribution
plays the central role in the recipe for calculating the equation of state of a
thermodynamic system. It has two crucial properties, related but distinct, that
explain this. Firstly, ρc(U, V,N) is the unique maximum-Gibbs entropy distri-
bution for given U, V,N : any other distribution defined for the same parameter
value V and with the same expectation values of energy and other conserved
quantities has a strictly lower Gibbs entropy. (This is a standard result; for
completeness I prove it in the Appendix in the quantum case, under mild sim-
plifying assumptions.) Secondly, near-universal practice in statistical mechanics
treats ρc(U, V,N) as the unique equilibrium distribution which an isolated sys-
tem with those expectation values and parameters spontaneously approaches —
approaches in the sense that it is this distribution that is used to calculate all
observable features of a system at equilibrium, including not only thermody-
namic features but statistical properties like multi-time correlation functions,
fluctuations, and the expected fraction of particles with a given energy.

This suggests a rather straightforward (indeed, as we will see, naive) control
theory for phenomenological thermodynamics. Suppose that the controlling
agent can manipulate the bulk features of a system but cannot prevent that
system from spontaneously approaching equilibrium. And suppose the approach
to equilibrium is literally modeled by the evolution of a state with given U, V,N
to the canonical state (ρc(U, V,N), V ). Then (i) the allowable initial states for
the control theory should comprise the canonical states, and (ii) the control
operations should consist of some Hamiltonian operation applied to an initial
state, followed by equilibration, so that the state after a control operation is
also a canonical state.

At this point, we can derive phenomenological thermodynamics fairly di-
rectly. Firstly, if the actual equilibrium state at (U, V,N) is a canonical dis-
tribution, then it is no wonder that the expectation values of that canonical
distribution correspond to their phenomenological values (at least, assuming
a system large enough that fluctuations are small), and the First Law follows
straightforwardly from energy conservation. Secondly, since the canonical distri-
bution maximizes Gibbs entropy for given expectation values, the equilibration
process is Gibbs entropy-non-decreasing. And since Hamiltonian flow is Gibbs
entropy-conserving, the overall process of Hamiltonian flow plus equilibration
is Gibbs-entropy-nondecreasing. The Second Law then also follows via the def-
inition (15). The Accessibility Principle is somewhat harder to establish (and
depends rather more on the details of the control theory) but if we assume that
we can vary the parameters of the Hamiltonian arbitrarily slowly, the very fact
that Gibbs entropy is maximized by the canonical distribution and so small per-
turbations from that distribution have lower entropy only at second and higher
order in the perturbation establishes that we can carry out transitions with
arbitrarily low entropy increase (see (Wallace 2014, section 4) for the details.)

Alas, it’s (probably) not that simple. Precisely because equilibration thus
defined is Gibbs entropy-increasing, equilibration cannot be a Hamiltonian pro-
cess. And if equilibration is just a playing out of the ordinary, Hamiltonian (or
Schrödinger) dynamics of a system in isolation, then equilibration is a Hamil-
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tonian process. Only if equilibration requires fundamentally new dynamics,
and/or relies essentially on the interaction with a system with its environment,
could our naive control theory be correct. Serious cases have been made for
both,10 but the general consensus in foundations of statistical mechanics, with
which I concur, is that it ought to be possible to understand equilibration with-
out either. If so, this naive control theory cannot be the true underpinning of
phenomenological thermodynamics.

But it can suggest a better control theory. In orthodox accounts of the ap-
proach to equilibrium the idea is not that an equilibrated system really and truly
is described by the canonical distribution, but that for all intents and purposes
it is, at least in macroscopically large systems: any remotely-realistically mea-
surable dynamical quantity, on any remotely-realistic timescale, will have the
same expectation values on the canonical distribution as on the true distribu-
tion. Only if per impossibile we were to measure something like an N -particle
correlation function for N of the order of the entire system size could we de-
tect any difference between the two. If so, it seems reasonable to suppose that
remotely-realistic control operations likewise fail to distinguish between the true
post-equilibration state and a canonical state with the same expectation values
and parameters.

To express this precisely, it will be helpful to be somewhat more general.
A coarse-graining map J is an assignment to each parameter value V of a
projection JV on the space of distributions (that is, a map of distributions to
distributions satisfying J2

V = JV ) with the additional properties that

1. The expectation value of the Hamiltonian at parameter V , and any other
conserved quantity N , is conserved under JV : ⟨H(V )⟩JV ρ = ⟨H(V )⟩ρ and
⟨N(V )⟩JV ρ = ⟨N(V )⟩ρ.

2. The Gibbs entropy satisfies SG(JV ρ) ≥ SG(ρ), with equality only if JV ρ =
ρ; that is, if JV ρ ̸= ρ, SG(JV ρ) > SG(ρ).

The coarse-graining map induces a projection on the set of states: J(ρ, V ) =
(JV ρ, V ), and defines a function, the thermodynamic entropy with respect to J
(‘J-entropy’ for short) on states:

SJ(ρ, V ) = SG[JV ρ]. (20)

The most important example of coarse-graining is equilibration coarse-graining,
defined by

Jeq
V ρ = ρc(⟨H(V )⟩ρ, V, ⟨N(V )⟩ρ) (21)

but many others will be useful in due course.
A control theory is forward compatible with J , or J-compatible for short, if

for any allowable control operations C1, C2, . . . CN whose composition is defined
and allowable, and for any allowable initial state (ρ, V ),

JCNJCN−1 · · · JC1J(ρ, V ) = J(CN · · ·C1)(ρ, V ). (22)

10See, e. g. , (Sklar 1993, 246–254) and references therein; see also (Albert 2000, ch.7).
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It is forward complete with respect to J , or J-complete for short, if

(i) For any distribution ρ and parameter V , (Jρ, V ) is an allowable initial
state.

(ii) For any allowable initial state (ρ1, V ), and any state (ρ2, V2) with

SJ(ρ2, V2) > SJ(ρ1, V1)

there is an allowable control operation that takes (ρ1, V1) to some state
(ρ′2, V2) with JV2ρ

′
2 = JV2ρ2.

It is strictly J-complete if in addition

(iii) For any allowable initial state (ρ1, V ), and any state (ρ2, V2) with

SJ(ρ2, V2) = SJ(ρ1, V1)

there is an allowable control operation that takes (ρ1, V1) to some state
(ρ′2, V2) with JV2ρ

′
2 = JV2ρ2

(in other words, if (ii) holds when the entropy is nondecreasing and not just
strictly increasing.)

This will require some unpacking. Forward compatibility with J means that
control operations give the same result, up to coarse graining, whether they are
applied to the actual initial state or a coarse-graining of it, and furthermore that
this continues to be the case if control operations are composed (provided that
the composition remains allowed). This is to say that the control operation
can be understood as acting autonomously on the coarse-grained features of
the system, irrespective of the fine-grained details. A control theory forward
compatible with equilibration coarse-graining, for instance, takes effectively-
canonical distributions to effectively-canonical distributions in a fashion that
does not depend on the in-practice-inaccessible ways in which those distributions
differ from the exact canonical distribution; this (I suggest) accurately captures
the intuitive idea, stated above, that ‘remotely-realistic control operations . . . fail
to distinguish between the true post-equilibration state and a canonical state
with the same expectation values and parameters’.

The J-entropy is non-decreasing, and in general strictly increasing, under
volume-preserving (and in particular Hamiltonian) control operations:

SJ(C(ρ, V )) ≡ SG[JV CΠCρ]

= SG[JV CΠCJV ρ]

≥ SG[ΠCJV ρ]

= SG[JV ρ]

≡ SJ(ρ, V ). (23)

J-completeness expresses, up to coarse-graining, the idea that this limit is the
only limit on the control theory: in a J-complete control theory, given any state

16



there is another allowable initial state with the same coarse-grained description,
and given any pair of states where the second has higher J-entropy than the
first, there is a control operation that transforms the first into one identical to
the second up to coarse-graining. (And strict J-completeness means that this
continues to hold even when the two states have the same J-entropy.)

Let’s now specialize to the specific case of the equilibration coarse-graining
ma Jeq, which replaces any state with the canonical state at the same expected
values of conserved quantities. I define an equilibrium thermodynamics of a
thermodynamic system as any control theory which is forward compatible and
forward complete with respect to Jeq. (We have seen that there are good (if
heuristic) reasons to think that any control theory that allows arbitrarily slow
variation of the parameters of a system’s Hamiltonian will define an equilib-
rium thermodynamics; we have also seen that any two control theories forward-
compatible and forward-complete with respect to a given coarse-graining are
essentially equivalent, so that it will rarely matter which equilibrium thermo-
dynamics we have in mind.)

The thermodynamic entropy, with respect to Jeq, is determined only by the
expected value of the conserved quantities and the external parameters:

SJeq

(ρ, V ) = SG[ρc(ρc(⟨H(V )⟩ρ, V, ⟨N(V )⟩ρ)] (24)

and indeed any state can be characterized completely by parameters and conserved-
quantity expectations. At this point it should be apparent that equilibrium
thermodynamics simply reproduces the canonical recipe.

6 Partial equilibrium

To unpick this further, suppose that we have a thermodynamic system which
can be decomposed into subsystems 1,2 (with dynamical state spaces S1, S2),
and that each subsystem i has a parameter Vi such that the total Hamiltonian
H(V1, V2) can be written at least to a good approximation as

H(V1, V2) ≃ H1(V1)× id2 + id1 ×H2(V2) (25)

i. e. the two systems are very weakly interacting. (For the moment suppose
no conserved quantities are present other than energy.) Then the equilibration
coarse-graining map is

Jeq
V1,V2

ρ = ρc(⟨H(V1, V2)⟩ρ, V1, V2) (26)

or more explicitly (and writing A ⊗ B as a neutral expression for either the
function A⊗B(x, y) = A(x)B(y) (classical) or for the tensor product of A and
B (quantum)),

Jeq
V1,V2

ρ =
e−(H1(V1)×id2+id1×H2(V2))/T

Z(T )
≃ e−H1(V1)/T

Z1(T )
⊗ e−H2(V2)/T

Z2(T )
(27)
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where T = T (⟨H(V )⟩ρ, V1, V2) is the thermodynamic temperature given the
expected energy and parameters of ρ and

Zi =

∫
i

e−Hi/T (28)

and the approximation becomes exact in the limit where the total Hamiltonian
factorizes exactly. That is: equilibration coarse-graining transforms a distribu-
tion to the product of two canonical distributions at the same thermodynamic
temperature.

This coarse-graining map is appropriate for the control theory of an agent
who is unable to prevent interactions between the two systems, and who acts
on timescales slow compared to the equilibration timescale of the joint sys-
tem: by the time they are able to intervene on the system, the two subsystems
have (effectively) reached their joint equilibrium state. But we can also con-
sider an agent who can intervene more rapidly, and who can control whether
or not interactions occur between the two systems (but who cannot intervene
rapidly compared to the equilibration timescales of the two systems considered
separately, and lacks fine-grained control of those separate systems). This lat-
ter agent is better modeled via the partial equilibration coarse-graining, where
the coarse-graining map takes each subsystem to its own equilibrium state, as
determined by its own expected energy.

More precisely: for a given distribution ρ for the system, we define

ρ|1 =

∫
S2

ρ (29)

as the marginal distribution of ρ over S1: again this is a neutral notation,
denoting either the marginal probability distribution (classical) or the partial
trace (quantum). Then partial equilibration coarse-graining is defined by

Jpe
V1,V2

ρ = Jeq,1
V1

ρ|1 ⊗ Jeq,2
V2

ρ|2 (30)

where Jeq,i
Vi

is the usual equilibration coarse-graining map for the ith system.
Explicitly, we have

Jpe
V1,V2

ρ =
e−H1(V1)/T1

Z1(T1)
⊗ e−H2(V2)/T2

Z2(T2)
(31)

where Ti = Ti(⟨Hi(Vi)⟩ρ|i , Vi) is the thermodynamic temperature of system i.
So partial equilibration coarse-graining again transforms a distribution into a
product of canonical distributions, but now they may be at different tempera-
tures.

Since the canonical distribution of the whole system is the lowest-energy
state for given energy and parameters, it follows that if we have access to a con-
trol theory that is complete and compatible with respect to partial equilibration
— to partial-equilibrium thermodynamics, that is — we can extract energy in
this situation in a cyclic process, just by transforming (31) reversibly to the
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full (same-temperature) canonical distribution at the same parameter values.
Indeed, the explicit process for doing so is familiar: we simply run a Carnot
cycle between the two systems and extract the energy, continuing until they are
at the same thermodynamic temperature.

This is our first example of how a more powerful control theory may allow us
to extract more energy from a system than is possible in equilibrium thermody-
namics. Note that it requires two things: a control theory (approximately) for-
ward complete with respect to a finer-grained coarse-graining, but also an initial
state whose coarse-graining under the new theory’s coarse-graining map is not
canonical. If the initial state of the system is the product of two canonical dis-
tributions at the same temperature, the additional power of partial-equilibrium
thermodynamics is useless; conversely, if we have access only to (full) equilib-
rium thermodynamics then it is useless to us to know that the two subsystems
are initially at different temperatures.

To illustrate further, suppose for simplicity that the two subsystems are
identical and have no adjustable parameters, and define ρ(U) as the canonical
distribution for either of the subsystems at expected energy U . Let UC < UH

be two energies (for a ‘cold’ and ‘hot’ system), and let the initial distribution
be

ρ =
1

2
(ρ(UC)⊗ ρ(UH) + ρ(UH)⊗ ρ(UC)) . (32)

Equilibration coarse-graining this system gives

Jeqρ = ρ((UC + UH)/2)⊗ ρ((UC + UH)/2). (33)

Partial-equilibration coarse-graining gives the same result, since the marginal
distribution of each system is 1/2(ρ(UC) + ρ(UH)). The thermodynamic en-
tropies of ρ are the same in either full-equilibrium or partial-equilibrium ther-
modynamics, and in both cases are maximal for the given energy, reflecting the
fact that neither control theory can extract energy from the system. In the
full-equilibrium case this is just because the controller cannot intervene on the
separate systems, at any rate not quickly enough; in the latter case, if only the
controller knew which system was hotter they could run a heat engine between
them, but they do not.

But now suppose that the controller learns (say, from a helpful third party
who had already measured it) that in fact the system’s state is

ρ′ = ρ(UC)⊗ ρ(UH). (34)

This makes no difference to the effect of equilibration coarse-graining, and hence
no difference to the equilibrium-thermodynamics entropy: the system’s total
energy is still UC + UH , and that alone determines the global equilibrium dis-
tribution. But ρ′ is invariant under partial equilibration coarse-graining, and
so has a lower thermodynamic entropy, reflecting the fact that energy can be
extracted from the system: now that the controller knows which is the hotter
system, they can run a reversible heat engine between the two and extract the
resultant energy.
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This is a special case of a general principle which will recur. Gaining in-
formation about a system always lowers the fine-grained Gibbs entropy, but it
lowers the thermodynamic entropy only with respect to a control theory able to
exploit that information.

(There is, to be sure, a certain arbitrariness as to whether we regard a given
control problem as partial -equilibrium thermodynamics, or as full -equilibrium
thermodynamics with additional conserved quantities. We could have set up our
problem ab initio as being defined by the same Hamiltonian and parameters but
by an additional conserved quantityH1⊗id2, at least in the idealized limit where
the two systems are exactly isolated from one another. The full-equilibrium
control theory of the latter system is identical to the partial-equilibrium control
theory of the former, though the definition of ‘cyclic process’ is narrower for the
latter.)

As a second illustration,11 suppose our system contains two boxes of gas, and
that the gas is a mixture of two difficult-to-distinguish isotopes (for definiteness
let the gas be chlorine, and the isotopes be 35Cl and 37Cl). The numbers of the
two isotopes are separately conserved, and we assume that both boxes begin at
the same thermodynamic temperature. Now consider two controllers, Alice and
Bob, both of whom hope to extract energy through cyclic processes. Alice has
access only to the full-equilibrium control theory for the system; Bob possesses
semipermeable membranes that allow him, e.g., to allow 35Cl but not 37Cl
isotopes to flow between the two boxes.

If the initial state of the system has a 50/50 mixture12 of both isotopes
present in each box separately, Bob’s control theory grants him no advantage
over Alice’s (and both agree on the thermodynamic entropy). Likewise, if the
initial state is an equally-weighted mixture of (a) all the 35Cl in the left hand
box, all the 37Cl in the right hand box, and (b) vice versa, Bob and Alice
agree on the coarse-grained state, on the thermodynamic entropy, and on the
impossibility of cyclicly extracting energy. But suppose they learn that in fact
all the 35Cl is on the left and all the 37Cl is on the right. The information is
useless to Alice — but it allows Bob, using his semipermeable membranes, to
allow the 35Cl to reversibly expand into both boxes and then to do likewise
with the 37Cl, in each case extracting energy from the pressure exerted on the
membrane as it is slowly moved. (As always, genuine reversibility occurs only
in the unphysical — and useless — limit of infinitely slow movement, but can
be approximated arbitrarily well.)

If before either agent can act the partition between the two boxes is removed
and the gases are allowed to mingle freely, Alice and Bob will disagree about
its significance. To Alice this makes no thermodynamically-relevant difference
to the state: coarse-graining before or after has the same effect. To Bob, it is
an irreversible process that increases the thermodynamic entropy and wastes
energy that could otherwise have been extracted.

11Readers familiar with the Gibbs paradox (see, e. g. , (Saunders 2018) and references
therein) will recognize its close connection to this example; for reasons of space I do not
explore them here.

12Ordinary chlorine has a 75/25 mixture of the two isotopes; I use 50/50 for simplicity.
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7 Free energy

The common theme of these partial-equilibrium processes is that they involve
extracting energy from a system in a cyclic process by reversibly guiding it to
the canonical state. In fact this is a perfectly general feature of thermodynamic
control theories, as we can see by returning to the general coarse-graining frame-
work. Suppose we are operating with a control theory forward-compatible with
a coarse-graining J ; then for any state (ρ, V ), the free energy of equilibration of
that state relative to J is defined by

EJ(ρ, V ) = ⟨H(V )⟩ρ − U(SJ(ρ, V ), V, ⟨N(V )⟩ρ). (35)

Since U(SJ(ρ, V ), V, ⟨N(V )⟩ρ) is the minimum expected energy of any state
with the same J-entropy and ⟨N(V )⟩ as (ρ, V ), and since any J-compatible
control operation is J-entropy-nondecreasing, the free energy of equilibration is
the maximum work extractable from (ρ, V ) by J-compatible cyclic control op-
erations. That maximum can be approached arbitrarily closely in a J-complete
control theory (and reached in a strictly J-complete control theory).

Similarly, suppose (ρ, V ) → (ρ′, V ′) is the result of a non-cyclic (but J-
compatible) control operation, and suppose the J-entropy and conserved-quantity
expectation values before and after are respectively S,N and S′, N ′. Then the
work extracted by that process is

W = ⟨H(V )⟩ρ − ⟨H(V ′)⟩ρ′

= (EJ(ρ, V ) + U(S, V,N))− (EJ(ρ′, V ′) + U(S′, V ′,′N ′))

= (EJ(ρ, V )− EJ(ρ′, V ′)) + (U(S, V,N)− U(S′, V ′, N ′). (36)

That is: extracted work equals decrease in free energy of equilibration, plus
decrease in canonical energy. And the difference between any control theory
and equilibrium control theory is just given by the fact that states may have
free energy of equilibration according to the first control theory, whereas no
state in equilibrium control theory has free energy of equilibration.

We can use the free-energy concept to analyze the partial-equilibrium exam-
ples in the previous section. Given two systems at different temperatures, and
taking J to be partial equilibration, the free energy of equilibration is just the
work that is extractable by letting the two systems reversibly equilibrate, ex-
tracting work as we do so. If we let the systems irreversibly equilibrate, not all
the free energy will be extracted as work; some will simply be lost. In the limit
when we just put the systems in thermal contact and leave them to equilibrate,
all the free energy will be lost. Quantitatively, we have (writing S1 and S2 as
the thermodynamic entropies for the two systems separately and Ui(Si) as the
canonical energy of the ith system)

E(S1, S2) = U1(S1) + U2(S2)− U(S1 + S2) (37)

((U1(S1)+U2(S2)) is the actual energy of the system at entropies S1, S2; U(S1+
S2) is the minimum energy it can have for that total entropy.) Since U is an
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increasing function of entropy, we can see directly that the work extracted from
the system (= the decrease in (U1 + U2)) is less than or equal to the decrease
in free energy, with equality only when the process is reversible, i. e. entropy-
conserving.

If the heat flow between the two systems is reversible, so that overall entropy
is conserved, the change in the free energy when a small amount of entropy δS
flows from system 1 to system 2 is just minus the total change in energy, so we
have

δE = −(T1 − T2)δS. (38)

Similarly, for the case of the two boxes of chlorine gas, if the two systems have
chemical potentials µ1, µ2 with respect to number of 35Cl atoms and are both
at temperature T , then if some small quantity δN of atoms flows from box 1
to box 2 and the overall process causes entropy increases δS1, δS2 in the two
boxes, the change in energy of the boxes will be

δU1 + δU2 = (µ2 − µ1)δN + T (δS1 + δS + 2) (39)

and since the last term here is just the change in the canonical energy of the
combined system,

δE = −(µ1 − µ2)δN (40)

which is the familiar result that work can be extracted from combining two
samples of a fluid iff their chemical potentials differ. (Note that since N is
conserved even in irreversible processes this expression holds whether or not the
process is reversible; if it is irreversible, though, it will heat up the gas and so
the energy extracted will be less than the decrease in free energy.)

In the partial-equilibrium case, we can express the free-energy idea another
way: the largest amount of work we can extract from a system through partial-
equilibrium control processes is the difference between their total energy and
the minimum value of that energy at constant entropy (and other conserved
parameters). Since the minimum-energy state is also the overall equilibrium
state, we can also use this to characterize overall equilibrium for a collection
of subsystems: at equilibrium, energy is minimized with respect to entropy-
conserving processes and any process that transfers conserved quantities from
one system to another.

8 Free energy and heat baths

(This section lies somewhat outside the main line of development of this paper
and may be skipped on a first reading, other than the definition of a heat bath;
its primary purpose is to connect the use of ‘free energy’ in this paper with
other uses in the physics literature.)

Suppose we have a system consisting of two subsystems, one of which is
a heat bath: a system with no adjustable parameters, no conserved quantities
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other than energy, and whose initial state is13 the canonical state, and so large
that energy flows into and out of it negligibly affect its temperature, so that
we can in practice treat it as permanently at thermodynamic temperature T .
And suppose that we are doing equilibrium thermodynamics with respect to this
system, so that the primary (i. e. , non-heat-bath) system begins and ends every
control process at (effective) thermal equilibrium with the heat bath. (We could
generalize this to partial-equilibrium thermodynamics, with respect to various
subsystems of the primary system, but with the additional constraint that all the
subsystems remain in thermal equilibrium with one another and with the heat
bath, even if they do not equilibrate with respect to other conserved quantities.)
Then we can derive an effective control theory for the primary system alone,
treated now not as isolated but as in thermal contact with the heat bath.

To do so, consider a control operation that takes the primary system from an
initial state with entropy, parameter values, and conserved quantities (S, V,N),
to another where these quantities are (S′, V ′, N ′). Since the primary system
must begin and end at temperature T , there will in general be some energy
flow between the heat bath and the primary system during the course of the
control operation. If this flow changes the heat-bath energy by ∆UHB , we must
have ∆U = T∆SHB , where ∆SHB is the entropy change of the heat bath. The
work W extracted by the control operation is then −∆UHB plus the decrease
in energy of the system itself:

W = −U(S′, V ′, N ′) + U(S, V,N)− T∆SHB . (41)

But since ∆SHB + (S′ − S′) is the total change in the entropy, which must be
≥ 0, this can be rewritten as

W ≤ −(U(S′, V ′, N ′)− TS′) + (U(S, V,N)− TS) (42)

If we invert the equation of state so that S may be written as a function of
T, V,N , we can define the quantity

F (T, V,N) = U(S(T, V,N), V,N)− TS(T, V,N) (43)

which is called the Helmholtz free energy. Up to an additive constant, it equals
the free energy of equilibration of the total system. For a system in contact
with a heat bath, the Helmholtz free energy plays a similar role as the energy
does for a thermally isolated system:

� The maximum work extractable from a system by any transformation in
equilibrium thermodynamics equals the decrease in Helmholtz free energy.

� The free energy of equilibration of a collection of subsystems in a partial-
equilibrium thermodynamics (but with all systems in thermal contact with
the heat bath) is the sum of the Helmholtz free energies of the subsystems,
minus the value of that sum at its lowest value (for given T, V,N for the
combined system).

13For the purposes of this section it suffices to require that the heat bath’s state coarse-grains
to the canonical state.

23



� The maximum work extractable from a system by any transformation
in partial-equilibrium thermodynamics equals the decrease in the total
Helmholtz free energies of the subsystems under the transformation.

� The equilibrium state of a collection of subsystems can be characterized by
the fact that it minimizes Helmholtz free energy under any transformation
that leaves parameters and non-energy conserved quantities unchanged.

Other effective control theories can be defined similarly:

� By considering a primary system separated by an adiabatic barrier from
a very large ‘pressure bath’ system at generalized pressure P , so that the
barrier can adjust to equalize pressure between the two systems but the
systems cannot otherwise interact, we find that the role of energy is played
by the enthalpy,

H(S, P,N) = U(S, V (S, P,N), N) + PV (S, P,N). (44)

� By combining heat and pressure baths together, so that the external path
constrains the primary system to have both fixed pressure and fixed tem-
perature, we find that the role of energy is played by the Gibbs free energy,

G(T, P,N) = U(S(T, P,N), V (T, P,N), N)+PV (T, P,N)−TS(T, P,N).
(45)

9 Beyond equilibration: Boltzmannian thermo-
dynamics

In this section I want to consider a class of control theories not built on the
assumption of even partial equilibration: control theories based on Boltzmann’s
idea of a partition of a system ’s state space. (These are of limited practical
use but are often conceptually helpful.) To describe that class, suppose for
simplicity14 that we are dealing with a classical system with phase space P,
and that its phase space has been partitioned into macrostates: subsets of the
phase space, of positive measure, such that intuitively two phase-space points
in the same macrostate are indistinguishable to an external observer. (For
instance, in a dilute gas the macrostates can be defined by coarse-graining the
phase space of a single particle into cells of equal Liouville volume, and then
individuating the macrostates by the number of particles in each cell.) More
precisely, the partition may depend on any external parameter V : write M(V )
for the partition for parameter V .

In the thermodynamic context, ‘macroscopically indistinguishable’ has an
operational meaning: it implies that a controlling agent can move a system
from macrostate to macrostate but has no control of a system on a grain finer

14For the quantum version, replace the partition with a collection of mutually-orthogonal
finite-dimensional subspaces whose direct sum is the full Hilbert space.
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than that defined by the partition. We can incorporate this by defining a Boltz-
mannian coarse-graining which smears out these fine-grained details. To state
it, first define for any macrostate M the projection operator PM , which acts on
distributions as

PMρ(x) =

{
ρ(x) if x ∈M.

0 if x /∈M.
(46)

The probability of a macrostate given a distribution ρ, Pr(M |ρ), is then

Pr(M |ρ) =
∫
PMρ. (47)

And now we can define our coarse-graining map:

JB
V ρ =

∑
M∈M(V )

Pr(M |ρ) χM

V(M)
(48)

where χM is the characteristic distribution of M , given by

χM (x) =

{
1 if x ∈M.

0 if x /∈M
(49)

and V(M) is the Liouville volume ofM .15 In other words, JBρ is the distribution
that assigns the same probability to each macrostate as ρ itself, but which is
uniform across each macrostate.

The thermodynamic entropy defined by this coarse-graining is the generalized
Boltzmann entropy. In the special case where ρ has support entirely on one
macrostateM , it is a function ofM alone and reduces to the Boltzmann entropy :

SB(M) = lnV(M). (50)

In the more general case it is the sum of two terms: the expected value of the
Boltzmann entropy with respect to the probability distribution across macrostates,
and the Shannon entropy of that distribution:

SJB (ρ, V ) =

 ∑
M∈M(V )

Pr(M |ρ)SB(M)

+

−
∑

M∈M(V )

Pr(M |ρ) lnPr(M |ρ)

 .

(51)
In the special case where (i) ρ has support only on one macrostate M , and (ii)
the control operation maps it to another distribution with support only on an-
other macrostate M ′ (call such a control operation macrodeterministic for M),
it is immediate from volume preservation that V(M)′ ≥ V(M), i. e. Boltzmann
entropy is nondecreasing. But of course the generalized Boltzmann entropy is
nondecreasing under any control map that is forward compatible with Boltz-
mannian coarse-graining, as a consequence of our general framework.

15Quantum mechanically: take χM to be the projector onto macrostate M , define PMρ =
χMρχM , and take V(M) to be the dimension of M (equivalently, V(M) = TrχM ).
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Boltzmannian thermodynamics offers an agent significantly more control
over a system than equilibrium thermodynamics, and so significantly more op-
portunity to extract work, given an appropriate initial state. For instance,
suppose that our system consists of a gas of N particles in a box of volume V ,
and that in fact the initial distribution has all the particles localized in a smaller
region of the box, with volume V ′ < V . This additional information is useless
to a controller who only has control operations forward commuting with equi-
libration, for whom the situation is not interestingly different from one where
the gas is at full thermal equilibrium. But a Boltzmannian agent can, e.g., slam
a partition into the box so that the particles remain confined to the region of
volume V ′, and then slowly allow the gas to expand, doing work against the
partition, until it returns to volume V . The work extracted is the free energy of
equilibration of the state relative to Boltzmannian coarse-graining. Once it is
extracted, though, the greater control power of Boltzmannian thermodynamics
is of no further use, and we effectively return to equilibrium thermodynamics.

This difference between the control theories also shows up in the different
entropies they assign. The equilibrium-thermodynamics entropy is as usual set
only by the volume of the box and by the total energy and number of particles;
the Boltzmannian entropy is set by the size of the volume in which the particles
actually are (and so is lower than the equilibrium-thermodynamics entropy by
N ln(V/V ′)). And so being told that the particles are in fact on one side of the
box makes no difference to equilibrium-thermodynamic entropy, but decreases
Boltzmannian entropy. There is no fact of the matter as to which entropy is
correct, but the appropriate choice is set by the control theory being used.

10 Reversible thermodynamics

We have seen that coarse-grained thermodynamics has a very general form.
The coarse-graining, together with the initial state, determines the free energy
of equilibration. In evolving the system to a state which coarse-grains to the
canonical state, it may be possible to extract some of that free energy as work (it
can all be extracted only in the ideal limit of a control theory strictly complete
with respect to J . Once it is extracted, we can extract any more energy only by
varying the system’s control parameters and/or the values of other conserved
quantities, and the amount of energy thus extractable does not depend on the
coarse-graining operation.

The limiting case of all of this is reversible thermodynamics, where the control
operations include every Hamiltonian operation. Reversible thermodynamics is
forward-compatible with only the trivial coarse-graining, defined by the identity
map; its thermodynamic entropy is just the Gibbs entropy. The inequality that
thermodynamic entropy increases under control operations continues to hold,
but is always saturated, and simply reflects conservation of Gibbs entropy under
dynamical flow. Reversible thermodynamics is reversible both in the literal sense
that the time-reverse of any allowed control operation is also an allowed control
operation, and in the formal sense that — unlike our various coarse-grained
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versions of thermodynamics — the entropy is not only nondecreasing but is
strictly conserved.

Insofar as thermodynamics just reflects the macroscopic limitations of what
we can do to a system, we would expect that in reversible thermodynamics —
where there are no such limitations — there are no constraints on how much
energy we can extract beyond those set by the conservation laws, so that it
should be possible to extract all of a system’s energy through a cyclic operation.
But this is not the case. Assume for simplicity that the energy has been scaled
so that the system’s ground state energy is zero. The free energy of equilibration
of a state (ρ, V ) with respect to the trivial coarse graining is just the difference
between its actual expected energy and its canonical energy with respect to the
trivial coarse-graining:

E(ρ, V ) = ⟨H(V )⟩ρ − U(SG(ρ), V, ⟨N(V )⟩ρ). (52)

Only if the latter equals zero will the free energy equal the total system energy.
And the canonical energy can be zero, in general, only if the initial distribution
is known exactly. More precisely: working in quantum mechanics, and assuming
the nondegeneracy of the ground state, only if ρ is pure will the canonical energy
equal the ground-state energy. In this case a control operation can steer the
system’s state reversibly into the ground state and extract all the energy. But if
the initial distribution is mixed then no unitary operation can so steer it, and the
lowest-energy state will still assign some probability to excited states. Similarly,
in classical mechanics, and assuming that the gradient of the energy function
nowhere vanishes, the subset of lowest-energy states will have Liouville measure
zero; only if the initial state likewise has support on a measure-zero region will
it be possible to steer it into the lowest-energy region by a Hamiltonian control
operation.

(Can all the free energy actually be extracted in reversible thermodynamics?
In general, no: extracting it requires us to steer the system’s distribution into a
canonical distribution, and in general that will not be possible. Specializing for
simplicity to quantum mechanics, and following Pusz and Woronowicz (1978)
(see also the very helpful discussion in section 4 of (Maroney 2007)) we can
define a quantum distribution as passive iff no unitary control operation de-
creases its expected energy; it can be shown that a distribution is passive iff it
is a mixture of energy eigenstates where the probability of an energy eigenstate
is nondecreasing with energy, but there are passive distributions with strictly
higher energy than the canonical distribution at the same Gibbs entropy. For
small systems it is an open question exactly how to characterize the extractable
energy (the associated research project is sometimes called ‘single-shot thermo-
dynamics’; see (Yunger Halpern and Renes 2016) for an introduction). However,
for sufficiently large systems the difference is generally expected to be negligi-
ble, albeit I am not aware of rigorous theorems to this effect: such systems can
generally be expected to factorize into a large number of approximately-isolated
subsystems so that the overall density matrix is approximately a product of
identical density matrices, and Pusz and Woronowicz prove that the canonical
distribution is the only distribution whose N -fold product is passive for all N .)
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Reversible thermodynamics is the limiting case of the successively more fine-
grained thermodynamic control theories we have been considering. In those
theories, we have seen that the finer our control over a system, the more valuable
it is to have fine-grained information about the system’s state. In reversible
thermodynamics, any such information can be used to extract work: in the
limiting case, if we are told the exact microstate of a system (or, in quantum
mechanics, if the system’s state is pure and we know that state), we can extract
all of its energy.16 So to an agent with access to reversible thermodynamics,
any information about the state is entropy-decreasing. But the most any such
agent can do is extract the free energy from the system. Once that is done, any
further work extraction has to be done by varying parameters and conserved
quantities, and all the power of reversible thermodynamics avails us nothing
beyond what equilibrium thermodynamics already permitted.

Free energy also provides a third way in which reversible thermodynamics is
indeed reversible (and our various coarse-grained thermodynamic theories are
irreversible). In coarse-grained thermodynamics, the change in free energy in
a process is an upper limit on the energy extractable by that process, but it is
possible to dissipate free energy without extracting any work from the system. In
partial-equiilibrium thermodynamics, for instance, if we just let two systems at
different temperatures equilibrate without running a heat pump between them,
the free energy is simply and irreversibly lost. This never happens in reversible
thermodynamics, where the decrease in free energy always equals the energy
extracted. (In reversible thermodynamics, we could simply run the equilibration
process backwards and return the systems to their distinct temperatures.)

11 Collecting information

We have seen that the more fine-grained an agent’s control over a system, the
more important are the fine-grained details of the system’s initial state, and the
more the entropy they assign can drop if they receive information about the
system. On the face of it, an obvious strategy presents itself: instead of just
carrying out a Hamiltonian control operation, the agent should first gain more
information about the system (causing them to update the state) and only then
apply a control operation, tailored to the information they collect.

It is easy to see that this cannot actually work, at least if the information-
collection process conforms to the laws of physics. As I noted in section 4,
any information-collection process can be mechanized, and the system can be
expanded to include both the original system and that mechanism; we can
then include ‘turning on the mechanism’ as just another Hamiltonian control
operation. Or put another way, the agent themselves can be mechanized and
included in the system. From that agent’s point of view, they are collecting
information and carrying out control operations conditional on the result, but

16In classical physics, if we literally know the exact microstate of a system we can use it as
a resource to extract all the energy from any system: its entropy is −∞. Of course this is an
artifact of classical mechanics; it has no quantum equivalent.
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from the point of view of the ur -agent outside the box in which the agent and
their system sit, telling the inside agent to do their thing is a control operation
that involves no information-gathering and no conditional control.

Still, it is instructive to ask what actually goes wrong with the collect-
information strategy. The answer is well known17: any such process involves
an ancilla system that records the result of the information-collection; that an-
cilla is effectively a finite resource which can become exhausted, so that no
further information-collection is possible without resetting the ancilla; the re-
source cost of the reset process undoes the gain of collecting the information in
the first place. For completeness, and to connect with this paper’s approach to
thermodynamics, I outline it here.

Suppose, specifically, that we have some system S with no adjustable param-
eters and which begins in the canonical distribution for some given temperature
T , so that (assuming quantum mechanics for definiteness) the specific form of
the distribution is

ρS =
1

Z

∑
n

e−En/T |n, S⟩ ⟨n, S| (53)

where |n, S⟩ is an eigenstate of S’s Hamiltonian HS with eigenvalue En. Since
ρS minimizes expected energy for given Gibbs entropy, no unitary process can
extract energy from the system.

The collect-information strategy would have us measure the system in the
energy basis, and then if the result is that the system’s state is |n, S⟩, apply
a unitary transformation Un which implements Un |n, S⟩ = |n, 0⟩, so that the
system ends up determinately in the ground state. But of course no unitary
process acting on S alone can have this effect, since it would have to map
orthogonal states to the same state. The only way to implement the procedure
is to have some ancilla system A whose state after the process records the result.
Concretely, if the ancilla system starts in some fixed state |0, A⟩, we can find a
unitary process U with the effect

U |n;S⟩⊗|0;A⟩ = |0;S⟩⊗|ψN ;A⟩ (54)

with ⟨ψn, A|ψm, A⟩ = δm,n. (Often this is illustrated by supposing that (i) the
state of the system is measured and recorded in the ancilla, and then subse-
quently (ii) an operation is performed on the system conditional on the state
of the ancilla. But we do not need to make this separation: the crucial point
is that the ancilla must end up in a state that records the original state of the
system.) At the level of distributions, this unitary transformation enacts

U(ρS ⊗ |0, A⟩ ⟨0, A|)U† = |0;S⟩ ⟨0;S| ⊗ ρA (55)

17See, e. g. , (Bennett 2003) or the overview and articles in (Leff and Rex 2002). The topic
has been rather controversial in recent philosophy of physics (Earman and Norton 1999; Bub
2002; Norton 2005; Ladyman, Presnell, Short, and Groisman 2007; Norton 2011; Ladyman
and Robertson 2013; Norton 2013a; Norton 2013b; Ladyman and Robertson 2014; Myrvold
2021); I do not attempt to engage with these controversies here.
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where

ρA =
1

Z

∑
n

e−En/T |n;A⟩ ⟨n;A| . (56)

Does this conditional process extract net energy (measured as always with re-
spect to the self-Hamiltonian of the system before or after the control interven-
tion, i. e. in the case the sum of the Hamiltonians HS and HA of system and
ancilla)? It depends on the details of the record basis |n;A⟩ and the ancilla’s
Hamiltonian; certainly there is no systematic reason that it will not. (If the an-
cilla has enough states that each |ψn;A⟩ has negligible energy compared to the
original energy of the system, energy can certainly be extracted.) But whether
or not energy is extracted, the Gibbs entropy of the ancilla post-process now
equals the Gibbs entropy of the system pre-process, say S.

If ρA is not the canonical distribution for the ancilla at entropy S, then
there is some free energy available by reversibly steering it to that distribution;
we may as well suppose this done, so that we extract that free energy together
with the energy extracted by the conditional process. (Of course we may not
be able to extract all the free energy, but if so that only reduces the total work
extractable.) The end result is that we reversibly transformed a system whose
state was initially a product of a canonical distribution at entropy S and a pure
state, to another system whose state is a product of a pure state and a canonical
distribution at entropy S.

But we could have done that anyway, without the need for anything so
complicated. Suppose we had instead (i) extracted the ancilla’s initial free
energy by reversibly transforming it into its ground state, and then (ii) run a
Carnot cycle between system and ancilla to reversibly cool the system into its
ground state and heat up the ancilla. The result is exactly the same, and so
extracts exactly the same energy — and clearly is in general strictly less efficient
than just running the Carnot cycle until system and ancilla reached the same
temperature. Other than the possibility of extracting the ancilla’s initial free
energy, our information-collection and conditional-operation process gains us
nothing that we could not gain just by letting the system and ancilla reversibly
equilibrate.

(If instead we wanted to return the ancilla to its initial state so as to allow us
to use it again to extract energy from another system, we would have to dump
its Gibbs entropy into still another system. If, for instance, we have available a
heat bath at temperature T , doing so would have energy cost TS.)

The example is simple, but the point is perfectly general. An ancilla system
is a potential thermodynamic resource. Its free energy of equilibration can
be extracted by reversibly transforming it to a canonical distribution; having
done so, if the resultant distribution has a thermodynamic temperature different
from other systems then further energy can be extracted through a reversible
heat engine. Using the ancilla to record the result of measurements on another
system and then cool that system is just one, complicated, way of running that
heat engine: it will extract net energy if the thermodynamic temperature of the
ancilla (that is, the temperature of the canonical distribution to which it can
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be unitarily transformed) is lower than that of the system, and will actually
cost energy if it is higher. In the classic example where the ancilla starts off
in a known pure state, its thermodynamic temperature is zero, and systems
at absolute zero are genuinely useful resources to extract energy from a finite-
temperature. But that extraction possibility has nothing really to do with the
possibility of gathering information, and works only until the ancilla has been
brought up to thermal equilibrium with the system.

I have been assuming reversible thermodynamics throughout this section,
but the basic points generalize to a coarse-grained thermodynamics. In the latter
theory, some of what reversible thermodynamics treats as free energy may after
all not be extractable — may not be free according to the coarse-grained theory
— and it might be that a specific thermodynamics can extract some part of the
free energy only through processes naturally described as ‘measure and then
conditionally act’. But it is still the case that any such process can be thought
of as extracting some part of the free energy of equilibration of the ancilla,
and/or the joint free energy of equilibration of system and ancilla, and that the
limits of reversible thermodynamics are upper limits for any thermodynamics.

12 The Second Law again

In my summary of phenomenological thermodynamics, I described the Second
Law in fairly formal terms as the principle that no transition decreases thermo-
dynamic entropy. And we have seen a fairly general derivation of that result
in thermodynamic control theory, of which equilibrium thermodynamics is only
a special case: if J is a coarse-graining, then the thermodynamic entropy with
respect to J is nondecreasing under any J-compatible control process.

Historically and pedagogically, though, one often finds two more directly
phenomenological versions of the Second Law: the Kelvin and Clausius state-
ments, reviewed in section 2. Both have fairly straightforward translations into
control-theoretic terminology. Recall from section 8 that a heat bath is a system
with no adjustable parameters, no conserved quantities other than energy, and
whose initial state is the canonical state, and so large that energy flows into
and out of it negligibly affect its temperature, so that we can in practice treat
it as permanently at thermodynamic temperature T . Heat baths are supposed
to represent large systems which have achieved thermodynamic equilibrium in
an uncontrolled way, so that an agent has no initial information about the sys-
tem other than that it has equilibrated. (On some interpretations of quantum
statistical mechanics, using an exact canonical state to describe the heat bath
may reflect an agent’s epistemic limitations; on others, it may reflect the fact
that a heat bath is uncontrollably entangled with the environment and that its
actual quantum state is canonical; it matters for my purposes only that we in
fact represent heat baths that way.)

Kelvin Statement (precise control theory version): No control process can
extract energy from a single heat bath without in doing so decreasing the
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free energy of some ancilla system or the joint free energy of an ancilla
system and the heat bath.

Clausius Statement (precise control theory version): No control process with
no overall energy cost can cause energy to be transferred from a heat bath
to another heat bath at a higher thermodynamic temperature, without in
doing so decreasing the free energy of some ancilla system or the joint free
energy of an ancilla system and one of the heat baths.

Thus stated, both statements are direct consequences of our results so far. The
most we can do in any thermodynamic control theory is extract all of the free
energy. A heat bath in isolation has no free energy (even in reversible thermo-
dynamics) and so any process which decreases the energy of a heat bath must
do so by either decreasing the free energy of some other system by itself (say,
to extract the energy to operate a heat pump) or by decreasing the free energy
of the joint system of ancilla-plus-heat bath ((say, by running a heat engine
between the bath and the ancilla). Similarly, any control process run on two
heat baths without ancilla will extract negative energy if it decreases the energy
of the lower-temperature system, so we an induce energy transfer from lower
to higher temperature only by exploiting free energy provided by some ancilla,
either in its own right or in combination with one or other heat bath.

And of course, any free energy provided by an ancilla is a finite resource:
once extracted, it is gone. An alternative, and somewhat less formal, version of
the two statements would be:

Kelvin Statement (informal control theory version): No indefinitely repeat-
able control process can extract energy from a single heat bath.

Clausius Statement (informal control theory version): No indefinitely re-
peatable control process with no overall energy cost can cause energy to
be transferred from a heat bath to another heat bath at a higher thermo-
dynamic temperature.

Importantly, neither the Kelvin nor the Clausius statements (unlike the
statement that thermodynamic entropy is nondecreasing) make any reference
to the coarse-graining operation: they apply to any thermodynamic control
operation, even fully reversible thermodynamics.

13 Two kinds of Maxwell demon

To illustrate the difference between the nondecreasing-entropy form of the Sec-
ond Law, and the Kelvin and Clausius statement, let’s consider Maxwell’s fa-
mous demon, which (recall) was originally conceived of as a ‘very observant and
neat-fingered being’18 that could respond to the microscopic state of a gas by
opening and closing a partition, and thus violate the Second Law.

18(Maxwell 1867); see (Leff and Rex 2002, pp.3-6) and (Myrvold 2011) for more on Maxwell’s
own conception of the Demon.
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It is useful to distinguish two kinds of demon: a Maxwell demon of the first
kind can decrease a system’s thermodynamic entropy, while a Maxwell demon of
the second kind can bring about a violation of the Kelvin or Clausius statements
of the Second Law.19 The difference between the two can be seen starkly by
considering the practical uses to which they could be put:

� The main use of a demon of the first kind is to refute someone who claims
that thermodynamic entropy is nondecreasing.

� The main use of a demon of the second kind is to run the electrical grid
off the ambient air temperature, remove any real constraints human civi-
lization faces from the scarcity of usable energy, and become (should you
like that kind of thing) the richest person in the world.

Demons of the first kind are not so hard to come by. They exploit the fact
that thermodynamic entropy is defined relative to a choice of coarse-graining,
and is guaranteed to be non-decreasing only under control operations forward
compatible with that coarse-graining. So, given the thermodynamic entropy
defined by a coarse-graining J , all you need to build a demon of the first kind is
some J-incompatible control operation (and an initial state non-invariant under
J). For instance:

1. Maxwell’s original ‘neat-fingered being’ is a demon of the first kind with
respect to equilibrium thermodynamics, provided it has a sufficiently large
memory capacity to record the various measurements it needs to make of
the system’s microstate. Eventually that memory will fill, but until then
the demon can certainly lower the temperature of the gas just as Maxwell
proposed. (But it could not do so if its memory subsystem was already in
a canonical state at the same thermodynamic temperature as the gas.)

2. Given two boxes containing different isotopes of chlorine at the same tem-
perature and pressure, any agent whose control operations can distinguish
between isotopes is a demon of the first kind with respect to a control the-
ory that cannot so distinguish them: to an agent using the latter control
theory, another agent using the former theory will appear to have achieved
a miraculous cooling of the gases. (But they could not achieve it if the
two gases were already fully mixed.)

3. In the spin-echo experiment20 a system of coupled spins apparently relaxes
to thermal equilibrium but then returns to its original state when the time
reverse of the original operation is applied. This can be thought of as a
demon of the first kind relative to ordinary equilibrium thermodynamics:
the time-reversed operation is not forward compatible with equilibration
coarse-graining. (Some of the researchers on spin-echo (Rhim, Pines, and

19This distinction was first made in print by Myrvold (2020, section 8); as he acknowledges,
it is drawn from an early version of the present paper.

20(Hahn 1953; Rhim, Pines, and Waugh 1971); there is a good conceptually-focused discus-
sion in (Sklar 1993, pp.219–222).
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Waugh 1971) described it as a ‘Loschmidt demon’, referring to Loschmidt’s
famous time-reversal objection to Boltzmann.)

As a slight variant on these, we can consider a demon that can reduce Boltzmann
entropy (here it will be helpful, to avoid issues with the quantum measurement
problem, to work in classical physics). The Boltzmann entropy has the useful
feature that it is a function of the system’s microstate and not of its full proba-
bility distribution (taking the Boltzmann entropy of a phase-space point to be
the Boltzmann entropy — i. e. , the logarithm of the phase-space volume — of
the unique macrostate in which that phase-space point is situated). We saw in
section 9 that a control operation that is macrodeterministic for a macrostate
M will be Boltzmann-entropy-nondecreasing (since all points in M must be
mapped into some fixed macrostate M ′, and so phase space volume conserva-
tion means that M ′ has at least as high a volume as M). But even a control
theory compatible with Boltzmannian coarse-graining can decrease Boltzmann
entropy, provided that it is not macrodeterministic:

(i) A process that decreases Boltzmann entropy on average (that is: decreases
the expected value of Boltzmann entropy) might still, through fluctua-
tions, happen to decrease it in a specific instance.

(ii) A sufficiently macro-indeterministic process could even decrease average
Boltzmann entropy. We saw in section 9 that the generalized Boltzmann
entropy — which is strictly nondecreasing under Boltzmann-compatible
control operations — is the sum of two terms: the expected value of the
Boltzmann entropy and the Shannon entropy of the probability distribu-
tion over macrostates. By spreading the initial distribution very widely
across macrostates, a process could increase the latter term enough that
the former term might decrease, perhaps significantly. (Albert (2000,
ch.5) and Hemmo and Shenker (2012, ch.13) give detailed constructions
of demons of this kind.)

Of course, for such demons the availability of many macrostates is itself a
resource, which can be depleted: at least for systems contained in a finite
region, the Shannon entropy cannot increase indefinitely, and when it has
reached a maximum any further Boltzmann-compatible control operations
must increase expected Boltzmann entropy. (And note that if one’s system
is not confined to a finite region, it is usually possible to extract all its
energy even without a demon: adiabatically expanding a cylinder of gas
to an arbitrarily large volume will reduce its temperature arbitrarily close
to absolute zero.)

Demons of the first kind are curiosities. The really interesting possibility
would be a demon of the second kind — but this is not a real possibility as long as
the underlying dynamics are unitary (or, in the classical regime, Hamiltonian).
We saw in section 12 that the Kelvin and Clausius statements are absolute, not
relativized to any notion of coarse-graining, and that they follow from unitarity
alone. And so demons of the second kind are in principle impossible. It is
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not the crude imprecisions of our macroscopic tools that prevents us building
the kind of perpetual motion machine that the Kelvin and Clausius statements
forbid: it is the fundamental laws of physics.

14 Conclusions

This paper offers a rather general framework in which to discuss various forms
of thermodynamics. The notion of a coarse-graining projector, and of a control
theory forward compatible and (at least in idealization) forward complete with
respect to that projector, provides a powerful method to characterize that con-
trol theory without needing to attend to its microphysical details. The frame-
work is broad enough to encompass all the concrete versions of thermodynamic
control theory I know, from the various versions of equilibrium thermodynamics,
to Boltzmannian thermodynamics, to fully reversible thermodynamics.

The framework allows us to characterize a J-compatible control theory in
terms of the thermodynamic entropy and free energy with respect to J , and
to establish that the most any control operation can do is extract as work the
free energy plus any work extractable in equilibrium thermodynamics. It also
gives a criterion for when knowing a system’s state more precisely is useful:
if and only if the new state has lower thermodynamic entropy with respect
to J , which is to say: if and only if the coarse-graining of the new state has
lower Gibbs entropy than that of the old state. Information is thus useful
only where it concerns degrees of freedom over which we have control. At one
extreme, in equilibrium thermodynamics the entropy is set only by parameters
and conserved quantities, and fine-grained information is useless; at another
extreme, in reversible thermodynamics any information is exploitable.

For a J-compatible control theory, there is a J-dependent specification of the
Second Law in its entropy-is-nondecreasing form: the thermodynamic entropy
SJ with respect to J is nondecreasing under J-compatible control operations.
Assuming that the control theory contains at least some SJ -increasing control
operations, this version of the Second Law characterizes the way in which the
theory is irreversible: entropy can go up but never down. But a more powerful
control theory might contain J-incompatible control operations and might very
well be able to decrease SJ . This creates a general recipe for building Maxwell
demons of the first kind, which can decrease entropy under a given definition:
all they need to do is to be able to carry out control operations not adapted to
that definition.

But there are other forms of the Second Law — the Kelvin and Clausius
statements — that do not depend on J and which hold in any control theory,
with or without irreversibility. It is these versions of the Second Law that best
express the hard constraints Nature puts on our ability to get work out from
systems in the wild, and no Maxwell demon of the second kind, which would
allow us to bypass them, can be built.

As a closing comment, note that the crucial feature of the dynamics that un-
derwrites the microphysical justification of the Second Law (in any of its forms)
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is that they preserve Hilbert-space dimension or phase space volume. These are
the characteristic features of reversibility, the natural generalizations to their
respective continuum systems of the discrete-system idea that dynamical maps
are 1:1. Genuinely irreversible (and deterministic) operations — operations that
map many Hilbert-space vectors to the same vector, or phase-space regions to
smaller regions — would, at least if combined with a sufficiently large class of
reversible operations, make it straightforward to extract all of a system’s energy
and leave it in its ground state. The Second Law is often held up as the example
par excellence of irreversibility: it is ironic that it is reversibility that provides
its microphysical foundation.
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Appendix: properties of the canonical distribu-
tion

Theorem: Suppose H is a separable Hilbert space of dimension>1 and H is
a self-adjoint operator on H (the Hamiltonian) with discrete spectrum whose
lowest eigenvalue is nondegenerate (and whose expectation value I write as ⟨H⟩,
or ⟨H⟩ρ when the specific density operator ρ needs to be stated). For each β > 0
define the canonical density operator ρc(β) by

ρc(β) =
e−βH

Z(β)
(57)

where
Z(β) = Tre−βH . (58)

Let S(β) = SG[ρc(β)] be the Gibbs entropy of ρc(β) and U(β) = ⟨H⟩ρc(β).
Then:

(i) Both U(β) and S(β) and are decreasing functions of β.

(ii) The range of S(β) is the interval (0, ln dimH) (taking ln dimH = ∞ if H
is infinite-dimensional) and if s ∈ (0, ln dimH), there is a unique β such
that s = S(β).

(iii) The range of U(β) is some interval (E0, Emax), where E0 is the lowest
eigenvalue of H, Emax may or may not be infinite, and for any u in this
range, there is a unique β such that U(β) = u.
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(iv) For any u ∈ (E0, Emax), ρc(U
−1(u)) is the unique global maximum-Gibbs

entropy density operator with ⟨H⟩ = u.

(v) For any s ∈ (0, ln dimH), ρc(S
−1(s)) is the unique global minimum-⟨H⟩

density operator with Gibbs entropy s.

Proof:

(i) Differentiate U to obtain

U ′(β) = −(⟨H2⟩ − ⟨H⟩2) (59)

which is strictly negative (unless H is a constant, which it cannot be, as
an operator with nondegenerate lowest eigenvalue on a Hilbert space of
dimension>1). Then observe that

S(β) = lnZ(β) + βU(β), (60)

and differentiate to obtain S′(β) = βU ′(β).

(ii),(iii) Let the eigenstates of H, labelled in increasing order of eigenvalue, be
|0⟩ , |1⟩ , . . .. Then

lim
β→∞

ρc(β) = |0⟩ ⟨0| (61)

so that
lim
β→∞

S(β) = 0 (62)

and
lim
β→∞

U(β) = E0. (63)

Taking limits in (60) gives

lim
β→0

S(β) = ln dimH (64)

and we define
Emax = lim

β→0
U(β) (65)

Uniqueness follows in each case because S and U are strictly decreasing.

(iv) Let D be the set of density operators on D, and let ρ ∈ D. Consider an
infinitesimal variation ρ → ρ+ δρ. The variations of Gibbs entropy, ⟨H⟩,
and trace, respectively, are, to second order,

δSG = −Tr({ln ρ+ id}δρ)− 1

2
Tr(δρ2ρ−1) + o(δρ2) (66)

δ⟨H⟩ = Tr(Hδρ) (67)

δTrρ = Trδρ. (68)

Firstly, we establish that the stationary points of the Gibbs entropy under
variations that leave ⟨H⟩ constant are exactly the canonical states (though
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possibly with β < 0). For ρ is a stationary point under variations that
conserve trace and ⟨H⟩ iff the first-order variation of SG is a linear com-
bination of the first-order variations of ⟨H⟩ and Trρ (this is the method
of Lagrange multipliers). This forces

Tr({− ln ρ− id + βH + αid}δρ) = 0 (69)

for some α, β and all δρ, and we can solve to get ρ = ρc(β) (where again
β need not be positive).

Secondly, we establish that ρc is a local maximum of SG under these
variations. This follows from (66): the first order variation vanishes un-
der the constraint that trace and ⟨H⟩ are invariant, and Tr(δρ2ρ−1) is
a positive-definite quadratic function of δρ, as can be verified explicitly
by expanding in a basis of energy eigenstates: if δρ =

∑
n,m δρnm then

(writing H |n⟩ = En |n⟩)

Tr(δρ2ρ−1
c (β)) =

1

Z(β)

∑
m,n

δρmne
βEnδρmn =

1

Z(β)

∑
m,n

|δρmn|2eβEn .

(70)
Finally, we establish that ρc(U

−1(u)) is a global maximum of entropy for
⟨H⟩ = u. For suppose otherwise; then there would be another density
operator ρ0 with S(ρ0) ≥ ρc(U

−1(u)), and then the function

ρ(x) = xρc(U
−1(u)) + (1− x)ρ0 (71)

would satisfy
SG[ρ(x)] > SG[ρc(U

−1(u)) (72)

for 0 < x < 1, which contradicts the claim that ρc(U
−1(u)) is a local

maximum.

(v) Fix β = S−1(s), and suppose for contradiction that there is a density
operator ρ with ⟨H⟩ρ ≤ ⟨H⟩ρc(β) and SG[ρ] = SG[ρc(β)]. Note firstly that
by (iv) we must have ⟨H⟩ρ < ⟨H⟩ρc(β), since otherwise ρc(β) would not
be the unique maximum-entropy density operator at ⟨H⟩ = ⟨H⟩ρc(β). But
then, again by (iv), there must exist β′ such that SG[ρc(β

′)] ≥ SG[ρ]; by
(i) β′ > β. But then SG[ρc(β

′)] ≥ SG[ρc(β)], in contradiction with (i).
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