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1. Introduction

Nagel reported feeling “acute intellectual discomfort” and “mystification”
whenever two scientific theories that make different predictions turn out to be
reducible to one another.1 A particularly uncomfortable case is that of thermo-
dynamics, the theory of heat and work, which is widely considered to reduce to
statistical mechanics, the statistical analysis of classical and quantum mechanical
systems in motion—and yet, these theories purportedly make incompatible pre-
dictions about the arrow of time. The laws of thermodynamics for mixing gases
are said to distinguish past from future, while the mechanical laws for molecules
making up those gases are said to be symmetric in time. Or, as Reichenbach (1956,
p.29) has put it, “mechanical processes are reversible, whereas thermodynamical
processes, apart from certain exceptions, are irreversible.” This is known as the

1Cf. Nagel (1949, p.104) and Nagel (1961, p.340).
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reversibility problem. It has been referred to as “the most profound problem in the
foundations of thermal and statistical physics” (Uffink 2001, p.307).

Most philosophers at least tacitly assume that these two theories reach
incompatible verdicts about the arrow of time. As Valente (2021) has pointed out,
this presents a problem for reduction:

“The Hamiltonian equations of motion in SM [statistical mechanics]
are time-reversal invariant, whereas TD [thermodynamics] admits
irreversible processes. Such issues undermine a reductive explanation
of thermodynamical phenomena, and hence they must be addressed
in order to determine if any version of statistical thermodynamics can
be taken seriously” (Valente 2021, pp.178-179).

If that is right, then it leaves only two avenues of response. The first is Nagel’s
approach, to accept that only a rough analogue of thermodynamics actually
reduces to statistical mechanics.2 The second is Batterman’s approach, to reject
that thermodynamics reduces to statistical mechanics in any standard sense.3
Here I will point out and defend a third avenue of response, that the assumption
of Valente and most commentators is mistaken: there is no substantial difference
between the arrow of time in thermodynamics and in statistical mechanics, and
so there is no need for discomfort or mystification. Either both distinguish an
arrow of time, or neither do.

My argument has two main steps. The first step shows that approaches to
the thermodynamic arrow based on the second law imply the failure of energy
conservation, which is typical when the description of a system is incomplete or
‘open’. The second step shows that, since the failure of energy conservation is also
associated with time asymmetry in statistical mechanics, there is no disharmony
between the predictions of thermodynamics and statistical mechanics about the
arrow of time. I then consider another approach to the thermodynamic arrow
arising from equilibriation, and show that here too the asymmetry arises in a way
that is harmonious between thermodynamics and statistical mechanics, from
initial conditions associated with a special state in the past.

2Its seeds began in Nagel (1935), and well-known accounts are Nagel (1949, 1961), with influ-
ential adjustments due to Schaffner (1967). This aspect of Nagel’s view is equally accepted by
New Wave reductionists like Churchland (1979, 1985), Hooker (1981) and Bickle (1996), and by
modern Nagelians like Callender (2001) and Dizadji-Bahmani et al. (2010).

3See Batterman (2002, especially Chapter 5) and Batterman (2021, especially Chapter 2).

2



I will argue for two main conclusions. First, the arrow of time is no
barrier to the reduction of thermodynamics to statistical mechanics, although
interesting foundational problems associated with its reduction may still remain.
And second, thermodynamic asymmetry should really be detached from the
laws of thermodynamics entirely, and instead associated either with the failure of
energy conservation or with special initial conditions. I conclude with a deflated
view of the thermodynamic arrow, as an artefact of descriptions of reality that
are incomplete, or else as a contingent rather than a nomic fact.

2. A primer on reduction

’Reduction’ describes the derivation of one scientific theory from another.
It is naturally expected when two theories have overlapping domains of applica-
tion, and has been discussed in a large philosophical literature going back at least
to Nagel (1935). In the the philosophy of thermodynamics, there are two main
party lines regarding the status of reduction.

The unionist party takes the reductive union of two theories to involve
fudging, one hopes gently. For Nagel (1949) and Reichenbach (1956), and in-
deed for most scientists, this means embellishing statistical mechanics with
temporally asymmetric bridge laws and auxilliary assumptions, such as Boltz-
mann’s Stoßzahlansatz and special initial conditions of the kind pointed out by
the founders of statistical mechanics (cf. Brush 1976, §14.5).4 More generally,
one replaces thermodynamics with a roughly analogous theory more amenable
to derivation from a statistical mechanical theory. It is only in this sense that
thermodynamics be derived from statistical mechanics, and even this is not un-
controversial. Some advocates like Albert (2000) have defended reduction using
the ‘past hypothesis’ approach, recently rebranded I think for modesty purposes
as ‘The Mentaculus’ (Loewer 2020).5 Another unionist approach due to Robert-
son (2019, 2022) restricts attention to a pared-down theory that she calls the
“functional form” of thermodynamics, and which she argues includes a concept

4The difficulties applying this fudge are chronicled by Earman and Norton (1998, 1999) and
Uffink (2001). Bridge laws have been characterised in terms of everything from the infamous
‘proxy function’ of Quine (1964), to the bald analogies of Schaffner (1967), to the ‘inter-theory
deductions’ of the New Wave approach; see (Endicott 1998) for an overview and critique of the
latter, and Palacios (2019) for its application to the reduction of thermodynamic phase transitions.

5But compare the critiques of Earman (2006), Wallace (2017) and Gryb (2021).
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of entropy that matches the Gibbs entropy of a statistical mechanical system.6
Dizadji-Bahmani et al. (2010, p.409) neatly summarise the unionist situation, of
having to settle for a “watered down version” of thermodynamics to be deduced
from statistical mechanics.

In contrast, the home-rule party rejects the reduction of thermodynamics
to statistical mechanics, instead treating the two as autonomous. For example,
Feyeraband (1963) argued that difference between thermodynamics and statisti-
cal mechanics amount to a discontinuity in the rational development of science
in the sense of Kuhn (1962). Batterman (2002, 2021) and Morrison (2012) use
thermodynamics and statistical mechanics to advocate for the radical autonomy
or ‘emergence’ of theories at different scales.7 Similar thinking led Mach (1896,
pp.333-5) to advise that statistical mechanics should not be taken too seriously
because it cannot capture all of thermodynamics. Callender (1999, 2001) suggests
the opposite, that thermodynamics should not be taken too seriously despite its
veneration by physicists, because among other things the reversibility problem
prevents its reduction to the more fundamental statistical mechanics.

My account might be called the European view, where two theories retain
some autonomy, but still happen to align in virtue of their own internal principles.
I will argue that the arrow of time in thermodynamics and statistical mechanics
has this character, in that each is structured in such a way that their temporal
symmetries align, dissolving the reversibility problem.

To be clear, I do not wish to dismiss the remarkable challenge of explaining
the powerful temporal asymmetry that pervades human experience. Without
some care, a reversibility problem may still remain: by reversing a perfectly
reasonable description of a disippating gas governed with time-reversal-invariant
mechanical laws, one finds a totally unreasonable description of a spontaneously
concentrating gas. What I will argue is rather that, insofar as there is a tension
in this fact, it is not a tension for the reduction of thermodynamics and statistical
mechanics.

6Her approach follows the Lewisian account of reductive functionalism, recently redeveloped
for the general problem of reduction by Butterfield and Gomes (2022).

7Deflationary responses: Butterfield (2011), Norton (2012), Palacios (2019), and Wu (2021).
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3. Thermodynamic asymmetry is non-conservative

Most commentators identify time asymmetry in thermodynamics with the
second law.8 Perhaps the most influential of these commentators was Planck:

“If those [thermodynamic] processes are not irreversible, the entire
edifice of the second law will crumble. None of the numerous relations
deduced from it, however many may have been verified by experience,
could then be considered as universally proved, and theoretical work
would have to start from the beginning. ... It is this foundation on the
physical fact of irreversibility which forms the strength of the second
law.” (Planck 1897, §114)

In this section I will show how, due to a little-known theorem of Affanasjewa and
Jauch, the time asymmetry of the second law implies that energy is not conserved,
in a sense usually associated with systems open to external influence.

Let me begin by dispelling a myth that may surprise non-specialists: it is
not a law of thermodynamics that every isolated system has a property called
‘entropy’ that is universally non-decreasing to the future. Such an ‘entropy prin-
ciple’ is a combination of over-simplified propaganda and wishful thinking. The
propaganda goes right back to Clausius, one of the founders of thermodynamics,
who claimed it is a law of nature that, “[t]he entropy of the universe tends to a
maximum” (Clausius 1867, p.44). This claim was not argued for, not accepted
even by his followers, and in a later republication of the same work Clausius
seems to have asked that this passage be deleted (see Uffink 2001, pp.338-40).
Of course, one might use this ‘general entropy principle’ as a metaphor for the
observed dissipation of everyday systems as they approach equilibrium, which
I will return to in Section 5. There are also indications that a generalised en-
tropy principle may be true of black holes in semiclassical gravitation, where it
is known as the Generalised Second Law.9 But, it is not a universal fact about
thermodynamics.

Of course, there is still a conceptually coherent entropy principle. To state
it, let me first recall the origin of entropy in a model of thermodynamics. The
state space of a thermodynamic system is a (2𝑛 + 1)-dimensional manifold 𝑀

8See Reichenbach (1956, §7), Sklar (1993), Callender (1999, 2001), Myrvold (2011, 2020a,b), and
Valente (2021, §4.1), among others. I discuss dissenters like Brown and Uffink (2001) in Section 5.

9See Wald (1994, §7.2) for a classic introduction.
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of states, together with an 𝑛-dimensional surface 𝑁 on which the first law of
thermodynamics holds, which is to say that there is a quantity 𝑑𝑈 representing
a small amount of energy that satisfies,

𝑑𝑈 = � + 𝑃1𝑑𝑋1 + 𝑃2𝑑𝑋2 + · · · + 𝑃𝑛−1𝑑𝑋𝑛−1. (1)

Here, 𝑈 and each 𝑋𝑖 is a smooth real-valued function, and 𝑃𝑖 = 𝜕𝑈/𝜕𝑋𝑖 for
each 𝑖 = 1, ..., 𝑛 − 1. The pairs of functions (𝑃𝑖 , 𝑋𝑖) represent accessible degrees
of freedom that are associated with work, like pressure and volume, or electric
charge and electrochemical potential.

The reason we associate the first law with thermal phenomena is that it
contains a term � representing heat. Mathematically, heat � is a one-form.10
Sometimes, though not always, this structure may admit a pair of smooth func-
tions 𝑆 and 𝑇 (where 𝑇 = 𝜕𝑈/𝜕𝑆) such that,

� = 𝑇𝑑𝑆. (2)

When they exist, 𝑇 is called temperature and 𝑆 is called entropy. Otherwise, their
existence might be restricted to some subset of state space like a particular region
or curve. But, their meaning is always defined by their ability to describe heat, as
in Equation (2).

To derive an entropy principle, we now consider a finite, piecewise-smooth
curve 𝛾 through thermodynamic state space, with initial and final endpoints
representing the initial and final states of some process.11 A curve 𝛾 will be called
reversible whenever entropy on it is well-defined, in that heat satisfies � = 𝑇𝑑𝑆

for some 𝑆 along 𝛾; otherwise the curve is called irreversible.12 finally posit the
existence of a smooth function 𝑇 that we wish to think of as ‘temperature’, and
such that the following two postulates are satisfied:

(i) (adiabatic process) the heat � is zero along the curve 𝛾.

(ii) (no perpetual motion) there is a reversible curve � restoring the system to

10I adopt some standard differential geometry terminology; see e.g. Marsden and Ratiu (2010).
11There is some subtlety in how to interpret a curve through state space when all the states

are in equilibrium. Textbooks generally follow Carathéodory (1909) in viewing such a curve
as representing very slow or ‘quasistatic’ change; see Norton (2014, 2016) for an alternative
interpretation. For present purposes, only the initial and final endpoints are need to represent
the initial and final stage of a physical process.

12The term ‘Reversibility’ is unfortunately used in a variety of ways; note that my definition
here is purely mathematical and follows the geometric tradition of contact geometry approaches.
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its initial state, and without any positive accumulation of heat per unit
temperature,

∫
𝑐
�/𝑇 ≤ 0, where 𝑐 is the closed loop formed 𝛾 followed by

�, as shown in Figure 1.

𝑝𝑖

𝛾
𝑝 𝑓

�

Figure 1: The closed curve 𝑐.

It is an elementary exercise13 to show that these two assumptions imply
the existence of a function 𝑆, which ‘behaves like entropy’ on the reversible curve
� in the sense that Equation (2) holds, and such that 𝑆(𝑝𝑖)−𝑆(𝑝 𝑓 ) =

∫
𝑐
�/𝑇, where

𝑝𝑖 and 𝑝 𝑓 are the initial and final endpoints of the process 𝛾. Combining this
latter result with our postulate (ii) that

∫
𝑐
�/𝑇 ≤ 0, we find that 𝑆(𝑝𝑖) ≤ 𝑆(𝑝 𝑓 ).

This fact, first observed by Clausius, is called the Clausius entropy principle. In
summary, it says:

there is a quantity 𝑆 whose value at the end of the process is not less than it
was at the beginning, and which ‘behaves like’ entropy during a reversible
process restoring that initial state.

The assumptions of this argument can be challenged, although I will not
do so here.14 Instead, I would like to point out a simpler problem with using this
entropy principle as the basis for a time asymmetry: the inequality is not strict. It
is still possible that the final and initial entropies are equal, 𝑆𝑖 = 𝑆 𝑓 , which would
eliminate the time asymmetry completely.

The strict inequality 𝑆𝑖 < 𝑆 𝑓 needed for an arrow of time requires a third
assumption:

(iii) (irreversibility) the process 𝛾 is irreversible.

To see why, recall again that an ‘irreversible’ curve 𝛾 is one for which no function
𝑆 behaves like entropy in the sense that 𝑑𝑆 = �/𝑇 along the curve. Now, it is a

13Solution: Since � is reversible, � = 𝑇𝑑𝑆 on � for some 𝑆. A closed curve 𝑐 now runs from
𝑝𝑖 to 𝑝 𝑓 along 𝛾, and then back from 𝑝 𝑓 to 𝑝𝑖 along �. Therefore, since 𝛾 is an adiabat (so∫
𝛾
�/𝑇 =

∫
𝛾
� = 0), we have 𝑆(𝑝𝑖) − 𝑆(𝑝 𝑓 ) =

∫
�
𝑑𝑆 =

∫
�
�/𝑇 =

∫
�
�/𝑇 +

∫
𝛾
�/𝑇 =

∫
𝑐
�/𝑇.

14Challenges can be found in Roberts (2022, pp.157-159) and Uffink (2001, pp.338-342).
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purely mathematical fact that no such function exists if and only if the one-form
�/𝑇 is not conserved around a closed loop.15 So, condition (iii) is equivalent to
the claim that

∫
𝑐
�/𝑇 is non-zero, and hence that

∫
𝑐
�/𝑇 ≤ 0 is actually a strict

inequality
∫
𝑐
�/𝑇 < 0, which through the argument above is equivalent to a strict

entropy inequality,
𝑆(𝑝𝑖) < 𝑆(𝑝 𝑓 ). (3)

Thus, it is exactly when there is an irreversible curve that one can use a strict
entropy inequality to derive a thermodynamic arrow of time.

What I would like to point out is that this third assumption also implies
that mechanical energy is not conserved. In rough physical terms, this arises from
the fact that �/𝑇 is strictly lost after the completion of a process containing an
irreversible component that cycles back to where it started, such as the functioning
of a realistic engine. So, if the cyclic process conserves work, as every isolated
mechanical system does, then the energy associated with that heat must have
been strictly lost.

Let me formulate this as a corollary of a little-known theorem due to
Ehrenfest-Afanassjewa (1925) and Jauch (1972). Given the first law, the theorem
shows the following:16

If work is conserved on all closed adiabatic processes (energy conservation),
then there are functions 𝑆 and 𝑇 in a neighbourhood of each point such that
heat can be written � = 𝑇𝑑𝑆.

An adiabatic curve is one along which heat remains zero. So, since total energy
is just the sum of heat and work, the only energy available on an adiabat is work,
meaning that energy conservation is equivalent to work conservation. Energy
conservation is a plausible assumption to about an isolated local system, and
was used by Jauch (1972) and Roberts (2022, §6.2.1) to motivate the existence
of a global entropy function. However, for the argument I would like to make,
the contrapositive form of the theorem is what matters. That argument is the

15More precisely, a one-form 𝜔 is exact if and only if it is conservative (see e.g. Lee 2013, p.292,
Theorem 11.42).

16More precisely: Let (𝑈, 𝑋1 , . . . , 𝑋𝑛−1)be a complete set of coordinate functions of a manifold𝑁

of dimension 𝑛, and let � satisfy the first law 𝑑𝑈 = �+∑𝑛−1
𝑖=1 𝑃𝑖𝑑𝑋𝑖 for some functions (𝑃1 , . . . , 𝑃𝑛−1).

Suppose that work𝑊 :=
∑𝑛−1

𝑖=1 𝑃𝑖𝑑𝑋𝑖 is ‘conserved on adiabats’, in that for every closed, piecewise-
smooth curve 𝑐 with tangent vector field 𝑐 satisfying �(𝑐) = 0, we have

∫
𝑐
𝑊 = 0. Then in a

neighbourhood of every point there exist smooth functions 𝑆 : 𝑁 → R and 𝑇 : 𝑁 → R such that
� = 𝑇𝑑𝑆. For the proof see Jauch (1972), and for commentary see Roberts (2022, p.149).
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following.
We have seen that a thermodynamic arrow requires the existence of an

irreversible process, which in turn requires neighbourhoods in which heat cannot
be expressed as � = 𝑇𝑑𝑆 for any smooth functions 𝑇 and 𝑆. Such systems
violate energy conservation, by an equivalent statement of the Afanassjewa-Jauch
theorem:

If there are no functions 𝑆 and 𝑇 in any neighbourhood of a point such
that heat can be written � = 𝑇𝑑𝑆, then work is not conserved on all closed
adiabatic processes (violation of energy conservation).

The combined result is that a thermodynamic arrow of time only arises in models
where energy is not conserved, such as those that are open to external influence.
This is truly remarkable, given how much heat has been lost on the thermody-
namic arrow. For, as I will recall in the next section, time asymmetry in the absence
of energy conservation is in complete harmony with the laws of mechanics, and
so is no barrier to reduction.

4. Non-conservative mechanics is asymmetric

It is only when we are speaking loosely about mechanics that we say that
it is generally symmetric in time. Both classical and quantum mechanics are used
to model systems that are temporally asymmetric, such as a damped harmonic
oscillator, a fluid with internal friction, or an electric current with resistance.
These models are all ‘open’ in that they provide incomplete descriptions of the
systems they refer to: they ignore degrees of freedom into which energy can be
transferred, resulting in a formal violation of energy conservation. An arrow of
time is thus a typical feature of statistical mechanics, but only so long as energy
conservation is violated, just as I have argued is the case for thermodynamics.

For example, a classical damped harmonic oscillator is a system in which
an oscillating mass slows to a stop, but in which the temporally reversed motion
of a spontaneously oscillating mass is prohibited. The oscillating mass 𝑚 has
position 𝑥(𝑡) and velocity 𝑣 = 𝑑𝑥/𝑑𝑡 that satisfy the following equation for some
positive constants 𝑘 and 𝑐:

𝑚
𝑑𝑥2

𝑑𝑡2 = −𝑘𝑥 − 𝑐𝑣. (4)

It is easy to confirm that if we are given a solution (𝑥(𝑡), 𝑣(𝑡)) to Equation (4), the
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time-reversed trajectory (𝑥(−𝑡),−𝑣(−𝑡)) is not generally a solution. The energy 𝐸

of changes at a rate of,17
𝑑𝐸

𝑑𝑡
= −𝑐𝑣2, (5)

which is non-zero whenever the system has non-zero initial velocity, violating
conservation. Of course, for most applications one would not refer to this as a
‘fundamental’ failure of conservation, but rather one associated with the missing
degrees of freedom into which energy dissipates. This kind of arrow of time has
been said to fall prey to a “missing information misfire” (Roberts 2022, §5.1).

Thus, time asymmetry arises in mechanics in exactly the sort of situation
that it does for thermodynamics, when energy conservation is violated. One can
go further and ask whether this is a general fact about the arrow of time in me-
chanics, the way that we have shown it is in thermodynamics. There are various
ways to make this idea precise. One of them is to consider classical mechanics as
characterised by Newton’s second law, 𝐹 = 𝑚𝑑2𝑥/𝑑𝑡2, and to suppose the force is
characterised as a vector field that depends only on position and ‘falls off quickly’
as one moves away from some compact region in space. The latter implies18 that
𝐹 can be expressed as the sum of a divergence and a curl component,

𝐹 = ∇𝜑 + ∇ × 𝐴, (6)

for some scalar field 𝜑 and some vector field 𝐴. Such a system is time reversal
invariant if and only if the force 𝐹 is preserved under the time reversal transfor-
mation, since this is what guarantees that time reversal preserves solutions to
Newton’s equation 𝐹 = 𝑚𝑑𝑥2/𝑑𝑡2. Moreover, the system is conservative whenever
work is conserved on all closed loops. Our aim is to show that such a system is
time reversal invariant if and only if it is conservative.

The proof is simple: the curl ∇×𝐴 of a vector field generally reverses sign
under time reversal, whereas the divergence ∇𝜑 does not.19 So, given Equation
(6), time reversal invariance is equivalent to the statement that 𝐹 = ∇𝜑. Moreover,
that statement is known to hold if and only if the system is conservative (Arnol’d
1989, p.29 §6B). Therefore, the system is time reversal invariant if and only if it is

17Energy is 𝐸 = 𝑚𝑣2/2+ 𝑘𝑥2/2, which implies 𝑑𝐸/𝑑𝑡 = 𝑚 𝑑𝑥2

𝑑𝑡2 𝑣+ 𝑘𝑥𝑣 = (−𝑘𝑥−𝑐𝑣)𝑣+ 𝑘𝑥𝑣 = −𝑐𝑣2.
18This is a consenquence of the Helmholtz-Hodge theorem (Arfken 1985, §1.15).
19This can be seen through arguments like those of Malament (2004). Roughly, an axial vector

field like ∇ × 𝐴 makes use of a temporal orientation for its definition, which must therefore be
reversed when time is reversed. Without this link between axial vector fields and time orientation,
the link between time reversal invariance and energy conservation can fail (cf. Roberts 2013).
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conservative.
This argument applies to most common systems of classical mechanics,

though not all mechanical systems.20 However, my aim is only to capture a piece
of common physics lore in somewhat precise terms, that an arrow of time is
neither problematic nor unexpected when a physical system is non-conservative,
in mechanics or otherwise. Given this, reversibility problem for reduction as it is
usually posed is dissolved.

5. The Minus-First Law

Not everyone identifies the thermodynamic arrow with the second law.21
Brown and Uffink (2001) have argued for an entirely different origin for ther-
modynamic time asymmetry, in the approach to equilibrium. Suppose that the
states of a thermodynamic system can be partitioned into two types, called non-
equilibrium and equilibrium, and that some sense of dynamical evolution in time is
available to describe such states.22 The proposal is that a law of nature governing
equilibrium must be added to the laws of thermodynamics, called the Minus-First
Law to indicate its priority before the others, and which states:

“An isolated system in an arbitrary initial state within a finite fixed volume
will spontaneously attain a unique state of equilibrium.” (Brown and Uffink
2001, p.528)

Brown and Uffink break this principle into several parts, and clarify that
the part which they consider to be temporally asymmetric is just the following,
which they call Claim (A):

“The existence of equilibrium states for isolated systems. The defin-
ing property of such states is that once they are attained, they re-
main thereafter constant in time, unless the external conditions are
changed” (Brown and Uffink 2001, p.528).

20Indeed, its generality does not extend to electroweak interactions, which are both conservative
and time asymmetric. A ‘new’ reversibility problem might thus arise in exactly the opposite sense
as it is usually presented: a weakly interacting system is temporally asymmetric in statistical
mechanics, but when it is in thermal equilibrium it would seemingly still be temporally symmetric
in thermodynamics! I do not have space to discuss this curious issue here.

21For heterodox arguments, see Uffink (2001) and Roberts (2022, Chapter 6).
22These assumptions are left as somewhat vague additions to the standard mathematics of ther-

modynamics: as Wallace (2014, p.699) has pointed out, thermodynamics “is not in the business
of telling us how those equilibrium states evolve if left to themselves” in spite of the awkward
appearance of “dynamics” in the name.
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Unlike the aspects of the Minus-First Law postulating uniqueness and the ap-
proach to equilibrium, Brown and Uffink consider Claim (A) to be essentially time
asymmetric, and thus conclude that in thermodynamics, the “time-asymmetric
component lies in the postulated notion of equilibrium itself” (Brown and Uffink
2001, p.526). This is taken to be in stark contrast with Boltzmann’s definition
of equilibrium in statistical mechanics—namely, as the macrostate of largest
volume—which they consider to be “time-symmetric, unlike its counterpart in
thermodynamics” (Brown and Uffink 2001, p.530).

This is an entirely different origin for thermodynamic time asymmetry
as compared to the standard one discussed above. Brown and Uffink explicitly
formulate the Minus-First Law for systems that are isolated, and thus for which
energy conservation should be expected. So, my response to to the approach that
makes use of the second law seemingly does not apply here. Moreover, Brown
and Uffink claim that this principle is inconsistent with the kind of spontaneous
deviations from equilibrium associated with statistical mechanics:

“In particular, the reversal of the spontaneous adiabatic expansion
of a gas... would correspond to a spontaneous adiabatic contraction.
But this behaviour is inconsistent with claim (A) of the Minus First
Law, which as we have seen rules out spontaneous deviations from
equilibrium.” (Brown and Uffink 2001, p.536)

If they are right, then it seems impossible to strictly deduce this temporally asym-
metric aspect of thermodynamics from statistical mechanics, and the reversibility
problem reappears.

However, there is a missing component to this story. Despite what Brown
and Uffink suggest, the Minus-First law is not guaranteed to be temporally asym-
metric, even with the clarification of Claim (A). The situation is comparable to that
of the entropy principle, which requires subtle adjustment to guarantee a strict
inequality. In the case of the Minus-First Law: equilibrium states are only defined
to be fixed in one temporal direction—“thereafter constant in time”—which still
allows temporal symmetry to occur if those states are fixed in the other temporal
direction as well. Strictly speaking, the Minus-First Law as Brown and Uffink
have stated it is compatible with equilibrium states remaining fixed for all times,
and non-equilibrium states approaching equilibrium in both temporal directions.

Breaking the symmetry requires a further assumption, that some equi-
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librium states are not fixed for all time. In addition to the Minus-First law, one
must assert that some equilibrium states began in a non-equilibrium state at some
point in the past. This is not a deviation from statistical mechanics, and on the
contrary is exactly the situation that one finds in the ‘past hypothesis’ approach.
To illustrate, let me briefly recall how it works there.

One of the central results of Boltzmannian statistical mechanics is that
equilibrium states are stupendously more common than non-equilibrium ones.23
The situation is analogous to a house with 1022 blue rooms, analogous to equilib-
rium, and just one that is red, analogous to non-equilibrium. When walking into
an arbitrary room, one should expect that it will very likely be blue, and indeed
that nearly all rooms that one visits in the future will be blue as well. But, this
argument runs the same way in the reverse direction: when walking out of an
arbitrary room, one should expect to have just left a blue room as well.

An early and prominent way that this temporal symmetry was broken
was through the postulate that a non-equilibrium state exists in the past, such
as in the first moments after the big bang. This is what Albert (2000) calls ‘past
hypothesis’. The past hypothesis helps to ensure that equilibrium is approached
to the future and not the past, breaking the time asymmetry in the statistical
argument above. It is not my aim to discuss the status of this controversial
argument. What matters for my purposes is that the past hypothesis is exactly
analogous to the assumption of a past non-equilibrium state in thermodynamics,
which is implicitly responsible for the temporal asymmetry in Brown and Uffink’s
Minus-First Law.

The result is a remarkable harmony in the way that both thermodynamics
and statistical mechanics treat the arrow of time, no matter how one describes
the thermodynamic arrow. If it is identified with the Clausius entropy principle,
then the thermodynamic arrow arises from a failure of energy conservation, in
just the way that one expects an arrow of statistical mechanics to arise. If it is
identified with the approach to equilibrium captured by the Minus-First Law,
then the thermodynamic arrow requires postulating a special non-equilibrium
state in the past, in just the way that the arrow of statistical mechanics arises out
of the past hypothesis. In either case, the reversibility problem is dissolved.

23A commonly-cited figure for a litre of gas in a tank is that the states not in Boltzmannian
equilibrium occupy a portion of the total number of states equal to just 1/1022 (see e.g. Penrose
2004, p.693).
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6. Conclusion

Tatiana Afanassjewa, one of the founders of modern thermodynamics,
took the main lesson of her great work to be the decoupling of the theory’s
foundations from the arrow of time:

“If I dare to produce one more book among so many... then it is to show
how one can free the derivation of the fundamental thermodynamic
equations from the question regarding the direction of natural phe-
nomena and from the dissipation of energy.” (Ehrenfest-Afanassjewa
1956, p.142)

What I have argued for here is a special case of this lesson. Thermodynamics
does not imbue its subjects with an arrow of time. As in many other theories, the
temporal asymmetries of thermodynamics arise in special environments, such
as those that give rise to the Clausius entropy principle, or those that render
the Minus-First Law asymmetric. The reversibility problem only appears when
one ignores the fact that those special environments are needed. When they are
made explicit, the underlying mechanisms behind the thermodynamic arrow are
not just clarified, but made harmonious with the arrow of statistical mechanics.
Reversibility is thus no barrier to the reduction of thermodynamics to statistical
mechanics: these theories are reversible and irreversible in almost exactly the
same situations.

Given this, the arrow of time in thermal and statistical physics should
perhaps be viewed in less lofty terms than it is usually presented. It does not
have the deep, nomic status of a law of motion like Schrödinger’s equation. The
thermodynamic arrow is a rather more prosaic fact, which arises from the human
condition of describing Nature incompletely in the case of the entropy principle,
or using contingent facts about the special nature of conditions in our past. This
should not displace its importance, or the sense of wonder that arises in seeking
to understand it more deeply. But, let part of that wonder be this remarkable
sense in which the reversibility problem is dissolved.

Acknowledgments. Thanks to Foad Dizadji-Bahmani for conversations that
were both scintillating and adiabatic.
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