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Abstract 

Some patients, following brain injury, do not outwardly respond to spoken commands, yet 

show patterns of brain activity that indicate responsiveness. This is “cognitive-motor 

dissociation” (CMD). Recent research has used machine learning to diagnose CMD from 

electroencephalogram (EEG) recordings. These techniques have high false discovery rates, 

raising a serious problem of inductive risk. It is no solution to communicate the false 

discovery rates directly to the patient’s family, because this information may confuse, alarm 

and mislead. Instead, we need a procedure for generating case-specific probabilistic 

assessments that can be communicated clearly. This article constructs a possible procedure. 
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1. The search for cognitive-motor dissociation 

Some patients, following brain injury, enter a state of unresponsive wakefulness. Although 

they have sleep-wake cycles, they give no outward response to any stimulus. This is often 

known as the “vegetative state”, even though many experts now discourage the use of that 

term. They discourage it in part because some fraction of patients—and the fraction is 

unknown—are conscious, experiencing subjects, unable to produce any behavioural report of 

their experiences. This clinical name for this condition is “cognitive-motor dissociation” 

(CMD) (Edlow et al. 2021). Informally, it is often described as “covert consciousness” (Fins 

and Bernat 2018). 

 

The risks of failing to diagnose CMD are extremely serious. Some of these risks can be 

mitigated by low-cost precautions that could be taken with all unresponsive patients, such as 

administering pain relief (as urged by Fins and Bernat 2018) and explaining what is 

happening. Yet it would be a mistake to think accurate diagnosis is therefore unimportant. A 

diagnosis of CMD is likely to influence life-or-death decisions about the patient’s best 

interests (Edlow and Fins 2018; Peterson et al. 2015, 2020).  

 

In the first two weeks after a serious brain injury, the patient’s surrogate decision makers, in 

discussion with clinicians, will typically face the terrible decision of whether or not to 

withdraw life-sustaining treatment (Kitzinger and Kitzinger 2013). The surrogate decision 

makers are usually family members, with some exceptions (Fins 2013), so I will say “family” 

in what follows. Evidence of CMD could have a major influence on their decision, 

particularly if CMD turns out to be linked to a higher probability of recovery, something that 

is currently unclear (Edlow and Fins 2018). A Canadian study by Turgeon et al. (2011) found 

withdrawal of treatment to be by far the largest cause of hospital mortality in patients with 

traumatic brain injury, accounting for 70.2% of deaths. The concern that outwardly 

unresponsive patients are often written off much too quickly, leading to a “self-fulfilling 

prophecy” of no recovery, is a major motivation for research into CMD (Johnson 2022; 

Edlow et al. 2021).  

 

Later on, if the patient stabilizes in an unresponsive condition, the family—in jurisdictions 

where this is legal—will face a decision that is yet more terrible: that of whether to withdraw 

clinically assisted nutrition and hydration, leading eventually to death at a slow speed that is 

often highly distressing for the patient’s family (Kitzinger & Kitzinger 2015, 2018). Again, 

evidence of CMD could play a major role in that decision, though the role it plays will 

depend on the family’s view of the patient’s values and interests. For some, the idea of 

withdrawing nutrition and hydration from a potentially conscious patient is too abhorrent to 

contemplate. For others, the greater fear is that the patient will continue to live in a way they 

would experience as a form of torment. 

 

Given the gravity of these decisions, there is a pressing need for reliable ways of diagnosing 

CMD as early as possible, ideally in the intensive care unit (ICU), in the first few days after 

admission to hospital. One promising approach, and the focus of a great profusion of recent 
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research, involves the use of electroencephalogram (EEG) recordings of brain activity (119 

recent articles on this are reviewed in Bai et al. 2021). The guiding thought is that, even when 

the patient cannot respond behaviourally to stimulation, their patterns of brain activity might 

still respond in a way that contains clues as to the presence or absence of experience.  

 

There are many techniques in development of this general type, all (it is fair to say) at an 

early stage. None has yet been rolled out to widespread clinical use. The technology is 

moving fast, however, and the European Academy of Neurology already recommends the use 

of EEG and fMRI techniques “whenever feasible” and proposed that patients should be 

diagnosed as having the “highest level” of consciousness indicated by behaviour, EEG or 

fMRI (Kondziella et al. 2020; Edlow et al. 2021). 

 

Among EEG-based methods, particular excitement surrounds the idea of using machine 

learning to infer responsiveness to spoken commands from the EEG (Claassen et al. 2019). 

This is an important emerging case of the clinical application of AI. Yet these machine 

learning techniques have high false discovery rates, raising a serious problem of inductive 

risk. In reaching any categorical judgement about whether the patient is responding, the risk 

of misattributed responsiveness must be balanced against that of missed responsiveness. This 

balancing involves value-judgements about the comparative seriousness of the two types of 

error (Peterson et al. 2016; Johnson 2022). 

 

I will argue that the value-judgements involved in categorical assessments are not inherently 

a problem, but they can lead to problems if the values in question are misaligned with the 

patient’s own values. To secure greater sensitivity to the patient’s values, what is needed, I 

argue, is a procedure for generating case-specific probabilistic assessments that can be 

communicated clearly to the patient’s family. I construct a possible procedure built around 

three proposals: (1) a shift from categorical “responding or not” assessments to degrees of 

evidence; (2) the use of patient-centred priors to convert degrees of evidence to probabilistic 

assessments; and (3) the use of standardized probability yardsticks to convey those 

assessments as clearly as possible to the patient’s family. 

 

The article aims to build on previous discussions of inductive risk in the management of 

disorders of consciousness (especially Peterson et al. 2015; Johnson 2022), which did not 

zoom in specifically on the complications introduced by machine learning. It is also a 

contribution to a growing literature on the management of inductive risk in medicine more 

generally (Bavli & Steel 2020; Biddle 2016; Bluhm 2017; Douglas 2009; Kostko 2019; Kukla 

2019; Lewens 2019; Plutynski 2017; Scarantino 2010; Stanev 2017; Stegenga 2017) and in 

machine learning (Karaca 2021; Birch et al. 2022). The overall message will be that the 

clinical application of AI to the diagnosis of CMD is a source of new risks and new 

opportunities. The risk is that highly contentious value judgements will be buried too deeply 

to allow room for input or scrutiny by the patient’s family. The corresponding opportunity is 

that, with the right design, an AI product could enable human clinicians to do a better job of 

evaluating and communicating diagnostic uncertainty than they do currently. 
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2. Background uncertainty: The links between responsiveness and consciousness 

When thinking about diagnostic uncertainty, it can help to introduce a distinction between the 

“background” and the “foreground”. Background uncertainty concerns the relevance of a 

proposed biomarker to the condition we are trying to diagnose (e.g. “Is fever evidence of 

COVID-19?”). Foreground uncertainty concerns whether or not the biomarker is present or 

absent in a particular case (e.g. “Is this a fever?”). Our focal condition is CMD, and our focal 

biomarker will be neural responsiveness to spoken commands. 

 

I want to focus primarily on foreground uncertainty: uncertainty about whether a patient is 

responding to commands or not. But to put that discussion in context, we should also note 

three important sources of background uncertainty regarding the relationship between that 

marker and consciousness.  

 

First, it is far from certain that neural responsiveness to commands, when present, implies 

conscious experience. There is some evidence that task-relevant responses can be elicited by 

spoken commands during sleep, when the subject is unconscious according to their own 

subsequent report (Kouider et al. 2014).1 I think we should grant, however, that neural 

responsiveness raises the probability of conscious experience, since it is more likely to be 

observed if the patient is conscious than if the patient is unconscious. A strong and 

implausible epiphenomenalism about conscious experience may deny this, but it can be 

granted by any view on which, in healthy controls, conscious experience has a causal role in 

mediating motor responses to linguistic commands. 

 

Second, any inference from the absence of responsiveness to the absence of consciousness is 

tendentious. There are many reasons why a conscious patient might fail to respond neurally 

to spoken commands, including effects of sedation and deficits of attention, memory and 

linguistic comprehension (Edlow and Fins 2018; Edlow et al. 2021). 

 

Third, even granting that responsiveness raises the probability of consciousness, it leaves 

many questions open regarding the form of the subject’s conscious experiences. Current 

clinical practice involves distinguishing different conscious “levels”: a typical taxonomy 

includes coma, unresponsive wakefulness (UWS), minimally conscious state-minus (MCS-), 

minimally conscious state-plus (MCS+), confusional state, cognitive dysfunction, and full 

recovery (Edlow et al. 2021). Finding responsiveness in a patient’s EEG does not tell us 

where to put the patient on these scales (e.g. whether to reclassify them as MCS-). 

 

Moreover, CMD casts some doubt on the very idea of a “levels” framework. The conscious 

states of unresponsive patients vary a great deal, with some having experiences closely akin 

to those of a healthy adult, and others having highly degraded, fragmentary, fleeting 

experiences. Over the long-term, we will surely need a richer framework for thinking about 

 
1 This evidence is subject to substantial foreground uncertainty (i.e. are the sleeping patients really 

responding?), since Kouider et al. measured responsiveness using readiness potentials, which have been the 

targets of methodological criticism (see Section 3). 
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these cases, with many different dimensions of variation, and a shift from “levels of 

consciousness” to multidimensional consciousness profiles (Bayne et al. 2016). Merely 

finding responsiveness leaves us in the dark as to the patient’s consciousness profile. 

 

3. Foreground uncertainty: Is the patient responding at all? 

Background uncertainty arises even when we are certain that the putative biomarker is 

present, but there is also uncertainty about whether the biomarker is there at all. The 

appearance of responsiveness in the EEG could conceivably be a chance pattern or a 

statistical artefact.  

 

This possibility has been a source of controversy. Cruse et al. (2011), in a study published in 

the Lancet, used a machine learning method to analyse EEG data from 16 patients with 

disorders of consciousness and 12 healthy controls. Across a series of blocks, subjects were 

instructed to imagine either closing their right hand into a fist or wiggling their toes. The 

machine learning algorithm, a support vector machine classifier, was tasked with inferring 

the command given in each block from the EEG response. Significantly above-chance 

performance by the classifier was interpreted as evidence of responsiveness. The headline 

finding: 3/16 outwardly unresponsive patients were reliably responding to commands. 

 

Goldfine et al. (2013) took issue with the statistical techniques used to detect responsiveness. 

I will not go into detail here, because to do so would distract from the main case-study in the 

next section. In brief, Goldfine et al. criticized the method of cross-validation used, the way 

that p-values were calculated, and the chosen significance threshold of p < 0.05. As has often 

been noted (e.g. Benjamin et al. 2018), this threshold leads to high false discovery rates (the 

false discovery rate is the number of incorrect rejections of the null hypothesis divided by the 

total number of rejections). We should expect cases of misattributed responsiveness to arise 

in roughly 1 in 20 recordings. Goldfine et al. (2013) dramatically showed that, when their 

preferred method of cross-validation was used, when a different method was used to calculate 

the p-value, and when a correction for multiple comparisons (specifically, a Benjamini-

Hochberg correction) was applied to lower the significance threshold, the headline result 

disappeared: there was no finding of responsiveness in any of the patients. 

 

Cruse et al. (2013) replied combatively, accepting none of the criticisms. My aim is not to 

referee the dispute here. I will restrict myself to two comments. Firstly, the dispute very 

clearly shows how the frequency with which responsiveness is detected depends quite 

sensitively on methodological choices; to acknowledge this is not to take sides on the issue of 

whose choices were correct. Second, the disagreement suggests a difference in attitude 

towards the risk of misattributed and missed responsiveness. Goldfine et al. were concerned 

by a high false discovery rate and sought ways of controlling it. Cruse et al. feared that what 

they describe as “conservative corrections” would drive up the rate of missed responsiveness. 

These issues will resurface when we turn to our focal example, a more recent study that takes 

the criticisms of Goldfine et al. at least partly on board. 

 



 6 

4. Managing inductive risk: How values drive methodological choices 

With these issues in mind, I want to examine a high-profile EEG study by Claassen et al. 

(2019), published in the New England Journal of Medicine. This was a ground-breaking 

study of CMD in an ICU setting, involving an unprecedented sample size of 104 patients 

with disorders of consciousness. My aim will be to tease out the ways in which value-

judgements about the comparative seriousness of missed and misattributed responsiveness 

shape methodological decisions. 

 

Before going deeper into methodological details, we should note that the terms “false 

positive” and “false negative” can lead to confusion here. The term “false positive” is 

sometimes used to describe a single incorrect guess by a classifier, but it is also sometimes 

used to describe a situation in which a classifier is judged to be performing at above-chance 

level when the patient is not in fact responding. That is why I favour the term “misattributed 

responsiveness” to describe the latter type of situation, and the term “missed responsiveness” 

to describe a situation in which a patient is responding but this is not detected in the form of 

above-chance classifier performance. 

 

In the Claassen et al. study, a support vector machine classifier was (as in Cruse et al. 2011) 

tasked with guessing the spoken commands given to a patient using only an EEG recording 

of that patient. The commands given were ““keep opening and closing your right[/left] hand” 

and “stop opening and closing your right[/left] hand”. The algorithm was trained separately 

on each patient over the course of six blocks of eight trials each (i.e. 48 trials). This is called 

an “individualized classifier” approach, since the classifier is trained anew on every patient’s 

personal EEG data. This strategy can be contrasted with a “general classifier” approach that 

seeks to generalize from a training set of patients to a new patient. 

 

For each patient, the classifier’s performance was evaluated by comparing its guesses about 

the spoken commands (inferred from the EEG) to the actual commands.2 The headline result: 

in 16/104 patients, significantly above-chance classifier performance was obtained, leading 

the authors to the striking conclusion that “of the 104 patients, 16 (15%) had cognitive–motor 

dissociation detected on at least one recording” (Claassen et al. 2019, 2501). 

 

How reliable is this result? For any study of this type, researchers face many difficult 

methodological choices. I will focus on four:  

 

a) What significance threshold will be used to assess “better than chance” performance 

by the classifier? 

b) How many EEG recordings will be made of each patient? 

 
2 The classifier’s performance was evaluated by the area under the receiver operating curve (AUC). For patients 

who are not responding, the classifier is expected to perform at chance level, which corresponds to an AUC 

neither significantly greater than nor significantly less than 0.5. For patients who are responding, the classifier is 

expected to perform at a significantly above-chance level, corresponding to an AUC significantly greater than 

0.5. In the main text I will simply refer to the “performance level” of the classifier. 
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c) How will adjustments to the significance threshold be made for multiple recordings of 

a single patient? 

d) How will adjustments to the significance threshold be made to control the false 

discovery rate in the whole sample of patients? 

 

All these choices have implications for the likely rates of misattributed and missed 

responsiveness. Let us consider how Claassen et al. handled them. 

 

Regarding (a): Claassen et al., like Cruse et al. (2011), used a standard p-value threshold of 

0.05 to assess whether the classifier is performing significantly better than chance. A p-value 

of 0.05 implies a 0.05 probability of the observed level of classifier performance being 

achieved by chance, without real responsiveness. As noted earlier, a threshold of p < 0.05 is 

well-known to create a risk of a high false discovery rate when many tests are conducted. 

That needs to be kept in mind as we consider (b)-(d). How did Claassen et al. try to manage 

that risk? 

 

Regarding (b) and (c): for some but not all patients, Claassen et al. took multiple recordings. 

And indeed, if this type of procedure becomes a widely used diagnostic tool, clinicians will 

often want to take multiple recordings, because a single recording carries a high risk of 

missed responsiveness. A key advantage of bedside EEG in the ICU over fMRI outside the 

ICU is that the former (in addition to being safer and faster) allows for repeated measurement 

(Edlow et al. 2021). Yet doing multiple recordings drives up the chance of misattributed 

responsiveness.  

 

There are two well-known statistical techniques for manage the risk: the Bonferroni 

procedure and the above-mentioned Benjamini-Hochberg procedure, recommended by 

Goldfine et al. (2013). The former is notoriously more stringent than the latter. Claassen et al. 

used the latter, less stringent procedure, which is less conservative and thus more tolerant of 

false discoveries. 

 

To elaborate briefly on this point, the Bonferroni procedure controls the overall chance of a 

false positive (Type I error) in a series of tests. If we apply this procedure, we can be 

reassured that the overall chance of there being a misattribution of responsiveness to a given 

patient is below the desired threshold. Yet the procedure is notoriously stringent. Reassurance 

about the chance of a false positive is bought at the cost of driving up the rate of false 

negatives. 

 

The Benjamini-Hochberg procedure is less stringent and aims to control a different quantity: 

the false discovery rate (the fraction of cases of misattributed responsiveness among the total 

number of positive tests). After applying this procedure, we can regard each “positive” 

recording, indicating apparent responsiveness, as having at most a 5% chance of being a 

misattribution.  
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The trouble here is that, in a clinical setting, it is surely the overall chance of a misattribution 

for this patient (i.e. the variable controlled by the Bonferroni procedure) that we most want to 

control. If we simply control the false discovery rate among EEG recordings, we are still 

faced with a situation where the chance of a misattribution happening at some point, for any 

given patient, becomes very high as the number of EEG recordings conducted on that patient 

goes up. If we make 100 recordings of the same patient, a misattribution somewhere in the 

sequence is very likely, even if we apply the Benjamini-Hochberg procedure to hold the false 

discovery rate at 5% or lower.  

 

Regarding (d): Beyond the correction just noted for individual patients who were recorded 

multiple times, Claassen et al. did not make any further downward adjustments of the 

significance threshold to control the overall rate of false discoveries in the population as a 

whole. So, the overall false discovery rate was likely to be high.  

 

Indeed, Claassen et al. themselves note in their supplementary information that, since 104 

patients were studied, “it is likely that amongst the 16 CMD patients, five were classified as 

CMD because of statistical fluctuations rather than actual spoken command following” 

(Claassen et al. 2019, supplementary information, page 13). This implies an expected false 

discovery rate of 5/16, or 0.31. Note that the false discovery rate is normally defined as the 

fraction of all positive tests that are cases of misattributed responsiveness, not the fraction of 

all tests—so the expected false discovery rate is 0.31, even though the expected fraction of all 

tests is 0.05. The figure of 0.31 may be an underestimate because, as just noted, the control of 

the false discovery rate for multiple recordings of the same patient was done using the 

Benjamini-Hochberg procedure, when the more stringent Bonferroni procedure would have 

been needed to hold the absolute probability of misattributed responsiveness for each patient 

at 0.05 or less. 

 

Why did Claassen et al. not control the overall false discovery rate by pushing the p-value 

threshold below 0.05? By way of analogy, this is an orthodox approach in Genome-Wide 

Association Studies (GWASs), which also involve many separate tests for statistical 

relationships (but across many genes rather than many patients). Researchers in this area will 

tend to use a p-value threshold of p < 5 x 10-8 in order to control the false discovery rate 

(Chen et al. 2021). The Benjamini-Hochberg procedure, which Claassen et al. applied to 

multiple recordings from the same patient, could also have been applied to the whole set of 

tests across all patients. To apply it only to multiple recordings from the same patient is a 

choice that would be controversial in other contexts. The analogy in a GWAS would be to 

control the false discovery rate for repeated tests of the same gene, without controlling the 

overall false discovery rate across the whole genome. 

 

In sum, the researchers chose to set a reasonably easy-to-clear bar for statistical significance 

(p < 0.05), chose to adjust it downwards for multiple comparisons only in a limited and 

partial way, and chose to accept—and openly acknowledge, albeit in supplementary 

information—a high false discovery rate. 
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These choices reflect implicit value-judgements by the researchers. That is not intended as a 

criticism, because I regard these value-judgements as both unavoidable and potentially 

benign. The researchers are quite clearly, and understandably, worried about the risk of 

missed responsiveness. As Fins and Bernat (2018) have emphasized, the “ethical importance 

of avoiding type II error: failing to identify consciousness when it is present” looms large for 

researchers in this area. This concern drives methodological choices that prioritize avoiding 

cases of missed responsiveness, while expressing a more relaxed attitude towards cases of 

misattributed responsiveness.  

 

5. A problem: Neglecting the patient’s own values 

Here is the story so far: multiple EEG testing of each patient, plus a relatively high threshold 

for significance (p < 0.05), is a recipe for a high rate of misattribution. This is exemplified by 

the Claassen et al. (2019) study, in which 0.31 may be an underestimate of the false discovery 

rate. There are frequentist strategies for controlling the false discovery rate, but researchers in 

this area are understandably hesitant to use them (except in limited, partial ways) because 

they are “conservative” and allow the rate of missed responsiveness to rise in an uncontrolled 

way—and because the normative, clinical importance of the research speaks strongly against 

a disregard for the risk of missed responsiveness. 

 

Is this a problem? Clinical research and practice cannot avoid value-judgements altogether. 

To worry about missed responsiveness more than misattributed responsiveness is a value-

judgement, but we may well be tempted to regard it as a benign, well-founded one.  

 

In my view, however, a problem remains, even if we agree with all the relevant value-

judgements. The real danger is not that of value-judgements being made in scientific research 

(this is normal and unavoidable) but that these value-judgements will be made in an 

insufficiently inclusive and context-sensitive way. The value-judgements are being made in a 

one-size-fits-all manner by researchers, or software designers, without involvement of 

families. Families simply receive a result—the patient is responding/not responding—

without an opportunity for input into the underlying value-judgements that shaped the 

methodological choices leading to this result. 

 

This is a problem even now, since results obtained in research studies are sometimes shared 

with the patient’s family and so already inform decision-making in some cases (Fins 2014; 

Edlow and Fins 2018). But it has the potential to become a much larger problem if the 

approach is rolled out to widespread clinical use, as the European Academy of Neurology has 

urged. Value-judgements about the comparative seriousness of missed and misattributed 

responsiveness should, as far as possible, properly involve the patient’s surrogate decision 

makers.  

 

One might object: would anyone really disagree that missed responsiveness is much worse 

than misattributed responsiveness? But it is not that simple. In some cases, a misattribution of 

responsiveness may give a patient’s family false hope: hope that a given level of recovery is 

in fact realistic, when other evidence suggests it is not. That false hope may be a curse rather 
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than a blessing. Given the current legal framework surrounding end-of-life decisions in most 

jurisdictions, families are often put in an agonizingly difficult position. There may be only a 

narrow window in which life-sustaining treatment such as mechanical ventilation can be 

withdrawn (if this is in the patient’s best interests) before the patient’s condition stabilizes, 

resulting in a situation where a quick death is no longer legally possible (the path from 

withdrawal of clinically assisted nutrition and hydration to death is distressingly long by 

comparison). Misattributed responsiveness could conceivably lead to that window being 

missed—it could lead to patients being kept alive over the long term when their prospects of 

recovery to a level they would themselves value are bleak. Kitzinger and Kitzinger (2013) 

have urged clinicians to take this risk seriously. Values in this area vary a great deal. Some 

patients would want to be kept alive even if a good recovery was very unlikely, whereas 

others would not (Edlow and Fins 2018).   

 

In the US context, there is also a further legal complication: courts are far less likely to grant 

approval for treatment withdrawal in cases where a patient is diagnosed as minimally 

conscious rather than “vegetative”, essentially forcing patients to be kept alive regardless of 

their values or wishes (Johnson 2022). This adds an extra cost to misattributions of 

responsiveness. In the UK, where court approval is not always needed to withdraw clinically 

assisted nutrition and hydration, clinical guidance avoids placing such enormous weight on 

the boundary between minimally conscious and “vegetative”, correctly recognizing this to be 

subject to great uncertainty (GMC-BMA 2018). 

 

In the absence of a clear advance directive by the patient themselves, the patient’s family is 

generally recognized to be the best (though fallible) way to access the patient’s own values. 

And yet, one can hardly go the patient’s family and ask: “Should I apply a Bonferroni 

correction to your relative’s EEG data, or a less conservative correction?” Error rates are 

controlled by deeply buried methodological details that a patient’s relatives will typically be 

unable to understand. Yet they will keenly feel the consequences of those methodological 

choices, because they will be heavily involved in making life-or-death decisions about the 

patient in which those choices may tip the balance of considerations, either for the family or 

for a court. 

 

Given this, should clinicians communicate the expected false discovery rate to the patient’s 

family? Should we say: “We expect there is a 0.31 false discovery rate associated with this 

procedure”? Edlow and Fins (2018) seem to have something like this in mind when they 

write “the possibility of a false-positive result must be considered by clinicians and clearly 

communicated to families” and, later, that “it is ethically appropriate to share single-subject 

data if families are fully informed of the performance characteristics of the assessments, such 

as their sensitivity and specificity.” 

 

Yet this would not adequately solve the problem, and might even make things worse, because 

false discovery rates are easily misinterpreted. They have significant potential to confuse, 

alarm and mislead. Not all particular cases are equal, and an expected false discovery rate of 

0.31 does not equate to a 0.31 chance of a particular case being a false discovery. The EEG 
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may provide extremely strong evidence of responsiveness in some specific cases and 

extremely weak evidence in other cases. But this further complication—i.e. the strength of 

evidence varies from one case to the next—points us in the direction of a possible solution. 

 

6. Communicating uncertainty, proposal 1: Degrees of evidence 

Our problem arises in part from the use of frequentist methods to interpret EEG recordings. 

Might the problem be at least partly addressed by incorporating Bayesian ideas? Bayesian 

approaches are no panacea for deep problems of inductive risk and uncertainty 

communication, but I believe they can help. There are, in particular, two Bayesian ideas that 

can help: (i) EEG data do not directly support a yes/no verdict on any question, but rather 

provide a quantitative degree of evidence; (ii) converting degrees of evidence into 

probabilistic assessments requires consideration of priors. 

 

There may be a temptation to react to the high false discovery rate at p < 0.05 by lowering the 

required p-value, mirroring standard practice in GWASs, and also mirroring calls in 

psychology for a lowering of the standard p-value threshold to p < 0.005 (Benjamin et al. 

2018). But we would still be using a single, one-size-fits-all threshold to assess whether the 

patient is “responding” or not. Ultimately, this is misleading. The reality is that classifier 

performance delivers evidence of responsiveness of continuously varying strength. If the 

strength of evidence can be conveyed to clinicians and the patient’s family, it will enable 

better-informed decisions. 

 

But how to do this? Here is a first step. The lowest p-value threshold at which the algorithm’s 

performance becomes “significantly” above-chance is a continuous variable that provides 

some insight into the strength of evidence of responsiveness in the present patient. The 

relationship between p-values and strength of evidence is, admittedly, not straightforward. 

The p-value imposes an upper bound on the Bayes factor, a formal measure of the strength of 

evidence. In other words, given a certain p-value, there is an upper limit on how much 

evidence against the null hypothesis a dataset can provide. This Bayes factor upper bound 

(BFB) is typically given by: 

 

BFB =  
1

−𝑒𝑝 log 𝑝
 

 

where p is the p-value (Benjamin and Berger 2019). In the case of multiple recordings of the 

same patient, Bayes factors can be multiplied to give an upper bound on the total evidence 

against the null hypothesis provided by the series of tests.  

 

Benjamin and Berger (2019) recommend the increased use of BFBs in science as a response 

to the replication crisis. My first proposal is that BFBs also have an important role in the 

design of medical AI, in cases where a diagnostic package delivers a p-value as its primary 

output. Of course, two problems arise: most human clinicians will not know how to convert a 

p-value to a BFB, nor will they know how to move from a BFB to a probability that the 

patient is responding. The first problem is easily remedied, since the AI product itself could 
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calculate a BFB. The second problem is more serious, because prior probabilities are needed 

to generate posterior probabilities from Bayes factors. 

 

7. Communicating uncertainty, proposal 2: Patient-centred priors 

To move from a BFB to an upper bound on the odds that the patient is responding to 

commands (the “odds upper bound”, or OB), we need prior probabilities: 

 

OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔) = BFB ×  
Prior(𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)

Prior(𝑁𝑜𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)
 

 

But how to set these priors? One option would be to set our priors in line with base rates. At 

present, our uncertainty about individual cases of cognitive-motor dissociation percolates up 

to uncertainty about the base rate. For example, we could use the Claassen et al. data to 

estimate a base rate of about 10% among unresponsive wakeful patients (i.e. 16/104, minus 5 

probable misattributions), but that estimate would itself be subject to substantial uncertainty. 

We can hope that, over the long run, we can be more confident (e.g. if many different studies, 

with similarly large samples but substantially different methodologies, converge on a similar 

base rate). 

 

Remember, though, that we are thinking here about how to use EEG data to inform decisions 

about a specific patient, and the clinicians treating them will have lots of background 

information that might relevantly shape the priors, beyond just base rates. They will have, for 

example, information about whether the patient is responding behaviourally, and about the 

extent of their brain injury. The priors call for expert judgement.  

 

So, a natural suggestion is that a good diagnostic algorithm will include an opportunity for 

clinicians to enter their all-things-considered priors that the patient will respond to 

commands, given everything else that is known about them. The algorithm will then combine 

those priors with the BFB to generate an OB. A probability is somewhat easier to interpret 

than an odds ratio (see Section 8), so it will be helpful if the formula also converts the odds to 

a probability by applying the formula: 

 

Probability Upper Bound (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)  =  
OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)

1 + OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)
 

 

Yet this proposal comes with an associated risk: a risk of a probabilistic variant of the “self-

fulfilling prophecy”, whereby a clinician inputs priors that give extremely low (or, less 

plausibly, extremely high) odds of responsiveness, making it very difficult for even strong 

evidence to shift the odds. And recall the background: the development of this technology is 

driven in the first place by a fear that clinicians are too willing to “write off” patients as 

unresponsive when they are not. My proposal provides a mechanism through which this very 

fear could be realized. 
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This brings us to the nub of the problem: how to integrate the expert judgement of clinicians, 

which inevitably and appropriately relies on low-tech behavioural evidence, with a need for 

openness to the possibility of covert conscious states that clinicians are unable to detect 

without technological assistance. My proposed solution is that clinicians should be advised to 

input priors that fall within an appropriately cautious range, after discussion with all parties 

involved in the clinical care of the patient, including the patient’s family. These priors should 

be non-extreme, non-dogmatic, and heavily influenced by recommendations from 

professional bodies.  

 

For this proposal to be implemented in practice, clinicians would need to have access to clear 

guidance from professional bodies. It is not my place to prejudge that guidance. But as a 

tentative proposal with the aim of provoking debate, I suggest that the highest realistic 

estimates of the base rates of covert awareness, according to current evidence, should be used 

as an anchoring point, and that departures from that anchoring point should be small and 

justified by clinical evidence specific to the current patient. In assessing the “highest realistic 

estimate”, professional bodies should consider all relevant evidence from consciousness 

science, casting a wide net. Crucially, theories of consciousness that imply that conscious 

experience may persist despite very extensive cortical damage, such as the midbrain-centric 

theories of Bjorn Merker and Jaak Panksepp, should be given careful consideration in this 

process.3 

 

8. Communicating uncertainty, proposal 3: Probability yardsticks 

Imagine the following scenario: a clinician inputs patient-centred priors into a software 

package, the package calculates an upper bound on the strength of evidence of 

responsiveness from EEG data, and reports back an upper bound on the probability that the 

patient is responding. This report may still be very difficult for the patient’s family to 

interpret, so our framework is not yet complete. How can this upper bound be communicated 

sensitively to the patient’s family, so as to put them in a better position to make the decisions 

that lie before them?  

 

One problem here is that, without standardized language, numerical probabilities can be 

coverted to ordinary language terms in many different ways (Lipkus 2007). A “probabilistic 

yardstick” aims to solve this problem by providing a standardized protocol for assigning 

verbal, qualitative labels to probability ranges. An influential example is the PHIA 

(Professional Head of Intelligence Assessment) probability yardstick, widely used in UK 

government circles (Figure 1). This yardstick maps the terms “remote chance”, “highly 

unlikely”, “unlikely”, “realistic possibility”, “likely/probably”, “highly likely” and “almost 

certain” to vaguely bounded ranges of probabilities.  

 

 
3 Merker (2007); Panksepp (1998, 2005, 2011); Panksepp et al. (2007). 
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Figure 1. The PHIA probability yardstick. This figure is reproduced from SPI-M-O (2022) 

but the same figure can be found widely in public domain UK government documents. 

 

I see this as a starting point, but far from a perfect proposal. To require 40% probability 

before being willing to describe an outcome as a “realistic possibility” is unwarranted. I 

would favour the label “about as likely as not” for the range 45-55%. Moreover, the word 

“likely” covers too big a range, including outcomes that are slightly more likely than not 

(~55%), outcomes that are moderately likely (~60-70%), and outcomes that have a ~75% 

probability of occurring. Yet this starting point illustrates the general idea. My third proposal 

is that standardized yardsticks should be developed, in consultation with clinicians, patients 

(where possible) and patients’ families, for use in cases where diagnostic AI yields 

quantitative probabilistic outputs. 

 

Here is a design choice-point the proposal raises: who should implement the conversion of 

quantitative probabilities to qualitative categories? At present, patients are generally sceptical 

of the idea of AI replacing a human clinician in making critical judgements and decisions, 

such as whether to recall a patient for a biopsy following cancer screening (Birch et al. 2022; 

Ongena et al. 2021). To be clear, no part of my proposal involves the AI deciding anything. 

However, I suspect that hiding the raw probability may still raise a problem of trust for some 

families. There is also some evidence that people with a good level of numeracy prefer 

information about risk to be conveyed to them numerically (Lipkus 2007). A solution would 

be for the algorithm to output both a precise probability upper bound and a suggested 

qualitative interpretation. For example, the output might read:  

 

It is at most moderately likely that the patient responded to simple commands 

during the series of tests performed at [times, dates]. (Estimated probability 

upper bound: 62%). Please note that this is assessment of the probability of 

responsiveness, not consciousness. A conscious patient may still fail to respond 

for many reasons. 

 

A clinician can then communicate this result in a way appropriate to the patient’s family, 

giving probabilities if they have a good grasp of the concept of probability, and using coarse-

grained, qualitative categories if they do not. Patients’ families will then be well-placed to 

take this information into account in a way that respects what is known about the patient’s 

values and wishes. 

 

9. Opportunities and risks of medical AI 
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In sum, the use of EEG recordings to detect covert consciousness raises a serious problem of 

inductive risk, calling for a value-judgement about the comparative seriousness of 

misattributed and missed responsiveness. Current methods bury value judgements in “under-

the-hood” methodological choices, opaque to the patient’s family. To address this, we should 

look for ways of incorporating the patient’s own values transparently (to the extent that they 

are known by the family) into the management of risk.  

 

My proposal for one way to do this involves three ingredients: (1) a shift from “responding or 

not” to degrees of evidence quantified by Bayes factor upper bounds; (2) the use of patient-

centred priors to convert degrees of evidence to probabilistic assessments; and (3) the use of 

standardized probability yardsticks to convey those assessments clearly to the patient’s 

family, who are best placed to know what the patient would want. 

 

What are the wider lessons of the case for the clinical use of AI? The case highlights a type of 

risk that is likely to recur in many clinical contexts: the risk of an algorithm encoding implicit 

value-judgements, such as judgements about the comparative seriousness of false positives 

and false negatives, that differ from those the patient would want to be made. The same risk 

arises in the case of cancer screening (Birch et al. 2022). It will arise whenever an algorithm 

is tasked with moving from a native output that is fundamentally probabilistic to a yes/no 

judgement. 

 

Avoiding AI altogether would not remove that risk, since human clinicians can also make 

implicit value-judgements that the patient would not want to be made. That said, patients and 

their families often trust their clinicians to have their best interests at heart, whereas the same 

level of trust in AI does not exist (Birch et al. 2022; Ongena et al. 2021). So, there is a risk of 

eroding patient trust in cases where AI products are found to be encoding contentious value-

judgements.   

 

With this risk comes a corresponding opportunity. Human clinicians often struggle to 

estimate and communicate uncertainty. This can lead to an exaggerated sense of certainty 

surrounding early diagnoses in an area where misdiagnosis is easy and common (Johnson 

2022). Poorly designed medical AI could accentuate the problem, if it gives yes/no verdicts 

on matters as shrouded in uncertainty as the presence or absence of responsiveness to 

commands. By contrast, well-designed medical AI could help to foster the humility and open-

mindedness that is needed in these cases. It can do so by delivering inputs to decision-making 

that are explicitly probabilistic, while also accompanied by clearly defined qualitative 

language that the patient’s family can more easily understand. 
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