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Abstract

Philosophers have recently questioned themethodological status of agent-basedmodeling.
Meanwhile, this methodology has been central to various studies of the COVID-19 pandemic.
Few agent-based COVID-19 models are accessible to philosophers for inspection or experi-
mentation. Wemake available a package for modeling the COVID-19 pandemic and similar
pandemics and give an impression of what can be achieved with it. In particular, it is shown
that by coupling an agent-based model to a standard optimizer we are able to identify strate-
gies for implementing non-pharmacological interventions that flexibly lower or raise social
activity, depending on how the outbreak develops, while balancing various desiderata that
cannot be fully satisfied together. The simulation outcomes to be presented testify to the
power of agent-basedmodeling and thereby help to push back against the recent philosophical
critique of this methodology.

Keywords: Agent-based models; COVID-19; mitigation strategies; multi-objective optimiza-
tion; non-pharmacological interventions; pandemic response.

1 Introduction

Agent-based computational modeling is increasingly used to study social phenomena that are too
complex to be captured mathematically (e.g., by a system of dynamic equations), even if they arise
from interactions that can typically be described as obeying a small set of simple rules. Agent-based
models have been applied to such diverse phenomena as migration dynamics, social mobility and
inequality, racial segregation, urban planning, traffic scheduling, the emergence of social norms,
the spread of mis- and disinformation, and more (Crosscombe and Lawry 2016; Deffuant et al.
2000; Dittmer 2001; Douven and Hegselmann 2021; Glass and Glass 2021). Social epistemologists
and philosophers of science have been using agent-basedmodels to study opinion polarization, the
effect of peer disagreement on agents’ beliefs, the role of experts, the merits and possible demerits
of scientific collaboration, and the best ways to organize research teams, amongmany other things
(De Langhe 2013; De Langhe and Greiff 2010; Douven 2010, 2019a, 2023; Douven and Hegselmann
2022; Hegselmann and Krause 2002, 2005, 2009, 2015; Kummerfeld and Zollman 2016; Olsson and
Vallinder 2013; Vallinder and Olsson 2013; Zollman 2007).

Not all are convinced of the usefulness of agent-based modeling. For instance, in his New
York Times blog post of November 30, 2010, the economist Paul Krugman complains: “I was one
of those people who got all excited about the possibility of getting somewhere with very detailed
agent-based models—but that was 20 years ago. And after all this time, it’s all still manifestos and
promises of great things one of these days.”1 More recently, philosophers and other researchers

1See https://krugman.blogs.nytimes.com/2010/11/30/learned-helplessness/.
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have also questioned the methodological value of agent-based models, and argued that they tend
to promise more than they deliver (Borg et al. 2019; Cristelli 2014; Frey and Šešelja 2018, 2020;
Rosenstock et al. 2017; Šešelja 2019; Thicke 2020). Their most central concerns have been that
agent-basedmodels

1. tend to oversimplify agent behavior, decision-making processes, and environmental pro-
cesses, and thereby may fail to capture the true dynamics of a system, which may in turn
lead to inaccurate predictions;

2. can be highly sensitive to initial conditions andmodeling assumptions and decisions (e.g.,
which variables to include), making it difficult to draw general conclusions from the models;
and

3. can be hard to evaluate (verify and validate), because of model complexities and because of
limited data availability, given that, for many social systems, data is hard or expensive to
collect.

If these concerns are valid, and it is unclear what real-world implications agent-based models
have, or how we should proceed to test those implications, then these models cannot be of much
practical value.

In our view, however, the important role that agent-basedmodels have played in fighting the
COVID-19 pandemic suggests that agent-basedmodels can in fact be of great practical value. A
recent study (Lorig et al. 2021) reviews 126paperspresentingagent-based simulationsof theCOVID-
19 pandemic,many of them aiming to investigate the efficacy of so-called non-pharmacological
interventions (NPIs), including curfews, lockdowns,mask-wearing policies, and travel bans. Some
noteworthy agent-basedmodels for the study of COVID-19 that appeared after the publication of
Lorig et al. (2021) include Hinch et al. (2021), Kerr et al. (2021), Koehler et al. (2021), and Vermeulen
et al. (2021). The probably most famous COVID-19model (often referred to as the “Imperial College
model”), which informed the COVID-19 policies of the British government in earlier stages of the
pandemic, is partly agent-based (Adam 2020).2

Agent-based COVID-19models tend to be large-scale, computationally intensivemodels, draw-
ing on real-time databases, and coded in languages which require extensive programming expe-
rience. Therefore, few of these models are readily accessible to philosophers for inspection and
experimentation. Wemake available a computationally light-weight package for modeling the
COVID-19 pandemic and similar pandemics and show in this paper what can already be achieved
with it. The package is written in Julia (Bezanson et al. 2017), a language that combines ease of use
with speed, and it allows users to couple an agent-based model to a standard multi-objective opti-
mization algorithm, specifically, a form of evolutionary computing, to address the question of how
best to respond to the outbreak of a pandemic, in particular how best to trade off between desider-
ata that may pull in different directions (e.g., the desire to lower the number of new infections
and the desire to limit economic activity as little as possible). Agent-based modeling is applied to
model a community affected by such an outbreak, and evolutionary computing, to find optimal
response strategies. It is shown how this combination can be instrumental in identifying optimal
strategies for implementing NPIs. The outcomes of our study are meant to illustrate the power
of agent-based modeling and are thus to offer some pushback against the recent philosophical
critique of this methodology.

Section 2 briefly describes the traditional approach to modeling pandemics via systems of
differential equations and it highlights some drawbacks of this approach that agent-based models
are able to avoid. Section 3 describes the agent-basedmodel we are going to rely on and shows how

2The Imperial College model has been criticized inWinsberg et al. (2020), but see van Basshuysen andWhite (2021)
for a rejoinder.
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it can be used to assess mitigation strategies. Next, Section 4 looks at the possibility of recruiting
evolutionary computing for selecting hyperparameter settings and explains how this technique
can help us respond rapidly and effectively to pandemic outbreaks while being sensitive to the
importanceofdisruptingeconomicactivity as little aspossible. Section 5 revisits the concerns about
agent-basedmodels stated above in light of what has been learned from agent-based pandemic
models.

2 From equation-based to agent-basedmodels

Themost commonly usedmathematical model for the spread of a directly transmitted infectious
disease is the so-called susceptible–infected–recovered (SIR) model, which dates to Kermack and
McKendrick (1927). The SIR model divides the relevant population into three “compartments”:
a compartment of individuals susceptible to infection, a compartment of infected individuals,
and one containing those who have recovered from the disease and are considered to be immune,
where the third compartment includes the individuals who have died from the disease.

In this model, the movement of individuals from one compartment to another is governed by
three differential equations:

dS
dt

= –
β IS
N

, (1)

dI
dt

=
β IS
N

– γ I, (2)

dR
dt

= γ I. (3)

Here, S is the number of susceptible individuals, I the number of infected individuals, and R the
number of recovered individuals, withN = S + I + R the number of individuals in the population,
which is assumed to remain constant. Furthermore, β is the so-called contact rate, which is
proportional to howmany people, on average, a personmeets during a unit of time, and γ is the
recovery rate, that is, the reciprocal of the average duration of infection in units of time.

It is easiest to understand these equations by focusing on (1) and (3) first. Equation (1) says
that the rate at which individuals leave the compartment of susceptibles at a given time depends
on I—the number of people fromwhom the susceptibles can catch the disease at that time—and
the extent to which the infected come in contact with others, and so have an opportunity to actually
transmit the pathogen. And Equation (3) says that the rate at which R changes at a given time
depends on I and on how fast someone who is infected recovers, on average. Obviously, the rate
at which the number of infected changes at a given time depends on howmany individuals are
newly infected—which are exactly the individuals leaving the susceptibles compartment—and the
number of individuals who recover. That is the content of Equation (2). This system of equations is
usually solved numerically (i.e., by computational approximations), although analytical solutions
now do exist (Harko et al. 2014).3

3The SIR model has many variants that allow for more fine-grained compartmentalizations, such as the SIRD
model, which separates the recovered (in the ordinary sense of the word) from the deceased (D), and the SEIRmodel,
which includes a compartment of individuals who have been exposed (E) to the pathogen but are not (yet) sick. For
each of these models, there is also a variant that reckons with the possibility that recovered people become susceptible
again, althoughmost of the models that have been proposed in the COVID-19 literature so far assume that recovered
individuals have long-lasting immunity (Flaxman et al. 2020;Moghadas et al. 2020), an assumptionwhich also underlies
other approaches to the COVID-19 pandemic (Eichenberger et al. 2020). (Our ownmodel will rely on this assumption as
well.)
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The standard SIRmodel assumes β and γ (contact and recovery rate) to remain fixed during
the course of an outbreak, which is unrealistic. Even without government intervention, at least
part of the affected population will restrict their social interactions as a precautionary measure.
As a result, the contact rate will drop. And due to medical advances, the recovery rate may increase.
While this limitation can be overcome (López and Rodó 2020), the assumption of homogeneous
mixing, which the model also makes, is more problematic. Homogeneous mixing means that any
two individuals in the population are equally likely to meet. However, most of our encounters
are not with random people, but with friends, relatives, and colleagues. And it has long been
recognized that the social networks that people form are crucial to how, and how fast, contagious
diseases spread (Keeling and Eames 2005; Koopman and Lynch 1999).4

Agent-based models easily avoid these pitfalls. In the case of disease modeling, these models
permit the simulation of agents moving about, meeting, and thereby possibly infecting or getting
infected by, others, recovering (or not) from the disease, practising physical distancing to various
degrees, and so on. They allow us to endow each agent with a set of properties, such as age, gender,
health status, professional occupation, risk aversion, and in particular also the property that the
agent moves only, or mainly, within a certain network of agents, thereby doing away with the
assumption of homogeneous mixing. A population in this kind of model typically gets “updated”
in discrete time steps, which not only enables us to closely monitor the step-wise evolution of an
outbreak but also makes it easy to intervene—for instance, by changing some agent properties—at
any moment we like; the effects of such interventions, in turn, can themselves be monitored step
by step, and further adjustments to the system can be made, if necessary. Agent-based models
thereby make it possible to study the effects of “microscale policies” (Kerr et al. 2021).

For these reasons, we built an agent-basedmodel which (i) takes into account social network
structures in a community, and (ii) readily permits the kind of real-timemonitoring and interven-
ing that we believe to be essential for adequately comparingmitigation strategies. In the following
section, we describe themodel and then recruit it to study the kind of intermittent NPIs that many
governments have been using in the hope to steer their population as safely as possible through
the COVID-19 pandemic.

3 An agent-based networkmodel of COVID-19 spread

In December 2019, China reported the first cases of what soon came to be known as “Coronavirus
disease 2019” or COVID-19. Before long, cases were found all across the globe. By now (April 2023),
there are over 762 million confirmed cases worldwide, with a death toll surpassing six and a half
million. While a few countries responded quickly enough to the initial outbreak to curb community
transmission fromthe start (usinga strategyofmassive testing and contact tracing),most countries
missed that opportunity and had to go into lockdown by having their residents shelter in place or
at least exercise restrictive physical distancing. While these restrictions proved generally effective,
prolonged lockdowns, and NPIs more generally, soon came to seem unsustainable in view of their
social and economic costs (Chudik et al. 2020; Dale et al. 2021; Gandolfi 2021; Greyling et al. 2021;
Meyerowitz-Katz et al. 2021; Nicola et al. 2020). Thus,many governments started pivoting toward
a strategy of intermittent, typically shorter and often (and ideally; see Karatayev et al. 2020) local
NPIs. In many countries, this was the dominant response strategy until vaccines became widely
available, and even since have various countries had temporary lockdowns, because a combination
of vaccine hesitancy, diminishing vaccine effectiveness, and the emergence of new variants of

4The role of such networks has been studied in relation to the spread of measles, influenza, HIV and other sexually
transmitted diseases (Klovdahl et al. 2001, 1994; Needle et al. 1995), and recently also in relation to COVID-19 (Block et al.
2020).
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the virus had led to a renewed rise in the number of infections (Goldenberg 2021; Lin et al. 2022).
Nevertheless, how to do intermittent NPIs the right way is still a hotly debated question.

What is clear is that, for a strategy of intermittent NPIs to work, it is critically important that
an emerging “wave” of cases be detected promptly and reliably: promptly, because a couple of days
earlier or later can make all the difference between a healthcare system that can cope and one
that is overwhelmed; and reliably, because raising false alarms will only further erode the trust
of a public that in many countries already started to suffer from “lockdown fatigue” quite some
time ago. Just as important as early detection is being able to accurately predict the effects of
possible mitigation strategies, especially because the choice is typically not just between a blanket
lockdown and an unconstrained reopening of the economy. Rather, the goal is for interventions to
be commensurate with the severity of the threat at the time they are made: they should prevent
large-scale outbreaks but at the same time impede economic activity as little as possible. How best
to balance these desiderata is a nontrivial question, however.

For reasons mentioned previously, agent-based models for simulating the spread of an in-
fectious agent (like SARS-CoV-2, the virus responsible for COVID-19) that take social network
structure into account and allow for dynamic interaction as well as for a close monitoring of the
changes brought about by interventions appear well suited for developing adequate response
policies. In particular, they can facilitate identifying strategies for implementing NPIs that flexibly
lower or raise social activity, depending on how the outbreak develops, with an eye both toward
reducing spread of the virus and toward limiting economic damage. While models of this kind
exist, they are not widely available, either because they use proprietary code, or because they are
written in low-level languages like C++ or FORTRAN which require specialized knowledge, or
because they are complicated to work with for other reasons.

We firmly believe that nothing will help to convince skeptics of the value of agent-basedmodels
as much as gaining first-hand experience with such models, such as, in the present case, running
agent-based simulations of the spread of COVID-19 in a community, trying out different starting
assumptions and different intervention strategies, and comparing the results with publicly avail-
able data about the pandemic. Therefore, the Supplementary Materials for this paper contain a
Julia package for creatingmodels of the kind just described.5 Readers are encouraged to install the
package and to experiment with it, as doing so should make it easy to appreciate how flexible the
agent-basedmodeling approach is and how swiftly very detailed information about local properties
of a population (e.g., about community structure) can be taken into account.

To give an impression of what the package can accomplish, the remainder of this section
describes andmotivates a particular agent-based COVID-19 model and examines its performance
using the Julia package, comparing model-based predictions with real-world data. As will be seen,
the model has one central parameter, which specifies the extent to which the agents are socially
active. We suppose that policymakers are able to manipulate this parameter, at least to some
extent, and thereby to effectuate, and also ease, NPIs in a flexible manner. But exactly how they
do this—how they translate data about the ongoing pandemic into policy decisions—depends on
further parameters (i.e., hyperparameters), and the policymakers’ success depends on whether
they are able to find a right combination of those other parameters. To help with that task, a
standardmulti-objective optimization algorithm can be coupled to the agent-basedmodel. How
to do that is shown in the next section.

One may think of the core of our model as a village, consisting of a number of households and
possibly some shops, restaurants, offices, and a gym. The agents populating the village interact

5Thepackage canbe installed via Julia’s packagemanager; instructionson installationandbasicusage aregiven in the
README of the package’s GitHub repository: https://github.com/IgorDouven/COVID.jl. For gentle introductions
to Julia, see for instance Kochenderfer andWheeler (2019) and Douven (2022, Appx. E).
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Figure 1: Bar charts of household sizes (left) and number of links per household (right).

socially only with people in their network. There are no contacts with non-villagers, so for the
purposes of our study the village can be conceived as a world on its own and an agent’s social
network as being limited to some subset of the villagers.

Formally, the village is represented by an undirected Erdős–Rényi graph with 1000 nodes and a
link probability of 1.25 percent.6 The nodes represent households, for the most part; some, as said,
can be thought of as representing a shop, and so on. The average size of a United States household
was 2.52 in 2019, and numbers for most otherWestern countries are not much different. Jarosz
(2020) proposes to model US household sizes by a Poisson distribution with λ = 1.52 shifted to the
right by 1 to avoid empty households (and to obtain an average of 2.52). If we went along with this
exactly, we would almost certainly be underestimating the average number of people a villager
might meet in his or her network, precisely because people may, on a regular basis, visit the gym,
go to a bar, or frequent a grocery store, and so on. The simplest way to correct for this is to take
a slightly higher mean, which is what we did, settling for a Poisson distribution with λ = 3, also
shifted to the right by 1.7 The resulting model gives rise to the distributions of household sizes and
links per household shown in the left and right panel of Figure 1, respectively.

The basic setup is that every agent visits one node (household, gym, store, . . . ) per unit of time
(a day, let us assume), where this node is chosen from the ones in their network. The probability
with which agents select a given node from their network to visit at the given time step is, at
least initially (see below), proportional to the size of the node (i.e., the number of people in a
household), meaning for instance that an agent is twice as likely to visit a six-person household as
a three-person household. Naturally, an agent can also be visited by agents in their network. We
assume that every visit is “successful” in that whenever a household is visited, its members are
present, and not out to visit other households. We numerically verified that, given this setup, an
agent has an average of 5.79 (± 2.91) contacts per day, which appears reasonable in light of the data
about social mixing patterns reported in Klepac et al. (2020).

To this setup is added a weight parameterw representing the probability that an agent will skip
a visit, meaning that, for any given time t, the agent will decide not to go out at t with probabilityw

6One could consider other types of graphs, or even consider switching from one type to another as part of a
mitigation strategy (Block et al. 2020). Experiments we conducted with a number of plausible alternatives yielded
results not very different from those to be reported here. Using the Julia package in the Supplementary Materials,
readers may want to run their own experiments with different graphs representing different assumptions about the
community’s social structure.

7Amore complicated solution would be to introduce two or evenmore types of nodes and thenmodel their sizes
differently per type. Again, the Supplementary Materials allows interested readers to experiment with this and other
variants of our setup. Here, too, our own experiments showed qualitative conclusions to be remarkably robust under
different parameter settings and other modeling choices.
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and will visit the node picked in the way just described with probability 1 – w. If agents stay home,
then they may infect their homemates with the same probability with which they would otherwise
have infected the agent or agents they would have visited, and the homemates may infect them
with the same probability with which they may infect anyone else in their network.

Importantly, the weight parameter can be time-indexed, which enables us to model the effects
ofmitigation efforts; for instance,we can conceive shelter-in-placemandates as attempts to raisew
and of the easing of such measures as attempts to lower w. Naturally, the value of wmay increase
independently of NPIs, as people may become wary of leaving the house for fear of contracting
the virus, and it may also decrease independently of any government orders, for instance due to a
growing noncompliance with those orders.

To make this a model for studying the spread of COVID-19, we assume that agents are, at any
given time, in one of three states: susceptible to SARS-CoV-2 infection, infected by the virus, or
recovered from the disease (which includes agents who have died from it). Furthermore, we make
the following assumptions:

• at start time, 1 percent of the village population is infected, the rest being susceptible;
• the probability that a contact between an infected and a susceptible person results in an
infection of the latter—the transmission rate τ—is 4 percent (Otto 2020);

• the maximum duration of the disease is 24 days, but half of the infected need only half that
time to recover (Liu et al. 2020);

• the more seriously ill, who do not recover after 12 days, have in the remaining days of their
disease a lowered transmission rate of 1 percent (Liu et al. 2020);

• the more seriously ill do not visit anyone, and their households are not visited by anyone;
• patients have a 1 percent chance of dying from the disease (Mizumoto and Chowell 2020;
Russell et al. 2020).

Given that the mean number of links is 12.5 and the mean number of people in a household is 4,
the average number of contacts per node equals n̄ = 12.5 × 4 = 50. And the assumptions about
recovery—half of the patients recover after 12 days, the other half after 24 days, the latter being
only one fourth as infectious during the second half of their illness—yield a recovery rate γ of
2/27 ≈ 0.074. Using these values together with an assumed transmission rate τ of 4 percent, we
can, following Keeling and Eames (2005, Sect. 5.1), calculate the rate of growth as

τ
(n̄ – 1) n̄
n̄ + 1

– γ = .04
49 × 50
51

– 0.074 ≈ 1.85.

This outcome is in the range of growth rates that have been reported in the COVID-19 literature
(Viceconte and Petrosillo 2020).

For the purposes of this paper, it would not really matter if the above assumptions turned out
to be somewhat off, given that our primary goal is not model fitting or prediction but rather to
make a methodological point: drawing attention to the practical value of agent-basedmodeling,
andmore specifically also drawing attention to how the combined use of agent-basedmodeling
and evolutionary computing can help us deal with the current pandemic and possible future ones.
Nevertheless, it is encouraging to see that simulations in the model yield results that fit known
data remarkably well. For example, Figure 2 compares model predictions for w = .36with the data
for the province of Anhui in China.8 Indeed, you could fine-tune parameters (e.g., percentage
of population infected at start time, transmission rate, duration of the disease) to your heart’s
content here and thereby try to achieve an even better model fit (for details, see the Supplementary
Materials).

8Thedata for Anhui were retrieved from https://github.com/CSSEGISandData/COVID-19, which is the COVID-19
data repository of the Center for Systems Science and Engineering at Johns Hopkins University. It is to be noted that
the data have been scaled to match the size of the population in the model.
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Figure 2: Data from Anhui, China, compared with the output from our model for w = .36.

It is worth observing that more detailed data could become available about how COVID-19
spread through the Anhui community, or how it spread through other communities, and that this
would offer a possibility of validating our model in a way that does not exist for equation-based
models (Hunter et al. 2018). For ourmodel lets one trace, from one point in time to the next, exactly
which agents get newly infected and which recover, thereby revealing patterns in the spread of
COVID-19 across households. Figure 3 shows a selection of 10 percent of the households in the
model (showing the full model would clutter the picture). It is clear from this figure what kind
of detailed information can be obtained from a working agent-based model. For instance, for
each point in time we can look at how household size, or number of links, or various network
statistics (such as betweenness centrality and the clustering coefficient; see, e.g., Jackson 2008,
Ch. 7) correlate with number of infected members in a household. Any such model could be
compared with data about a local outbreak, provided there is sufficient knowledge about the social
network structure of the community affected by it.

Another welcome feature of agent-based models of the spread of COVID-19, one already
mentioned above, is that they make it utterly simple to intervene in the (simulated) evolution at
any time we like. As a result, we can easily compare different mitigation measures in terms of
their effects before deciding to impose any one of them (or to refrain from intervening at all). We
propose tomodel such possible interventions generically, throughmanipulating the value ofw (i.e.,
the probability that agents will skip a visit and stay home instead). Exactly what policies might be
most effective to bring about such changes in actuality may differ from one country to another
(e.g., depending on how compliant a population is) and even from one point in time to another
(e.g., depending on whether earlier mitigationmeasures were perceived as overreactions by the
public). Such implementation details are beyond the scope of this paper.

Comparing mitigation strategies requires that we be clear about the criteria by which such
strategies are to be judged. Opinions seem to have converged on the following: mitigation strate-
gies should help minimize the number of deaths from the disease; they should help avoid an
overwhelmed healthcare system, given that this could lead to further deaths and/or because it
would be costly (e.g., because patients would have to be transported to neighboring countries); and
they should help avoid large-scale damage to the economy, which could affect people’s livelihoods
for years to come. Obviously, these criteria (especially the first two versus the third) pull in different
directions, and so we are effectively facing a multi-objective optimization problem (Eichenbaum
et al. 2020).
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Figure 3: Snapshots of the evolution of the simulated outbreak shown in Figure 2 from the start of the spread
(t = 1) to the point where the wave has basically passed (t = 40). The snapshots look at a randomly selected
subgraph containing 10 percent of the nodes from the full model. Color indicates proportion of people
in a household who are infected, node size indicates size of the household. A line connecting two nodes
indicates the presence of a social link between the corresponding households.
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Figure 4: Results from simulations for w ∈ {.25, .5, .75}. (NB: The number of critical care patients at time t
indicates the number of patients who are going to need critical care at a later time, around t + 12.)

It is obvious how to operationalize number of deaths directly due to the disease, given our
assumption of a death rate of 1 percent among the infected. It is less obvious what counts as an
overcrowded healthcare system. For many countries, number of ICU beds per capita is available,9

but that number is not always indicative of the real maximum capacity, as various countries were
able to double or evenmore than double their ICU capacity (typically, at the expense of non-ICU
beds) in a very short time span. It is even less obvious how to operationalize loss of economic
activity in our model. Raising the value of w diminishes social activity, but should we assume that
economic activity scales linearly with social activity? Probably not. For instance, some companies
were able to adapt to the new situation bymoving part of their business to the Internet. For our
purposes, however, it is enough to make the general assumption that the lower the average value
of w over the course of the outbreak, the better it is for the economy.

To get a first impression of the kind of effect that raising the value of w can have, we start by
comparing some simulations in which w has a fixed value throughout. We look especially at the
effect on the number of patients requiring critical care and whether it exceeds the maximum ICU
capacity. Our village consists of 1000 households, with an average of 4 persons per household,
and so it has a population of roughly 4000. We assume one ICU bed per 1000 persons, which is
overly generous in light of the normal ICU capacity even in countries like Germany or the United
States, which have the highest number of ICU beds per capita. As said, however, inmany countries
normal ICU capacity was no reliable indicator of themeasure of critical care that could be provided
when COVID-19 cases started to soar. Furthermore, we assume that 1 percent of the infected will
eventually need critical care, which appears true at least for the first year of the pandemic (Clark
et al. 2020).

Figure 4 shows the outcomes from three simulations, one for w = .25, one for w = .5, and one
for w = .75. The “flattening of the curve” effect of raising the value of w is immediately clear and

9See https://gateway.euro.who.int/en/indicators/hfa_478-5060-acute-care-hospital-beds-per-100-

000/.

10

https://gateway.euro.who.int/en/indicators/hfa_478-5060-acute-care-hospital-beds-per-100-000/
https://gateway.euro.who.int/en/indicators/hfa_478-5060-acute-care-hospital-beds-per-100-000/


0 20 40 60 80 100 120 140

0

2

4

6

8

10

12

w = .8
w = .85
w = .9

Critical care patients

Time

Co
un

t

Maximum ICU capacity

Figure 5: Patients requiring critical care in simulations for w ∈ {.8, .85, .9}. (For interpretation, see the
comment in the caption of Figure 4.)

also entirely unsurprising. Amore surprising fact about these simulations is that the total number
of deaths directly due to the disease is not lower at the end for w = .5 than for w = .25. This does
not automatically mean that, supposing the simulation outcomes to represent real-world data, it
would have been better to institute measures that resulted in a value for w of .25 thanmeasures
that resulted in a value of .5, for there would almost certainly have been additional deaths due to
overcrowded hospitals, which happens in all three scenarios.

If we calculate the total ICU undercapacity (summing over all points in time the number of ICU
beds required beyond the four that are available), we find this to equal 498 in the w = .25 scenario,
467 in thew = .5 scenario, and 359 in thew = .75 scenario. Per-time undercapacity averaged over all
points in time at which there is undercapacity is, in the same order of scenarios: 13.82 (±8.28), 11.97
(±7.14), and 7.34 (±4.27). In reality, all these numbers would be cause for concern, but perhapsmost
disconcerting would have been the finding that, even with a value of w as high as .75 throughout
the entire outbreak, the healthcare systemwas still overwhelmed.

To be sure, the simulation results also clearly suggest a route we can take if we want to avoid
overcrowding the healthcare system at any cost: simply raise the value of w further still. But
Figure 5 shows that even if we go up all the way to .9, we still do not fully meet the demand for
ICU beds at all times. And lowering social activity to such a degree over such a long period of
time comes with risks of its own, if only because—asmany commentators on the pandemic have
remarked—death from starvation is not per se preferable to death fromCOVID-19. This sentiment
was one of the main reasons why governments came to favor a system of intermittent NPIs.

If we opt for this approach, there are a number of important questions to be answered: When
to raise w (i.e., impose measures that are believed to result in a rise of w)? When to lower it again
(i.e., ease confinement measures)? And by howmuch should we raise/lower w? We turn to these
questions in the next section.

4 DoingNPIs the right way

A straightforward approach to having intermittent NPIs is to switch, during the course of the
pandemic, at regular time intervals between a “middling” (say, .5) and a “high” (say, .95) value of w
until the worst is over (Ferguson et al. 2020; López and Rodó 2020; Westerhoff and Kolodkin 2020).
We can get an idea of whether this approach would be, or would have been, any good by simulating
it in our model. Figure 6 displays the results from a simulation implementing the strategy of

11



0 20 40 60 80 100

0

500

1000

1500

2000

2500

3000

3500 Infected
Recovered
Deceased

Time

Co
un

t

w = .5 w = .95 w = .5 w = .95 w = .5 w = .95 w = .5 w = .95 w = .5 w = .95

0 20 40 60 80 100

0

5

10

15

20

Time

Cr
iti

ca
l c

ar
e 

pa
tie

nt
s

Maximum ICU capacity

w = .5 w = .95 w = .5 w = .95 w = .5 w = .95 w = .5 w = .95 w = .5 w = .95

Figure 6: Switching the value of w betweenmiddling and high at regular time intervals. (For interpretation
of the right panel, see the comment in the caption of Figure 4.)

switching every 10 time steps from w = .5 to w = .95 for the whole duration of the outbreak. From
the right panel, it is clear that, despite a relatively high average w-value of .725, the healthcare
system still gets badly overcrowded for a considerable stretch of time. This is a robust result:
running 25 simulations for the same switching strategy yielded an average total undercapacity,
calculated as explained above, of 354.58 (±8.03) and an average number of deaths directly due to
COVID-19 equal to 179.64 (±13.06).

One guesses that there must be room for improvement here. In fact, it would almost be a
miracle if there were not, given that we are switching the value of w in a predetermined way,
without paying any attention to what happens “on the ground.” AsWesterhoff and Kolodkin (2020)
note, a more sensible but also more complex approach is to adapt the intensity of the NPI to the
severity of the epidemic, which in the above terminology means that we should dial up w if the
number of new infections is on the rise and dial it back again if the infection rate appears to be
abating. If the number of infections is stable, wemay want to leave w at whatever its value at the
time is. The idea, in other words, is not simply to have intermittent NPIs but rather to have flexible
or adaptive ones.

To make this idea more precise, first note that there will always be random fluctuations in
the daily number of new infections. So, we will want to attend to the trend in the data and may
make the increase or decrease of w a function of the trend growth rate.10 This can be accomplished
in a number of different ways (for an overview, see Fricker 2013). A simple one uses so-called local
linear models, which locally fit a line to a subset of all data points, viz., those that lie in a sliding
window. Figure 7 illustrates the basic idea: it shows a simulation of an outbreak together with the
regression lines for the data in two (arbitrarily chosen) windows of size 15. The figure also displays
the regression coefficients for the data sets in the two windows. A reasonable proposal is to make
such coefficients part and parcel of our strategy for adjusting w.

Again, we choose a conceptually simple way to accomplish this by letting the local regression
coefficients shift an alert level. Where lt is the alert level at time t and at t we estimate a local
regression coefficient bt, we set lt+1 = lt × bt/s, with s a scaling factor. To map the alert level onto w,
which is a probability, we can use the logistic function. However, it is probably better to use the
generalized version thereof, as that will allow us to account for the fact that we will have to settle
for a maximum value of w somewhat lower than 1, if only because compliance with stay-at-home
orders will never be perfect. Specifically, in the following we assume that, for all t,

wt =
0.95
1 + e–lt

,

10Monitoring the state of the pandemic in real time is also known to face various practical challenges (see Gostic
et al. 2020). In our simulations, we will ignore these problems.
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Figure 7: Illustration of local regression: regression lines are fit to the data, in two windows of size 15.

which makes .95 the maximally attainable value for w.11

One could object to the above that wemight have reason to raise w even if the number of daily
new infections is stable, for instance, if the healthcare system remains overwhelmed. Similarly,
wemight have reason to lower w in spite of the number of new cases being consistently high, for
instance, in the face of a looming economic breakdown. But while these are valid considerations in
practice, they are orthogonal to themore principled point to bemade in the following. Indeed, it is
immaterial for that whether we will, in the end, want to settle on anything like the above approach,
because the optimization technique to be showcased below will work equally for very different
approaches to adjusting the value of w over time.

The above proposal assumes some size of the slidingwindow to be used for the local regressions,
and it also assumes a particular size of factor (which we symbolized by s) to scale the impact of a
measured regression coefficient on the adjustment of w. We are free to choose values for these
parameters, at least within limits (e.g., the value of swill in practice be limited by how fast and
drastically changes in the level of social activity can be effectuated even in an ideally compliant
population). Naturally, we want to choose values that give the best results. But how to find
those values? Is a larger window size preferable over a smaller one? Is a smaller scaling factor
preferable over a larger one? Probably there will be some interaction between the parameters.
Which combination is best?

Asmentioned above, the problemwe are dealingwith is in effect amulti-objective optimization
problem. We not only want to minimize number of deaths directly from the disease andminimize
overcrowding of hospitals, we also want to minimize the damage done to the economy by stay-
at-home orders and other mitigation measures. As also mentioned before, we cannot achieve
a maximally desirable outcome on all three counts. But then we should not expect there to be a
unique best combination of parameters.

Technically speaking, what we are looking for are the Pareto-optimal solutions to our problem,
where a Pareto-optimal solution is one such that, for any alternative solution, if the latter does
better than the former on one criterion, then it will do worse on one or more of the other criteria.
Concretely, a combination of window size and scaling factor may be instrumental in keeping
number of deaths relatively low and perhaps also in avoiding the overcrowding of hospitals, but at
the expense of suppressing social activity rather drastically. If any other combination of window

11Thismay still be overly optimistic. The real maximummay well be closer to .7, as assumed in Tuite et al. (2020).

13



size and scaling factor that, say, reduces number of deaths even further scores worse on either of
the other criteria, the former is a Pareto-optimal solution to the problemwe are facing.

Only in exceptional cases can multi-objective optimization problems be solved analytically
(Coello Coello 1999; Deb 2001). A standardmethod for solving such problems relies on the use of
evolutionary algorithms,which constitute amain form of population-based optimization (Kochen-
derfer andWheeler 2019, Ch. 9). They can be thought of as involving communities of agents which
evolve from one generation to the next according to principles of variation and selective retention
much like those known from evolutionary biology.

Evolutionary algorithms start with a (typically randomly selected) generation of agents, with
each agent representing a possible solution to whichever optimization problem is at hand. These
agents are then allowed to reproduce, after which parents and children are ranked and selected
on the basis of their “fitness,” which here means: on the basis of their scores on the various
objective functions. Only the fittest agents are allowed tomove on to the next generation,where the
aforementioned process is repeated. There can be asmany repetitions as one likes, but typically the
algorithm will halt after a predetermined number of steps or as soon as some kind of convergence
has been reached (scores no longer improve appreciably). Exactly how the reproduction and
selection are done varies across evolutionary algorithms.

We used what is probably the best-known evolutionary algorithm, to wit, the Nondominated
SortingGeneticAlgorithm (Srinivas andDeb 1994;Deb2001),more specifically the versionknownas
“NSGA-II” (Deb et al. 2002). This algorithmhas been appliedwith notable success tomulti-objective
optimization problems in a wide variety of fields, including chemistry, economics, medicine,
psychology, operations research, and robotics (Dhanalakshmi et al. 2011; Douven 2019a,b, 2022;
Heris and Khaloozadeh 2011; Sarkar andModak 2005).

The NSGA-II algorithm consists of a number of steps, which in our application amounted to
the following: To start, a parent population of 24 agents is created, where each agent represents
both a specific proposal for window size,WS ∼ U{5, 15}, and a specific proposal for scaling factor,
s ∼ U(0, 0.1).12 The agents in this population are allowed to produce a child population, which is
done by a combined use of operations known as “crossover” and “mutation.” Crossover forms pairs
of agents from the parent population to let them produce a child whose features are a mix of those
of its parents (the pairing is random and with replacement, meaning that some parents may beget
more than one child), andmutation can then cause some random changes in the child’s features
(with, in our case, a probability of 5 percent). Specifically, the child comes to propose a window
size randomly selected in the interval spanned by the window sizes proposed by its parents, and
similarly for the scaling factor.

In a next step, the parent and child populations are merged and scored in light of the relevant
criteria, which are number of deaths, undercapacity of healthcare system, and average w value,
criteria which, as said, we would like to minimize jointly but which in fact require making some
trade-offs. More exactly, five simulations of 150 updates are run per agent, using the agent’s
proposed window size and scaling factor, and the agent receives three scores on that basis: the
number of deaths, the total undercapacity, and the average w value, all averaged over the five
simulations.

These scores are used to divide the population into a number of “fronts,” where the first front
consists of the agents representing Pareto-optimal solutions, the second, of the agents who would
represent Pareto-optimal solutions were the agents in the first front removed from the population,
the third, of the agents who would represent Pareto-optimal solutions were the agents in the

12The size of the population had a purely practical motivation: we had 24 cores available to run the computations
on, so that having a population of 24 agents, or a multiple thereof,made for efficient parallel computing. In general,
such practical considerations are important when using evolutionary algorithms, which tend to be computationally
expensive.
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Figure 8: Imposing flexible NPIs, using parameter settings for how to adapt the value of w proposed by two
different Pareto-optimal solutions.

first and second fronts removed, and so on. This division into fronts is known as “nondominated
sorting.”

Finally, the fittest fifty percent from the population are selected to form the new parent popu-
lation of the next generation. “Fittest,” here, is operationally defined in terms of two principles.
According to the first, agents belonging to a higher front take precedence over agents belonging to
a lower front. According to the second principle, if agents belonging to the same front do not all fit
into the new parent population, those with greater crowding distance take precedence over those
with smaller crowding distance, where crowding distance is a measure of how dissimilar an agent is
to the other agents in the population.13 The point of this part of the algorithm is to increase the
diversity of the new parent population, which is hoped to speed up exploration of parameter space.

Asmentioned, this cycle of testing agents, selecting the best on the basis of the test results, and
creating a new generation of agents can, in principle, be repeated as often as desired, though in our
case the algorithm reached convergence after just 12 generations, in that later generations did not
represent better solutions to the optimization problem. The Pareto-optimal solutions we obtained
in the last generation (i.e., the agents in the first front of that generation) mostly proposed window
sizes of 5, some of 6, and the average scaling factor proposed was .058 (±.021), with a minimum
of .026 and amaximum of .093.

By way of illustration, Figure 8 shows, for two of the obtained Pareto-optimal solutions, the
outcomes of simulations with settings corresponding to those solutions. From the first row it
appears that the outbreak plays out in an almost identical way given either of the settings, and in a
way that looks like something many governments might have wanted to sign up for at the start

13Concretely, this is how the principles work in our case: There are 24 slots to be filled by the parent population of
the next generation. We first look whether all agents in the first front fit in. If not (i.e., there are more than 24 agents in
the first front), then we select from the first front the 24 agents with greatest crowding distance. If the agents in the
first front do all fit into the new parent population and if some slots still remain open then, we look whether all agents
in the second front fit into those remaining slots. If not, we select from that front as many agents as there are slots still
to be filled, again on the basis of crowding distance. If they do all fit in, we turn to the third front. And so on, until all 24
slots are filled.
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of the COVID-19 outbreak: after a first, smallish wave, the outbreak remains at a subdued level,
until it peters out. The second row shows that, by contrast, there are marked differences in how
this relatively benign course of the outbreak is achieved: in the left panel,w changes muchmore
gradually than in the right panel, where it fluctuates quite a bit before the outbreak is over and
w falls back to 0.

For a more informative comparison of the two settings, we ran 25 simulations for each. These
resulted in an average undercapacity of 24.78 (±6.43) for the setting with window size 5 and scaling
factor 0.026 and a corresponding average of 34.03 (±14.35) for the setting with window size 6
and scaling factor 0.061; average number of deaths for the first setting was 169.04 (±11.57) while
it was 172.0 (±12.76) for the second; and the average weight was .61 (±0.04) for the first setting
and .52 (±0.07) for the second. A series of unpaired t-tests showed the difference in deaths to
be not significant but the other two differences to be highly significant: t = 2.94, p = .005 for
undercapacity, and t = 5.58,p < .0001 forweight. (Unsurprisingly, the two settings do significantly
better on all three counts than the predetermined switching strategy considered earlier.)

We thus see that while the second setting leaves, on average, considerably more room for
social, and so presumably also economic, activity than the first, it also taxes the healthcare system
more heavily. That is precisely what one expects to get from Pareto-optimal solutions, which—as
explained—embody different “best” trade-offs to multi-objective optimization problems. Indeed,
running simulations with settings corresponding to the other Pareto-optimal solutions that the
evolutionary algorithm helped us arrive at shows that these balance the relevant criteria—avoiding
undercapacity and direct deaths, retaining social activity—again somewhat differently.

We have two comments on these results. First, by leaving a number of different options on
the table, our approachmight seem to not quite deliver what we are after, viz., a policy decision.
While that is correct, it is important to appreciate that how we are to choose among the various
Pareto-optimal solutions is not a scientific question but rather a practical and in the present case
especially also a political one. For instance, an average level of w of around .5 over a period of, say,
250 days might be just enough to keep the economy from the brink of collapse whereas an average
of around .6 for that period of timemight cause some irreparable economic damage. For some
governments, this might be a reason to opt for the former strategy, even if it leads to a greater loss
of lives, but other governments might decide differently. Apart from economic considerations,
for some policies the gap between what is possible in principle and what social engineering can
effectively accomplish may simply be too wide: issue all the directives you want, and youmay still
not be able to bring about the rapid, large changes in social activity that would be required for w to
follow the course seen in the right panel of the bottom row of Figure 8.

Second, just as our agent-basedmodel of the COVID-19 outbreak could easily be refined—most
notably, by endowing the agents and/or the social network with further attributes—it would simi-
larly not be difficult to refine the optimization algorithmdescribed in this section. In particular,we
could include more criteria (e.g., one could take into account also the total length of the outbreak),
or the criteria could be weighted differently (e.g., we might want to prevent overloaded hospitals
at all costs and therefore prioritize in the selection process agents who do particularly well on this
criterion). To reiterate, however, the point of this paper is first and foremost to make a case for a
methodology that we believe to be particularly apt for helping develop such a strategy.

5 Revisiting the concerns about agent-basedmodels

The kind of simulations reported in the foregoing can provide valuable guidance for policymakers
tasked with making difficult decisions during a pandemic, as was seen in recent years. Indeed, the
work on agent-based modeling conducted in the context of the COVID-19 outbreak is a testament
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to the practical value of agent-basedmodeling and thereby, we believe, also responds to some of
the recent criticisms that philosophers have leveled against this methodology. In the introduction,
wementioned various concerns about agent-basedmodels voiced by philosophers of science and
other authors. Specifically, the concerns were that these models tend to be insufficiently robust (in
particular, too sensitive to modeling decisions and initial conditions), too simple and idealized,
and too difficult to evaluate to be of much help for the study of real-world phenomena. What
remains of these concerns, in light of what we know about agent-based COVID-19 models and
more generally agent-based pandemic models?

As for the issue of robustness, this of course becomes less pressing the more our initial as-
sumptions can be made to reflect reality. For instance, if our model, which here was applied to the
COVID-19 outbreak, were to be applied to another pandemic, where this would require making
different starting assumptions, then it would be entirely unsurprising, but also not in the least
alarming, if the model led to different predictions. More generally in relation to agent-based
modeling, it is worth pointing out that the fact that nowadays most researchers have easy access
to powerful computers, in combination with the development of languages that are optimized
for speed yet relatively easy to learn and use (Julia being a prime example here), makes it possible
to run large-scale sensitivity analyses for models whose parameters cannot be set on the basis of
known data. See Douven and Hegselmann (2021) and Douven and Hegselmann (2022) for some
examples of how to conduct such analyses for models with epistemically interacting agents.

As for the problem of oversimplification, our study demonstrated that even a relatively basic
model can capture significant complexity. Other agent-based COVID-19 models to be found in the
literature provide further support for that claim. One could imagine addingmore complexities.
For instance, an anonymous referee suggested that taking into account agents’ beliefs and how
these change in response to how a pandemic develops (which, to our knowledge, none of the
COVID-19 models documented in the literature do) is likely to improve predictive accuracy. Of
course, striking the right balance between model simplicity and realism can be a challenge, as
more complexity will typically lead to increased computation costs, which in this case would come
in addition to the costs associated with collecting real-time data on people’s beliefs about the
pandemic. But however “rich” we will be able to make our model, it is to be admitted that there
is always the risk of overlooking relevant variables. At the same time, note that this problem is
not specific to agent-basedmodeling; it is a concern of all scientific modeling. It is essential for
researchers to be aware of the said risk and to communicate it when presenting their findings to
policymakers.

The concern aboutmodel evaluation, finally, is probably themost serious one—whowouldwant
to rely on amodel that cannot be properly evaluated?—and requires a more elaborate response.
Model evaluation is usually taken to involve model verification and validation (see, e.g., Gräbner
2018),where the former is the process of ensuring that amodel alignswith the intendeddesign (e.g.,
that the model is consistent, and in the case of computational models, that the code is bug-free)
and the latter is the process of checking whether themodel conformswith the target system (in our
case, the pandemic). While model evaluation is, in general, challenging, agent-basedmodels of
pandemics are in a much better position to meet the challenges than are most other agent-based
models.

First off, practitioners of agent-basedmodels are often hampered by a limited access to rele-
vant data. But in the kind of case we looked at—pandemic modeling—governments have strong
incentives not only to rapidly collect data but also to disseminate these data rapidly to scientific
researchers. This explains, for instance, why there are various repositories from which up-to-date
data concerning COVID-19 could be downloaded almost from the start of the pandemic. Obviously,
early agent-basedmodels of the pandemic were based on limited data, but already these limited
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data could be used to check whether the behavior of the models researchers had begun building
were in line with the intended design. Moreover, the models could be rechecked every time new
data came in. As a case in point, we saw that the basic assumptions underlying our model could be
motivated by reference to the scientific literature.

Model validation does present unique challenges for agent-based models due to their inherent
idealizations; at least that is so if model validation is understood in terms of representational
accuracy. However,Thicke (2020) rightly remarks that we need to distinguish between “Galilean”
idealizations in the sense of Cartwright (2005), which deliberately distort the target system by
stripping away interfering factors while leaving basic causal structures intact, and idealizations
that introduce elements or dynamics that do not exist in the real world or that make assumptions
that could not possibly be satisfied by agents. Our model made assumptions—such as household
members always beingpresentduring anagent visit—which, althoughalmost surelynot completely
accurate, could plausibly occur and are unlikely to significantly alter the outcomes.

More important still is the observation made in Parker (2020) that models may be better
validated in terms of (what she calls) adequacy-for-purpose than in terms of representational
accuracy. Assessing the former requires us to consider a model in a context as well as in relation
to a user or users in that context. In the given context, the model will be used by the user for a
certain purpose, and it can serve that purpose without being representationally correct. In the case
of pandemic models, the primary purpose or purposes will almost invariably be to help predict
pathogen spread and/or to inform interventions. And while, for instance, our model may fall short
in representing entirely accurately connections among households, it can be adequate-for-purpose
nonetheless. The comparison of the model predictions with the Anhui data in Section 3 gives at
least some indication that our model is adequate-for-purpose indeed.

Parker (2020) also contains worthwhile discussion with regard to testing adequacy-for-purpose.
As she points out, this can be particularly difficult when directly testing adequacy-for-purpose is
impossible, as it is, for instance, whenmodels are used to study counterfactual situations or when
they make predictions about the distant future. But if an agent-based model is used to predict the
course of a pandemic as well as the effects of NPIs, then, if data collection is anything like what
we saw during the COVID-19 outbreak, we will have no problem testing the model’s adequacy-
for-purpose directly against real-world data in almost real-time. Parker defines a concept of
fitness-for-purpose in terms of adequacy-for-purpose, specifically, as indicating the degree to
which amodel is adequate-for-purpose. Using that concept, we can say that the continuous stream
of data concerning infection rates, hospitalization rates,mortality rates, and so on, that wemay
expect to see in the case of a pandemic of the severity of COVID-19 is likely to help researchers
iteratively refine their model or models and thereby to increase their fitness-for-purpose.

To be clear, critics of agent-based modeling may still be right in their critique of certain
individual models. Some may well be too simple, or too stylized, or insufficiently robust, or
otherwise deficient, to be of much theoretical or practical value. Indeed, nothing in this paper
should be construed as a blanket endorsement of agent-basedmodeling, andwe agree, for instance,
withThicke’s (2020, p. 333) caution regarding policy reliance on current agent-based models of
scientific inquiry. But as with any method, it is important to know when it should be applied and
also when not. And when it is the right method to use, still much can go wrong in the process of
building the actual models. But here, too, the situation is no different for other methods: logical
models, statistical models, decision-theoretic models, and so on, can all be badly misspecified.
What matters is howmuch suchmethods contribute when used judiciously and appropriately.
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6 Conclusion

We have applied a combination of agent-basedmodeling and a widely usedmulti-objective opti-
mizer to a pandemic outbreak—illustrated by the currently most obvious candidate for that—and
in particular to the question of how best to respond to such an outbreak. Agent-basedmodeling
was used to model communities affected by the outbreak, and the optimizer to compute best
trade-offs between desiderata that will usually pull in opposite directions. It was seen how an
agent-basedmodeling approach enables modelers to simulate interventions in an unfolding epi-
demic and thereby to get a thorough understanding of the effects of differentmitigation strategies.
Most notably, agent-basedmodels make it easy to simulate flexible strategies that can be imple-
mented by closely monitoring a population and responding quickly but proportionally to changing
numbers of infections. We posit that, especially in the realm of pandemic modeling, agent-based
modeling is a remarkably adaptable tool that should not be underestimated or disregarded. Fur-
thermore, we believe our findings contribute to countering some of the recent criticisms posed
against agent-basedmodeling. While criticisms of specific agent-basedmodels may be justified,
there is no general reason to believe that agent-based modeling must face problems that other
kinds of scientific modeling do not face as well.14
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