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Abstract

Benchmark tests are employed when testing for racial discrimination by police. Neil and Win-
ship (2019) emphasize that such tests are threatened by Simpson’s paradox, but avoid analyzing the
paradox causally. They consequently cannot elucidate the link between statistical quantities and
discrimination hypotheses. Simpson’s paradox reveals that the statistics given by benchmark tests
are not invariant to conditioning on additional variables. On this basis, I argue that benchmark
statistics should not by themselves be taken to provide any evidence regarding discrimination,
absent additional assumptions. Causal models can represent these assumptions.

1 Introduction

Consider a study revealing that police in Pittsburgh search minority drivers at a higher rate than
non-minority drivers. This would seemingly provide evidence of discrimination. But there are other
possible explanations. Perhaps police make stops based on suspicious activities, and minority drivers
disproportionately engage in such activities. Assuming that A) suspicious activity is a legitimate basis
for stops, and B) “suspicious” is not just a covert re-description of the driver’s race, the searches might
not be discriminatory. Yet the raw statistics concerning the racial disparity in stops do not differentiate
the discriminatory and non-discriminatory explanations. Legal and empirical studies of discrimination
therefore employ benchmark tests, which involve conditioning on variables differentiating the relevant
groups to determine what the group stop-rate disparity would be without discrimination. The idea
is that once one accounts for the factors that legitimately could explain the disparity, any remaining
disparity is evidence of discrimination.

As Neil and Winship (2019) note, benchmark tests are threatened by Simpson’s paradox (Simpson,
1951; Sprenger and Weinberger, 2021). To illustrate, it could be both that police stop minorities
and non-minorities at the same rate in Pittsburgh as a whole, but that minorities are stopped at a
higher rate within every district. Since probability theory permits such scenarios, statistical claims
involving comparisons of relative rates across populations – including benchmarks – will not be robust
to conditioning on additional variables. While Neil and Winship illustrate the limitations of benchmark
tests, they say little about how to address the paradox systematically. Doing so is important not only
because the paradox is widely discussed in the empirical discrimination literature (see e.g. Bickel et al.,
1975; Ross et al., 2018), but also because it illuminates the role of causal assumptions in interpreting
discrimination statistics.

Here I use Simpson’s paradox to argue that benchmark statistics by themselves provide no evidence
for or against discrimination, absent additional assumptions about the modeled scenarios. Causal mod-
els provide a framework for representing these assumptions. Whether they provide the best framework
– and, if so, how they should be incorporated into legal practice – are pressing topics for future research.

2 Neil and Winship on Benchmark Tests

Neil and Winship illustrate the shortcomings of benchmark tests using a hypothetical population with
100,000 black and 100,000 white individuals, in which the criminality rate is higher among blacks
(15,000 vs. 10,000). Police stop 10,000 black individuals and 5,000 white ones, making the stop-rate
for blacks twice as high. While one might suggest this reflects the higher criminality rate in the black
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population, that rate is only 50% higher than in the white population, and thus cannot account for
the difference. This reasoning is captured by the criminal-based benchmark test, which statistically
adjusts for criminality by comparing stop rates as a proportion of criminality rates in each population.
Numerically: 10,000

15,000 : 5,000
10,000=1.33:1. Since this benchmark adjusts for the different criminality rates –

revealing that even post-adjustment the black stop rate is higher – it plausibly provides evidence of
discrimination. Yet Neil and Winship show that as one specifies further details about this population,
there may be either no discrimination, or a level of discrimination different from that suggested by
this benchmark statistic.

Here’s an illustration of why benchmark statistics may mislead (Neil and Winship, 2019, p. 79).
Imagine police only stop people in public spaces and that the distribution of public-space users consists
of 40,000 blacks to 20,000 whites. Assuming police stop all individuals at a rate of .25, regardless of
race, the number of stops will match those in the hypothetical population. But, by stipulation,
police are not using race in choosing who to stop. Neil and Winship analyze discrimination using the
“similarly situated” criterion, which entails that when police do not differentiate among individuals
who are otherwise similar except for race, they are not discriminating.1 Accordingly, a benchmark
statistic that might suggest discrimination no longer does so after specifying additional information.

Neil and Winship’s analysis of this scenario reflects their general strategy for criticizing benchmarks.
After pointing out that the criminal-based benchmark fails to reveal discrimination if black and white
individuals are observed by police at different rates, they claim that users of the benchmark falsely
presuppose that differently-raced individuals are observed at the same rates. More generally, they
present scenarios in which the degree of discrimination diverges from that of the benchmark, and then
fault those using the benchmark for assuming the scenario does not obtain. While they are correct that
benchmarks are only justified given substantive assumptions, their treatment of specific benchmarks
as corresponding to particular assumptions suggests that the assumptions in question are statistical.
Moreover, they deny that establishing discrimination requires causal inference (p. 76). In what follows,
I use Simpson’s paradox to illustrate why statistical assumptions do not suffice.

3 The Causal Analysis of Simpson’s Paradox

Simpson’s paradox refers to cases in which the probabilistic relationship between two variables in a
population differs from that in every subpopulation, where subpopulations are derived by conditioning
on values of a variable. For example, in Winter 2020, the fatality rate among COVID-19 cases was
higher in Italy than China. But, within every age group, the fatality rate was higher in China than
Italy (von Kügelgen et al., 2021). Put differently, although learning that someone was infected in Italy
as opposed to China supports their being more likely to die, once one learns the person’s age, this
relationship reverses (no matter the age). Such cases are consistent with probability theory. They are
paradoxical in the sense of being perplexing, rather than impossible.

Simpson’s paradox is just one challenge Neil and Winship raise for benchmark tests, but its proper
analysis matters for all of them. Since benchmark tests compare proportions within populations
partitioned using a set of variables, understanding how such proportions change as one conditions on
additional variables is essential to their interpretation. In cases of Simpson’s paradox, the relationships
in the population do not match those in the subpopulations. I now present a standard causal analysis
of the paradox, highlighting common misunderstandings that also appear in Neil and Winship.

Full Population, N=52 Success Men (M), N=20 Success Women (¬M), N=32 Success
Success (Y) Failure (¬Y) Rate Success Failure Rate Success Failure Rate

Treatment (X) 20 20 50% 8 5 ≈ 61% 12 15 ≈44%
Control (¬X) 6 6 50% 4 3 ≈ 57% 2 3 ≈40%

Table 1: Simpson’s Paradox: the type of association at the population level (positive, negative, independent) changes
at the level of subpopulations. Numbers taken from Simpson’s original example (1951).

Table 1 compares the success rates of a medical treatment in different populations. In the whole
population, the success rate is the same in both the treatment and control groups, so treatment (X)
and success (Y ) are uncorrelated. However, the treatment raises the probability of success in both
the male (M) and female (¬M) subpopulations (modeled as exhaustive). To see what is going on,

1See Kohler-Hausmann (2018) for a criticism of the similarly situated criterion.
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Figure 1: Causal Graph for Simpson’s (1951) example.

first note that the population has more females than males. Second, although the treatment raises
the probability of success in both subpopulations, men are more likely to recover than females even
without the treatment.

Figure 1 causally represents the example. The arrows indicate that Gender and Treatment are
causes of success (the quantitative relationship is unspecified). The dashed line between Gender and
Treatment indicates a correlation, which is presumed not to result from treatment causing gender.

Determining whether the treatment causes success involves disentangling two ways that the former
may be evidentially relevant to the latter. First, those receiving the treatment may have a higher
success rate because treatment causes success. Second, it may be merely that learning someone received
the treatment provides evidence of their gender (due to the correlation) and that gender predicts one’s
chance of recovery independent of whether they receive the treatment. Experiments in which one
intervenes to make the treatment uncorrelated with any potential influence of success (e.g. gender)
help disentangle causal from merely evidential relevance. Formally, this distinction is marked by the
operator do(), where P (Y |do(X)) indicates the probability distribution of Y that would result from
intervening on X (this may differ from the “observational” distribution P (Y |X)).

The key concept for bridging causal and statistical assumptions is identifiability. Identifiability
relates (i) a probability distribution, (ii) a causal graph, and (iii) a causal quantity (e.g. the magnitude
of X’s effect on Y ). A causal quantity is identifiable iff, given a graph, one can uniquely determine its
value from the distribution. To illustrate, the effect of treatment on success would not be identifiable
if these variables had an unmeasured common cause, since even given the probability distribution, one
could not determine the extent to which any correlation between treatment and success results from
the causal relationship, as opposed to the common cause.

In contrast, in figure 1, the effect of treatment (X) on success (Y ) is identified conditional on gender
(M), using the following formula:

P (Y |do(X)) =
∑
M

P (Y |X,M)P (M) (1)

This equation derives the effect of X on Y in the population from a weighted average of the con-
ditional probabilities in the male and female subpopulations. Its significance is that although the
non-causal conditional probability P (Y |X) may differ arbitrarily from P (Y |X,M) and P (Y |X,¬M),
the causal conditional probability P (Y |do(X)) averages over conditional probabilities in the subpop-
ulations (which here also correspond to the subpopulation-specific effects). It is therefore impossible
for X to causally raise Y ’s probability in the population, but not in any subpopulations.

Equation (1) applies only when X does not cause M . For a different case in which X does cause M
– perhaps M is a blood chemical via which the treatment is effective – one should not condition on M
when identifying the effect of X on Y . So whether one should condition on M – and, correspondingly,
whether to consult the population or the M -partitioned subpopulations – depends on the causal model.
Note that the causal model in figure 1 is statistically indistinguishable from one in which X causes
M : any data generated by one model could have been generated by the other. This highlights the
importance of causal information in determining whether to consider populations or subpopulations.

As we will see, while one should not condition on intermediate variables (“mediators”) in evaluating
the total effect of X on Y along all paths, one does condition on mediators (in particular ways) when
evaluating the X’s influence on Y along particular paths.

After presenting examples involving Simpson’s paradox, Neil and Winship explain:

When the police behave differently across the strata of some variable, but a researcher’s
analysis uses data that ignores and aggregates across this distribution, Simpson’s paradox
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Figure 2: Two possible models for the public space scenario

threatens to give outcome statistics that are inconsistent with reality...this problem can
bias benchmark tests, as well as the outcome test, for stops and searches. (2019, p. 85)

This comment reveals two common misconceptions about the paradox (Sprenger and Weinberger, 2021,
§3.2). First, the paradox does not show that aggregation over heterogeneous populations is problematic.
Aggregation is not a problem when it results in an average effect and the solution to the paradox is
not always to disaggregate, since one should not condition on mediators. Second, their comment
regarding statistics that are “inconsistent with reality” suggests a concern about objectivity. But,
provided that one relies upon conditional probabilities identifying genuine effects, Simpson’s paradox
does not threaten the objectivity of causation. The subpopulation effects derived from conditioning
can differ from the population effect, but this is because the subpopulations have different distributions
of background factors and the effects are therefore objectively different.

Finally, note the claim that the paradox can “bias” benchmark tests. To talk about a measurement
being biased, one needs to specify which quantity one aims to measure. Neil and Winship do not
do so. They write as if there is some comparison of stop rates across the populations that would
establish discrimination, and that benchmarks simply provide the wrong comparison. Figuring out
which rates are the relevant ones is treated as a statistical problem. But Simpson’s paradox reveals that
comparisons of rates or proportions across populations are not, in general, invariant to conditioning
on new variables, absent further assumptions. I will now show how causal models represent those
assumptions in discrimination contexts.

4 Using Causal Models to Interpret Statistics

Causal models should not be conceived as a substitute for normative theorizing about which criteria
police may use. Nevertheless, given an account specifying legitimate search criteria, linking discrimi-
nation claims to effects in particular models enables one to define one’s measurement target, as I now
illustrate.

Let’s begin with the scenario in which whether someone is stopped only depends on whether they
are in public or private. Figure 2(A) presents a plausible model in which race is a correlated non-cause
of public space usage. If we link discrimination here to whether race causes being stopped, the model
indicates that this effect is identified only when one conditions upon public space usage.

Now suppose race does cause public space usage. Perhaps race influenced where individuals could
get mortgages, and black families ended up in urban neighborhoods where public space use is more
common. Public space usage is then a mediator between race and being stopped, as in figure 2(B).
There are two possible uses of this model for evaluating discrimination. One possibility is that be-
cause race causes public space usage, deciding to stop people in public spaces is discriminatory. The
correct measure of discrimination is then the total effect of race on being stopped, and one should not
condition upon the mediator (i.e. absent common causes, P (stopped|do(race)) = P (stopped|race)).
Alternatively, if the racial distribution of public spaces did not influence policies regarding where to
stop people, one might link discrimination to the influence of race on being stopped along the direct
path. This is the natural direct effect (Pearl, 2001) which is the change in the probability of being
stopped that would result, were one of a different race, but still had the same public space usage. For
instance, would a black individual stopped in public have been less likely to be stopped were they
white, but still in public? If so, there is a natural direct effect, providing evidence of discrimination.
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Which of these models is appropriate is a subtle matter. Even if the correlation between race and
public space usage results from a common cause (e.g. parental race), using this correlation in choosing
where to patrol could itself be discriminatory. If so, the model in 2(B) seems to better account for the
influence of race on being stopped via public space usage, even though 2(A) gives the data-generating
process. This tension between understanding causal models as representing data-generating processes
and as modeling decision making calls for its own paper.

Here the key point is that linking discrimination hypotheses to quantities in a causal model enables
one to specify which variables must (and must not) be conditioned upon. Moreover, causal quanti-
ties come with a theoretical guarantee against Simpson’s paradox. If one believes that race causally
promotes being stopped in a population, but it lowers the probability of being stopped in all sub-
populations, then either the subpopulation-specific probabilistic relationships do not identify causal
effects, or one erred in positing an effect in the population. While conditioning can certainly yield
subpopulation-specific effects differing from the population average, it cannot make a genuine effect
disappear.

While I have emphasized confounding due to common causes, conditioning on a common effect of
two variables can also hinder identifiability. This phenomenon of endogenous selection bias (Elwert
and Winship, 2014) is especially relevant to discrimination contexts, since sampling from a population
that is homogeneous with respect to a variable (e.g. public space usage, being stopped by police (Knox
et al., 2020)) amounts to conditioning on it and can thus bias an effect.2 Causal assumptions are thus
essential for evaluating the processes influencing one’s statistical sample (Knox and Mummolo, 2020).

Because Neil and Winship lack a framework for specifying which quantities measure discrimination,
they cannot spell out what makes a benchmark “biased”. They are correct that benchmarks are only
justified given additional assumptions about the scenario, but their criticism of particular benchmarks
as employing the “wrong denominator” (2019, p. 79) in deciding what to condition upon suggests
that the assumptions can be read off of the mathematical derivation of the statistical quantities. One
might suppose that Neil and Winship do give an account of the measurement target via the “similarly
situated” criterion, which says that there is discrimination when individuals are treated differently
despite being similar in all respects except for race. Statistically, this corresponds to grouping people
based on a list of non-race variables, and then determining whether within a particular homogeneous
group race influences the probability of being stopped. But which non-race variables must be included?
Without additional assumptions, anything short of a maximal attribute set leaves open the possibility
that probabilistic relationships may disappear upon further partitioning. So the similarly situated
criterion cannot be of practical use if interpreted statistically, but further requires the assumptions
supplied by causal models.

5 Evidence and Assumptions

Pollock (1987) distinguishes between two ways evidence can undermine one’s belief in some proposition
P . Suppose that P is that it will rain tomorrow, which I believe based on a colleague’s testimony. A
rebutting defeater for P is evidence for its falsity. Perhaps my weather app predicts no chance of rain.
In contrast, an undercutting defeater is evidence that my original evidence was unreliable. Suppose I
learn my colleague was conducting a study in which she randomly tells people it will rain. I have no
new evidence against P – I cannot infer that it won’t rain – it’s just that my original justification is
undermined.

Now imagine one observes that police stop minorities at the same rate as non-minorities within a
population and infers that there is no discrimination. One then notices that within both the criminal
and non-criminal subpopulations, minorities are stopped at a higher rate, and concludes that there
is discrimination. One might be inclined to describe this reasoning as follows. The first observation
provided prima facie evidence against discrimination, which was then rebutted by the further informa-
tion. I submit we should reject this description. Given Simpson’s paradox, statistics alone provide no
reason to assume that the probabilistic relationships among variables in a population will be preserved
upon partitioning. The subpopulation information does not rebut one’s initial belief, but rather reveals
one was never justified in holding it. Statistics only provide evidence regarding discrimination when
coupled with further assumptions, such as those embedded in causal models.

2Thanks to Clark Glymour for raising this point.
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The question of what counts as evidence for discrimination is not an idle concern. Within the
American legal system, a defendant claiming police discrimination must bring evidence to advance
to the “discovery” stage enabling a more thorough investigation. Following the Supreme Court deci-
sion Armstrong v. United States (1996), this evidence must involve a “credible showing of different
treatment of similarly situated persons” of another race. Siegler and Admussen (2020) argue that
this creates an insurmountable barrier to being granted discovery, since police need not disclose their
selection criteria and without these criteria one cannot determine who counts as “similarly situated”.

That the similarly situated criterion cannot be applied without knowing the police’s selection
criteria reinforces my point that it cannot be interpreted purely statistically. What matters is not
whether those who are and are not stopped are similar in all respects, but rather whether, among those
satisfying the purportedly legitimate criteria employed by police, race makes any further difference.
Yet requiring defendants to present a well-established causal model to obtain discovery would be too
high a bar, since only through discovery can one obtain the required evidence. Siegler and Admussen
(2020) therefore defend a statistical basis for granting discovery:

Courts instead should look to whether the defendant has created a reasonable inference
that a disparity exists. If a defendant can show that the police are targeting people of color
at a rate greater than their representation in the general population, judges should grant
discovery. (1048)

Although I endorse Siegler and Admussen’s aim of lowering the evidential standard required for ob-
taining discovery, a purely statistical standard remains problematic. Disparities by themselves do not
reveal discrimination and one should avoid making inferences from them absent background assump-
tions about the modeled scenario. Rather than abandoning causal considerations, it would be better
to allow the defense to propose a causal model favoring their claim. The prosecution might then be
allowed to submit their own model specifying some of the selection criteria, and if they abstain the
defense would be entitled to their preferred model. Even if, however, the prosecution submits their own
model, this by itself is an improvement, since currently they have no incentive to disclose their selection
criteria. This, of course, is only a sketch of a procedure. The main takeaway is that since statistical
evidence alone cannot differentiate between discriminatory and non-discriminatory explanations, one
should build causal assumptions into every evidentiary stage of the process.

6 Conclusion

Causal models are typically promoted as enabling one to predict the outcomes of interventions. The
discussion here highlights a distinct role. Even when interpreting statistics, causal models help disen-
tangle informative from non-informative statistical quantities. Simpson’s paradox illuminates why this
is so. While a correlation between two variables might be taken to suggest a substantive relationship,
the paradox reveals that probabilistic relationships will not in general be invariant to partitioning based
on additional variables. Instead of taking probabilities as providing evidence regarding discrimination
until proven otherwise, one should not draw any conclusions without some basis for believing that the
relationships are partition invariant. Causal models provide such a basis. Nothing in this paper proves
that one must use causal models when interpreting discrimination statistics. But statistics alone are
not sufficient. They are only reliable given assumptions about the scenario, and causal models provide
a general, rigorous, and flexible way for modeling these assumptions.
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