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Abstract: Arguments by Sorkin [100] and Borsten, Jubb, and Kells [14] establish that a nat-
ural extension of quantum measurement theory from non-relativistic quantum mechanics to
relativistic quantum theory leads to the unacceptable consequence that expectation values
in one region depend on which non-selective measurement is performed in a spacelike sep-
arated region. Sorkin [100] labels such scenarios ‘impossible measurements’. We explicitly
present these arguments as a no-go result with the logical form of a reductio argument and
investigate the consequences for measurement in quantum field theory (QFT). Sorkin-type
impossible measurement scenarios clearly illustrate the moral that Microcausality is not by
itself sufficient to rule out superluminal signalling in relativistic quantum theories that use
Lüders’ rule. We review three different approaches to formulating an account of measure-
ment for QFT and analyze their responses to the ‘impossible measurements’ problem. Two
of the approaches are recent proposals for measurement theories for QFT: a measurement
theory based on detector models proposed in Polo-Gómez, Garay, and Mart́ın-Mart́ınez [86]
and a measurement framework for algebraic QFT proposed in Fewster and Verch [41]. Of
particular interest for foundations of QFT is that they share common features that may hold
general morals about how to represent measurement in QFT, in spite of being much different
in spirit and in details such as the form taken by the state update rules. Careful attention to
the dynamics is an important component of both strategies for responding to the ‘impossible
measurements’ problem. Both also abandon the traditional operational interpretation of a
local algebra of observables A(O) as representing possible operations carried out in region O.
Their respective state update rules cannot be literally interpreted as representing a physical
change of state of the system upon measurement that occurs in any region of spacetime. The
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third response to the ‘impossible measurements’ problem that we examine is the histories-
based approach that is preferred by Sorkin. While there are open questions about how to
address the ‘impossible measurements’ problem using this approach, it is much different in
spirit than the detector models approach and the FV framework yet also shares some common
features. We hope that this paper lays the groundwork for productive dialogue among the
many communities of physicists and philosophers who are working on theoretical, practical,
and interpretative issues surrounding the treatment of local measurements in QFT.

1 Introduction

Non-relativistic quantum mechanics (NRQM) has an accepted measurement theory for lab-
oratory measurements (see, e.g., Busch et al. [18], a standard reference on Quantum Mea-
surement Theory). There is no consensus about how to interpret NRQM (including this
measurement theory); this is the infamous Measurement Problem. However, the recipe for
extracting probabilistic predictions for measurement outcomes from NRQM is uncontrover-
sial. In contrast, it is far from straightforward to formulate an analogous measurement theory
for local laboratory measurements in relativistic quantum field theory (QFT). As Sorkin’s
1993 paper “Impossible measurements on quantum fields” [100] illustrates, the natural gen-
eralization of the non-relativistic measurement scheme to relativistic quantum theory fails
because it entails superluminal signalling. Sorkin uses a minimal theoretical framework for
relativistic quantum theory to construct his examples of impossible measurements, but ar-
ticulating an adequate measurement theory has also been a longstanding problem in more
comprehensive axiomatic formulations of QFT such as algebraic QFT. Philosophers Earman
and Valente declare that the lack of a measurement theory for algebraic QFT is “a major
scandal in the foundations of quantum physics” [36, p.17]. In a recent paper that aims to
make amends for this, Fewster and Verch [41] remark that there has been a “gap” between
the fields of quantum measurement theory and algebraic QFT that “has–surprisingly–lain
open for a long time.”

We take Sorkin’s examples of ‘impossible measurements’ and the recent extensions by
Borsten, Jubb, and Kells in [14] as a starting point for investigating possible formulations
of a measurement theory for QFT. We approach the problem of formulating a measurement
theory for QFT from the disciplinary perspectives of philosophy and relativistic quantum
information (RQI). Our ultimate goal is to explore the landscape of recent proposals for a
measurement theory for QFT. There has been intense recent interest in this topic, so we will
not be able to offer a comprehensive survey. We will instead focus our attention on a few
well-developed proposals that are different in spirit, and will clarify both their differences and
their similarities. The two main approaches that we will consider are the detector models
approach prominent within Relativistic Quantum Information that motivated the proposal
for a detector-based measurement theory by Polo-Gómez, Garay, and Mart́ın-Mart́ınez in [86]
and the framework for measurement in algebraic QFT (AQFT) presented by Fewster and
Verch in [41]. Both of these proposals successfully address the ‘impossible measurements’
problem. We will also consider a history-based approach, which is Sorkin’s preferred response.
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As we shall discuss, how to eliminate ‘impossible measurements’ in this framework is an open
problem. Our aim is not to advocate for any one of these proposals. On the contrary, one
of our conclusions is that the proposals are designed to address different problems and are
currently each suitable for different purposes. Measurement theory for QFT is still an area
of active research, so there is no one settled formulation that satisfies all desiderata.

Sorkin [100] and Borsten et al. [14] furnish an excellent starting point for understanding
the current situation because addressing this ‘impossible measurement’ problem is widely
regarded as the first order of business for establishing a measurement theory for QFT. As
we shall explain, these impossible measurement scenarios rely on assumptions that can be
framed as an informal no-go result. This reductio ad absurdum argument is useful because it
identifies an apparently reasonable set of premises that lead to an unacceptable conclusion.
The premises include the basic elements of ideal measurement theory for quantum mechanics,
including Lüders’ rule for state update for non-selective measurements. This measurement
theory is adapted to Minkowski spacetime by making the natural assumption that causal
order defines a partial temporal order. The Microcausality principle that operators associated
with spacelike separated regions commute is also imposed. When the system is not being
measured, the Heisenberg picture representation for the dynamics is used. There are examples
of of ‘impossible measurement’ scenarios that comply with all of these requirements, and
yet the expectation values for a measurement confined to one bounded region depend on
which non-selective measurement is carried out in a spacelike separated bounded region.
This conclusion is clearly unacceptable because it violates the prohibition on superluminal
signalling or information transfer that is typically understood to be a hallmark of relativistic
theories.

Different approaches to formulating an account of measurement for QFT can be classified
according to how they respond to this reductio argument by revising, rejecting, or adding
premises. The detector models approach has the pragmatic goal of representing detectors
that are actually used to theoretically and experimentally investigate the measurement of
relativistic fields, typically in quantum optics and quantum information (e.g., Unruh-DeWitt
dectectors). The response to the ‘impossible measurements’ reductio argument is to use
NRQM, and not QFT, to model the detectors. This allows ideal measurement theory for
NRQM to be applied to the detector model without (for all practical purposes) leading to
superluminal signalling, provided that care is taken to satisfy relativistic constraints when
coupling the detector and field. Essentially, the addition of these assumptions for a concrete
detector model to Sorkin’s premises is what excludes FAPP the possibility of ‘impossible
measurements’ in the detector model’s regime of applicability. The Fewster-Verch (FV)
framework for measurement in algebraic QFT presented in [41] takes a different approach that
begins with general physical principles for QFT. Fewster and Verch adopt axioms for AQFT
that go beyond the minimal set of physical principles assumed by Sorkin. These additional
physical principles entail that ideal measurement theory cannot be extended from NRQM to
QFT in the straightforward manner posited by Sorkin. The FV framework also rejects some
of Sorkin’s premises about ideal measurement theory. In particular, the assumption that
Lüders’ rule is applied to determine the post-measurement state of the system is rejected.
The FV framework introduces a new measurement theory for AQFT with new state update
rules that are informed by the physical principles of AQFT. Histories-inspired approaches
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also reject the assumption that Lüders’ rule is applicable, but do not aim to introduce state
update rules that describe the measurement process ‘step-by-step’; instead, probabilities are
directly assigned to entire histories.

It is worth emphasizing, as Sorkin also emphasizes, that the ‘impossible measurements’
problem is a separate issue from the Measurement Problem. In NRQM, the Measurement
Problem originally arose after the standard theory of NRQM (including dynamics) was for-
mulated and a rudimentary measurement theory was introduced. In brief, one version of the
Measurement Problem in NRQM is that the unitary quantum dynamics (e.g., as given by
the Schrödinger equation) is inconsistent with the prescription for state update after mea-
surement (e.g., as given by Lüders’ rule). In general, the Schrödinger equation determines
that the composite of the system and measuring device ends up in an entangled state that is
not an eigenstate of the measured quantity, while the Lüders’ rule for selective measurement
assigns an eigenstate of the measured quantity. (Furthermore, it is the state update rule that
seems to be correct about the post-measurement state.) The Measurement Problem in QFT
should be set up in an exactly analogous way. This means that before the Measurement
Problem in QFT can be posed, the physical theory of QFT (including dynamics) and a mea-
surement theory for QFT must be fixed. The ‘impossible measurements’ problem pertains
to how the physical theory of QFT and a measurement theory for QFT are formulated. In
this sense, the ‘impossible measurements’ problem for QFT arises prior to the Measurement
Problem for QFT and the ensuing interpretational issues. This means that addressing the
‘impossible measurements’ problem does not require a solution to the Measurement Problem
for QFT. However, the solution to the ‘impossible measurement’ problem that is adopted
may well affect the form that the Measurement Problem takes in QFT. In general, both the
physical theory of QFT and the measurement theory for QFT differ from NRQM; therefore,
the Measurement Problem may take different forms in QFT and NRQM.

It is also useful to consider the historical context of the ‘impossible measurement’ problem.
Of course, measurement is possible in QFT; it is commonplace to use QFTs to make theoret-
ical predictions for measurements conducted on relativistic quantum systems. In QED, for
example, standard predictions take the form of scattering amplitudes, which involve asymp-
totic states. This is in contrast to NRQM, in which predicted quantities typically take the
form of properties of an instantaneous state at a finite time or a stationary state. Blum [12,
p.46] characterizes this historical shift from a focus on states in NRQM to scattering theory
in QED as a paradigm shift because it constitutes a significant change in the paradigmatic
problem of what is to be calculated from the theory. Blum offers an illuminating account of
how the quantum state “withers away” in two lines of development of relativistic quantum
theory in the 1930’s and 1940’s, one that originates with Heisenberg’s S-matrix theory and
the other with Wheeler-Feynman electrodynamics. As Blum explains, this paradigm shift
was prompted both by the desideratum of obtaining an explicitly relativistic formulation of
quantum theory and by the need for a calculationally tractable theory. (See [46] for further
discussion of the historical background.)

Asymptotic scattering theory works well for predictions for many experimental scenarios,
especially in particle physics, but does not cover all cases of interest. Relativistic quantum
information is a field in which finite time processes that occur in a local laboratory environ-
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ment are theoretically and experimentally investigated. Consequently, a measurement theory
for local measurements that applies to relativistic quantum theory at finite times is needed.
Sorkin [100] concerns precisely this problem. For this reason, [100] has been influential in the
relativistic quantum information community more broadly [30, 10, 9, 11, 25]. Recently, the
issue of how to formulate a measurement theory for QFT has attracted renewed attention,
in part due to Borsten et al.’s [14] sharpening of Sorkin’s results and Fewster and Verch’s
proposed measurement theory for algebraic QFT [41].

We begin by explicitly formulating the reductio argument that underlies Sorkin-type im-
possible measurement scenarios. After rehearsing Sorkin’s [100] original examples of impos-
sible measurement scenarios and Borsten, Jubb, and Kells’ [14] recent examples, we use the
reductio argument analyze the root causes of the ‘impossible measurements’ problem and to
classify different approaches to formulating an account of measurement for QFT. Sec. 3 and 4
offer overviews of the FV framework and the detector models approach, respectively, focusing
on analysis of how each approach addresses the reductio argument and rules out impossible
measurement scenarios. In Sec. 5, we compare the FV and detector-based measurement
theories. Our comparison does not focus exclusively on the important differences; we also
identify substantial similarities between the two measurement theories. The similarities are of
particular interest because, given the differences in goals and strategies employed by the two
approaches, similarities suggest morals about general features that might be shared by any
measurement theory for QFT. In Sec. 6 we consider how the histories-inspired approaches
favoured by Sorkin address impossible measurement scenarios. Sec. 7 summarizes our con-
clusions. We hope that this paper lays the groundwork for productive dialogue among the
many communities of physicists and philosophers who are working on theoretical, practical,
and interpretative issues surrounding the treatment of local measurements in QFT.

2 Sorkin [100] and Borsten, Jubb, and Kells [14] ‘im-
possible measurements’

Sorkin’s original paper [100] presents examples of ‘impossible measurement’ scenarios that
exhibit dependence of the expectation values of a measurement in one region on the identity
of the measurement operation performed in a spacelike separated region. The purpose of
these examples is to show that ideal measurement theory cannot be näıvely extended from
NRQM to relativistic quantum theory. Borsten, Jubb, and Kells [14] explicate Sorkin’s
assumptions and introduce additional examples of ‘impossible measurements’. In 2.1 we
begin by reviewing the set of assumptions that gives rise to these ‘impossible measurement’
scenarios and explicitly cast the argument in the logical form of a reductio ad absurdum
argument. We then take up examples of ‘impossible measurement’ scenarios in Sec. 2.2
and 2.3. This will be followed by analysis of conclusions that are supported by the reductio
argument and a survey of strategies for responding to the reductio argument in Sec. 2.4.
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2.1 The ‘impossible measurements’ reductio argument

The ‘impossible measurement’ scenarios presented by Sorkin [100] and Borsten, Jubb, and
Kells [14] are a type of no-go result. No-go results such as Bell’s theorem have played an
important role in foundations of quantum theory because they identify a set of assumptions
that cannot all be true. (Conditional on the conclusion being false, which in the case of
Bell’s theorem is established by closing the loopholes in the experimental tests of the Bell
inequalities.) Similarly, the ‘impossible measurement’ scenarios are valuable because they
play the role of identifying a set of assumptions that cannot all be true. (Conditional on
the conclusion being false, which in this case is established by experimental tests that rule
out superluminal signalling.) In relativistic quantum information (RQI), ‘impossible mea-
surement’ results have played the heuristic roles of motivating the formulation of models of
local measurement that are suited to QFT and serving as a criterion of adequacy for pro-
posed local measurement models for QFT (i.e., they must not permit detectable signalling
in Sorkin-type measurement scenarios). We will also use the ‘impossible measurements’ re-
sults to classify different approaches to formulating a measurement theory for QFT (Sec.
2.4). For these heuristic purposes, it is useful to extract a reductio ad absurdum argument
from the examples of ‘impossible measurements’. A reductio argument is an argument in
which an apparently acceptable set of premises leads by apparently acceptable reasoning to
an apparently unacceptable conclusion.

Both Bell’s theorem and the argument based on ‘impossible measurement’ examples that
is set out below take the form of reductio arguments. An important difference between these
two arguments is that Bell’s theorem is a no-go theorem provable using mathematics from
mathematically-stated premises (i.e., a deductive argument) while the ‘impossible measure-
ments’ reductio argument is a more informal no-go result (i.e., the conclusion is established
by producing examples of scenarios in which superluminal signalling is possible). This is a
significant difference, and one that makes Bell’s theorem much more powerful, but for our
purposes what is important is that the informal ‘impossible measurement’ reductio argument
serves the heuristic functions of motivating and guiding the formulation of a measurement
theory for QFT.

Relatedly, Sorkin assumes only a minimal, informal framework for relativistic quantum
theory. Assume that (when no measurements occur) there is a Heisenberg picture represen-
tation of some quantum field Φ (e.g., a free scalar quantum field) and an observable Ak is
associated with a region of Minkowski spacetime Ok by restriction of the field Φ to Ok. Mi-
crocausality is the only principle from QFT that is assumed. This starting point is intended
to invoke only generally agreed upon features of relativistic quantum theory. Following the
presentation of ‘impossible measurement’ examples in Borsten, Jubb, and Kells [14], here is
the reductio argument:

P1 Local degrees of freedom An observable Ak is associated with a region of
Minkowski spacetime Ok by restriction of the field Φ to Ok. [100]

P2 Dynamics When measurements are not being performed, use the Heisenberg
picture representation (i.e., time-dependence is carried by the observables).
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P3 Ideal measurement theory for relativistic quantum theory
(a) Detection assumptions:
(i) eigenstate-eigenvalue link: “the measurement outcomes are the eigenvalues of
the self-adjoint operator corresponding to the observable” [14]
(ii) Born rule: In a state ρ, the probability of an outcome n that corresponds to
a projector En is given by Prob(n) = tr(ρEn).

(b) Preparation assumption: The state ρ(t′) at time t′ after a non-selective
measurement is determined by applying Lüders’ rule (for non-selective measure-
ment) to the state at time t prior to the measurement.

Lüders’ rule for non-selective measurement for arbitrary self-adjoint observables1

By the spectral theorem, A =
∫ ∞

−∞ λdE(λ) where E(·) maps Borel subsets B ⊆ R
to projectors on H. For a set of mutually disjoint Borel sets B = {Bn}n∈I that
covers R (with I some countable indexing set), each Bn represents a possible
bin for a measurement outcome. The corresponding projectors2 En := E(Bn)
resolve the identity ∑

n∈I En = 1H. Lüders’ rule for non-selective measurement
for arbitrary self-adjoint observables:

ρ(t) → ρ(t′) := EA,B (ρ(t)) =
∑
n

Enρ(t)En (1)

(c) Relativistic temporal ordering: Define the temporal ordering relation
Oj ≺ Ok iff some point of Oj causally precedes some point of Ok in the spacetime.
Take the transitive closure of ≺. Regions must be chosen such that this extended
≺ is a partial order (i.e., cannot have both Oj ≺ Ok and Ok ≺ Oj).3

P4 Microcausality: If Oj and Ok are spacelike separated, then [Aj,Ak] = 0 for
all Aj ∈ A(Oj), Ak ∈ A(Ok).
C Conclusion There are bounded, spacelike separated regions O1 and O3 for
which the expectation values of a measurement confined to O3 depends on which
unitary operation is performed in O1.

That the existence claim in the conclusion of the argument is compatible with the premises
is established by the examples set out in the following two subsections. Premise P3 sets out
the assumptions of ideal measurement theory for relativistic quantum theory. Parts (a)
the detection assumption and (b) the preparation assumption are carried directly over from

1This is a generalisation of Lüders’ rule for non-selective measurement for discrete observables: For a
compact self-adjoint observable A, A =

∑
n λnEn, where λn are distinct eigenvalues and En are associated

projectors onto associated eigenspaces that resolve the identity. A selective measurement is conditioned on
obtaining the outcome λn. A non-selective measurement is not conditioned on obtaining any particular
outcome. Lüders’ rule for non-selective measurement for discrete observables: ρ(t) → ρ(t′) =

∑
n Enρ(t)En

2not necessarily rank-1
3As Sorkin [100, p.3] notes, ≺ may be extended to some non-unique linear order. P4 Microcausality

ensures that different choices of linear order do not affect the expectation values for any sequence of projective
measurements associated with the set of regions.
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NRQM. The relativistic ingredient of P3 is (c), which specifies a temporal ordering relation
for regions in Minkowski spacetime. P4 Microcausality is an uncontroversial assumption
within QFT.

The conclusion is that there are bounded, spacelike separated regions O1 and O3 for which
the expectation values of a measurement confined to O3 depends on which unitary operation
is performed in O1. In both of the responses to Sorkin-type impossible measurement scenarios
discussed in Sec. 3 and 4 below the operation performed in region O1 is implemented by a non-
selective measurement. A further argument can be made that the conclusion of the reductio
argument is unacceptable because it allows for superluminal signalling. As a consequence
of the detection assumptions P3(a), the probabilities for measurement outcomes in O3 are
dependent on which measurements are carried out in spacelike separated region O1. If we
assume that parties can make multiple measurements on identically prepared systems to build
up statistics following Borsten et al. [14], then in principle an observer in O3 could determine
whether a measurement was carried out in spacelike separated region O1.This violates the
prohibition on superluminal signalling or information transfer that is typically understood
to be a hallmark of relativistic theories. The reason for labeling the regions O1 and O3
will become apparent in the next section: the examples of superluminal signalling involve
measurements in another intermediate region O2. We will refer to this reductio argument as
the ‘impossible measurements’ reductio argument, but it should be appreciated that while
Sorkin was (as far as we are aware) the first to raise this problem, Borsten, Jubb, and Kells
[14] make important contributions that refine the argument.

2.2 Sorkin’s examples of impossible measurements

Sorkin offers two versions of his no-go result, a QFT version and a QM version with qubits
on Minkowski spacetime. Since we will argue that the QM version is not compelling, we will
begin by reviewing the QFT version. Consider O1 and O3, two bounded spacelike separated
regions of Minkowski spacetime, and a unitary element of the local algebra A(O1) that is
characterized by a parameter λ, i.e., Uλ ∈ A(O1). This can be thought of as a local unitary
‘intervention’ that will transform the state of the field |ψ0⟩ → Uλ |ψ0⟩ := |ψ1⟩. Independent
of the interpretation of this ‘local kick’, prohibition of superluminal signalling entails that
expectation values of observables outside the causal future of O1 should not depend on the
value of λ. In this case of two spacetime regions, this is guaranteed by Microcausality, which
imposes [Uλ,C] = 0 ∀λ and for all C ∈ A(O3). As a result of Microcausality

⟨ψ1|C|ψ1⟩ = ⟨ψ0|U∗
λ C Uλ|ψ0⟩ (2)

= ⟨ψ0|CU∗
λUλ|ψ0⟩ = ⟨ψ0|C|ψ0⟩. (3)

This expectation value is independent of λ, and so the value of λ cannot be used to signal to
spacelike separated regions.

The situation changes dramatically if one considers a third region O2 ‘between’ O1 and
O3 that is partially in the causal future of O1 and partially in the causal past of O3. Roughly
speaking, this third region can ‘link’ the first two in counter intuitive ways. The region O2
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O1

O2

O3

Figure 1: Region O2 is a thickened hypersurface between O1 and O3.

is chosen by Sorkin to be a thickened hypersurface that lies in the chronological future of
O1 and in the chronological past of O3 (see Figure 2). Associated with O2 is a non-selective
measurement of the projector P2 = |ψ2⟩ ⟨ψ2|. Applying the non-selective Lüders’ rule to the
state |ψ1⟩ = Uλ |ψ0⟩, it is easy to see that the expectation values of C is

⟨C⟩ = ⟨U∗
λP2CP2Uλ⟩0 + ⟨U∗

λ(1 − P2)C(1 − P2)Uλ⟩0, (4)

where we denote with ⟨...⟩0 the expectation value over the state |ψ0⟩. This expression is equal
to prob(P2 = 1)Exp(C,P2 = 1) + prob(P2 = 0)Exp(C,P2 = 0) and will generally depend
on λ. Sorkin is choosing a particular state |ψ2⟩ to be a superposition of the vacuum and a
one-particle state to demonstrate the λ−dependence, but the details of the derivation are
not important. One simply has to notice that, in general, the λ−dependence on the r.h.s.
of (4) will not drop out (as it did in (3)) since Uλ is guaranteed to commute with C but
not with P2 ∈ A2(O2), because O1 and O2 are not spacelike separated. This λ-dependence
instantiates the conclusion of the no-go result, since it allows for superluminal signalling
between the spacelike separated regions O1 and O3 (because, in principle, a signal can be
encoded in the value of λ).

To fully appreciate the no-go result, it is important to analyse the role of region O2 in
terms of the premises that are laid down in the previous section. Microcausality (P4) provides
the ground for thinking of regions O1 and O3 as ‘separate’ or statistically independent in a
bipartite scenario. By invoking a third ‘intervention region’ O2 we open up the possibility of
signalling between O1 and O3 (Conclusion). This is because the non-selective measurement
that is associated with region O2 updates or ‘prepares’ the state over which the expectation
value of C is evaluated, in accordance with the standard rules set out in P3. More explicitly,
the preparation assumption (b) (Lüders’ rule) is used for the measurement over O2, while the
detection assumptions (a) go into the evaluation of the expectation value of C. A temporal
ordering relation t < t′ is needed to apply Lüders’ rule. Premise (c) defines a relativistic
temporal ordering relation, which reflects the causal structure of Minkowski spacetime, i.e.,
Oi ≺ Oj if Oj is partially in the causal future of Oi. Before the transitive closure is taken,
this ordering relation does not apply for regions O1 and O3, that is, they are not ‘comparable’
and it does not hold that O1 ≺ O3. Based on this ordering relation we can only claim that
O1 ≺ O2 and O2 ≺ O3. Once we take the transitive closure to obtain a partial order, O1 ≺ O2
and O2 ≺ O3 implies O1 ≺ O3 and we can apply the measurement rules accordingly. Then,
the influence, or signalling, between the regions O1 and O3 is ‘mediated’ by region O2, and
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it was made possible through taking the transitive closure (as Sorkin points out in [100]).
Perhaps the involvement of a third region would partially demystify the conclusion, but from
a local perspective of the observers that one could associate with O1 and O3, the non-selective
measurements over O2 should be irrelevant. Thus, one of the problems posed by this example
is the consistent description of multi-partite measurements (involving more than two parties)
in relativistic spacetimes.4

Sorkin also offers a ‘baby’ QM version of the no-go result. In this case, there are two
qubits that one can think of as embedded over regions O1 and O3 in Minkowski spacetime.
The two qubits are initially in an entangled state, and the first one can potentially be flipped
by a local unitary operation (analogue to the local unitary over region O1) before a global
projector is applied to the total system (analogue to the non-selective measurement over O2).
Evidently the expectation values of observables of the second qubit (analogue to O3) will
generally depend on whether the first qubit was flipped or not before the global operation.
This is not surprising because the global projection presupposes some notion of global access
to the total system. Sorkin suggests that this example is “[i]n a sense ... all we need, since
one would expect to be able to embed it in any quantum field theory which is sufficiently
general to be realistic” (p.7).

While it is true that NRQM should somehow be related to QFT, it does not follow that the
QM example is sufficient for Sorkin’s purposes. Precisely how NRQM relates to QFT is a non-
trivial and somewhat controversial matter, as the discussion below of detector models and the
FV framework for algebraic QFT will highlight. It is not obvious which features of Sorkin’s
QM example should be expected to carry over to QFT. The value of Sorkin’s quantum field
theoretic example is that it clearly demonstrates which set of assumptions adapted from
NRQM cannot be transferred to QFT. Furthermore, there are disanalogies between the two
examples that seem relevant. In the case of the two qubits there is no third ‘disjoint’ party.
The ‘third’ system is simply the total system. Of course, operations over the total system are
by definition global. In the QFT example, there is a non-trivial third party O2, seemingly
‘disjoint’ from O1 and O3. Nevertheless, that third party is responsible for an operation
which, loosely speaking, would also ‘connect’ O1 and O3. Relatedly, Weinstein [111] points
out that Sorkin’s QM example implicitly assumes that ideal measurements are instantaneous.
Another disanalogy is that the initial state of the QM system must be entangled over the
qubits, while there are no restrictions on the initial state in the QFT example.5 These
disanalogies seem to undermine the usefulness of the QM example.

2.3 Borsten, Jubb, and Kells’ examples of impossible measure-
ments

At first glance, Sorkin’s QFT example that illustrates his no-go result seems to be very
particular to the choice of O2 to be a thickened hypersurface (Figure 1). It is definitely

4For an arbitrary number of measurements, one would have to extend the partial order to a total order
(which always exists, but is not unique).

5This is more obvious in an example given by Borsten et al. [14] that is presented in the next section,
which uses a factorized state. See Sec. 2.4 for discussion.
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O1

O2

O3

Figure 2: Region O2 partially invading the future lightcone of O1 and the past
lightcone of O3.

bothersome, but not really surprising, that such global operations, like the one over region
O2, can cause signalling between the two spacelike separated parties. The global projector
represents an operation that presupposes some notion of global access to the total system.
Sorkin recognizes this shortcoming of his example, but insists that there is still a genuine
problem for QFT: “[i]n a way it is no surprise that a measurement such as of [A2], which
occupies an entire hypersurface, should entail a physical non-locality; but surprising or not,
the implications seem far from trivial...What then remains of the apparatus of states and
observables, on which the interpretation of quantum mechanics is traditionally based?”

Unfortunately, the problem raised by Sorkin cannot be easily dismissed by simply exclud-
ing global operations. Borsten, Jubb, and Kells [14] supply examples that establish that the
problem persists for general bounded regions O2 that partially invade the future lightcone of
O1 and the past lightcone of O3, i.e., J+(O1)

⋂
O2 ̸= ∅ and J−(O3)

⋂
O2 ̸= ∅6 (Figure 2). As

we shall discuss in the next section, Borsten et al. posit a general condition on allowed local
operators that guarantees no-signalling for non-selective measurement.

Some examples of seemingly innocent locally implementable operations that lead to ‘im-
possible measurements’ are given in [14] (and also [9]). For finite dimensional Hilbert spaces,
it is particularly interesting for quantum information purposes to analyse the causal be-
haviour of operations that correspond to measuring observables of the type Â ⊗ 1 + 1 ⊗ B̂
versus Â ⊗ B̂ on the tensor product of two local subsystems H1 ⊗ H2. In [14] it was shown
that the latter can be problematic, despite the expectation that such a ‘factorised’ opera-
tion should be locally implementable in the Hilbert space sense (by means of LOCC, local
operations and classical communication). They provide the following concrete example of a
bipartite system that starts out in the factorised state |ψ⟩ = |0⟩⊗ 1√

2(|0⟩+ |1⟩). First, a local
unitary ‘kick’ Û = eiγσ̂x⊗1 is applied, and then a non-selective measurement of the observable
|1⟩ ⟨1| ⊗ σ̂z is performed. The outcome is that expectation values of observables over H2 will
generally depend on γ, e.g., ⟨1 ⊗ σ̂x⟩ = cos2(γ).7 A similar QFT example of this problematic

6The causal future/past J+/−(x) of a spacetime point x is the set of all points reached from x by smooth
future-directed causal curves. For a spacetime region O we write J

±(O) =
⋃

x∈O J
±(x) [41].

7By applying the causality condition (5) that Borsten et al. derive (see next section) for the case A1 = Û ,
A2 = |1⟩ ⟨1| ⊗ σ̂z and A3 = 1 ⊗ σ̂z one can appreciate the role that the degeneracy of A2 plays in failing
to satisfy (5). That is, the non-selective measurement of a degenerate observable can enable superluminal
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case is the measurement of a product of fields such as ϕ̂(f1)ϕ̂(f2) where f1, f2 are supported
in disjoint spacetime regions (see [65]).8

2.4 Discussion

2.4.1 Analysis of the ‘impossible measurements’ reductio argument

Sorkin-type impossible measurement scenarios clearly illustrate the moral that P4 Micro-
causality is not by itself sufficient to rule out superluminal signalling in relativistic quantum
theories. The question of how to respond to this reductio argument—i.e., how to revise the set
of assumptions so that superluminal signalling is excluded for all possible measurements—will
be taken up in the next subsection. First we will analyze the argument itself.

Reductio arguments perform the useful function of pinpointing a set of assumptions that
lead to a problematic conclusion. However, the implied negative information about issues
that are not relevant to resolving the problem stated in the conclusion can be valuable. The
‘impossible measurements’ reductio argument is particularly valuable in this respect because
it is distinct from some of the other recognized foundational issues that face QFT.

An obvious first line of response to the ‘impossible measurements’ reductio might seem
to be to make Lüders’ rule manifestly Lorentz covariant. However, this response does not
address the impossible measurements problem. Lüders’ rule P3(b) for a state update from t
to t′ is applied to a sequence of measurements in relativistic spacetime by using the temporal
ordering relation in P3(c). P3(c) imposes a temporal order for a given set of regions (such
as those identified in Fig. 2), but the transitive closure operation is not Lorentz covariant.
The order induced by transitive closure can be extended to a non-unique linear order, which
is equivalent to the choice of a preferred hypersurface of simultaneity. However, as Sorkin
notes, different choices of linear order do not affect the expectation values for any sequence
of projective measurements associated with the regions as a result of P4 Microcausality.
Since the conclusion of the reductio argument concerns the expectation values for O3, which
are assigned in a Lorentz covariant way, making Lüders’ rule manifestly Lorentz covariant
seems unlikely to solve the problem. (Of course, adopting a manifestly Lorentz covariant
alternative to Lüders’ rule may well be part of the solution, as the FV measurement framework
demonstrates.)

Another indication that the fact that Lüders’ rule is not manifestly Lorentz covariance
is not the root cause of the impossible measurements problem is that making Lüders’ rule
Lorentz covariant is not sufficient to solve the problem. Hellwig and Kraus [60] proposed
a manifestly Lorentz covariant version of Lüders’ rule back in 1970.9 Hellwig and Kraus
stipulate that Lüders’ rule only updates the state of the field in the causal future and causal

signalling, even if this observable is factorised.
8Details: where non-selective measurements are implemented by unitary ‘kicks’ or operations involving

1-parameter families of Kraus operators. Jubb also shows that expectation values involving products of fields
can be recovered using only ‘possible measurements’ of smeared fields and the identity.

9Hellwig and Kraus argue that their proposal is physically equivalent to a more elaborate proposal for a
Lorentz covariant version of Lüders’ rule made by Schlieder in [97].
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complement of the region in which the measurement is performed; the state of the field
in the causal past of the measurement region remains unchanged. Clearly, making Lüders’
rule manifestly Lorentz covariant in this way does not address the problem of Sorkin-type
impossible measurements because this state update rule still applies in region O2, which
is contained in the causal future and causal complement of O1. Sorkin himself suggests
(but does not endorse) an alternatiave Lorentz-covariant modification, which is to restrict
Lüders’ state update to the causal future of a measurement region. However, this does not
by itself address the impossible measurement problem, which involves measurement regions
such as O3 in Fig. 2 that are not strictly contained in either the causal future or the causal
complement of O2. Sorkin considers the restriction of allowed measurement regions to those
that are strictly causally ordered (e.g., O3 in Fig. 2 must be entirely in the causal future or
entirely in the causal complement of O2), but this restriction seems to lack an independent
physical motivation, as we discuss in Sec. 2.4.2.10 The upshot is that impossible measurement
scenarios cannot be blamed on the fact that Lüders’ rule is not manifestly Lorentz covariant.
Of course, a measurement theory for QFT would ideally contain manifestly Lorentz covariant
state update rules, but making Lüders’ rule manifestly Lorentz covariant is not by itself
sufficient to address the ‘impossible measurements’ reductio argument.

As Sorkin also points out, the failure of collapse interpretations to be manifestly Lorentz
covariant is also not the source of the impossible measurements problem:

It is often objected that the idea of state-vector reduction cannot be Lorentz-
invariant, since “collapse” will occur along different hypersurfaces in different
rest-frames. However we have just seen that well-defined probability rules can be
given without associating the successive collapses to any particular hypersurface.
Thus the objection is unfounded to the extent that one regards the projection
postulate as nothing more than a rule for computing probabilities. (p.4)

In general, proposed solutions to the Measurement Problem that offer a physical interpreta-
tion of quantum theory will not address the impossible measurements problem if they leave
all of the premises of the ‘impossible measurements’ reductio argument intact insofar as
their implications for the assignment of probabilities upon measurement are concerned. the
‘impossible measurements’ reductio argument relies on the uncontroversial formal recipe for
extracting probabilities for measurement outcomes from NRQM; the problem is that the at-
tempt to extend this formal recipe to the relativistic context leads to superluminal signalling.
There is consensus about the irrelevance of the Measurement Problem in the responses to
Sorkin-type impossible measurement scenarios that are discussed below (see p.3 of [41] and
Sec. II of [54]).11 The Measurement Problem is thus not directly relevant to the resolution
of the Sorkin-type no-go result.

10See [14] for further discussion of shortcomings of other proposals along these lines in different spacetime
contexts.

11In the detector models approach, Grimmer, Torres, and Mart́ın-Mart́ınez [54] agree with this assessment
of the irrelevance of the Measurement Problem in NRQM to Sorkin-type impossible measurement scenarios,
but in addition suggest that there is a ‘relativistic cut’ between NRQM and QFT that is analogous to the
Heisenberg cut. See the discussion in Sec. 5.3 below.
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Interpretations of quantum theory proposed as solutions to the Measurement Problem
are not relevant to addressing the ‘impossible measurements’ reductio argument. However,
the implication could run in the other direction: resolutions of the impossible measurements
reductio could have implications for the possible interpretations of relativistic quantum the-
ory. “The” Measurement Problem is actually a collection problems (see [76, 79]), but a
historically important and intuitive variant is the following: the unitary quantum dynamics
(e.g., as given by the Schrödinger equation) is inconsistent with the prescription for state
update after measurement (e.g., as given by Lüders’ rule). Rejecting some of the premises of
the ‘impossible measurements’ reductio argument and/or adding new assumptions to block
impossible measurement scenarios may involve changes to both halves of this Measurement
Problem for NRQM. That is, the representation of relativstic dynamics in QFT and the state
update rules in the accompanying measurement theory for QFT could both be different from
NRQM in ways that affect the form taken by the Measurement Problem in QFT. For exam-
ple, the FV measurement framework for AQFT involves both the addition of an assumption
about relativistic dynamics and a revised measurement theory for QFT (see Sec. 3).

Another feature of the Sorkin reductio argument is that it makes no assumptions about
the state of the relativistic quantum system that is measured. This is another important
piece of negative information about factors that are not relevant to ruling out impossible
measurement scenarios. In particular, while Sorkin’s QFT example chooses the vacuum state
as the initial state, it is not necessary that the system be in the vacuum state or any other
state that satisfies the assumptions of the Reeh-Schlieder theorem. In fact, it is interesting to
note that the ‘impossible measurements’ reductio argument assumes Microcausality, but the
Reeh-Schlieder theorem does not (see [21] for discussion). As a result, Sorkin’s impossible
measurements are not related to state-dependent phenomena such as the entanglement of
a state across spacelike separated regions. Furthermore, impossible measurement scenarios
are not caused by the special properties of the Type III von Neumann algebras that are
ubiquitous in QFT; the ‘impossible measurements’ reductio argument applies in principle to
von Neumann algebras of any type.12 Of course, given that Type III von Neumann algebras
are often physically relevant in QFT, the particular interpretive issues that they raise will
need to be addressed, as will the implications of the Reeh-Schlieder theorem.13 However, it is
important to recognize that Sorkin-type impossible measurement scenarios raise a separate
set of foundational issues.14

12Borsten et al. [14] draw attention to the fact that the projectors in the P3(b) version of Lüders’ rule
are not necessarily of rank one. For discussion of limitations on the extent to which it is possible to apply
Lüders’ rule in the context of Type III algebras see [17] and [93].

13For example, the FV framework and detector models approach have been deployed to analyze the theo-
retical limitations on harvesting entanglement from Reeh-Schlieder states in [90] and [54], respectively. The
Reeh-Schlieder property is also mentioned below in the context of discussions of selective measurements and
properties of Type III algebras, which are not directly relevant to impossible measurement scenarios (which
concern only non-selective measurements).

14The interaction picture for representing the dynamics of QFT is used in one of Sorkin’s examples and
some of the literature responding to Sorkin-type impossible measurement scenarios. The interaction picture
is also problematic due to Haag’s theorem (See [34] for discussion.) These issues will be set aside in this paper
because they are not directly related to the impossible measurements problem insofar as simply adopting an
acceptable alternative to the interaction picture is insufficient to block impossible measurements. Moreover
the ‘impossible measurements’ reductio argument relies on a different set of premises from proofs of Haag’s
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2.4.2 Strategies for responding to the ‘impossible measurements’ reductio ar-
gument

We will proceed to evaluate the lessons of the ‘impossible measurements’ reductio argument
by working under the assumption that the conclusion is genuinely unacceptable (i.e., that
the expectation values of a measurement performed in one region cannot depend on which
unitary operation is performed in a spacelike separated region). This means that the avenues
of response to the reductio argument can be distinguished by their rejection of different sets of
premises and/or their addition of different sets of premises to the argument. Assuming that
the conclusion of the ‘impossible measurements’ reductio argument is deemed unacceptable,
responding to the reductio requires blocking the derivation of the conclusion by rejecting one
or more premises or adding one or more premises.

The most straightforward response is an ad hoc15 one: target P1 and P3, which taken
together entail that the measurable observables include all Ak that can be obtained by re-
stricting the field Φ to any region O. An ad hoc resolution of the reductio can be obtained by
simply excluding any observable that can lead to superluminal signalling. Sorkin proposes
(but does not endorse) restricting the regions to which observables may be assigned. For ex-
ample, imposing the restriction that measurable observables may only be defined on regions
that are strictly causally ordered (i.e., for regions Oj and Ok, all x ∈ Oj causally precede all
y ∈ Ok or vice versa) (p.9). As Sorkin notes, it is difficult to imagine how the possibility of
performing a measurement operation could depend on spacetime in this way (see also [11]).
There are presumably not ‘spacetime police’ to ensure that laboratory measurements are
only carried out when they are strictly causally ordered.

Borsten et al. [14] propose a different ad hoc resolution of the reductio that imposes a
restriction directly on the observables rather than the associated regions (see also [9, 2]).
They argue that the following condition rules out superluminal signalling by non-selective
measurements in Sorkin-type scenarios:

An operator A2 ∈ A(O2) with resolution B will not enable signalling iff (5)
[EA2,B(A3),A1] = 0, as an operator equation, for all A1,3 ∈ A(O1,3).

Again, the logic is that this condition is imposed for the purpose of excluding superluminal
signalling. The condition can be enforced by ‘banning’ observables A2 that do not satisfy it,
or else bringing in some notion of coarse-graining that entails a measurement resolution that
is large enough for the criterion to be met.16 Both options are ad hoc, as long as they are
demanded only to avoid superluminal signalling, and would have to be further motivated on
physical grounds.

In this paper, we focus our attention on more comprehensive, physically motivated propos-
als for modeling measurement in QFT that address the ‘impossible measurements’ reductio.
theorem.

15This is not a pejorative use of the term ad hoc. Both Sorkin [100] and Borsten et al. [14] use this term
to describe their proposals.

16In [65] the measurement resolution is introduced by considering Gaussian measurements. It is pointed
out that, in particular examples, the allowed accuracy of a Gaussian measurement is determined by all future
experiments. Some mechanism would have to constrain future experiments accordingly.
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However, we do not wish to diminish the value of this ad hoc approach, which is further devel-
oped by Jubb in [65]. This approach may be regarded as complementary to both the detector
models approach and the FV framework. Borsten et al. emphasize that their no-signalling
criterion is model-independent (“a theoretical limit on what is possible, independent of how it
is attempted” (p.3)), in contrast to the detector models approach. They also argue that their
condition is applicable to any state update rule, not only Lüders’ rule. As we shall discuss
in Sec. 4, condition 5 holds FAPP for important examples of detector models. Borsten et al.
note that their condition (5) is general enough to be applied to the Type III von Neumann
algebras that are physically relevant in QFT. Condition (5) can also be compared with the
results of applying the FV framework for AQFT. (See [65, 42] for further discussion.)

In Sec. 3–5, we examine in depth two proposals for representing measurement in QFT:
the FV framework for measurement in AQFT and the detector-based measurement theory
for QFT. We have chosen to focus on these two proposals because each makes substantial,
physically motivated revisions to the premises of the reductio argument. In contrast to
the ad hoc resolutions, these revisions do not rule out impossible measurement scenarios
automatically; non-trivial arguments are required to show that, in each of these measurement
theories, non-selective measurements of Sorkin-type cannot be used to signal.

In Sec. 3, we will consider the Fewster-Verch (FV) measurement framework for AQFT.
Fewster and Verch adopt a ‘top down’ approach that aims to treat measurements in general
and quantum field systems in general. Both the quantum field system and the measurement
probe are modeled using AQFT. The initial motivation for this approach was to provide
a framework in which the localization properties of observables of Unruh-DeWitt detectors
could be studied [42, p.5]. Subsequently the FV framework was used to addresses the ‘impos-
sible measurements’ problem [15]. The strategy involves rejecting many of the premises of
the ‘impossible measurements’ reductio argument as well as adding as premises axioms from
AQFT. In particular, a new measurement theory for AQFT is formulated to replace much
of P3. In the axiomatic context of AQFT, it is recognized that Microcausality by itself is
insufficient to rule out superluminal signalling for reasons unrelated to impossible measure-
ments (see [95, 36] and the discussion in Sec. 3.1 below); additional axioms or assumptions
are needed. An important goal of this approach is the principled one of determining which
physical principles are needed to consistently represent relativistic quantum systems and the
measurements performed on them.

In contrast, the detector models approach that is examined in Sec. 4 adopts a ‘bottom
up’ strategy of constructing models for different types of detectors (e.g., an Unruh-DeWitt
detector), each of which represents the interaction between the detector and a quantum
field system. A main plank of this strategy is to model the detector using NRQM and
(as far as possible) the measurement theory set out in P3 (including Lüders’ rule for ideal
measurements). However, the detector models approach rejects Sorkin’s assumption that the
measurement theory set out in P3 can be applied directly to the quantum field system. The
primary goal of this approach is the pragmatic one of obtaining practically applicable models
of realistic detectors, typically used in quantum optics and quantum information. We offer
an in-depth comparison of the detector models approach and the FV framework in Sec. 5.

Clearly, the ad hoc, FV, and detector models approaches are not the only possible ap-
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proaches to addressing the ‘impossible measurements’ reductio; the reductio functions as
a useful heuristic for suggesting alternative approaches to formulating a measurement the-
ory for QFT. Different approaches might involve rejecting or revising other premises and/or
adding premises that reflect missing relativistic and/or quantum principles. The open-ended
nature of the project means that our review will not be comprehensive, but we will discuss
Sorkin’s own preferred response to the ‘impossible measurements’ problem, which is to shift
to a histories-based formulation of QFT. In Sec. 6, we review recent progress on a histories-
inspired formulation of QFT and the remaining challenges to resolving the ‘impossible mea-
surements’ problem in this framework. Another example of an approach to formulating a
measurement theory for QFT is the positive formalism proposed in Oeckl [80] which adopts
the strategy of abstracting an operational framework based on probes and composition from
non-relativistic quantum mechanics and then developing a concrete implementation for QFT.
The resolution of the ‘impossible measurements’ problem in this framework is the subject of
current research.

3 Principled approach: Fewster-Verch framework for
measurement in AQFT

The Fewster-Verch (FV) framework [41, 42] adopts a ‘top down’ strategy for formulating
a measurement theory for QFT: first general principles for QFT in the algebraic frame-
work are posited and then a compatible measurement theory is devised. Sec. 3.1 draws on
philosophical analysis of AQFT by Earman and Valente [36] and Ruetsche [92] to trace the
implications of the physical principles that Fewster and Verch adopt as axioms. Our aim
is to foster an appreciation for the role that these principles play in ruling out Sorkin-type
impossible measurement scenarios and also in informing the measurement theory for AQFT
introduced by Fewster and Verch. Sec. 3.2 introduces the measurement theory component
of the FV framework. Sec. 3.3 reviews the proof by Bostelmann et al. [15] that Sorkin-
type impossible measurements are excluded by the FV framework, highlighting the role of
the Time-Slice Property axiom. Sec. 3.4 is devoted to discussion of the physical interpre-
tation of the FV measurement theory, emphasizing points of contrast with both Quantum
Measurement Theory for NRQM and the detector-based measurement theory for QFT.

3.1 The principles of AQFT and their implications

Algebraic QFT (AQFT) associates algebras of observables A with open-bounded regions O
of a spacetime M . An algebraic state ω is a positive,17 normalized, linear functional from
A(O) or A(M) to C. For any A ∈ A, ω(A) represents the expected value of a measurement
of A in state ω. A set of axioms for AQFT is chosen that represents both quantum and
relativistic principles. For an introduction to AQFT, see [39] or [92]. Our discussion will
focus on the relevant details of Fewster and Verch’s version of AQFT. Fewster and Verch

17In a *-algebra, an element is positive if is a finite convex combination of elements of the form A∗A
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formulate their axioms for AQFT on globally hyperbolic spacetime.18 As a result, features
that are particular to the special context of Minkowksi spacetime are not included in the
axioms. Fewster and Verch prefer a set of axioms that is inspired by the locally covariant
approach to AQFT proposed by Brunetti, Fredenhagen and Verch in [16]. Their main moti-
vation for considering globally hyperbolic spacetimes is, of course, to open up the possibility
of incorporating gravity. Fewster and Verch’s axioms are devised to apply to a collection of
globally hyperbolic spacetimes; however, only the special case of a single globally hyperbolic
spacetime is needed for representing ‘impossible measurement’ scenarios. The FV axiomati-
zation liberalizes traditional algebraic QFT in one more respect: the algebras A are taken to
include not only self-adjoint operators, but also effects. This generalization is made to bring
the measurement theory for AQFT in line with Quantum Measurement Theory (e.g., [18]),
in which projection-valued measurements are a special case [41, p.7]. Fewster and Verch
similarly include Effect Valued Measures (EVMs), which are known as Positive Operator
Valued Measures (POVMs) in Quantum Measurement Theory. An EVM is a map E from
effects of the probe to the effects of the system: E : χ → A, where χ is a σ-algebra and A
is a *-algebra, such that E has properties of a measure and takes values A ∈ A such that A
and 1 − A are both positive [41, p.7].

Following Bostelmann et al. [15], here are the axioms for a single globally hyperbolic
spacetime (with information about the general case of a collection of spacetimes in footnotes):

1. (Global algebras) The theory specifies a unital *-algebra A associated with a globally
hyperbolic spacetime M .19

2. (Compatibility) A region is an open, causally convex subset N of M . A(N) is a
unital sub-*-algebra of A(M) := A.20

3. (Isotony) For regions N1 ⊆ N2: A(N1) ⊆ A(N2).

4. (Time-Slice Property) If N contains a Cauchy surface for M , then A(N) = A(M).
That is, there is a local embedding isomorphism αM ;N : A(N) → A(M).

5. (Microcausality) If regions N1 and N2 are causally disjoint, then the elements of
A(N1) commute with the elements of A(N2).

6. (Haag Property) Let K be a compact subset of M . If an element A ∈ A(M)
commutes with every element of A(M) for every region N in the causal complement
K⊥ of K, then A ∈ A(L) whenever L is a connected, open, causally convex subset
containing K.21

18A spacetime is globally hyperbolic if and only if it has no closed causal curves and the causal hull of any
compact set is compact. The causal hull of a subset S of spacetime M is the intersection of its causal past
and future, J+(S)

⋂
J−(S) [41].

19In general, the theory can admit a collection of globally hyperbolic spacetimes M and specifies a unital
*-algebra for each M in M. This opens up the possibility for comparison of a theory on different spacetimes
even when one spacetime is not embeddable in the other [37].

20A subset N is causally convex if it is equal to its causal hull J+(N)
⋂

J−(N). For a collection of globally
hyperbolic spacetimes, this becomes a compatibility requirement that A can be defined on N , taken to be a
globally hyperbolic spacetime in its own right with metric and time orientation inherited from M .

21This is a weakened form of Haag duality. See [41] for discussion.
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In this axiomatization, the global algebra A(M) is posited and (Compatibility) is used to
define local algebras: associated with every casually convex subsetN ⊆ M is an algebra A(N)
that (Compatibility) ensures is compatible with the global algebra A(M). (Compatibility)
and (Time-Slice Property) entail a local version of (Time-Slice Property):

(Local Time-Slice Property) If N1 ⊂ N2 and N1 contains a Cauchy surface for N2, then
A(N1) = A(N2).

Axioms such as these time-slice properties have a long history in AQFT. Axioms in the same
family include Primitive Causality, Local Primitive Causality, and Second Causality [29].
(See [36] and [92] for discussion.)

The only obvious overlap with the assumptions for the ‘impossible measurements’ re-
ductio argument set out in Sec. 2 is (Microcausality). (Local Time-Slice Property) and
(Time-Slice Property) are independent of (Microcausality) (i.e., there are models in which
(Microcausality) is satisfied but not either of the other two axioms, and vice versa) [55].
All of the axioms posited by Fewster and Verch play a role in the FV framework, but the
key axioms that Bostelmann et al. [15] invoke to demonstrate that the FV framework does
not allow Sorkin-type impossible measurements to occur are (Isotony) and (Local Time-Slice
Property). (Isotony) is the natural requirement that the inclusion relations among alge-
bras reflect the spacetime relations among spacetime regions. (Local Time-Slice Property)
is the one that does the nontrivial work in shielding the FV framework from Sorkin-type
measurement scenarios.

To appreciate the significance of (Time-Slice Property) for ruling out superluminal sig-
nalling, we will draw on the comprehensive analysis of relativistic causality assumptions in
AQFT presented in Earman and Valente [36]. Earman and Valente’s main conclusion is that
in Minkowski spacetime the “most direct expression of relativistic causality” in AQFT is (Lo-
cal Time-Slice Property).22 Consideration of how the FV framework uses (Local Time-Slice
Property) to block Sorkin-type impossible measurements strengthens Earman and Valente’s
argument for the relative importance of (Local Time-Slice Property), but one does not have
to accept their conclusion that (Local Time-Slice Property) is the most direct expression of
relativistic causality in order to follow their analysis. Earman and Valente distinguish two
aspects of relativistic causality that are relevant to our discussion: no superluminal signalling
(i.e., by performing local operations on quantum fields) and no superluminal propagation of

22Earman and Valente adopt the (Local Primitive Causality) axiom in the (Time-Slice Property) family
(and (Isotony), which strengthens it). Aside from the restriction to Minkowski spacetime and the use of
concrete von Neumann algebras, the main difference between (Local Primitive Causality) axiom and Fewster
and Verch’s (Local Time-Slice Property) is that the former applies to any open-bounded regions while the
latter is restricted to open, causally convex regions. The definition of a region as a causally convex region
in the FV (Compatibility) axiom is a consequence of the more general spacetime context of collections of
globally hyperbolic spacetimes. For example, Fewster and Verch [41, pp.24–25] argue by appeal to an example
that the minimal localization region for a system observable induced by measurement is the entire causal
hull of the region in which the system and probe interact because in any smaller localization region whether
induced observables commute would be sensitive to changes in geometry. See [37] for a more general argument
along similar lines. The arguments offered by Earman and Valente apply to causally convex regions, so this
difference in the definition of regions will be set aside here, but it may have interpretative consequences.
(Thanks to Laura Ruetsche for pointing this out.)

19



quantum fields. We will focus on their positive analysis of the relationship between (Local
Time-Slice Property) and relativistic causality.

Earman and Valente argue that a dynamical axiom is needed in order to enforce rela-
tivistic causality. (Microcausality) is a kinematical axiom that imposes an independence or
separability requirement (p.3). In contrast, (Time-Slice Property) concerns dynamics. As
Fewster and Verch explain, “[t]he timeslice assumption is one of the lynch-pins of the struc-
ture and encodes the idea that the theory has a dynamical law, although what it is is left
unspecified” [40, p.9]. That is, (Time-Slice Property) states that there exist local embedding
isomorphisms αM ;N that reflect the dynamics. Axioms in this family are sometimes labelled
“Existence of Dynamics” to make their role transparent [39, p.14]. Positing an axiom that im-
poses a dynamical constraint can exclude spacelike dependencies between expectation values
in one region and unitary operations performed in a spacelike separated region by enforcing
the requirement that fields cannot propagate faster than the speed of light. Intuitively, if the
fields cannot propagate faster than the speed of light, then the effects of local operations on
the fields should not be able to propagate faster than the speed of light either.

Earman and Valente [36, p.19] argue that this intuition about needing a dynamical axiom
like (Time-Slice Property) to exclude superluminal signalling is supported by considering
classical field theories. In classical relativistic field theories, the prohibition on superluminal
field propagation is typically enforced by the field equations. More specifically, the field
equations are a system of symmetric, quasi-linear, hyperbolic partial differential equations
that are associated with a set of causal cones that typically23 do not permit superluminal
propagation of the field [50]. Determinism keeps the fields propagating within the causal
cones. Consider the initial value problem for a system of field equations. The specification of
‘initial’ data on a closed subset S of points in Cauchy surface Σ picks out a unique solution
of the field equations in the future and past domains of dependence of S, D(S).24 Note
that determinism is a fact about what the initial state and dynamical laws entail about
future states, not an epistemic matter of what we can know or predict. As Earman and
Valente explain, the prohibition on superluminal propagation “follows from a mild form of
verificationism”: “the local nature of determinism means that there is no way to detect the
effects of any alleged superluminal propagation since once the relevant initial data on S are
fixed, data at points relatively spacelike to S and to D(S) can be varied in any manner one
likes (consistent with the constraints (if any) on initial data) without making any difference
at all for the solution in D(S)” [36, p.19].

For AQFT on Minkowski spacetime, Local Quantum Determinism is the the analogue of
the initial value problem for classical fields:

Local Quantum Determinism: For any physical states ω and ω′, and any O ⊂ M ,
if ω |A(O)= ω′ |A(O) then ω |A(D(O))= ω′ |A(D(O)), where ω |A(O) represents the
restriction of the state ω to the local algebra A(O).

23In atypical cases the causal cones of the hyperbolic partial differential equations could differ from the
null cones of the spacetime, which would in principle permit superluminal signalling [50, 36].

24Assuming that the solution of the field equations does not ‘blow up’ at future or past times (i.e., global
existence and uniqueness conditions are satisfied) [36]. The domain of dependence D(S) of S is the set of
points p such that every inextendible causal curve through p meets S [36].
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(Local Time-Slice Property) ensures that Local Quantum Determinism holds when O is a
causally convex subset N of M by identifying A(N) and A(D(N)). Modulo the restriction to
causally convex regions,25 (Local Time-Slice Property) is the axiom that Earman and Valente
regard as the most direct expression of relativistic causality. Note that the prohibition
on superluminal field propagation does not follow automatically from the quantization of
a classical theory with hyperbolic field equations. The interpretation of the algebras of
observables as having localization regions that include their own domain of dependence, as
required by (Local Time-Slice Property), is also necessary [36, p.24].26 Again, determinism
in the sense captured by Local Quantum Determinism is a fact about the theory, not an
epistemic matter. However, epistemic considerations can provide motivation for the adoption
of (Local Time-Slice Property). Bostelmann et al. [15, p.3] declare “Morally: If one knows
the initial conditions of a quantum field on a Cauchy surface, then one knows the quantum
field everywhere.”

Before moving on to discuss the details of the FV measurement theory in the next sub-
section, we will pause to consider why AQFT needs its own measurement theory and how the
axioms inform the representation of measurement in AQFT. Earman and Valente [36, p.14]
offer a straightforward argument that Lüders’ rule cannot be näıvely extended to AQFT. Ap-
ply the GNS construction using state ω to obtain a Hilbert space representation on which the
algebraic state ω is an expectation-valued map. Lüders’ rule for a non-selective measurement
of A ∈ A(O) can be formally applied to an algebraic state ω as follows:

ω′(·) =
∑
j

ω(PA
j · PA

j ), (6)

where PA
j are projections. However, ω′ cannot be interpreted as the state of the system after

measurement: in general, ω′ differs from ω in the causal past of region O (as well as the causal
future). Therefore, ω → ω′ cannot represent a physical change of state—that is, a transition
from a state ω before the measurement of A to a state ω′ after the measurement of A. In other
words, the projection postulate is inapplicable; the measurement preparation assumption
P3(b) of ideal measurement theory is not a legitimate assumption in the context of AQFT.
Earman and Valente recognize that there is a need for the type of measurement theory for
AQFT that Fewster and Verch develop: “assuming AQFT is an empirically adequate theory,
there must be within the AQFT description of the combined object-measurement apparatus
system...a description of measurement processes and their outcomes” [36, p.17].

Given that algebraic QFT has traditionally been given an operational interpretation in
terms of local measurement operations, one might wonder why it needs a separate measure-
ment theory. In their seminal presentation of axioms for algebraic QFT, Haag and Kastler
offer the following as the core of their operational interpretation: “[a]n operation in the space-

25See footnote 22.
26Earman and Valente [36, pp.23–24] cite Segal’s quantization scheme for the Klein-Gordon field as an

example with hyperbolic classical field equations in which Local Primitive Causality is violated and super-
luminal field propagation appears to be possible. The slight complication is that Segal does not explicitly
interpret a local algebra A(O) as representing observables measurable in O, so strictly speaking superluminal
propagation is not a verifiable prediction of Segal’s scheme.
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time region B corresponds to an element from [local algebra] U(B)” [57, p.851]. Fewster and
Verch point out two respects in which this operational interpretation falls short of their goals
for their own measurement theory. First, Haag and Kastler do not “set out how exactly
one measures an observable or performs an operation within a region of spacetime” [41, p.8].
Second, they “were reluctant to interpret elements of the local algebras as observables (which
they considered to arise as limits of local algebra elements)” (p.8). That is, AQFT is not
connected to predictions via the interpretation of local algebras in terms of laboratory proce-
dures; instead, the connection to predictions is still made by relating the algebras of operators
to collision cross sections using asymptotic limits via Haag-Ruelle scattering theory. (See [46]
for further discussion of the history of operational interpretations of AQFT.)

The axioms of AQFT inform and constrain the interpretation of the formalism. (Local
Time-Slice Property) and (Isotony) carry immediate consequences for the localization of
algebras of observables. Fewster and Verch emphasize that, as a consequence of these axioms,
an observable can be localized in different regions (p.7). Moreover, recognition of the larger
localization regions staked out by the domains of dependence of regions is not optional. Due
to determinism, the enlargement of the localization region from N to D(N) needs to be
taken into account. Ruetsche [92, pp.115, 110–111] endorses this “resolute reading” of (Local
Time-Slice Property)27 as mandating the larger localization regions. She argues that, by
(Local Time-Slice Property), an algebraic state ω on A(O) is also automatically a state on
A(D(O)). Appealing to states does not reduce the size of the localization region because
in AQFT states inherit their localization properties from the algebras. Another reason that
the larger localization regions D(N) need to be taken into account to block Sorkin-type
impossible measurement scenarios, as we shall see in Sec. 3.3.

The association of an algebra A(O) with more than one localization region A(D(O)) is
in tension with the traditional operational interpretation of local algebras A as representing
operations that can be performed in a laboratory in region O. If the localization region
associated with A(O) can be expanded to include the domain of dependence D(O), then
the algebra of observables will typically be associated with spatiotemporal regions outside of
the lab and a duration longer than the duration of the measurement. As we shall discuss in
Sec. 3.2, the FV measurement framework does not rely on local algebras of observables to
represent local laboratory operations.

(Local Time-Slice Property) also precludes a natural strategy for representing dynamical
evolution in a globally hyperbolic spacetime. In NRQM, there is a unique foliation of the
spacetime into spacelike hypersurfaces that are paramaterized by absolute time. The dynam-
ics is represented by a unitary operator U(t) that induces time evolution by acting on either
the operators (Heisenberg picture) or the states (Schrödinger picture). One might try to rep-
resent the dynamics in AQFT by proceeding by analogy with NRQM. A globally hyperbolic
spacetime can be foliated into a family of spacelike Cauchy surfaces. Pick a preferred folia-
tion {Σt} and then try to interpret the associated set of algebras A(Σt) as representing time
evolution in the Heisenberg picture. However, it is not possible to do this. As Ruetsche [92,

27Ruetsche’s discussion is based on the Primitive Causality axiom for globally hyperbolic spacetime in
the Time-Slice Property family [92, p.107]. Primitive Causality entails Time-Slice Property, and Primitive
Causality plus Isotony entail Local Time-Slice Property.
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pp.110–111] argues, the root of the problem is that there is no ‘set’ of algebras {A(Σt)} that
can be associated with a foliation of hypersurfaces {Σt} due to (Local Time-Slice Property)
(and (Isotony)): A(Σt) = A(Σt′) = A(M) because D(Σt) = D(Σt′) = M . The Schrödinger
picture is not possible either. Furthermore, Ruetsche [92, pp.110–111] argues, it is doubly
problematic to interpret the algebraic states as evolving in time. Algebraic states are time-
independent; they are associated with spacetime regions indirectly, as functionals of algebras
directly associated with spacetime regions. The first problem is that physically significant
states such as (in Minkowski spacetime) the vacuum state ω0 are global states in the sense of
being states for all of space and time. The global vacuum state ω0(M) is not a state that can
figure in a time evolution for a system—e.g., a transition from ω0 to ω′

0—because ω0 already
generates the expectation values for the system on all of spacetime. The second problem
is that—for any algebraic state ω—a time evolution cannot be introduced by restrictions
of ω to a foliation of Cauchy surfaces {Σt}. Once again, (Local Time-Slice Property) (and
(Isotony)) undermine this strategy: ω |A(Σt) and ω |A(Σt′ ) cannot be interpreted as states at
times t and t′, respectively, because A(Σt) = A(Σt′) = A(M).

Of course, AQFT does represent relativistic dynamics; the dynamics is encoded in the
assignment of algebras to spacetime regions in accordance with the axioms, including (Time-
Slice Property). Once the dynamics is represented in this manner, one can choose a foliation
of (thickened) Cauchy surfaces and then infer the algebra of observables associated with each
of these hypersurfaces. The point is that the dynamics is not stipulated by associating an
algebra of observables with one of these (thickened) hypersurfaces and then applying a time
evolution operator to determine the algebras of observables associated with the other hyper-
surfaces in the foliation. Instead, (Time-Slice Property) supplies local embedding isomor-
phisms that represent the dynamical relations among algebras defined on different spacetime
regions. The FV measurement theory presented in the next section will provide an example
of how dynamics can be represented in this manner. (See Adlam [1] for a general discussion
of representations of dynamical laws that do not rely on time evolution.)

In sum, the positive conclusion of this subsection is that, as Earman and Valente argue,
there are principled reasons to expect that (when supplemented with a compatible measure-
ment theory) the axioms for AQFT adopted by Fewster and Verch will exclude superluminal
signalling. The negative conclusions are that the FV axioms place constraints on both the
representation of localization and the representation of relativistic dynamics. First, an alge-
bra A(O) is in general associated with more than one localization region. Furthermore, the
traditional operational interpretation of an algebra of observables in AQFT needs to be given
up: A(O) cannot be straightforwardly interpreted as representing a set of operations that
can (in principle) be performed in a lab in region O.28 Second, the dynamics of the system
in relativistic spacetime cannot be represented by using the usual method of choosing a pre-
ferred foliation of Cauchy surfaces with respect to which a time evolution operator is defined.
The measurement theory proposed by Fewster and Verch uses alternative representations of
local operations and the relativistic dynamics that are informed by the FV axioms. It also
delivers on the expectation that superluminal signalling is excluded, as Bostelmann et al.’s

28Fewster and Verch [42, p.11] suggest a similar interpretative moral in their recent article: “the message
to be drawn is that algebra elements localisable in a region O need not represent local operations that can be
undertaken there. On the other hand, hermitian algebra elements have a good interpretation as observables.”
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Figure 3: The FV definition of scattering morphisms (Fig. 1 in [41]). Time is the
vertical axis. Note that J−(K), the causal past of the system-probe interaction
region K, includes K. The dotted lines represent the lightlike boundaries of J+.
M+ is the complement of J−(K). S is an example of a Cauchy surface contained
in M+.

proof that ‘impossible measurements’ are actually impossible demonstrates.

3.2 The FV measurement theory for AQFT

Fewster and Verch [41] adopt a three-pronged strategy for devising their measurement theory
for AQFT. First, they introduce abstract AQFT models to represent the system and the
measurement probe(s). This means that both the system and the probe(s) are assigned
algebras of observables that satisfy the axioms set out in the previous subsection. A probe
is coupled to a system in some region and measurement of the probe outside of this region,
when it is not coupled to the system, is used to infer properties of the target system. Second,
an abstract version of scattering theory for finite regions that is adapted to AQFT is applied.
Finally, the same formal approach as Quantum Measurement Theory (QMT), exemplified by
Chapter 10 of [18]), is applied to this dynamical representation of the measurement process in
AQFT in order to derive state update rules. While the same reasoning is applied at each step
in the derivation, key differences are that abstract algebras are used instead of Hilbert spaces
(and Type I von Neumann algebras) and that spacetime dependence is made explicit.29 As a
result, the FV measurement theory differs both formally and in phyiscal interpretation from
QMT.

To represent the dynamical process of measurement, Fewster and Verch formulate a so-
phisticated abstract version of scattering theory within AQFT. Consider a system and a
single probe that are coupled in compact region K ⊆ M and uncoupled outside of K. (See
Fig. 3.) Let the algebra S represent the uncoupled system, the algebra P the uncoupled
probe, and the algebra C the coupled system and probe. Fewster and Verch then adopt a
scattering theoretic picture to represent the measurement interaction. The ‘in’ region is M−,

29Thanks to Chris Fewster for emphasizing this point.
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the complement of J+(K) (i.e., the causal future of K, including K). The ‘out’ region is
M+(K), the complement of J−(K) (i.e., the causal past of K, including K). The coupled
algebra C is identified with the uncoupled system-probe algebra U = P ⊗ S30 in M− and
M+, but not in the causal hull of coupling region K. That is, for each region L in M− or M+

there is an isomorphism χ: U(L) → C(L) that commutes with both the local embeddings
αM ;N ⊗βM ;N for U and γM ;N for C that are guaranteed by (Time-Slice Property).31 Algebraic
states are defined on each of the algebras. For example, the analogue of an ‘in’ state in which
there is no system-probe interaction is a state ω ⊗ σ over U . ϖ over C is an example of an
actual state in which the system and probe interact.

As in scattering theory, the central object is Θ, the scattering morphism, which relates
representations of the system and probe at ‘early’ and ‘late’ times. Θ is an algebraic isomor-
phism defined as a combination of isomorphisms χ: U(L) → C(L) and the local embedding
isomorphisms that are guaranteed by (Time-Slice Property), αM ;N ⊗ βM ;N (for uncoupled
algebra U) and γM ;N (for coupled algebra C). More precisely, the scattering morphism Θ is
defined as an automorphism of U(M) by introducing advanced and retarded maps τ±:

Θ = (τ−)−1τ+ : U(M) → U(M)

(τ−)−1τ+ is a composition of six isomorphisms that map the algebras as follows:

1. U(M) → U(M+)

2. U(M+) → C(M+)

3. C(M+) → C(M)

4. C(M) → C(M−)

5. C(M−) → U(M−)

6. U(M−) → U(M)

Intuitively, Θ takes the uncoupled observableA′ ∈ U(M+) associated with coupled observable
C ′ ∈ C(M+) at ‘late’ times, spacetime translates C ′ to its earlier counterpart, the coupled
observable C ∈ C(M−), and then maps this observable to the corresponding uncoupled
observable A ∈ U(M−).

Though inspired by conventional scattering theory, there are some important differences.
First, ‘early’ and ‘late’ do not refer to asymptotic times; moreover, they do not refer to times
picked out by Cauchy surfaces at all. ‘Early’ and ‘late’ refer to the entire spacetime regions
M− and M+, respectively, that are outside of the causal past and the causal future, respec-
tively, of coupling region K. This departure from conventional scattering theory enables

30Assumption to avoid technical detail: assume the algebras have discrete topology and use the algebraic
tensor product (p.8).

31The existence of such isomorphisms can be checked for a specified interaction by constructing a model.
The assumption that such isomorphisms exist is viable in general in perturbative AQFT [41, p.9].
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the FV framework to represent finite time measurement processes. A second difference is
that in the FV framework the ‘in’ and ‘out’ systems are not required to be free systems [41,
p.4]. In contrast, in conventional scattering theory the ‘in’ and ‘out’ systems are taken to be
free; typically, ‘in’ and ‘out’ systems are represented using Fock space representations for free
systems. A third difference is that Fewster and Verch’s scattering theory is abstract: the scat-
tering map Θ is an isomorphism at the algebraic level; concrete Hilbert space representations
(and the GNS construction) are not used. As we have already emphasized, the dynamics is
treated abstractly by positing (Time-Slice Property) to impose a dynamical constraint—the
existence of algebraic isomorphisms implementing local embeddings—that any concrete dy-
namical model (e.g., for a specified Lagrangian) must obey. Fewster and Verch note that this
is advantageous because it avoids one of the main challenges of constructive QFT: construct-
ing an explicit dynamics for a specified interacting theory. Though, of course, the ultimate
goal is to apply the FV framework to realistic measurement scenarios for interacting systems.
With this end in view, the FV framework is designed to be compatible with perturbative
AQFT [41, p.9].

The next step is to obtain state update rules that are adapted to the algebraic formulation
of AQFT and the scattering morphism Θ. The set up and derivations closely parallel the
presentation of QMT in Chapter 10 of Busch, Lahti, Pellonpää, and Ylinen [18]. Fewster and
Verch first present a measurement scheme for a system observable induced by a measured
probe observable and then define an instrument that represents state updates after measure-
ments. As already noted, the algebras of observables include not only self-adjoint operators,
but what FV label EVMs, which are known as POVMs in QMT. In both the FV framework
and QMT, projection-valued measurements are a special class of measurements. In QMT,
Lüders’ rule applies to the special case of repeatable, ideal, nondegenerate measurements.

Consider the measurement scheme for the FV framework. As in QMT, a measurement
scheme specifies the correspondence between probe observables and the corresponding system
observables that are measured. A measurement of probe observable B (when the probe is
prepared in state σ) can be interpreted as a measurement of induced system observable32

A = εσ(B), where εσ(B): P(M) → S(M) and σ is the state in which the probe is prepared.
By construction [42, p.7], ω(A)—which represents the expectation value of a measurement
of uncoupled system observable εσ(B) = A—is the same as

˜
ϖσ(B̃)—the expectation value

of the corresponding coupled system-probe observable B̃ in the corresponding state
˜
ϖσ over

C. This is achieved by imposing the following condtion (Eq. (3.9) in [41]):

˜
ϖσ(B̃) = ω(A) for all states ω of S(M) (7)

where B̃ ∈ C(M) and B̃ is the observable at ‘late’ times that corresponds to B ∈ P(M)
and

˜
ϖσ is the state at ‘late’ times that corresponds to ω ⊗ σ at ‘early’ times

(That is,
˜
ϖσ = (τ−)−1∗(ω ⊗ σ) and B̃ = (τ−)−1B).) Applying this condition results in a

definition of the measurement scheme for the FV measurement framework in terms of Θ:

ω(εσ(B)) = (ω ⊗ σ)(Θ(1 ⊗B)) =
˜
ϖσ(B̃) (8)

32Recall that “observable” is understood in the permissive sense of an EVM—A need not be a self-adjoint
operator.
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As in QMT, CP-instruments are introduced to describe the effect on the system of a
measurement satisfying this measurement scheme. More specifically, Fewster and Verch
adopt the same criterion of adequacy for the updated state as QMT (cf. [18, pp.230-1]):
“[w]e would like to obtain a new system state that is conditioned on the observation of this
effect, which means that the new state correctly predicts the conditional probability for the
joint observation of B together with any system effect, given that B is observed.” [41, p.13].

Since ‘impossible measurement’ scenarios involve only non-selective measurements, we will
only introduce the FV state update rule for non-selective measurements in this section. Recall
also (from Sec. 2.4) that the ‘impossible measurements’ problem concerns how to formulate a
measurement theory for QFT, not how to interpret the formalism. We will therefore discuss
how the FV framework resolves the ‘impossible measurements’ problem in the next subsection
and then offer a physical interpretation of the FV measurement framework in the following
subsection, where we will also consider the selective state update rule. The FV state update
rule for non-selective measurements (i.e., when there is no filtering conditional on which
probe effect is observed) is

ω′
ns(A) = (Θ∗(ω ⊗ σ))(A⊗ 1) (9)

where ∗ denotes the adjoint map.33 For comparison, the analogous instrument for QMT gives
the non-selective state update rule ρf (Ω) = trκ[U(ρ ⊗ σ)U∗], where the pointer variable Z
has a value in Ω (i.e., a non-selective measurement is performed), κ is the Hilbert space for
the probe, and ρ ⊗ σ is the initial system-probe state [18, p.231]. The expression in Eq.
(9) is the algebraic version of tracing out the probe. Moreover, the scattering morphism Θ
represents the dynamics, unitary time evolution operator U .

We can now appreciate how the FV measurement represents local operations and dy-
namics in a manner that complies with the negative morals noted in Sec. 3.1. (Time-Slice
Property) and (Isotony) imply that an algebra of observables A(N) can be localized in any
region in the domain of dependence of N . The FV framework squares this with the fact that
experiments happen in local labs by explicitly introducing a representation for the probe and
a region K in which the system and probe interact. A coupled system-probe algebra C is
assigned to the causal hull of this region K, but this algebra can also be localized in any
region D(K). The localization of operations performed in the lab is instead reflected in the
assumption that the algebras C and U = P ⊗ S can only be identified outside of K, where
and when the system and probe are uncoupled. Second, the dynamics of the system, probe,
and coupled system-probe are not represented by choosing a foliation of Cauchy surfaces
with respect to which to define a unitary operator to represent the time evolution. The FV
framework demonstrates that the local embedding isomorphisms underwritten by (Time-Slice
Property) suffice to represent not only the dynamics of the system, but also the dynamics of
the system-probe measurement interaction. For the latter, the scattering morphism Θ is the
key.

33That is, in general (ζ∗ω)(X) = ω(ζ(X)).
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Figure 4: Figure for Bostelmann et al.’s proof (Based on Fig. 2 in [15])

3.3 How the FV framework blocks Sorkin-type impossible mea-
surement scenarios

Bostelmann, Fewster, and Ruep [15] prove that the application of the FV framework to
Borsten et al.’s [14] ‘impossible measurement’ scenario does not allow superluminal signalling.
That is, the expectation value of a non-selective measurement in O3 is independent of which
unitary ‘kick’ is implemented in K1 (see Fig. 4). K1 is the region in which the interaction
occurs between the system S and the first probe P1 and K2 is the compact region in which the
interaction occurs between the system S and the second probe P2. Outside of the causal hulls
of K1 and K2 the uncoupled algebra U = S ⊗ P1 ⊗ P2 is isomorphic to coupled algebra C. O3
is the region in which the superluminal signal is allegedly received. Two scattering morphisms
are introduced: Θ̂1 for the first measurement in K1 and Θ̂2 for the second measurement in K2.
Θ̂1 is defined by extending the scattering morphism Θ1 : S ⊗P1 → S ⊗P1 to U = S ⊗P1 ⊗P2,
and similarly for Θ̂2.

Bostelmann et al. [15] prove that the expectation value for any system observable C in
S(O3) is independent of which non-selective measurement is performed in K1. Recall that in
the FV framework the state update rule for non-selective measurement of system observable
A is

ω′
ns(A) = (Θ∗(ω ⊗ σ))(A⊗ 1) (9)

Applying this update rule to the measurement scenario in Fig. 4, the updated state of
the system (for a system observable C ∈ S(O3)) conditional on the specified non-selective
measurement operations A and B performed in K1 and K2, respectively, is

ωAB(C) = (ω ⊗ σ1 ⊗ σ2)((Θ̂1 ◦ Θ̂2)(C ⊗ 1 ⊗ 1)) (10)

Consequently, the result that the expectation value for the measurement of any system ob-
servable C in S(O3) is independent of the measurement performed in K1 can be established
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by proving that the following algebraic equation involving the scattering morphisms holds:

∀C ∈ S(O3) : (Θ̂1 ◦ Θ̂2)(C ⊗ 1 ⊗ 1) = Θ̂2(C ⊗ 1 ⊗ 1) (11)

As anticipated, (Local Time-Slice Property) is the crucial ingredient in the proof. Bostel-
mann et al. rely on the following two properties of the scattering morphism that are estab-
lished in Proposition 1 of [41]:

1. For every region N ⊆ K⊥: Θ acts trivially on S ⊗ P(N)

2. For every region N ⊆ M+ and every region N− ⊆ M− with N ⊆ D(N−): Θ(S ⊗
P)(N) ⊆ (S ⊗ P)(N−)

Essentially, both theorems are established by using (Time-Slice Property) and (Com-
patibility) (which, recall, entail (Local Time-Slice Property)) to show that the scattering
morphism preserves the localization properties of the local algebras on which it acts (see Ap-
pendix 1 of [41]). The proofs involve tracing the localization properties of algebras mapped by
each of the two types of component morphisms of the scattering morphism: the isomorphisms
χ± between uncoupled algebra U and coupled algebra C in regions M± and the morphisms
for local embeddings γ of C and α⊗ β of U that are guaranteed by (Time-Slice Property).

Bostelmann et al.’s proof that Eq. (11) holds has two main parts. They first establish that
there exists a Cauchy surface Σ for M+

1 that is in the causal future of K1 and the causal pasts
of both K2 and O3 (see Fig. 4). The second step is to use the resulting information about
domains of dependence to apply the two scattering properties. The key is that region O3 is
in the domain of dependence of the region K⊥

1
⋂
M−

2 . By the second property of scattering
morphisms, applying Θ̂2 to U = S ⊗ P1 ⊗ P2(O3) maps the uncoupled algebra to K⊥

1
⋂
M−

2 .
As a result of the first property, applying Θ̂1 ◦ Θ̂2 then gives the same result as applying Θ̂2
because the localization region K⊥

1
⋂
M−

2 is in the causal complement of K1. Therefore, any
interactions between probe 1 and the system in K1 do not affect the expectation values of
system observables localized in O3.

As we have emphasized, postulation of (Local Time-Slice Property) is the main reason
that the FV framework does not allow Sorkin-type impossible measurements. In terms of the
reductio argument in Sec. 2.1, Fewster and Verch’s resolution involves adding this principle
to the listed set of premises. Of course, the FV framework also adds other axioms for
AQFT and a formulation of measurement theory that is suited to relativistic QFT. With
the introduction of new state update rules, Lüders’ rule for non-selective measurement is not
applied to obtain the updated state for the system in O3. Instead, the state update rule for
non-selective measurement in the FV framework (Eq. (9)) is applied. An obvious difference
between the rules is that Lüders’ rule is applied in a concrete Hilbert space representation
and the FV state update rule is formulated in abstract algebraic terms. More specifically, the
salient difference between the two rules is that Lüders’ rule invokes (a sum of) projectors while
the FV state update rule for non-selective measurement invokes Θ∗, which is (the adjoint of)
a composite of algebraic isomorphisms. Recall that the algebraic isomorphisms composing

29



Θ are of two types: dynamical isomorphisms underwritten by (Time-Slice Property) and
isomorphisms between algebras U and C in M+ and M−. The main point is that the FV
state update rule for non-selective measurement depends on the algebraic dynamics; it does
not depend on the action of operators in the algebra. The physical interpretation of this
state update rule will be taken up in the next section. Fewster and Verch [42, p.5] also draw
the following moral from Sorkin-type impossible measurements: “the fact that a unitary
operator is localisable in some region O does not imply that it induces an operation that
can be physically performed within O. This should not be a surprise: for instance, the
Lagrangians that describe local fields with local interactions constitute a very specific (and
small) subset of all possible Lagrangian field theories.”34

One might worry that this result does not fully address Sorkin-type impossible measure-
ment scenarios. Bostelmann et al. [15] prove that when the FV measurement framework is
applied, all system observables in O3 are independent of which non-selective measurement
is performed in K1, but this is not reassuring if there are physical system observables that
are not measurable by any probe representable in the FV measurement framework. Fewster,
Jubb and Ruep [43] addresses this issue by proving that, for the case of a real scalar field
theory, every local system observable can be asymptotically measured by some collection
of probes in the FV framework. That is, for every local system observable A ∈ S(N) for
N ⊆ M , there is a set of system observables and FV measurement schemes such that the
induced system observable εCα

σα
(Bα) converges to A35 (implying that A can be measured to

arbitrary precision). They expect that with “merely mild technical effort” their existence
proof for asymptotic measurement schemes could be extended to multiple real scalar fields,
Wick powers of real scalar fields, and other types of fields [43, pp.24, 25]. van der Lugt [108]
approaches the problem of showing that physical observables are measurable within the FV
framework from the perspective of standard non-relativistic quantum information theory. He
introduces a ‘hybrid model’ that implements the FV framework using the simpler Hilbert
space models of NRQM (i.e., Type I von Neumann algebras with a natural tensor product
structure) and then uses results from quantum information theory to show that in this hybrid
model all operations that do not permit superluminal signalling can be measured in the FV
framework.

3.4 Physical interpretation of the state update rules in the FV
measurement framework

How should we physically interpret the FV state update rules? More specifically, can the state
update rules be interpreted as representing physical processes or are they merely epistemic
in the sense that they are only calculational devices that allow us to derive probabilistic
predictions for measurement outcomes? In this subsection, we will go beyond the context that

34In response to a version of the ‘impossible measurements’ problem, Earman and Valente [36, p.14] also
question the assumption that all unitary operators in a local algebra A(O) correspond to unitary evolutions
in O.

35The proof demonstrates convergence in the strong operator topology of the GNS representation associated
with any quasi-free state with distributional two-point function.
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is strictly relevant to the Sorkin-type impossible measurement scenarios and consider selective
as well as non-selective measurements. To foreshadow, we will argue that the FV framework
can be interpreted as representing the physical process of measurement. However, there are
two fundamental respects in which the interpretation of the FV state update rules differs
from the interpretation of their counterparts in QMT: the states ω and ω′ are counterfactual
states (not actual states of the system) and for selective measurements there is no region
of spacetime in which a transition from ω to ω′ must occur. Our interpretation of the FV
framework in this section is compatible with many of the brief interpretative remarks offered
by Fewster and Verch, but we do disagree with a few of their interpretative comments.

The state update rules are expressed in terms of scattering morphism Θ. The sequence
of morphisms that compose Θ∗ (see the list on p.25) suggests the following intuitive, chrono-
logical interpretation of this scattering theory for the states, ordered from the past to the
future:

ω ⊗ σ(U(M−)) → ϖ(C(J+(K)
⋂
J−(K))) → ν(U(M+)) (12)

Of course, Θ is actually an isomorphism, but roughly speaking the morphisms vicariously map
via the algebras the prepared state ω⊗σ to the state ϖ of C in the causal hull of the system-
probe interaction region to the final system-probe state ν. The fact that ω ⊗ σ is a product
state and ν is not is a reflection of a time-asymmetry that is built into the measurement
scheme: we assume that the prepared system and probe states are uncorrelated and that
the measurement interaction correlates the system-probe states [41, p.10]. How should we
interpret the arrows in (12)? Clearly, they cannot represent the time evolution of the actual
system because, as we have been emphasizing, the dynamical isomorphisms represent local
embeddings and not time evolution (of either states or operators). Furthermore, these three
states are not even defined on the same algebra: ω ⊗ σ, ν are defined on U and ϖ is defined
on C.

The interpretation of these states depends on the interpretation of the associated algebras.
The actual world is represented by the coupled algebra C(M). The uncoupled algebra U(M) is
best interpreted, as Fewster and Verch [41, p.8] suggest, as representing “the counterfactual
world in which the interaction does not occur.” Fewster and Verch [41, p.8] also describe
U(M) as representing a “control situation.” Accordingly, the actual state of the system-probe
is given by ϖ on C(M). ϖ on C(M) is a global state in the sense that this state represents
the entire actual history of the combined system-probe system. Likewise, ω ⊗ σ and ν over
U(M) are each counterfactual global states.

The interpretations of ϖ, ω ⊗ σ, and ν differ from the interpretations of their counter-
parts in both QMT and conventional scattering theory for QFT. In QMT, the initial state
ρ ⊗ σ is taken to be the actual system-probe state, not a counterfactual state like ω ⊗ σ.
U(t) represents the actual time evolution of the system-probe (setting aside the question
of what happens upon measurement). In conventional scattering theory in particle physics,
the measurement probe is not included in the representation, but there is a similar contrast
between the status of the the initial and final states: in conventional scattering theory, the
initial and final states are also typically taken to represent the actual states of the system at
asymptotically early and late times, not counterfactual states.
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Consider the non-selective state update rules. Like the states ω ⊗ σ and ν from which
they are derived by tracing out the probe, ω and ω′

ns are counterfactual states. As a result,
the state update ω → ω′

ns cannot be interpreted as representing a physical change of the
actual state of the system from ω to ω′

ns. ω and ω′
ns are the appropriate states to assign

in M− and M+ respectively insofar as they predict the correct pre- and post-measurement
conditional probabilities.36 Fewster and Verch [42, p.7] describe state updates as “an exercise
in bookkeeping” that “provides an effective description of a physical process.” Is the FV
measurement framework then merely a calculational device for deriving predictions, or does
it also describe the physical process of measurement? While the state update rules are a
calculational device, the FV framework is also equipped with the resources to describe actual
physical processes. The state update rules are derived using ϖ(C), which represents the the
actual state and (presumably) actual physical changes in the values of the physical quantities
that are associated with local regions.

Consideration of selective measurement (i.e., measurement given that probe effect B is
observed) yields two additional arguments against interpreting the state update rules as
representing physical changes of state. These arguments concern how state updates are
associated with spacetime regions, not the counterfactual versus actual status of the states.
First, for state update for selective measurements, the expectation values given by ω′

s do not
in general agree with the expectation values given by ω in the necessary spacetime regions.
As Fewster and Verch establish, if ω has the Reeh-Schlieder property, then ω′

s(A) ̸= ω(A) for
any non-trivial observable A that either (a) is localizable in the causal complement of K or
(b) is localizable in any region O of the causal past of K that has no null geodesics connecting
it to K.37 This is not surprising because the Reeh-Schlieder property is an indication that
there are Bell correlations between regions, and an intermediate step in these results is that
ω(A) = ω′

s(A) for A satisfying (a) or (b) only when A and induced observable εσ(B) are
uncorrelated in state ω. Fewster and Verch [41, p.16] argue for the reasonable conclusion
that, since ω′

s(A) ̸= ω(A) for A in either the causal complement or the causal past of K,
“there seems to be no purpose in envisaging a transition from ωs to ω′

s occurring along or
near some surface in spacetime (whether a constant time surface as in non-relativistically
inspired accounts of measurement, or e.g., along the backward light cone of the interaction
region as in the proposal of Hellwig and Kraus [60], or an earlier proposal of Schlieder).”

Second, and more compellingly, Fewster and Verch’s conclusion that there is no reason
to assume that an evolution from ω to ω′

s occurs in any region of spacetime is supported by
a theorem about successive selective measurements [41, Corollary 6]. Consider two probes
in interaction regions K1 and K2 that are causally orderable (i.e., K2

⋂
J−(K1) = ∅). (See

Fig. 4 for an example; however, unlike the Borsten et al. [14] measurement scenario, these
measurements will be selective.) Assume that the causal factorization property holds: Θ̂ =
Θ̂1 ◦ Θ̂2 where Θ̂1 and Θ̂2 are defined as above. This is a natural assumption, but it can
also be verified for concrete models of system-probe interactions. Fewster and Verch show
that application of the selective rule for state update produces the same result regardless of

36Regions M− and M+ overlap in K⊥. For non-selective measurements, ω(A) = ω′
ns(A) for all A localizable

in K⊥, as one would expect. However, for selective measurements, this is not the case, as we discuss below.
37And assuming that the system obeys Huygens’ principle
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whether the interactions are modeled as successive selective measurements in regions K1 and
K2 or as a single selective measurement in region K1

⋃
K2 in which probe effects B1 and B2

are both observed. More precisely, for probe preparation states σ1 and σ2 and probe effects
B1 and B2, let ω′

1 be the state conditioned on B1 being observed in initial state ω, ω′′
12 be

the state conditioned on B2 being observed in state ω′
1, and ω′

12 be the state conditioned
on B1 ⊗ B2 being observed in initial state ω. Then ω′′

12 = ω′
12.38 Fewster and Verch [41,

p.17] “emphasize that we have have not needed to invoke any reduction of the state across
geometric regions.” They consider this corollary (and the accompanying theorem for the
corresponding pre-instruments) to be the “core result” of their article [41, p.27]. The upshot
is that the selective state update rule in the FV framework “renders moot the discussion of
where and when a state change of the system takes place as a consequence of measurement”
[41, p.27]. In other words, in QMT the selective state update rule can be interpreted literally
as representing a measurement-induced collapse that occurs somewhere in the world. Even
if one believes that this is not a compelling interpretation of NRQM, it is an admissible
interpretation of the formalism. In contrast, the FV selective state update rule does not
admit a literal interpretation as representing a measurement-induced collapse that occurs
somewhere in the world.

Corollary 6 is a direct result of the requirement that the FV measurement theory reflect
relativistic spacetime structure. As Fewster and Verch [41, p.17] note, Theorem 5—which
is the counterpart for instruments of Corollary 6 for state update—does not hold for non-
relativistic theories such as Euclidean QFT. Essentially, what Theorem 5 and Corollary 6
establish is that the measurement theory enshrines both the symmetry between the ordering
of measurement operations when K1 and K2 are causally disjoint (i.e., K2 ⊂ K⊥

1 ) and the
broken symmetry between the ordering of the measurement operations when K1 and K2 are
strictly causally ordered (i.e., K2 ⊂ J+(K1)). In contrast, relativistic causal ordering was
a requirement that Sorkin had to put in by hand as P3(c) when applying non-relativistic
quantum measurement theory to a relativistic case. Again, the contrast with QMT is also
illuminating. There is no analogue of Corollary 6 for QMT because successive measurements
are strictly temporally ordered: there is no alternative to representing the measurements as
ω′′

12 (i.e., with successive state updates) because the time evolution operator U appears in
the state update rule.

This raises the question of whether the FV measurement framework is inherently epistemic
in the sense that it only admits an interpretation in terms of the processing of information by
observers, and does not admit an interpretation in terms of physical processes in the world.
We have already suggested that the representation of the actual state of affairs by ϖ(C)
affords the FV framework the opportunity to represent actual physical processes, and not
only the counterfactual descriptions underwritten by the state update rules. There are also
two respects in which the state update rules themselves are not merely epistemic: they are
not observer-dependent in any significant respect and they do not need to be given a strong
operationalist interpretation. An epistemic interpretation of the FV measurement framework
is possible, but not required.

38Assuming that B1 has nonzero probability of being observed in ω and B2 has nonzero probability of
being observed in ω′

1.
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Some remarks by Fewster and Verch suggest that state update has an observer-dependent
interpretation: for example, in the context of selective measurements, “there seems no reason
to invoke a physical process of state reduction occurring at points or surfaces in spacetime,
rather, the updated state reflects the observer’s filtering of the system by conditioning on
measurement outcomes” [41, p.16]. However, there is nothing especially observer-dependent
about the state update rules. An updated state ω′ (minimally) serves the purpose of gen-
erating conditional probabilities (i.e., conditional on a specified probe effect). Of course,
conditional probabilities can be calculated for conditions that are not known by an observer
to obtain—or even conditions that are known by an observer not to obtain. Moreover, the
updated state ω′ is spacetime-independent. This is trivially true because the algebras of
observables, and not the states, are associated with regions of spacetime. More substan-
tively, when states are associated with spacetime regions via the algebras, ω′ can be defined
over U(M); the state is associated with all of spacetime, so clearly is not dependent on the
location of the observer. Of course, ω′ is the correct state to assign to the system only in
M+ insofar as it only gives the correct conditional probabilities for measurements performed
in this region. But this is not in any way observer-dependent—M+ is picked out by the
system-probe interaction region K. M+ is not defined with respect to the observer’s location
in spacetime, including with respect to where the observer chooses to perform a measurement
on the probe to obtain information about the value of an induced system observable.

As just noted, a selective state update can yield an updated state ω′
s(A) that differs

from the prepared state ω(A) in the causal past of K. Fewster and Verch [41, p.16] endorse
Hellwig and Kraus’ [60] strongly operationalist interpretation of this fact: “whether the state
actually remains unchanged or not in the past of the coupling region is a ‘pure convention’
with no operational significance as the region is no longer accessible to further experiment.”
While it is true that the observer in the causal future of K who assigns state ω′

s(A) cannot
experimentally test the predictions of this state assignment in M−, it is not necessary to
adopt this strong version of operationalism in order to defend the state assignment. The
counterfactual interpretation of states ω and ω′ defended above also permits observers in
M− and M+ to adopt different global states. Both ω and ω′

s are counterfactual states that
represent states of affairs in possible worlds. It is not meaningful to ask which of these states
represents the true state of the actual world in any region of spacetime. (A state ϖ on
C(M) is the true state of the actual world.) The state update rules perform their function of
predicting expectation values for measurements by supplying counterfactual states that are
only appropriate to use for calculational purposes in suitable spacetime regions (e.g., before
another measurement of the system is made).

Finally, the FV measurement framework is an ongoing research program, so there are
outstanding formal and interpretative questions. How the formalism gets developed will
have consequences for how the interpretation of the formalism discussed in this section can
be elaborated. For example, one formal development is that the recent extension of the FV
measurement framework from compact probe-system coupling regions to non-compact ones
for the case of a quantized real linear scalar field in [43]. Some abstract *-algebraic models
have been constructed for particular types of field systems, probes, and interactions between
them (e.g., for the simple case in which field and probe are modeled using free (massive or
massless) scalar fields and are linearly coupled in [41]. Another formal project is to implement
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the FV measurement framework using C*-algebras or concrete von Neumann algebras. [43]
applies the FV framework to C*-algebras. von Neumann algebras have not yet been explicitly
constructed, but [43, p.28, fn. 18] contains an argument that, for quasi-free Hadamard states,
the asymptotic measurement scheme that is defined is implementable on the von Neumann
algebra. (See Ruep [91] for more detail.)39

On the interpretative side, Fewster and Verch [42, p.13] note that there are outstanding
questions about how to interpret superpositions and transition probabilities in the algebraic
framework because these concepts are native to algebras of bounded operators on separa-
ble Hilbert spaces, which are Type I von Neumann algebras. Local algebras in AQFT are
typically Type III von Neumann algebras. As Ruetsche and Earman [93] explain, this cre-
ates problems for justifying the core interpretive assumption that quantum states represent
probabilities of something (e.g., measurement outcomes or hidden variables). In quantum
mechanics with a finite number of degrees of freedom, the standard justification for assuming
that states represent probabilities of measurement outcomes relies on the existence of atoms
(i.e., minimal projectors). The Type III von Neumann algebras that are characteristic of
local QFT do not contain atoms. Ruestche and Earman [93] consider several strategies for
extending the standard argument that states represent probabilities of either events (e.g.,
measurement outcomes) or value states (e.g., hidden variables) to Type III von Neumann al-
gebras, including a version of the ‘funnel’ proposal suggested in Fewster and Verch [42, p.13],
but find all of the arguments deficient. They conclude that justifying the interpretation of
states as representing probabilities of either events or value states is an open problem for
Type III von Neumann algebras.

In summary, the FV measurement framework begins by positing a set of axioms for
AQFT. These physical principles inform the measurement theory that FV introduce. This
measurement theory is also constrained by the fact it is set up in an analogous way to QMT
from NRQM, and by the use of a scattering theoretic framework to model the measure-
ment process. When Sorkin-type ‘impossible measurement’ scenarios are modeled in the FV
framework they do not lead to superluminal signalling. The FV measurement theory for
AQFT has state update rules that take a different form and have a different interpretation
from QMT. In particular, the ‘in’ ω and ‘out’ ω′ algebraic states that feature in the state
update rules are best interpreted as counterfactual states. The actual state of the system is
represented by ϖ on C(M). Moreover, the state update rules cannot be literally interpreted
as representing a physical change of state upon measurement that occurs in some region of
spacetime.

4 Pragmatic approach: Detector models

4.1 The use of Unruh-DeWitt-type detector models in RQI

Sorkin-type examples of impossible measurements indicate that it is problematic to näıvely
extend ideal measurement theory from NRQM within a minimal framework for relativistic

39Thanks to Maximilian Ruep for helpful correspondence about this.
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quantum theory. From a practical point of view, this is distressing because measurement is
obviously central to the use of the theory. This is an especially pressing concern in relativis-
tic quantum information (RQI), which is concerned with the theoretical and experimental
treatment of finite-time processes and realistic detectors. This makes it appealing to hang
on to ideal measurement theory and to give up one of the other assumptions in the reductio
argument instead. Detector models implement this strategy by introducing non-relativistic
quantum mechanical detector systems and coupling them to relativistic quantum fields rep-
resented using QFT. The relativistic quantum fields are not ‘directly’ measurable, but can
only be measured indirectly through their dynamical coupling to a controllable detector sys-
tem, or probe40. This von Neumann-like approach involves modeling the measurement as a
dynamical process, where the quantum field and the probe are suitably coupled for a finite
(or possibly infinite) time, the measurement duration. After the coupling has been switched
off (or becomes negligible), the probe can be directly measured, and quantum measurement
theory is applied to the detector system. The outcomes can be translated into statements
about the quantum field, at least in principle. In this sense, the quantum field is measured by
the detector system. If the detector-field coupling is local then the detector can be thought
of as a local probe that is locally measuring the quantum field. If we want to retain ideal
measurement theory from NRQM, this dynamical understanding of the measurement process
may be the only feasible option in Minkowski spacetime, given Sorkin’s no-go result.

Detectors are typically defined as controllable localised systems that are locally probing
the quantum field. The requirement that the detector system is controllable is more naturally
fulfilled if the detector is chosen to be a non-relativistic system. This means that it is well-
described by non-relativistic quantum mechanics and the measurement theory that comes
with it. Crucially, we can consider projective measurements over the detector system with
the usual Lüders state update rule and probability assignments that correspond to each
possible outcome. This is an advantage because the notion of a measurement outcome that
is associated to a finite-rank projector is typically not available in QFT, as an implication of
the Reeh-Schlieder theorem and arguments that local algebras are generically Type III von
Neumann algebras, which by definition do not contain finite-rank projectors [39, 41, 112].
It is not clear that generalizing from projectors to POVMs addresses this problem because
the spectral theorem no longer holds, and therefore cannot be appealed to as support for
the interpretation of the probabilities as probabilities of measurement outcomes [93]. Even
though it can be a relief that the usual notion of a measurement outcome can be maintained
through the introduction of a detector system, the association of detector outcomes with
induced field observables is far from straightforward. Partial answers to the question ‘what
do detectors detect?’ have been given [24, 26, 99, 104], but a systematic account is still
missing.

Originally particle detector models were introduced to extract particle phenomenology in
QFT (in curved spacetimes) related to the Unruh and Hawking effects [106, 107]. Since quan-
tum field theories do not permit a particle ontology [110, 44], this motivated the operational

40Often the terms ‘detector’ and ‘probe’ are used interchangeably, especially if it is not clear from the
context whether we are modeling a macroscopic or microscopic detector coupled to the field. A microscopic
quantum mechanical system (like a spin or an atom) is commonly called a ‘probe’ of the field, while this term
is not used for explicitly macroscopic detector systems (like a superconducting qubit, see below).
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approach that ‘a particle is what a particle detector detects’ advocated by Davies and others
[106, 23, 44]. The Unruh-DeWitt detector model has become a paradigm example in the field
of Relativistic Quantum Information (RQI). RQI was born out of the need to merge quantum
information theory with with relativity theory, and a core commitment of the approach is
that relativistic QFT is a necessary ingredient (see e.g. [61, 8]). See Peres and Terno [85]
for a pioneering defense of this approach. RQI describes quantum communication through
quantum fields (e.g. [19, 64]) and the entanglement structure of QFT by locally coupling
multiple detectors to the quantum field (e.g.[89, 87]).

In the realm of quantum information, the notion of operations performed in local regions
that is informally used in the application of quantum mechanics becomes central. Detector
models are introduced to extend the use of QFT from high energy physics to relatively low
energy systems probed in quantum information or quantum optics [22, 51]. Many variations
upon the Unruh-DeWitt model41 have been developed and applied to probe many different
types of relativistic quantum systems described by QFT.

4.2 Constructing non-relativistic detector models

Like any other model, detector models are an addition to the underlying theory and, as a
result, they are not a priori guaranteed to comply with its premises. Detector models raise a
major concern when the underlying theory is relativistic QFT: are the predictions of the non-
relativistic model respectful of relativistic causality? This is a justified concern, especially
because the detector is chosen to be a non-relativistic quantum-mechanical system and, as
such, alien to Minkowski spacetime. From this perspective, the non-relativistic quantum-
mechanical nature of the detector seems like a serious drawback. On the other hand, thanks to
its non-relativistic nature, the detector system is localizable in the usual quantum-mechanical
terms. First-quantised non-relativistic systems admit a position representation, which implies
that their states will be representable, and localizable, by means of their spatial wavefunction.
Such a representation is known not to be available for relativistic systems [70]. Relativistic
quantum fields are localized in a different sense: they are operator-valued objects that are
locally defined over space and time (e.g., in AQFT by associating algebras of observables
to bounded spacetime regions [56]). Since the field (relativistic) and the detector system
(non-relativistic) enjoy very different notions of localization, it is first important to clarify
the sense in which they can be locally coupled.

The simplest version of the Unruh-DeWitt (UDW) model involves a scalar quantum field
coupled to a non-relativistic quantum system (e.g. an atom, a harmonic oscilator, or a two-
level system). There have been attempts to extend the model beyond the scalar field, e.g., to
spinor fields [62], but this complication is not relevant for our purposes. Also, for simplicity,
we will only refer to the case of linear coupling between the detector and the field, even
though more complicated couplings, e.g., quadratic, have been investigated in the literature
[62, 101, 84]. A careful treatment of the modeling of light-matter interaction with UDW-type
detectors beyond the scalar approximation can be found in [67].

41Recent reviews of the variants of Unruh-DeWitt-type detector models in QFT (in flat and curved space-
times) can be found in [27, 83].
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Perhaps the most well-known detector model that has been considered in the literature
is the pointilke UDW detector model, in which it is assumed that the detector is coupled
to the field over a timelike trajectory. This is prescribed by the interaction Hamiltonian
that generates translations with respect to the proper time τ associated to the detector’s
trajectory. In the interaction picture, this Hamiltonian is given by

Ĥint = λχ(τ)µ̂(τ) ⊗ ϕ̂(x(τ)). (13)

Here λ is the coupling strength, χ(τ) is the switching function, which is usually assumed to
be integrable, and x(τ) is the spacetime trajectory of the detector parametrized by its proper
time τ . The Hamiltonian couples the field along the wordline of the detector to an internal
degree of freedom of the detector µ̂ 42. The point-like model can exhibit ultraviolet diver-
gences related to the coincidence limit of the time-ordered n-point functions. One strategy
for avoiding the divergences of the point-like model is to introduce a finite extension of the
detector-field interaction through a smearing, but as we will see this introduces issues with
the covariance and the causality of the model that are due to the extension of the interaction
and are absent in the point-like model [75, 25].

The simplest generalisation of the point-like interaction Hamiltonian (13) involves a linear
coupling between the detector observable µ̂(t) and the scalar field operator ϕ̂(t, x)

Ĥint = λχ(t)µ̂(t) ⊗
∫

dxF (x)ϕ̂(t, x) (14)

where the switching function χ(t) models the duration of the interaction between field and
detector and the smearing function F (x) specifies the spatial extension of the interaction (in
the proper frame of the detector system) [72, 74]. The support of these functions specifies the
spacetime region O over which the detector is coupled to the field, i.e., O = suppχ(t)F (x). If
both the smearing and the switching functions are compactly supported, then the interaction
region O is bounded. Note that the interaction region need not coincide with the (initial)
localization region of the quantum-mechanical detector system. Commonly both functions
(switching and smearing) are introduced as a phenomenological input of the model, espe-
cially when the detector system is macroscopic. The smearing is modeling the ‘size’ of the
interaction, which in general will not coincide with the apparent size of the detector, and the
switching is modeling the mechanism for switching the interaction on and off (whenever such
mechanism is available43).

It is perhaps curious that even in the case of an explicitly macroscopic detector system
(e.g. in superconducting circuits [77]) the physical intuition that ‘the interaction happens
where the detector is’ is not fulfilled. In [77] the authors investigate the model-dependence of
the predictions for different smearing functions and different cut-off functions that determine
‘how many’ field mode functions are relevant for the detector-field interaction. The result
suggests that, in this case, the real shape and size of the macroscopic detector does not

42In the case of a two-level system with energy gap ω, µ̂ is the monopole operator µ̂(t) = eiωtσ̂+ + e−iωtσ̂−

where σ̂± the operators that map between the ground and excited state.
43For elementary interactions the switching function is harder to motivate, since, for example, the coupling

of an electron coupled to the electromagnetic field cannot be ‘switched off’.
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affect the prediction as much as the choice of a UV cutoff. This means that one can directly
model the feature of finite extension, based on mathematical convenience, without worrying
about how the microscopic details of the detector affect the smearing function. In other
studies, where the detector is explicitly a microscopic probe (e.g. the electron of an atom
coupled to the quantum electromagnetic field), the smearing function has been associated
with the microscopic nature of the probe (e.g., the orbitals of a hydrogen atom interacting
with the electromagnetic field in a light-matter interaction [87]). It is common to attribute
the smearings to the detector (e.g. ‘smeared’ detector as opposed to point-like detector)
even though smearing the field operator is more accurate mathematically. Conceptually, it
is preferable to attribute the smearing (the ‘shape’ of the interaction) to neither the detector
nor the field but to their joint interaction. As McKay, Lupascu, and Mart́ın-Mart́ınez [77]
put it, “the shape of the qubit cannot be determined just with an individual description of
the qubit itself. Rather, this shape belongs neither to the qubit nor to the line but to the
both of them in interaction with each other, constituting a property that becomes evident
and relevant in and through interactions between the relevant quantum systems.”

Overall, the choice of switching and smearing functions is a crucial input of the model
that can critically affect its predictions. This choice can be motivated by the underlying (i.e.,
microscopic) physics, first-principles, mathematical convenience, or even aesthetics. In the
spirit of the pragmatic approach, it is common to investigate all possible (calculable) choices
without particular emphasis on motivating each possible choice. This model-dependence
poses an extra challenge when detectors are used to study universal effects like the Unruh
effect [33]. On mathematical grounds, the smearing functions were first introduced as a
cure to the UV divergences of the point-like model [28] where the detector interacts with
the field in a point-like manner. The UV divergences of the point-like model come from
the distributional character of the ‘field at a point’. Concretely, the response function of a
detector at leading order in perturbation theory is a function of the field’s Wightman function
and can be regulated in different ways through the introduction of suitable switchings and
smearings [96, 68]. In this literature, it is typical that the smearing depends on a regulator ϵ
(e.g., Gaussian/Lorentzian function) for the purpose of regularising the response of a point-
like detector (e.g., excitation probability) in the limit ϵ → 0 [96]. Without taking the limit,
an infinitely extended smearing function is unphysical since it implies a ‘non-local’ coupling
between the field and the detector in all space.

Finally, let us consider the ‘covariant’ generalisation of the Unruh-DeWitt interaction
Hamiltonian [74, 75], where the switching and the smearing come together to form a space-
time smearing function Λ(x) e.g. Hint(t) = λ

∫
dV Λ(x)µ̂(τ(x)) ⊗ ϕ̂(x). In this interaction

Hamiltonian both the field and the detector operator are ‘smeared’ by Λ in the sense that the
detector inherits spatial dependence through its proper time τ = τ(x) in a general reference
frame with coordinates x. For example, if we are considering Lorentz boosts in Minkowski
spacetime, µ̂(τ) = µ̂(γ(t − vx)) in a boosted frame with coordinates (t, x). The detector
observable µ̂ is only time- (and not space-) dependent in its proper frame, where the space-
time smearing function factorizes like Λ(x) = χ(τ)F (x) in terms of the switching and the
smearing functions. The time duration and the spatial extension of the interaction can only
be defined separately in the detector’s proper frame (e.g. Fermi normal coordinates in curved
spacetime [75]), while they mix in a general reference frame [72, 74, 83]. This ‘covariant’ form

39



of the interaction Hamiltonian was proposed in [74] for a consistent description of detector
physics in curved spacetimes, even though the model fails to be fully covariant due to the
non-relativistic nature of the detector [75].

To give a definition of what we mean by a non-relativistic detector model, it will be
useful to write the interaction Hamiltonian (density) in the following general form that was
introduced in [25] (see also [6])

ĥ(x) = λΛ(x)Ĵ (x) ⊗ ϕ̂(x) (15)
where Ĵ (x) is a current operator that is associated with the detector. This form of the
interaction Hamiltonian covers the zoo of detector models that one finds in the contemporary
literature (see [27]). In principle, the detector current (through which the particle detector
couples to the field) could be derived using an effective field theory approach (e.g.[6, 105],[52]).
We say that the detector system is non-relativistic if the detector current is not microcausal
over the extension of the interaction region:[

Ĵ (x), Ĵ (x′)
]

̸= 0 for spacelike separated x, x′ ∈ O. (16)
In general, the microcausality condition will not be satisfied by the current operators when
one considers spacelike separated points within the extension of the interaction region O =
suppΛ due to the non-relativistic dynamics of the detector system [25]. This observation will
become important when analysing the frictions with relativistic causality in the following
subsections. 44

Due to the coupling of a non-relativistic detector model to a relativistic system, it is not
a priori guaranteed that the resulting model for measurement will comply with relativistic
causality. In general, one deals with three distinct layers: the underlying theory (i.e., QFT),
the chosen model (i.e., the non-relativistic detector model), and the relevant mathematical
approximations (for more discussion see [94]). If an empirical prediction is inconsistent with
the underlying theory (e.g., signalling at spacelike separation), it can be the fault of the model
and/or the approximation. Approximations that are known to be at odds with relativistic
causality in the particle detector literature are the rotating wave approximation, the non-
relativistic approximation and the relevant zero-mode approximation [48, 82, 102]. This
is due to the non-locality associated with the field observables that these approximations
introduce.

Approximations are not to blame for violations of relativity theory in Sorkin-type sce-
narios (even though they do play a role [11]), but they do illustrate the pragmatic approach
taken in detector modeling: approximations that violate relativity theory can be tolerated in
regimes in which the violations are negligible. To address Sorkin-type scenarios, the goal is
not to rule out superluminal signalling in principle, but to argue on a model-by-model basis
that violations are negligible in the intended domain of application. Furthermore, superlu-
minal signalling is not restricted to Sorkin-type impossible measurement scenarios within the
detector models program. The next subsection discusses superluminal signalling in bipar-
tite measurement scenarios, and then we will turn to superluminal signalling in tripartite,
Sorkin-type measurement scenarios in Sec. 4.4.

44Note that, based on this criterion, the pointlike model is fully causal since all points in the support of
the interaction (a timelike trajectory) are causally connected.
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4.3 Frictions with relativistic causality: Superluminal signalling
with two detectors

As a preliminary to analyzing Sorkin-type impossible measurement scenarios, consider two
detectors in spacelike separated regions. For example, consider two two-level systems A,B
coupled to the field through the interaction Hamiltonian

Ĥint =
∑
ν=a,b

λνχν(t)µ̂ν(t) ⊗
∫

dxFν(x)ϕ̂(x, t) (17)

Since the two detectors are not directly coupled to each other, the question is: how much
signalling can be ‘transmitted’ through their coupling to the quantum field? Since the field is
relativistic, is there any causality condition for the field that blocks superluminal signalling
if the two detectors (i.e., the two interaction regions) are placed in spacelike separation?

In Mart́ın-Mart́ınez [71] it was shown that after A and B have interacted with the field
(assuming that A interacts with the field before B in some reference frame) the state of
detector B at leading order in perturbation theory is

ρ̂(2)
b = λaλbρ̂

(2)
b,signal +

∑
ν=a,b

λ2
ν ρ̂

(2)
ν,noise (18)

where the noise term is local on detector B, and all the influence of the presence of detector
A on detector B’s density matrix is captured by the ‘non-local’ term that is proportional to
λaλb. This signalling part of the density matrix can be written as

ρ̂
(2)
b,signal = 2

∫
dtdt′χa(t)χb(t′)C(t, t′)d̂(t, t′) (19)

where
C(t, t′) :=

∫
dxdx′Fa(x)Fb(x′)⟨[ϕ̂(t, x), ϕ̂(t′, x′)]⟩ (20)

and d̂ is an operator that depends on the states and the internal frequencies ωa,ωb of the
detectors. If both smearings are compactly supported, the integration is performed only
over the two disjoint and spacelike separated spacetime regions, suppχaFa and suppχbFb.
Microcausality guarantees that the field commutator vanishes in spacelike separation, and
there is no superluminal signalling between the two detectors at second order in perturbation
theory.45 This behaviour has also been studied in the general case, using the Hamiltonian
density 46 (15)

Ĥint(τ) =
∑

ν=A,B
λν

∫
E(τ)

dE Ĵν(x) ⊗ ϕ̂(x). (21)

Note that, for convenience, we have absorbed the spacetime smearing function in the defi-
nition of the detector current operator, i.e., Ĵν(x) := Λν(x)Ĵν(x) (comparing with (15)). If

45In the case of point-like interactions, this argument can be extended to higher orders in perturbation
theory [19]. A non-perturbative argument can be found in [25].

46E(τ) is a one-parameter family of spacelike surfaces, where τ is a global function whose level curves
represent the planes of simultaneity of the detector’s center of mass and (under some assumptions [74]) τ is
the detector’s proper time. dE denotes the family of induced measures on the surfaces E(τ). Note that we
have assumed that the two detectors share the same proper time.
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we assume that the state is initially uncorrelated, i.e. ρ̂initial = ρ̂a ⊗ ρ̂b ⊗ ρ̂ϕ, the general
expression for signalling is [27]

ρ̂
(2)
B,sign = −i[Σ̂, ρ̂b] where Σ̂ =

∫ ∫
dV dV ′ ⟨Ĵa(x′)⟩Gr(x, x′)Ĵb(x) (22)

and where Gr(x, x′) is the retarded Green’s function47. We see that, for general switching
functions (dropping the assumption that the switching functions are compactly supported
and non-overlapping), the role of the field commutator in (20) is played by the field’s retarded
Green’s function in (22).

The operator Σ̂ can be understood as the current associated with detector B smeared by
the propagated expectation value of the current associated with detector A. In the case of the
massless Klein-Gordon field in a 3+1 dimensional flat spacetime, for instance, the propagator
takes the familiar form of the Lienard-Wiechert potentials

Gr[⟨Ĵa⟩](t, x) =
∫

d3x′ ⟨Ĵa⟩ (tr, x′)
2|x − x′|

(23)

where tr = t − |x′| is the retarded time. We see that the operator Σ̂ carries all the infor-
mation about the signalling from detector A to B. In [27] it was shown that the variance
of Σ̂ bounds the Fisher information of B, i.e., the information that detector B can ‘learn’
about the coupling of A to the same quantum field. Again, we notice that if the ‘source’
⟨Ĵa(x′)⟩ is spacelike separated from the ‘receiver’ Ĵb, Σ̂ is the zero operator and there is no
superluminal signalling. This is because Gr(x, x′) ⟨Ĵa(x′)⟩ is supported in the future lightcone
of A’s interaction region. Nevertheless, it is quite common in the detector literature to use
smearing functions that are not compactly supported. For example, Gaussian smearings are
chosen for the sake of computational convenience and analytical results.

Moreover, there are cases in which the use of non-compactly supported functions is not
optional. When using detector models to represent the light matter interaction, the smearings
are associated with the atomic wavefunctions that are generally not compactly supported,
unless confined in an infinite square well. In their seminal paper on the Unruh effect [107],
Unruh and Wald introduce the coupling of the position operator x̂t (e.g. of an electron) to
the field as

Ĥint = λχ(t)
∫

dx ϕ̂(t, x) ⊗ δ(x − x̂t). (24)

The field operator is defined over the spectrum of the position operator of the non-relativistic
particle. This type of interaction Hamiltonian can resemble the dipole coupling in the light-
matter interaction [87, 73]. In this case the expectation value of the current is

⟨Ĵa⟩ (x) = χa(t) ⟨δ(x − x̂a
t )⟩ = χa(t)|ψa(t, x)|2 (25)

If we plug this current into (22) we see that there is non-zero signalling even if the detectors
are ‘centered’ in spacelike separation. Intuitively, the detectors are ‘overlapping’ even when
in spacelike separation due to the quantum-mechanical ‘tails’. These ‘tails’ are obscuring

47Gr(x, x′) = −iθ(τ(x) − τ(x′)) ⟨[ϕ̂(x), ϕ̂(x′)]⟩.
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relativistic causality when the detectors are put in contact with the underlying relativistic
QFT. This contact between the non-relativistic detector system and the relativistic quantum
field is a unique feature of non-relativistic detector models. Roughly, the scales that one can
define in the interface between the relativistic and non-relativistic theory (e.g., the Compton
scale or the light crossing time of an atom) can be thought of as the regimes of validity of the
non-relativistic models; however, the additional, system-specific scales that are introduced
by the model will play a role too. This means that regime of validity of each model has to
be evaluated on a case-by-case basis.

The apparent causality violations introduced by two detectors that are mostly spacelike
separated (when the overlap of their ‘tails’ is ‘small’) has been analysed and quantified in [27]
from the perspective of quantum metrology. Perhaps counterintuitively, the causal ‘overlap’
depends not only on how fast the tails decay and on the characteristics of the spacetime,
but also on the internal characteristics of the detector systems (e.g., the internal frequencies
ωa,b). Nevertheless, one can derive frequency-independent bounds to the information that B
can gain for detector’s A interaction with the field [27]. Quantifying this cross-talk between
distant detector systems is important in the analysis for entanglement harvesting, for which
one needs to distinguish between genuine harvesting and the correlations that are established
through communication [69, 103].

Overall, in the weak coupling regime and to leading order in perturbation theory, the
apparent causality violations introduced by non-compact detector-field interactions seem
manageable and can be argued to be outside the regime of validity the model, based on
the relevant scales of each problem. Beyond perturbation theory, for compactly supported
detector-field interactions, there is a non-pertutbative argument for blocking superluminal
signalling based on the causal factorisation of the scattering operator of the model. We de-
note by Sa+b the scattering operator of the total system: i.e., the time-ordered exponential of
the interaction Hamiltonian (21) and Sa, the scattering matrix representing the interaction
between detector A and the field (similarly for B). In [25] it was shown that

Sa+b = SbSa (26)

if the two interaction regions Oa,b are compactly supported and causally orderable (that is,
if Ob does not intersect the causal past of Oa). Causal factorisation also guarantees that
the final state of the field after both interactions does not depend on their order (and so it
does not depend on the reference frame) as long as they are spacelike separated, since in
this case SbSa = SaSb. Causal factorisation is sufficient for blocking superluminal signalling
in bipartite scenarios but, as we will see in the next section, it will not suffice for blocking
superluminal signalling in the set-up of the Sorkin-type problem.

4.4 Impossible measurements induced by detector-field interac-
tions

In the case of three (or more) detectors coupled to the field, Sorkin-type impossible mea-
surement problems can arise [25, 11]. In de Ramón, Papageorgiou, and Mart́ın-Mart́ınez
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[25], it was shown that this type of acausal behaviour persists for the most general kind of
detector models that use the general Hamiltonian density in (15) (i.e., for both compactly
and non-compactly supported detector models, with the exception of the point-like model).
The extension of the detector-field interaction and the non-relativistic dynamics of the de-
tector system are responsible for this acausal behaviour. Nevertheless, the advantage of the
detector approach is that one can quantify this causality violation in terms of the scales that
are introduced by the detectors and the detector-field interactions.

Following the demonstration in [25], consider the impossible measurement scenario for
local regions O1, O2, and O3 depicted in Fig. 2. A unitary ‘kick’ is implemented over region
O1, possibly through the coupling of a detector to the field, which then can be disregarded.
In particular, the initial state of the detectors plus field has the form ρ̂initial = Û ρ̂0Û

† where ρ̂0
is an arbitrary state of the joint system, and Û = 1a ⊗ 1b ⊗ Ûϕ is an arbitrary unitary acting
on the field’s Hilbert space. Two detectors A, B interact with the field over the regions O2,3,
respectively. If detector A were not coupled to the field, the expectation values of observables
of detector B, denoted as D̂b, would not depend on Uϕ since B only interacts with the field in
the causal complement of O1.In the presence of detector A, the condition that B’s observables
are not sensitive to the local ‘kick’ Û is (for derivation see [25])

V̂ †D̂bV̂ = D̂b, (27)

where
V̂ = Ŝa+bÛ Ŝ

†
a+b. (28)

Condition (27) is equivalent to [D̂b, Û ] = 0. Using the causal factorisation condition (26)
(since O2,3 are causally orderable), (27) becomes48

[Ŝ†
bD̂bŜb, ŜaÛ Ŝ

†
a] = 0. (29)

To make sense of (29) we can think of Ŝ†
bD̂bŜb as an induced observable that resides on

region O3 and ŜaÛ Ŝ
†
a as the local ’kick’ propagated through the coupling to A.

Next we have to examine the localisation of ŜaÛ Ŝ
†
a. That is, how does the coupling

to detector A ‘propagate’ the local ‘kick’ over region O1 to region O3? Crucially, it turns
out that the localisation of ŜaÛ Ŝ

†
a includes the forward lightcone of region O2 (see Fig. 2)

and, as a result, the expectation values for detector B in O3 will depend on the local ‘kick’.
By expanding condition (29) one finds that this is because [Ĵa(x), Ĵa(x′)] ̸= 0 for spacelike
separated points within the extension of region O2 (i.e., suppΛ). As de Ramón et al. [25]
put it, “[this result] links superluminal signalling with superluminal propagation within the
device that is implementing the measurement...The physical intuition is that, when a detector
is spatially extended, the information propagating inside the detector is not constrained to
travel subluminally since the detector is a non-relativistic system.” In Sec. 4.2 we argued
that suppΛ cannot be straightforwardly interpreted as the region occupied by the detector,
but the main point is that if the detector current Ĵa were another relativistic field, and as

48where we have omitted the tensor product with the identities 1a (in the first input) and 1b (in the second)
to simplify the notation.
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such obeyed Microcausality, then its coupling to the field over region O2 would not change
the localisation of the local ‘kick’ over O1 and no observable in O3 would be sensitive to the
‘kick’. Note that condition (29) is a special case of the causality condition (5) proposed in
Borsten et al. [14],49, which is not satisfied in general in the detector models approach. We
will return to this point when we review the detector-based measurement theory in the next
subsection.

This structural issue of using non-relativistic detector models, namely that they are de-
fined using currents that do not obey a microcausality condition, can be tolerated by con-
ducting a rigorous analysis of the regimes of validity of the models. That is, the severity of
the causality violations in physically reasonable situations can be quantified. This is not only
necessary for justifying the use of the models, but also for making sense of this abstract type of
causality violations in concrete scenarios that can represent ‘realistic’ detection experiments.
de Ramón et al. [25] note that “since for point-like detectors there is not superluminal propa-
gation, one can disregard this kind of faster-than-light signalling for ‘small enough’ detectors.
Whether a detector is small or not will depend, of course, on the parameters of the problem.”
One can also argue, in terms of the coupling strength, that in the weak coupling limit the
Sorkin-type problem is of at least O(λn) when n detectors are involved. As explained above,
the signalling between any two detectors A and B is of second order, i.e., of order λaλb (see
Eq. (18)). This is because the λ2

a and λ2
b terms are ‘local’ to each detector and do not allow

for the detectors to ‘see each other’. Similarly, in the tripartite case of detectors A, B and C
in the Sorkin-type configuration, the coupling constants have to be combined for detector C
to ‘see’ A through B, and so the superluminal signalling is of at least third order λaλbλc. In
fact, in [25] it was shown explicitly that, for UDW-type detectors in the tripartite scenario,
the superluminal signalling is of fourth order in perturbation theory [25] while most relevant
calculations are of second order in the coupling constant.

To summarize, the use of non-relativistic detector models to represent measurements of
relativistic systems introduces the possibility of superluminal signalling. This phenomenon
is not confined to Sorkin-type impossible measurement scenarios; for example, superlumi-
nal signalling is also possible in models for bipartite measurement scenarios. In terms of
the ‘impossible measurement’ reductio argument in Sec. 2.1, the detector models approach
rejects assumption P3 that ideal measurement theory is applied directly to the field sys-
tem. Instead, projective measurements (modeled by rank-1 projection operators) are only
performed on detectors, and Lüders’ rule is only applied as a state update rule following
measurements on detectors. This strategy is combined with a pragmatic approach: a detec-
tor model may only be used when non-relativistic effects such as superluminal signalling can
be shown to be negligible. That is, superluminal signalling is ruled out FAPP in the regime
of applicability of a given detector model. The analysis of the magnitude of non-relativistic
effects is carried out on a case-by-case basis for concrete detector models used under specified
conditions. For Sorkin-type impossible measurement scenarios, this analysis pinpoints the
source of superluminal signalling as being that the current associated with the detector vio-
lates Microcausality. As an example of the case-by-case analysis that rules out superluminal

49Because (29) is equivalent to [Ŝ
†
aŜ

†
bD̂bŜbŜa, Û ] = 0, which takes the same form as the Borsten et al.

condition (5).
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signalling FAPP, when the impossible measurement scenario is modeled using UDW-type
detectors, the effects of superluminal signalling appear at fourth order in the perturbation
series in the coupling constant, while the results that are taken to be physically significant
are at second order.

4.5 The Polo-Gómez, Garay, and Mart́ın-Mart́ınez detector-based
measurement theory

In the previous section we sketched the dynamical understanding of how the ‘impossible mea-
surements’ arise in extended detector-field interactions in concrete models, without making
explicit use of any measurement theory. In this section we will analyse the consequences of
this for the detector-based measurement theory, by checking to what extend the detector-
induced state updates satisfy the causality condition (5) by Borsten et al. A detector-based
measurement theory for QFT that specifies the state update rules for the field that are
induced by projective measurements on the detectors has been developed by Polo-Gómez,
Garay, and Mart́ın-Mart́ınez in [86]. We will summarize this detector-based measurement
theory here to set up a comparison with the measurement theory of the FV framework in
Sec. 5.

As before, the general set up is that measurements on the field are carried out by first
allowing the detector and field to interact in some region, and then measuring the detector
in the causal future of this region when the detector and field are no longer coupled. Assume
that the initial state of the detector-field system is a separable state represented by the
density operator ρ = ρd ⊗ ρϕ. Given the interaction Hamiltonian Ĥint between the field and
the detector, the evolved state is Ŝ1ρŜ

†
1, where Ŝ1 = T exp

[
−i

∫ t1
−∞ dtĤint(t)

]
and t1 is a time

after which the detector-field interaction is turned off. At a later time t2 ≥ t1 a projective
measurement P̂ (t2) (denoted as P̂2) is applied to the detector system and the total state is
updated as follows

ρ′ = (P̂2 ⊗ 1)Ŝ1ρŜ
†
1(P̂2 ⊗ 1)

tr
(
(P̂2 ⊗ 1)Ŝ1ρŜ

†
1

) (30)

Note that the unitary scattering operator Ŝ1 is supported over the interaction region, while
the projection operator depends only on time since the detector operators have no explicit
spatial dependence. Also, the states ρ, ρ′ are in general not spacetime-dependent. This
becomes important for the interpretation of the induced state update for the field, as we
explain below. Assume that the initial state of the detector is ρd = |ψ⟩ ⟨ψ| and that after
the interaction with the field the detector is projected by means of the rank-one projector
|i⟩ ⟨i| (e.g. onto the i−th energy eigenstate of the detector), and then trace out the detector
system in (30) to get

ρ′
ϕ =

M̂i,ψρϕM̂
†
i,ψ

trϕ
(
ρϕM̂i,ψM̂

†
i,ψ

) (31)

where
M̂i,ψ := ⟨i|Ŝ1|ψ⟩. (32)
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In the regime of weak coupling between the field and the detector one can use the Dyson
expansion for the scattering operator Ŝ1, using Ĥint from (17):

M̂i,ψ = ⟨i|ψ⟩1 + λM̂
(1)
i,ψ + λ2M̂

(2)
i,ψ + O(λ3) (33)

where

M̂
(1)
i,ψ = −i

∫
dtdxχ(t)F (x)⟨i|µ̂(t)|ψ⟩ϕ̂(t, x) (34)

M̂
(2)
i,ψ = −

∫
dtdt′θ(t− t′)χ(t)χ(t′)

∫
dxdx′F (x)F (x′)⟨i|µ̂(t)µ̂(t′)|ψ⟩ϕ̂(t, x)ϕ̂(t′, x′). (35)

In the case of non-selective measurements, Polo-Gómez et al. [86] show that

ρ
(ns)
ϕ =

∑
i

M̂i,ψρϕM̂
†
i,ψ (36)

= trd
(
Ŝ1(|ψ⟩ ⟨ψ| ⊗ ρϕ)Ŝ†

1

)
. (37)

We see that, by summing over all possible outcomes i, the updated state only depends
on the dynamical coupling between the field and the detector. Polo-Gómez et al. [86, p.4]
explain that “this is because the projective measurement acts only on the detector once
the interaction has been switched off, and it does not provide additional information since
being non-selective the outcome is not known”. This point is important for showing that
the expectation values of observables Â that are defined in spacelike separation from the
detector-field interaction region do not change due to the non-selective measurement. That
is,

trϕ(ρϕÂ) = trϕ(ρ(ns)
ϕ Â) (38)

since [Ŝ1, Â] = 0 thanks to the fields obeying the Microcausality condition.

Nevertheless, strictly speaking, a non-selective state update of the type (36) can enable
‘impossible measurements’. Consider the impossible measurement scenario in Fig. 2, with
Â ∈ A(O3) and the non-selective measurement happening over region O2 (that is, M̂i,ψ ∈
A(O2)). Call ρ(ns)

ϕ := E2[ρϕ]. Then the map E2 does not satisfy the condition (5) above
that was introduced by Borsten et al. [14] to exclude impossible measurements. This can be
seen from the analysis of impossible measurements in the Sec. 4.4, where we concluded that
‘impossible measurements’ are due to the non-local dynamics of the non-relativistic detector
system (i.e., the current Ĵa(x) associated with the detector does not obey Microcausality).
Since the effect of the non-selective measurement only depends on the dynamical coupling
between the field and the detector (equations (36), (37)), this diagnosis is directly relevant
for the non-selective state update derived in the detector-based measurement theory.

In particular, the condition (29) on Ŝ that is shown to block the Sorkin-type problem in
de Ramón et al. [25] is a special case of Borsten et al.’s condition (5) on E2. Strictly speaking,
this condition is violated in the detector-based measurement theory. To see this explicitly,
using the notation of the previous section, we consider the following equivalent of equation
(29):

[Ŝ†
aŜ

†
bD̂bŜbŜa, Û ] = 0 (39)
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where Û represents the unitary ‘kick’ in O1. Taking the trace of the action of this operator
on any state ρaρbρϕ of the total system yields

tra,b,ϕ

(
[Ŝ†

aŜ
†
bD̂bŜbŜa, Û ] ρaρbρϕ

)
= 0 (40)

tra,ϕ

(
[Ŝ†

a(trbŜ
†
bD̂bŜbρb)Ŝa, Û ] ρaρϕ

)
= 0. (41)

Defining
Φ̂b := trb

(
Ŝ

†
bD̂bŜbρb

)
, (42)

the induced field observable that corresponds to the measurement of the expectation value
of the detector observable D̂b, we have that

tra,ϕ

(
[Ŝ†

aΦ̂bŜa, Û ] ρaρϕ

)
= 0. (43)

Performing the trace over detector A, this equation can be written as

trϕ
(
[Ed2 (Φ̂b), Û ] ρϕ

)
= 0 (44)

where
Ed2 (Φ̂b) := tra

(
Ŝ

†
aΦ̂bŜaρa

)
(45)

is the dual non-selective map. If we demand that Eq. (44) holds for all states of the field ρϕ
we get the condition

[Ed2 (Φ̂b), Û ] = 0, (46)
which is equivalent to (29). Eq. (29) does not hold in general for the reasons that we exposed
in the previous section. The violation of (46) shows that, in general, the (dual) state update
map Ed2 does not define an observable in the causal complement of O1 (where the unitary
‘kick’ Û is supported). Of course, this is due to the non-local dynamics that goes into the
definition of the update map (44).

Now we turn to the case of the state update rule for selective measurements (30). In
contrast to non-selective measurements, expectation values of observables that are spacelike-
separated from the detector-field interaction region are affected. That is,

trϕ(ρϕÂ) ̸= trϕ(ρ′
ϕÂ) (47)

For this reason, Polo-Gómez et al. argue that for selective measurements ρ′
ϕ cannot be used

for calculating expectation values of observables that are causally disconnected from the
causal future of the interaction region.50 The physical explanation they offer is that after
the dynamical interaction between the field and the detector is switched off, the detector
gets entangled with the field. In general the state of the field exhibits spacelike correlations

50Polo-Gómez et al. use the term contextual to refer to the dependence of the state update rule on whether
or not the spacetime points of the fields in the n-point functions are in the causal future of the detector
measurement region. We refrain from using this terminology because contextuality has a different meaning
in quantum foundations.
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(see the discussion in Sec. 3.4), so projecting the detector selectively destroys some of these
spacelike correlations. As they put it, “The entanglement between the detector and the field
generated by their interaction thus hinders the possibility of applying the selective update
outside the causal future of the detector in a way consistent with the relativistic framework
of QFT” [86, p.15].

As a result, Polo-Gómez et al. conclude that the selective state update rule can only
be applied in regions that are causally connected to the causal future of the detector mea-
surement region. At the same time, they argue that it is not satisfactory to represent this
selective state update by the restriction of the density operator ρ′

ϕ to the forward lightcone
because “a density operator does not naturally depend on points of the spacetime manifold”
[86, p.5]. They also point out that this restriction on ρ′

ϕ would be ambiguous for the purpose
of updating the field’s n−point functions w(x1, ..., xn) := ⟨ϕ̂(x1)...ϕ̂(xn)⟩ in the case in which
some of the spacetime points xi are inside of and some outside of the forward lightcone of
the interaction region. Hence, they shift their attention to updating all possible n−point
functions of the field rather than the density operator representing the state of the field.
This is because the n−point functions, in contrast to the density operator, naturally depend
on the spacetime points. Also, for practical purposes, the state of the field is equivalent to
the set of n−point functions. In the case of the detector-based measurement theory, there is
an extra pragmatic motivation for this shift, which is that, in the weak coupling regime of a
linearly coupled interaction Hamiltonian, the n−th order response of the detector depends
on the field n-point functions (making use of the Dyson expansion of Ŝ as in (33)). For
example, the leading order (second order in the coupling constant) excitation probability (of
a two-level system) is one-to-one with the field two-point function [24]. For these reasons,
Polo-Gómez et al. argue that the n-point functions, and not the density operator, should be
regarded as the primary means of representing the state of the field.

As a result of these considerations, in the detector-based measurement theory the state
update rule following a selective measurement is spacetime-dependent in two respects. First,
whether the selective or non-selective state update rule applies to an n-point function for the
field ⟨ϕ̂(x1)...ϕ̂(xn)⟩ depends on the locations of the spacetime points xi. Second, the updated
n-point functions for the field system depend on the detector measurement region in which
a selective measurement on the detector is performed. In contrast, in the FV framework the
selective state update rule applies to ‘early’ state ω in a spacetime-independent way in both
respects. In particular, the scattering morphism depends on the detector-field interaction
region, but is entirely independent of the detector measurement region.

The detector-based measurement theory raises the same question as the FV framework:
is state update merely epistemic in some sense? Polo-Gómez et al. contend that the detector
model update rules can only be interpreted as representing a change in an observer’s state of
information about the field, not as representing a physical change in the state of the field (see
Sec. V and Appendix A of [86]). Whether the detector-based measurement theory requires
an epistemic interpretation in this strong sense that state update is merely an update of an
observer’s state of information is an interpretative issue that is beyond the scope of this paper.
However, the fact that the state update rules for the field depend on the spacetime region
in which the measurement on the detector is performed does make the state update rules

49



observer-dependent and constrains their interpretation. By assumption, the detector and the
field system only interact in the detector-field interaction region. The observer can choose
to perform a projective measurement on the detector at any time after the detector and field
cease interacting. As a result, it does not make sense to literally interpret the state update
rules as representing a physical change of state that is brought about by measurement. This is
an unnatural interpretation of this measurement theory because, by assumption, the field and
detector are no longer interacting in the detector measurement region; therefore, according to
this measurement theory, the projective measurement on the detector does not cause (bring
about) a change in the physical state of the field in this region. Of course, physical changes in
the state of the field in the detector measurement region could be attributed to entanglement
between the field and detector or the measurement theory could be modified to include a
non-trivial interaction between the detector and field in the detector measurement region;
however, these moves would be counter to the main goal of modeling local measurements
using field theory. Locality in this sense is ensured by the assumption that the measurement
interaction is confined to the detector-field interaction region. Therefore, the state update
rules in the detector-based measurement theory cannot literally be interpreted as representing
physical changes to the field system that occur in the detector measurement region.

To briefly summarize this section, the detector models approach is pragmatic. The de-
tector is modeled using NRQM, which allows projective measurements on the detector to
be represented. Constructing a concrete model of a detector coupled to a field system in-
volves choices such as a smearing and a switching function, which may be made on pragmatic
grounds. The introduction of a non-relativistic detector introduces non-relativistic effects.
Superluminal signalling in Sorkin-type impossible measurement scenarios can be attributed
to the fact that the current associated with the detector, that goes into the detector-field
interaction Hamiltonian, does not satisfy Microcausality. However, from a pragmatic per-
spective, this is not problematic as long as the effect is negligible in the domain of applicability
of the model. Reassurance that this is the case can be obtained on a case-by-case basis, by
carrying out the calculations for a concrete model. Polo-Gómez, Garay, and Mart́ın-Mart́ınez
have proposed a detector-based measurement theory with state update rules for the induced
field observables. Borsten et al.’s condition on physical observables (5) holds only approx-
imately due to the violation of Microcausality by the detector current. The selective state
update rule only applies to regions causally connected to the causal future of the detector
measurement region in which the projective measurement on the detector is performed. This
is an observer-dependent feature of the state update rules that Polo-G’omez et al. interpret
this state update rule as representing an update to the observer’s state of information.

5 Discussion: Comparing the FV framework and the
detector models approach

The reductio argument generated by Sorkin-type impossible measurement scenarios helps to
clarify the important differences between the detector models approach and the FV frame-
work. The main differences arise from different strategies for addressing the problem of

50



impossible measurements, although the diagnoses of the problems are broadly similar. The
detector models approach identifies as one important source of the problem the premise that
ideal measurement theory (and Lüders’ rule in particular) can be applied directly to rela-
tivistic quantum field systems. Furthermore, according to the detector models approach, the
‘impossible measurements’ reductio argument leaves out many model-specific details about
the detectors that are actually used to make measurements of quantum fields. Properly mod-
eling the detectors and their interactions with the field system can provide reassurance that
superluminal signalling is negligible (i.e., FAPP does not occur) in the domain of applicability
of the detector models.

The FV framework also blames the impossible measurement scenarios on the application
of ideal measurement theory (including Lüders’ rule) to relativistic quantum systems. Their
response also involves modeling the probe as well as the field system. However, the FV
framework proposes a general, abstract framework for representing both the probe and the
field using AQFT that is not model-specific. As a result, additional principles for AQFT
need to be posited. In particular, the Time-Slice Property axiom needs to be added to the
premises of the ‘impossible measurements’ reductio argument in order to block impossible
measurement scenarios. Furthermore, a new measurement theory for AQFT is needed in this
approach. In contrast to the detector models approach, the application of Lüders’ rule to
represent a projective measurement of the detector is not taken as a starting point for deter-
mining the measurement theory for the field system. Fewster and Verch instead start with
a representation of measurement based on the axioms of AQFT and the scattering isomor-
phism and follow the strategy (but not the physical interpretation) of QMT to derive a new
measurement theory for AQFT. Both the detector models approach and the FV framework
end up with new state update rules for field systems, but their methods for deriving them
are different.

It would be easy to focus only on the differences between the detector models and FV
framework, but there are some general similarities between the approaches that are worth
drawing attention to because they shed light on the form taken by measurement theory in
QFT and fundamental features of QFT itself. These two approaches are very different in
spirit, so it seems plausible that points of agreement between them could reveal genuine
features that an ultimate, complete theory of relativistic quantum fields that includes a
measurement theory will have. We take it that neither the detector models approach nor
the FV framework is the final account of local measurement for QFT because each satisfies
some desiderata and not others, as we explain below. From this perspective, the detector
models and FV framework are not inherently incompatible approaches. To facilitate a direct
comparison, our discussion in this section will focus on the FV framework with the Polo-
Gómez, Garay, and Mart́ın-Mart́ınez detector-based measurement theory discussed in Sec.
4.5.

5.1 Similarities

• The role of dynamics: Regarding the response to the ‘impossible measurement’
problem, the FV framework and detector models approaches agree in general terms
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on the two main problems with the reductio argument in Sec. 2.1: the premise that
Lüders’ rule applies to relativistic systems (P3(b)) must be rejected and additional
assumptions about the dynamics of relativistic systems undergoing measurement must
be introduced. In the FV framework, Lüders’ rule is abandoned entirely and new state
update rules for relativistic QFT are derived. The detector models approach also re-
frains from applying Lüders’ rule directly to relativistic quantum fields, though it is
applied to non-relativistic detectors. On the dynamical side, it is the Local Time-Slice
Property that is crucial for blocking Sorkin-type impossible measurement scenarios in
the FV framework. The Local Time-Slice Property is a general principle that ensures
that the quantum fields propagate subluminally and deterministically. In the detector
models approach, careful attention to how the dynamics of the relativistic field and its
coupling to the detectors is modeled is crucial for addressing the ‘impossible measure-
ments’ reductio. In this case, the non-relativistic coupling of the detector to the field
via currents that do not satisfy microcausality is the source of superluminal signalling
in impossible measurement scenarios. This problem is addressed on a case-by-case basis
by performing calculations that involve the interaction Hamiltonian to assess the mag-
nitude of the non-relativistic effects. From this perspective, one thing that goes wrong
in Sorkin’s argument is that these model-specific dynamical details are not properly
taken into account.

• Localization regions for observables: Abandonment of the prima facie operational
interpretation of a local algebra of observables A(O) as representing operations that
it is possible to carry out in region O. In both the detector models approach and
the FV framework, this change in interpretation is made possible by the introduction
of detectors or probes. In practical approaches to applying measurement in relativis-
tic quantum theory such as Sorkin’s, the traditional interpretation of a smeared field
operator is that the smearing reflects the spacetime region over which the operation
represented by the field operator is performed. In the detector models approach, the
explicit representation of the detector that is coupled to the field system complicates
the interpretation of the smearing function. As discussed in Sec. 4.2, the role of the
smearing function is ultimately pragmatic; therefore, as long as the predictions are
not affected, there is no reason to choose a smearing that is supported only in the
interaction region between the detector and field system (e.g., may choose a Gaussian).
Furthermore, as was observed in [78] and is further supported by considering the co-
variant Hamiltonian density representing the interaction between the detector and field
system, the most natural interpretation of the spacetime smearing function is that it
is a holistic property of the detector-field interaction rather than a property of either
one by itself. In the FV framework, the system observables can similarly be associated
with different localization regions. As a consequence of (Local Time-Slice Property), an
algebra of observables A(O) can be localized in any region in the domain of dependence
of O. This is a change from the traditional operational interpretation of an algebra of
observables A(O) in AQFT as representing a set of operations that it is possible to
perform in region O. (See [43, p.35]).

• States are primarily represented using expectation values of fields at differ-
ent times: In AQFT, an algebraic state ω is a positive, normalized, linear functional
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from A(O) (or A(M)) to C. For self-adjoint A ∈ A(O), ω(A) represents the expecta-
tion value of of A in state ω. Algebraic states are the primary representatives of the
physical states and they represent expectation values. As Polo-Gómez et al. [86, p.7]
point out, their measurement theory for the detector approach similarly treats expec-
tation values as the primary means of representing the state of the field and density
operators as secondary. More precisely, the central quantities are the n-point functions.
Their main rationale for shifting to the n-point functions is that the state update rules
are spacetime-dependent and the density operators are not. Therefore, the n-point
functions must be the primary vehicle for representing the state.
In both the FV framework and the detector-based measurement theory, the represen-
tation of local measurements involves expectation values of fields at different times.
In the FV framework, the state ϖ on C(M) for the coupled probe and field system
is a global state in the sense that it encodes the expectation values of the field over
all local regions. The scattering isomorphism facilitates the representation of ‘in’ and
‘out’ algebraic states (and hence expectation values) in regions M− and M+. In the
detector-based measurement framework, the n-point functions directly involve fields at
different times. As we noted in Sec. 1, this shift away from the instantaneous states
that play a central role in NRQM has longstanding historical roots in QFT in lines
of theoretical development that led to the formulation of scattering theory (again, see
[12]). Here we see the same theme emerging in the treatment of local measurements. As
we will discuss in Sec. 6, the problems raised by instantaneous states in QFT are also
an important motivation for histories-based approaches to relativistic quantum theory,
including the Quantum Temporal Probabilities program [7].

• State update rules for relativistic field systems cannot be literally inter-
preted as representing a physical change of state that occurs in some space-
time region: Our discussion of the FV framework emphasized this point that (as
Fewster puts it) “no geometric boundaries across which the state reduction occurs are
needed” [38, p.10]. In the FV framework, this is a consequence of two features: the
counterfactual interpretation of the ‘in’ and ‘out’ algebraic states over the uncoupled al-
gebra and Corollary 6, which establishes that when successive selective measurements
are performed they can either be evaluated jointly or sequentially. As a result, the
state update rule in the FV framework cannot be literally interpreted as representing
a physical change of state that happens in any spacetime region. The detector-based
measurement theory similarly posits state update rules that do not admit a literal in-
terpretation in terms of a physical change of state that occurs in the region in which the
state update rules are applied. However, the arguments for this conclusion differ from
those for the FV framework. Polo-Gómez et al. argue that the detector-based state
update rules need to be interpreted as an update of the observer’s state of information
about the field system, and not as a change in the observer-independent state of the
field [86, p.5]. Even if one does not go so far as endorsing an epistemic interpretation
in this strong sense, the fact that the state update for the field depends on the space-
time location in which the selective measurement on the detector is performed is not
compatible with interpreting the state update rule as representing a physical change of
state of the field that is brought about by measurement.
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• Nobody solves the Measurement Problem: Proponents of the FV framework
and the Polo-Gómez detector-based measurement theory explicitly agree that their
respective measurement theories for QFT do not solve the Measurement Problem that
arises in NRQM. The Measurement Problem is an issue that arises after a theory for
(non-relativistic or relativistic) quantum systems and an accompanying measurement
theory is formulated. Proponents of both the detector models approach and the FV
framework agree that they are engaged in the preliminary task of formulating a physical
theory plus a compatible measurement theory for relativistic systems.

5.2 Differences

• Pragmatic vs principled approaches have different goals: As we have stressed,
the detector models approach is pragmatic in spirit, while the FV framework adopts
a more principled approach. The adoption of different approaches means that the
detector models approach and the FV framework prioritize different goals. A central
goal of the detector models framework is to construct models that adequately describe
realistic detectors, including detectors that can actually be built in a lab. In contrast,
the FV framework has the primary goal of supplying a framework for measurement in
QFT that is generally applicable. Many pragmatic choices are made in the course of
constructing a model for a particular detector, including the use of NRQM to model
the detector, the smearing functions and field-detector couplings, and the acceptance of
FAPP arguments ruling out impossible measurements. In contrast, the FV framework
focuses on formulating a fully relativistic measurement theory based on the general
physical principles of AQFT in which impossible measurement scenarios cannot arise
at all.

• Different scopes of applicability: The detector models approach and the FV frame-
work have different scopes of applicability. While the FV framework aspires to provide
an entirely general account of measurement in QFT, the framework introduces simpli-
fying assumptions that exclude some physically realistic detectors. For example, the
FV framework assumes that the region K in which the probe and system interact is
compact.51 This assumption does not apply to all of the models of detectors described
in Sec. 4. The detector models approach is not a special case of the FV framework. Its
physical assumptions are more flexible than the FV framework in virtue of its case-by-
case approach. The FV framework also faces the limitation that, in order to apply it
to a situation, field and detector models that satisfy the axioms of AQFT need to be
constructed. However, it should not be assumed that the detector model approach is
always the one that is more useful for practical applications, for example, when probes
are not modeled as two-level systems. The FV framework may be more appropriate for
representing field-field couplings and how information is transferred from one field to
another (e.g. see [52]) . There is definitely interesting work to be done in (search of)
the intersection of the two approaches.

51In this recent paper [43] the FV measurement framework is extended to non-compact probe-system
coupling regions for the case of a quantized real linear scalar field.
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• Derived vs. posited status of state update rules: In the FV framework, the state
update rules are derived from the axioms of AQFT and the properties of the scattering
morphism. The derivation of the state update rules is further constrained by executing
the steps in parallel with the standard derivation in Quantum Measurement Theory.
A measurement scheme is prescribed and CP-instruments are used to derive both the
selective and non-selective state update rules. In contrast, the state update rules in the
Polo-Gómez et al. detector-based measurement theory are based on plausible assump-
tions about how to model the detector, the field, and their interactions and plausible
arguments based on relativity theory. As Polo-Gómez et al. [86, p.6] put it, “[t]his
update rule respects causality by fiat.”

• Application of state update rules is spacetime-dependent vs. spacetime-
independent: In the Polo-Gómez et al. detector-based measurement theory, the state
update rules are spacetime-dependent in two respects. First, whether the n-point func-
tion is updated according to the selective state update rule or the non-selective state
update rule is dependent on the locations of the spacetime points in the n-point func-
tions. Second, the state update rules are also dependent on the region in which the
projective measurement on the detector is performed. In contrast, the FV framework is
not spacetime-dependent in either of these respects. In the FV framework, the selective
state update rule yields an updated algebraic state that applies to all of spacetime. As
discussed above, this state should be interpreted as a counterfactual state, but it is
still the case that the selective state update yields a single, global state. Furthermore,
the state update rules in the FV framework are independent of the spacetime region in
which the probe is measured. The instrument is defined using the scattering morphism,
which is spacetime-dependent on the field-probe coupling region only.

5.3 Further Comparison

While both the physical theory of NRQM and its accompanying measurement theory are
well-established parts of physics, both the formulation of the physical theory of QFT and
the formulation of its accompanying measurement theory are works in progress. The flurry
of recent papers on how to represent measurements on relativistic quantum systems is one
indication of this. Both the FV framework and the detector models approach are part of
this larger ongoing research program. In our view, the FV framework and the detector
models approach should be viewed as complementary projects rather than rivals. As we
have emphasized, they adopt different strategies and have different goals. In their present
incarnations, they also have different scopes of applicability. Applying the two approaches to
model the same measurement scenario can also lead to apparently different predictions. For
example, entanglement harvesting from the vacuum by spacelike-separated local detectors is
investigated in [90, 54]. Ruep [90] applies the FV measurement framework and concludes
that weakly coupled detectors cannot harvest entanglement due to noise associated with the
inescapable mixedness of the states of the local probe. In response, Grimmer et al. [54] argue
that when a concrete detector model is applied that includes an assumption about the scale
of the detector, this effect is negligible and there is no obstacle to weakly coupled detectors
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harvesting entanglement. As in other cases in science, different models can be used to give
complementary descriptions of the same situation. Discrepancies in predictions can be useful
for investigating the conditions under which effects occur and the relationships among our
models.

While we view the FV framework and detector models approach as complementary, it
should be noted that there are differences of opinion on this issue in the literature. One point
of disagreement concerns whether it is possible in principle to model detectors using QFT,
as the FV framework sets out to do. Here is an example of an assumption that is made to
set up the FV framework:

We also do not claim to solve the Measurement Problem of quantum theory.
Rather, we take it for granted that the experimenter has some means of preparing,
controlling and measuring the probe and sufficiently separating it from the QFT
of interest – which we will call the ‘system’ – the question is what measurements
of the probe tell us about the system. That is, our interest is in describing a link
in the measurement chain, in a covariant spacetime context. [41, p.3]

This assumption that measurement theory describes “a link in the measurement chain” is
a standard one within Quantum Measurement Theory applied to NRQM (see, for example,
[18, p.225]), but its use in QFT is criticized by Grimmer, Torres, and Mart́ın-Mart́ınez [54,
p.5] and Grimmer [53], who argue that the assumption that “someone, somewhere, knows
how to measure something” is not warranted when the probe is taken to be a relativistic
quantum field. For practical reasons, the detector models approach is the only one that
we can use right now to model some realistic detectors. Measurement apparatuses are low
energy systems that would need to be described using interacting QFTs with bound states
[86, p.1]. However, one might expect (as Fewster and Verch do) that eventually a treatment
of systems and some types of detectors will be possible within QFT. Grimmer et al. [54]
make the strong claim that detector models formulated using NRQM are needed in principle
to model measurements of QFT systems. Grimmer [53] presents a stronger argument that,
in order to acquire empirical significance, QFT observables must be appropriately related
to a non-QFT model, with the Unruh-DeWitt detector model being a paradigm example.
Furthermore, Grimmer believes that these models of measurement must be constructed on
a case-by-case basis and is skeptical about the viability of a general measurement theory for
QFT such as the FV measurement framework or even the Poló-Gomez et al. detector-based
measurement theory.

A related point of disagreement between proponents of the detector models approach and
the FV framework is whether finite-rank projectors are needed to represent measurements.
If so (as proponents of the detector models approach believe), then such objects are not
available in the Type III von Neumann algebras that are typical in QFT, which would be
problematic for the FV framework (see Sec. 3.4 and 4.1).
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6 Another approach: Histories-inspired responses to
Sorkin-type impossible measurement scenarios

It is important to point out that Sorkin’s motivation for formulating the ‘impossible mea-
surements’ issue is to advocate for the sum-over-histories approach to quantum theory. As
he puts it in the abstract of [100], “It is argued that this problem leaves the Hilbert space
formulation of quantum field theory with no definite measurement theory, removing what-
ever advantages it may have seemed to possess vis a vis the sum-over-histories approach, and
reinforcing the view that a sum-over-histories framework is the most promising one for quan-
tum gravity.” Histories-inspired approaches do not set out state update rules; they instead
assign probabilities directly to histories. In this section, we will comment on the form that
the ‘impossible measurements’ problem takes in histories-based formalisms. To the best of
our knowledge, one cannot find a complete response in the histories literature, even though
the problem is clearly articulated in older [63] and more recent [47, 3] literature.

As there are many variants of the histories-based approaches, we will first sketch the main
tools and ideas that are common in the histories literature. Roughly, the possible ‘histories’
of a given system are all the possible time-extended propositions that one can assign to the
system; that is, all possible ‘paths’ of the system in the (underlying classical) sampling space.
The goal of the formalism is to assign probabilities to all possible paths. These probabilities
are ‘quantum’ in the sense that in general they ‘overlap’ and they are not guaranteed to satisfy
the usual additivity conditions. Histories-based formalisms can be viewed as generalisations
of the path-integral [58, 81]. As histories-based approaches have mostly been applied to
quantum cosmology [49], the formalism typically refers to histories of a closed system (e.g.
the universe), which is why the notion of agency, or ‘external’ measurement, is not part of the
formalism. This is one of the conceptual advantages that is highlighted by Sorkin for using
histories-based approaches to resolve the impossible measurements issue, or for re-evaluating
the measurement problem in a spacetime context. In Sorkin’s words, “With the formal notion
of measurement compromised as it seems to be already in quantum field theory, the greatest
advantage of the sum-over-histories may be that it does not employ measurement as a basic
concept. Instead it operates with the idea of a partition (or ‘coarse-graining’) of the set of all
histories, and assigns probabilities directly to the members of a given partition, using what
I would call the quantum replacement for the classical probability calculus” [100, p.11].

In non-relativistic quantum theory, a history of a quantum system is simply a chain of
time-ordered single-time propositions that are represented by projection operators (in the
Heisenberg picture) and are typically associated with possible values of the observables of
the system. Such a chain α = (α1,α2, ...,αn) is represented by a class operator

Ĉα = P̂α1(t1)P̂α2(t2)...P̂αn(tn) (48)
where the αi’s are indexing the eigenvalues of some observable (or more generally the closed
subspaces of the Hilbert space). The set of time-points t1, t2, ..., tn is called the history’s
temporal support [63].

It is worth emphasizing that the role of the projectors in (48) is propositional, i.e., en-
coding the possible propositions that can be attributed to a closed system. It would be
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natural to think of a history as a sequence of actual events, e.g. measurement outcomes,
but this interpretation is not straightforward as the definition (48) has nothing to do with
measurements a priori. The use of projectors here is similar in spirit to how they are used in
quantum logic, where one can define ‘or’ and ‘and’ operations for combining the propositions
that can be assigned to a physical system [63]. The joint probability of α (the sequence of
propositions α1 at t1, ..., αn at tn) is given by

p(α) = tr
(
Ĉ†
αρ0Ĉα

)
(49)

where ρ0 the state of the system (in the Heisenberg picture). In general, these probabilities
do not satisfy the Kolmogorov additivity condition. That is, if α, β are exclusive histories
and α ∨ β denotes their conjunction, then it does not hold in general that

p(α ∨ β) = p(α) + p(β). (50)

If we define the decoherence functional to be the following complex-valued functional of two
histories

d(α, β) := tr
(
Ĉ†
αρ0Ĉβ

)
, (51)

then p(α) = d(α,α) and the additivity condition (50) holds only if

Re d(α, β) = 0, (52)

which is called the consistency condition [31]. In the context of standard path-integral ap-
proaches the decoherence functional can be calculated as a double path-integral [32]. In a
sense, the decoherence functional quantifies the ‘overlap’ of two histories and the most ob-
vious way of satisfying the consistency condition is to demand that the ‘overlap’ vanishes:
i.e.,

tr
(
Ĉ†
αρ0Ĉβ

)
= 0 (53)

for two exclusive histories α, β. The definition of exclusiveness is that for at least one time-
step ti the two corresponding projectors are orthogonal, i.e., P̂αi

(ti)P̂βi
(ti) = 0. In histories-

based approaches the decoherence functional (rather than the state) can be considered the
primary object from which the probabilistic predictions of the theory are extracted [32]. This
approach gives more general probability rules (than the Born rule) and the issue of state
update does not come up since the formalism operates directly at the level of whole histories
[81]. In a relativistic setting, one is not looking for state-updates that can be consistently
applied ‘step-by-step’ without leading to causality violations, but rather the question is:
which histories of the system can be assigned a probability that does not entail superluminal
influences between the history’s ‘nodes’? In what follows, we will elaborate on this question.

Adjusting the history-based formalism to quantum field theory is not trivial, mostly
because in a relativistic set-up there is no fixed time-ordering of events. The definition of the
history’s temporal support as a set of time-points {t1, t2, ..., tn} is too restrictive in this case.
Even in globally hyperbolic spacetimes there are many foliations that one can choose, not to
mention the challenges in general non-hyperbolic spacetimes [63]. Also, in a field theory it is
unnatural to associate events with spacetime points, and one would like to consider localised
propositions associated with spacetime regions. Isham [63] proposed that the ‘basic’ regions
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that one can consider are connected (causally convex) regions with compact closure. A
temporal support of a history is then a collection of basic spacetime regions {O1,O2, ...,On}
such that their closures are disjoint and for every pair Oi,Oj it holds that Oi ≺ Oj, or
Oj ≺ Oi, or Oi and Oj are spacelike separated (where ≺ is the same ordering relation that
was assumed by Sorkin and was defined above as premise P3(c) of the reductio argument in
Sec. 2.1).52

One would like to associate quantum field propositions with these local regions. This
is challenging for various reasons. Questions that appeal to the Fock space structure of
the Hilbert space, like ‘is the field in the ground state?’ cannot be asked locally (but can,
for example, on a hypersurface, as in the ‘impossible measurement’ example due to Sorkin
described in Sec. 2.2). Due to the Type III nature of the local algebras there are no finite
rank projectors, and the ‘yes-no’-type questions familiar from quantum logic cannot be asked
locally [56, 88]. Isham [63] suggests that the elementary propositions of the field theory over a
spacetime region O should be of the form P (f) that corresponds to the possible values of the
smeared field operator ϕ(f) where supp(f) ⊆ O, and he argues that one would have to specify
the way in which a local lattice of propositions LO associated to region O is generated from
these basic propositions. In the recent work [47], a map O → EO from regions to projective
effect valued measures is assumed, but it is not clear in general which statement about the
quantum field the effect valued measures correspond to. These difficulties with extending the
notion of local propositions to a QFT set up are also related to the difficulties in applying
the modal interpretation to QFT [20, 35].

When considering how to structure basic regions and propositions in QFT so as to solve
the ‘impossible measurements’ problem, Sorkin presents the following dilemma: one can
either further restrict the allowed-measurement regions and the corresponding ordering re-
lation, or else select the allowed observables on “some more ad hoc basis.” In his words, the
problem is “foreshadowed by our need to take a transitive closure in defining ≺” (see dis-
cussion in section 2.2) and as a result one could “further restrict the allowed measurement
regions Oj in such a manner that the transitive closure we took in defining ≺ would be
redundant. For example, we could require that for each pair of regions Oj,Ok all pairs of
points x ∈ Oj and y ∈ Ok be related in the same way” [100, p.9]. Of course, this would block
the Sorkin problem by excluding the configuration of regions in figures 1 and 2. This further
restriction of ≺ would imply that one can only consider temporal supports that consist of
spacetime regions that are pairwise related like two ‘thickened’ spacetime points (fully space-
like, fully timelike, or fully lightlike), blocking the possibility that a region partially invades
the forward lightcone of another region. This is a global restriction, perhaps an ‘all-at-once’
constraint as in [1], that is hard to reconcile with the local perspective. As Sorkin puts it
“it is difficult to see how the ability to perform a measurement in a given region—or the
effect of that measurement on future probabilities—could be sensitive to whether some other
measurement was located totally to its past, or only partly to its past and partly spacelike
to it” [100]. It is also noteworthy that the initial definition of ≺ already excludes cases that
might be of physical interest, such as overlapping regions, which were considered by Bohr and

52Recall that Oj ≺ Ok iff some point of Oj causally precedes some point of Ok in the spacetime. Take the
transitive closure of ≺. Regions must be chosen such that this extended ≺ is a partial order (i.e., cannot
have both Oj ≺ Ok and Ok ≺ Oj).
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Rosenfeld in [13], and regions that intersect the causal past of each other, which are relevant
for the study of possible spacetime embeddings of general process matrices [109]. In general,
by restricting ≺ one might exclude physically interesting cases. Finally, regarding the second
possibility of restricting the allowed observables, Sorkin points out that the inability of two
coupled subsystems to signal through the measurement of an observable that is additive sug-
gests that one could still allow integrals of spatially smeared observables over a spatial subset
of a hypersurface (see the discussion in Sec. 2.4.2, also [3]). However, spacetime smeared
fields do not possess this additive character due to the time-extension (for a treatment of
time-extended propositions in history-based approaches see, e.g., [5]).

Overall, it is not clear how the histories machinery can be used to eliminate the impossible
measurements, but it offers some tools that can be used for salvaging the framework. One
technical tool that is usually not emphasized in the ‘standard’ single-time formalism, is the
consistency condition (53) that gives rise to well-defined multi-time probabilities. In [47],
Fuksa argues that the consistency condition can be used to characterise the causal behaviour
of the probabilistic predictions of the formalism. To briefly demonstrate the point, consider
two propositions Pα1 associated to a region O1 and P̂α2 associated to a region O2, and say
that Pα1 corresponds to some observable Â1 and P̂α2 corresponds to some observable Â2. The
observers associated to the two regions cannot signal if the non-selective measurement of Â1
does not affect the statistics in O2, that is, if

p(α2|A1) = p(α2) (54)

This holds if [P̂α1 , P̂α2 ] = 0.53. The observation is that, even if the two projectors do not
commute, (54) holds thanks to the consistency condition (with respect to α1). To see this
(following [47]), from (49) we have that

p(α1,α2) = ⟨P̂α1P̂α2P̂α2P̂α1⟩ (55)

Assuming the consistency condition (53) with respect to α1, that is

⟨P̂α′
1
P̂α2P̂α2P̂α1⟩ = 0 for α′

1 ̸= α1, (56)

we get that

p(α2|A1) =
∑
α1

⟨P̂α1P̂α2P̂α2P̂α1⟩ (57)

=
∑
α1,α′

1

⟨P̂α′
1
P̂α2P̂α2P̂α1|ψ⟩ (58)

=
∑
α1

⟨P̂α2P̂α2P̂α1|ψ⟩ (59)

=
∑
α1

⟨P̂ 2
α2⟩ = p(α2). (60)

53The more common no-signalling condition based on the Microcausality condition states that the expec-
tation value of Â2 (and not the probability distribution over the outcomes per se) does not depend on the
non-selective measurement of Â1 if [Â1, Â2] = 0 (see e.g. [36]). Equation (54) is a stronger condition since
[Â1, Â2] = 0 does not always imply [P̂α1 , P̂α2 ] = 0.
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This means that, thanks to the consistency condition with respect to α1, a non-selective
measurement of Â1 in O1 does not affect the statistics of Â2 in O2 even if O1,O2 are not fully
spacelike separated. Similarly, in [47] Fuksa considers the three-step history that corresponds
to the Sorkin-type problem, and is represented by the class operator Ĉ(α1,α2,α3) = P̂α3P̂α2P̂α1

where P̂α1 commutes with P̂α3 , but P̂α2 does not commute with either P̂α1 or P̂α2 (P̂α3

is associated with region O3 that is spacelike separated from O1, and O2 is not spacelike
separated from either O1 or O3, see figure 2). Now, since region O1 is not spacelike separated
from the union of O2 and O3, the consistency condition with respect to α1 gives that

p(α2,α3|A1) = p(α2,α3) (61)

which means that a non-selective measurement of Â1 at O1 does not affect the joint statistics
of α2,α3 for any state ψ if the class operator satisfies

Ĉ†
(α′

1,α2,α3)Ĉ(α1,α2,α3) = 0 for α1 ̸= α′
1. (62)

Fuksa [47] points out that if we were to ‘squeeze’ another intermediate region O′
2 between O1

and O3 (partially invading their future and past lightcone respectively) the condition that
blocks ‘impossible measurements’ becomes

Ĉ†
(α′

1,α2,α′
2,α3)Ĉ(α1,α2,α′

2,α3) = 0 for α1 ̸= α′
1, (63)

which is a stricter condition than (62). By introducing more intermediate regions, more
conditions are added to the list of conditions that must be satisfied for blocking the Sorkin-
type problem, and there is no obvious way in which they are redundant (reduce to one
another). So it is not obvious how to block ‘impossible measurements’ in general, but this
analysis offers a recipe of ‘who can signal to whom’ given a particular set of regions and
propositions. In [47] they point out that given a chain of regions Oi, a region Oj cannot
signal to a ‘subsequent’ region Ok as long as the class operator ‘decoheres’ (satisfies the
consistency condition) with respect to the j-th variable, and that propositions before j and
after k do not contribute to the signalling between j and k.

Conditions of the type (62) are ad hoc and global in nature, i.e., depend on the whole
set of regions and propositions that one is considering so, as we said above, they are hard
to motivate from the local perspective of observers embedded in spacetime. One way to
motivate the consistency condition is through the introduction of decohering pointer variables
that are locally coupled to the field [59]. Roughly, the idea is that sufficiently decohered
propositions (or measurements) of the pointer variables are correlated with quantum field
histories that satisfy the consistency condition and would not lead to (significant) causality
violation. Nevertheless, there is a strong dependence of the pointer variable multi-time
probabilities on the chosen measurement scheme, i.e., the chosen measurement resolution [4].

A histories-based formalism that explicitly treats QFT measurement through the intro-
duction of coarse-grained pointer variables is the Quantum Temporal Probabilities (QTP)
formalism [6, 8]. Joint probabilities of the pointer variables are defined by means of unequal-
time correlation functions, and the consistency condition is satisfied for a certain degree of
coarse-graining (see also [4]). A connection of this formalism to the closed-time-path (CTP)
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integral was recently established in [8]. In general, as is also pointed out in [47], it is not ob-
vious in general how to establish standard causality conditions in the path-integral formalism
(‘in-out’ formalism) beyond scattering theory (see discussion in [12]). The CTP formalism
(Schwinger-Keldysh or ‘in- in’ formalism [98, 66]) is better suited for analysing the causal
behaviour of local QFT measurement, thanks to its emphasis to real-time causal evolution
[7]. Also, the QTP program demonstrates how the CTP formalism provides the ‘right’ corre-
lation functions that go into the definition of joint probability distributions over outcomes of
coarse-grained pointer variables that are locally coupled to the field [8]. Time is also treated
as a random variable (in analogy to stochastic processes) and time-of-arrival problems can
be described accordingly. It is work in progress to evaluate the causal behaviour in bipartite
scenarios and in multi-partite Sorkin-type set-ups using this framework, and to fully analyse
how the possibilities of signalling are encoded in the CTP correlation functions.

7 Conclusion

Sorkin’s ‘impossible measurements’ problem serves as both a motivation for formulating an
account of measurement that is compatible with QFT and a guide to possible strategies for
carrying out this program. Sorkin [100] and Borsten, Jubb, and Kells [14] present examples
that show that the näıve application of Lüders’ rule to model non-selective measurements in
relativistic quantum theory can lead to superluminal signalling. We explicitly presented these
examples as a reductio argument in Sec. 2.1. Identifying the problematic set of premises
is useful for distinguishing the ‘impossible measurements’ problem from other foundational
issues raised by QFT. ‘Impossible measurements’ are not caused by Lüders’ rule failing to
be manifestly Lorentz covariant due to the relativistic temporal ordering assumption P3(c).
Making Lüders’ rule manifestly Lorentz covariant does not solve the ‘impossible measure-
ments’ problem; however, the approaches to responding to the ‘impossible measurements’
problem surveyed in Sec. 3-6 all seek to replace the relativistic temporal ordering assump-
tion P3(c) in the course of developing manifestly Lorentz covariant alternatives to applying
Lüders’ rule directly to the field system. The ‘impossible measurements’ problem is also un-
related to state-dependent features of QFT. In particular, the initial state of the field system
is not required to be the vacuum state or any other state that satisfies the assumptions of the
Reeh-Schlieder theorem. Of course, these features of QFT do need to be taken into account
to have a complete understanding of measurement in QFT, as the discussions of selective
measurement of vacuum states and the role of Type III von Neumann algebras throughout
this paper indicate. However, these issues are not a cause of the ‘impossible measurements’
problem.

Sorkin-type ‘impossible measurement’ scenarios clearly illustrate that Microcausality is
not by itself sufficient to rule out superluminal signalling in relativistic quantum theories when
Lüders’ rule is used to model non-selective measurements. Assuming that the practical abil-
ity to signal superluminally is an unacceptable consequence of a relativistic quantum theory,
responding to the ‘impossible measurements’ reductio argument in Sec. 2.1 requires rejecting
or revising at least one of the premises and/or adding at least one premise that is sufficient
to block the conclusion. Strategies for formulating an account of measurement for QFT can
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be distinguished according to how they respond to the reductio argument. The FV measure-
ment framework for AQFT introduces additional physical principles for QFT and formulates
a new measurement theory for QFT that is informed by QMT for non-relativistic quantum
mechanics but differs both formally and interpretationally. It can be shown that superlumi-
nal signalling does not occur when Sorkin-type measurement scenarios are modeled using the
FV framework [15]. The detector models approach rejects the reductio argument’s premise
that Lüders’ rule is directly applied to the field system; instead, measurements are modeled
by coupling the field system to a detector that is represented using NRQM and then per-
forming projective measurements on this detector that may be evaluated using Lüders’ rule.
Detector models are constructed on a case-by-case basis. For Unruh-DeWitt-type models, su-
perluminal signalling can be ruled out FAPP for Sorkin-type scenarios. The histories-inspired
approach that is preferred by Sorkin takes the more radical approach of turning away from
the representation of measurement processes ‘step by step’ and instead assigning probabilities
directly to entire histories. As far as we are aware, histories-based approaches have not yet
achieved a complete resolution of the ‘impossible measurement’ problem, but progress has
been made. Of course, these three approaches are not the only options for either responding
to the ‘impossible measurements’ reductio argument or accounting for measurement in QFT.

There are important differences between these three approaches to accounting for mea-
surement in QFT. The FV measurement framework proceeds axiomatically in a general
fashion; in contrast, the detector models approach focuses on constructing concrete models
of detectors and the systems to which they are coupled on a case-by-case basis. The differ-
ences between the principled and pragmatic attitudes that are adopted as well as in the goals
of these two research programs lead to differences in the resulting models for measurement.
Most obviously, the state update rules for the field system differ in the FV framework and
the detector-based measurement theory. The state update rules are derived from more ba-
sic principles within the FV framework and posited based on plausibility arguments in the
detector-based measurement theory. On the other hand, the detector-based approach has
a wider scope of applicability at present than the FV framework (though there may also
be measurement scenarios treatable within the FV framework but not using detector-based
models). A further difference of opinion concerns how best to deal with Type III von Neu-
mann algebras when representing measurements on quantum fields. The histories-informed
approaches differ from both of the other approaches insofar as they do not model the mea-
surement process using state update rules at all.

While the differences are important, the similarities between these approaches are also
revealing. The development of a fully satisfactory account of measurement in QFT is still a
work in progress, so similarities may offer a glimpse of general features of solutions to the
‘impossible measurements’ problem or even of a measurement theory for QFT. An important
moral is that the dynamics is crucial for diagnosing and addressing the ‘impossible measure-
ments’ problem. The FV framework’s exclusion of superluminal signalling relies on the Local
Time-Slice Property, which is a dynamical principle of AQFT. In detector models, the fact
that the currents associated with the detector modeled using NRQM do not satisfy micro-
causality is the source of superluminal signalling in impossible measurement scenarios. This
problem can be addressed on a case-by-case basis by performing calculations that involve
the interaction Hamiltonian to determine the regime in which non-relativistic effects are neg-
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ligible. In the histories-inspired approach, the decoherence functional includes information
about the local dynamics of the system as well as the kinematics. Solving the ‘impossible
measurements’ problem is still an open problem in this approach, but a possible solution
would rely on the decoherence functional (see e.g. [3]). Overall, histories-based approaches
can lead to notions of causality that go beyond scattering.

Another moral is that both the FV framework and the detector models approach dispense
with the traditional operational interpretation of a local algebra of observables A(O) as
representing operations that it is possible to carry out in region O. In the FV framework,
observables can generally be localized in many different regions. The fact that an operation
can be performed in a local lab region is instead represented by explicitly identifying a region
K in which the field and probe interact and noting that the coupled and uncoupled algebras
may only be related by isomorphisms outside of the causal hull of K. The detector models
approach does involve introducing smearings, but the support for the smearing function need
not be interpreted as representing the region in which the operation represented by a smeared
field operator is performed. The choice of a smearing function is a pragmatic one that is not
limited to functions with support in the detector-field interaction region; furthermore, the
most natural interpretation of the spacetime smearing function is as a holistic property of the
detector-field interaction. The same detector system coupled to the field through different
physical interactions can lead to different interaction regions. Finally, further work is required
for interpreting the local propositions over local regions in histories-based approaches.

The historical context for contemporary programs for developing a measurement the-
ory for local measurements in QFT was set by the choice to formulate QED in terms of
asymptotic scattering theory in the 1940’s [12]. This was a departure from NRQM, in which
instantaneous states at a (finite) time or stationary states are primary. It is interesting to
note that none of the three approaches examined in Sec. 4-6 re-introduce instantaneous
states-at-a-time. Instead of regarding a state in a Hilbert space as the paradigm represen-
tative of the physical state, expectation values (or correlation functions) are the primary
representatives of the physical state. In the FV framework, the algebraic state ω(A) repre-
sents the expectation value of A in state ω. Similarly, in the detector-based measurement
theory, the n-point functions are the primary objects that figure in the state update rules
for the field system. In the histories-inspired approaches, the decoherence functional is the
primary object that generates the probabilistic predictions of the theory. Furthermore, in all
three approaches expectation values at different times are needed. In the FV framework, the
scattering isomorphism implements a finite-time scattering theory that facilitates the rep-
resentation of ‘in’ and ‘out’ expectation values. Furthermore, the state ϖ on C(M) for the
coupled probe-field system encodes the expectation values of the field over all local regions.
In the detector-based measurement theory, the n-point functions directly involve fields at
different times. The state update rules also introduce a scattering operator. And, of course,
in histories-inspired approaches, multi-time histories are the central quantities of physical
significance. The final moral is that the state update rules for the field system cannot be
literally interpreted as representing a physical change of state that occurs in some spacetime
region in either the FV framework or the detector-based measurement theory. In the former
case, the ‘in’ and ‘out’ states over the uncoupled algebra are best understood as having a
counterfactual interpretation, as we argued. Moreover, state updates for successive selective
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measurements may be evaluated either sequentially or jointly. This is a reflection of the fact
that the FV state update rules are manifestly Lorentz covariant. The detector-based state
update rules are interpreted by Polo-Gómez, Garay, and Mart́ın-Mart́ınez as representing an
update of the observer’s state of information about the field system, not as representing an
observer-independent change in the physical state of the field system. Even if this interpreta-
tion of the state update rules is contested, the fact remains that, for a selective measurement,
the state update for the field depends on the spacetime location in which the measurement
on the detector is performed, which is incompatible with interpreting the state update as
representing a physical change in the field that is brought about by measurement.

This final moral is, of course, highly suggestive. Sorkin-type ‘impossible measurements’
are not a symptom of the Measurement Problem. However, conversely, solutions to the
‘impossible measurement’ problem could affect how the Measurement Problem is framed
in QFT. More concretely, one version of the Measurement Problem in NRQM is that a
literal interpretation of the dynamical evolution of the state is in general inconsistent with
a literal interpretation of the state update rule following a measurement. The interpretative
consequences of proposed accounts of measurement in QFT is an important direction for
future research. (See [45] for a starting point.) Given that all of the proposals reviewed
in this paper are works in progress with open questions and challenges, this is only one of
many directions for future research. Furthermore, there are other possible approaches for
devising an account of measurement for QFT that we did not consider. We hope that this
paper encourages continued development of a diverse range of approaches as well as further
investigation of the relationships among them.
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