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Abstract

The essay traces the following idea from the presocratic philosopher Heraclitus, to the
Pythagoreans, to Newton’s Principia: Laws of nature are laws of proportion for matter in
motion. Proportions are expressed by numbers or, as the essay proposes, even identical to real
numbers. It is argued that this view is still relevant to modern physics and helps us understand
why physical laws are mathematical.

1 The “Unreasonable” Effectiveness of Mathematics
Why is mathematics so successful in describing the natural world? More profoundly, why are
the fundamental laws of nature – as far as we know them today – expressed in mathematical
language?

The puzzle can present itself in different ways, depending on what one takes mathematics
to be. If one believes that abstract mathematical objects or structures exist in some Platonic
heaven, one may wonder why they should have anything to do with the physical world and how
we, as material beings in space and time, are able to acquire knowledge of them. With such
questions in mind, some authors have gone as far as to suggest that the universe we live in is
itself mathematical (Tegmark (2014); see also Tumulka (2017)).

If one believes that mathematics is a human invention, one must marvel at the confluence
of human genius and nature’s kindness that makes it so successful. One may try to deflate
the “unreasonable effectiveness of mathematics” (Wigner, 1960) by attributing some of it to
selection bias (Wenmackers, 2016), pointing to pieces of mathematics that, so far, have no use
in natural science. One may also argue that our cognitive apparatus, which allowed us to invent
mathematics, is the product of natural evolution and therefore well-adapted to the world (as
if the traits that prevented our ancestors from being eaten by a tiger would naturally lead to
the invention of complex analysis). But none of these arguments explain why the language we
have been successful with is precisely that of mathematics rather than, say, biblical Hebrew or
instructions for a Turing machine. And at the end of the day, they do little to address Wigner’s
sentiment that “[t]he miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”
(1960, p.14).
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2 On the Rationality of the Cosmos in Presocratic Philosophy
To understand what mathematics has to do with natural laws – not just in practice, but in
principle – it helps to go back to a time when the idea of a lawful cosmos awakened; the time
of the Presocratic natural philosophers around the 6th and 5th century BCE. We must imagine
an intellectual period marked by a profound insight: that we are living in a cosmos (lit. order),
that the world is organized according to rational principles, and that the human intellect has, at
least in principle, access to them. In short, it is a period animated by the idea that the world is
comprehensible.

2.1 Parmenides
We have to start with Parmenides, the great ontologist, because much of the philosophy of the
following centuries unfolds in the dialectic that he begins. Parmenides teaches, nay, proves, that
What Is (to eon) must be uncreated, unchanging, and indivisible – one eternal whole:

One path only is left for us to speak of, namely, that It is. In this path are very many
tokens that what is is uncreated and indestructible; for it is complete, immovable,
and without end. Nor was it ever, nor will it be; for now it is, all at once, a continuous
one. For what kind of origin for it wilt thou look for? In what way and from what
source could it have drawn its increase? ... I shall not let thee say nor think that it
came from what is not; for it can neither be thought nor uttered that anything is not.
(Poem of Parmenides; fr. 28 B8.1-13 DK)1

Recognizing What Is is the Way of Truth (alêtheia). It is not the world presented to us by
our senses but something accessible by rational thought. Indeed, “it is the same thing that can
be thought and that can be” (fr. 28 B3.1 DK).

Parmenides was also a great natural philosopher. “A whole series of important astronomical
discoveries is credited to him: that the morning star and the evening star are one and the same;
that the earth has the shape of a sphere ... that the phases of the moon are due to the changing
way in which the illuminated half-sphere of the moon is seen from the earth” (Popper, 1992, p.
14). But as Popper argues, these discoveries – in particular, that the moon merely appears to
be changing – only contribute to his mistrust of the senses. They pertain to the Way of doxa, of
human beliefs or seemings, not true knowledge of What Is.

It remains unclear how the two relate to one another. Parmenides’ rationalism goes so far
that, on his Way of Truth, little attempt is made to save the phenomena. Something about the
holistic Being has to give if it is supposed to explain the cosmos we experience.

2.2 Anaxagoras
In response to Parmenides, Anaxagoras separates mind and matter, leaving a cosmic intelligence
– the Nous – as a moving principle to act upon the material world. The Nous causes change
and diversification by creating a cosmic vortex through which matter begins to separate into its
constituent elements. Nous is also in us, as our minds that control our bodies. The implication
is that we can understand the world because we share in the cosmic intelligence that shapes it.
The testimony of the senses is not entirely dismissed, but its tentative character is expressed in
the doctrine that “appearances are a sight of the unseen” (fr. 59 B21a DK). True knowledge
requires the refinement of sense experience by rational thought.

It remains unclear how to understand the Nous when it comes to the subjective or individual
aspects of mind, what we might call consciousness or, less anachronistically, soul (psyche).
While the Presocratics don’t always get a fair shake from Aristotle, his criticism of Anaxagoras
as conflating mind and soul (De anima 1.2) seems pertinent.

1Unless stated otherwise, Presocratic fragments are quoted in the translation by Burnet (1920).
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2.3 Heraclitus
Heraclitus, “the Dark One,” is very clear on one point, that he speaks about something which is
common to all (frr. 22 B2, B80, B89, B113, B114 DK). For example:

The waking have one common world, but the sleeping turn aside each into a world
of his own. (B89 DK)

Erwin Schrödinger sees therein the idea of an external reality emerging “from the fact that part
of our sensations and experiences overlap” (2014, p. 73). We can put it in a different way.
While Anaxagoras separates the all-encompassing BEING of Parmenides into matter and mind,
Heraclitus splits off the cognizing subject, leaving an external world as the object of cognition
(cf. Dürr and Lazarovici (2012)).

Common to all is also the logos, the ordering and unifying principle of the world. Since
recovering from the influence of Hegel, it has become widely accepted that cosmology, not
logic or dialectic, is the right starting point for understanding this central concept of Heraclitean
philosophy (Kurtz, 1971). Logos does not rule some abstract realm of thought; it rules the
universe we all inhabit. We may start with fragments like the following:

This world order (kosmos), the same for all, none of the gods or humans made it,
but it always was and is and will be: fire ever-living, kindled in measures (métra)
and extinguished in measures. (B30 DK; translated by Laks and Most (2016))

Heraclitus is sometimes presented as the great antagonist of Parmenides because the reality he
describes appears like the opposite of static being. It is a world in flux, an endless process of
becoming, opposites united in a ceaseless cycle of transmutation. And yet, in this flow of change,
Heraclitus recognizes something constant, something that manifests order and reflects the
underlying logos. Fire, which Heraclitus takes to be the most fundamental element, transforms
in measures, that is, in certain regular proportions:

Turnings of fire: first sea; then half of the sea, earth; and the other half, lightning
storm. [...] It spreads out as sea and its measure reaches the same logos as it was
before it became earth. (B31 DK; translated by Laks and Most (2016) )

If one wants to settle on a translation for “logos,” the best fit here is indeed proportion (Kurtz,
1971). Compared to the Nous of Anaxagoras, the Heraclitean logos is a more abstract and
impersonal concept, coming closer to that of natural law.

The last quote is one of the notoriously obscure fragments of Heraclitus, whose precise
meaning is hard to reconstruct. The meaning of “lightning storm” (prêstêr) is disputed – is
it a form of fire, or a fourth element, viz. air? Also ambiguous is the subject of the second
sentence and hence what transformation it describes (maybe of water back into fire; almost
certainly, Heraclitus describes a kind of cycle process).2 These issues notwithstanding, it seems
clear enough that the fragment expresses a law of the form water : earth = water : storm, and
presumably also fire : water = water : earth.

3 Mathematical Interlude
It may not be obvious to us today that the term “measures” already points to something mathe-
matical. Perhaps we need a definition:

Definition 3.1. Two magnitudes 𝐴 and 𝐵 of the same kind, are commensurable if there exists a
third magnitude 𝜖 and natural numbers 𝑛, 𝑚 such that 𝐴 = 𝑛 · 𝜖 and 𝐵 = 𝑚 · 𝜖 . In this case, 𝜖 is
a measure of 𝐴 and 𝐵 and the ratio 𝐴 : 𝐵 corresponds to 𝑛 : 𝑚.

It must be emphasized that magnitudes are not numbers, but physical or geometrical quanti-
ties (lengths, areas, masses, etc.). Only the ratio of two commensurable magnitudes corresponds
to the ratio of two numbers – or what we now recognize as a (rational) number in its own right.
It is important to keep this in mind, especially when we talk about the Pythagoreans, because
the above definition anticipates a fundamental motive of their science and philosophy.

2On these questions, see, e.g., Kurtz (1971); Jones (1972); Schadewaldt (1978); Kirk et al. (1983).
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Magnitudes by themselves have only some of the structure of numbers (see Maudlin (2014,
pp. 9–25)). Two magnitudes of the same kind can be added and subtracted but they cannot
be multiplied or divided (to yield a third magnitude of the same kind). A workaround, at least
for line segments, is introduced much later in Descartes’ La Géométrie (1637) and requires
some arbitrary length to be designated as unity (see Fig. 1). This allowed for the very powerful
algebraization of geometrical problems that paid off immediately with a precise characterization
of (im)possible constructions with compass and straightedge.

Figure 1: Descartes’ construction of the product of 𝑎 = 𝑂𝐴 and 𝑏 = 𝑂𝐵. The segment 𝑂𝐶 is (arbitrarily)
chosen as unity. By the intercept theory, the constructed 𝑥 = 𝑂𝐷 satisfies 𝑎 : 1 = 𝑥 : 𝑏.

But the Cartesian solution is very non-Pythagorean and indeed nonsensical from a strictly
geometric point of view. It corresponds to defining the product of 2m and 3m as 6m, when
we would could have just as well chosen a different unit, say cm, and multiplied the same two
lengths to 60000.

It is rarely noticed that we are committing the same sin when we represent numbers as
points on the number line. There is nothing numerical about a linear continuum per se. An
arbitrary segment must be designated as a unit length, say between two points marked “0” and
“1”. Only relative to the scale thus introduced can we claim that points (or their distances from
0) correspond to numbers.

4 Pythagoreanism and Platonism

4.1 Plato
We saw that Heraclitus, in his cosmological fragments, describes the logos as a law of proportion
for the transformations of elements. It is this logos that unifies the different elements in cycles
of change. While the context differs, we find the same kind of calculation in the creationist
cosmogony of Plato’s Timaeus:

God in the beginning of creation made the body of the universe to consist of fire
and earth. But two things cannot be rightly put together without a third; there must
be some bond of union between them. And the fairest bond is that which makes
the most complete fusion of itself and the things which it combines; and proportion
is best adapted to effect such a union. [...] God placed water and air in the mean
between fire and earth, and made them to have the same proportion so far as was
possible (as fire is to air so is air to water, and as air is to water so is water to earth);
and thus he bound and put together a visible and tangible heaven. And for these
reasons, and out of such elements which are in number four, the body of the world
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was created, and it was harmonized by proportion [...]. (Tim. 31b–32c; translated
by Jowett (1892))

Plato also makes explicit what we can only surmise for Heraclitus, that numbers (expressing
proportions) are a reflection of the eternal in a world in motion:

Now the nature of the ideal being was everlasting, but to bestow this attribute in
its fullness upon a creature was impossible. Wherefore he [the creator] resolved to
have a moving image of eternity, and when he set in order the heaven, he made this
image eternal but moving according to number, while eternity itself rests in unity;
and this image we call time. (37d)

True knowledge is knowledge of the eternal forms. In the world of change, we can only deal in
likelihood. This epistemological principle is itself expressed as a law of proportion: “As being
is to becoming, so is truth to belief.” (Tim. 29c; cf. Rep. VII 534a). The genesis of the soul
explains the possibility of knowledge. It was created out of the divisible and material on the
one hand and the indivisible and unchangeable on the other, and therefore partakes of the nature
of both. It is noteworthy that soul and number are ascribed a similar status as intermediates
between the physical world and the realm of the eternal (cf. Plato’s analogy of the divided line
in Rep. VI 509d–511e).

4.2 The Pythagoreans
Between Heraclitus and Plato, we have the Pythagoreans, and among them a group known as
the mathēmatikoi.3 They developed four sciences or mathemata, which would come to form the
classical quadrivium of education: arithmetic, geometry, astronomy, and music (or harmonics).

The study of musical harmony began with the observation that the simultaneous striking of
different chords produces consonance when the cord lengths stand in certain ratios: 2:1 (the
octave), 3:2 (the perfect fifth), 4:3 (the perfect fourth), etc. It later turned into a more axiomatic
science of harmonic proportions and the musical scale. The Pythagorean astronomers saw
the same harmonic proportions in the motions of celestial bodies, postulating that the sun, the
moon, and the planets (including Earth) move uniformly in circular orbits around a “central fire”.
The idea of a “music of the spheres” would culminate 2000 years later in Kepler’s Harmonice
Mundi (1619). Geometry was the study of proportions in their purest form, the discovery of
mathematical laws in the relations of lengths, areas, and angles. The Pythagorean theorem is
just the most obvious example.

The idea of Pythagoreanism as holding that all things are literally made out of numbers
is a caricature based on the school’s mystical currents. Undoubtedly, though, Number was
considered divine, the universal principle behind harmony, rationality, and beauty in the skies
and on Earth. Only through Number is it possible to understand the cosmos:

Indeed, it is the nature of Number which teaches us all things which would otherwise
remain impenetrable and unknown to every man. For there is nobody who could
get a clear notion about things in themselves, nor in their relations, if there was
no Number or Number-essence. By means of sensation, Number instills a certain
proportion, and thereby establishes among all things harmonic relations [...]; it
incorporates intelligible reasons of things, separates them, individualizes them,
both in limited and unlimited things. (Philolaus, fr. B11 DK, cited by Guthrie and
Fideler (1987))

3The Pythagorean influence on Plato is undeniable (the Platonic character Timaeus is commonly identified as a
Pythagorean). Placing Heraclitus in the same lineage is more contentious. Plato criticizes Heraclitus on the basis that if
everything were in flux, truth and knowledge would not be possible (Cratylus 402a ff.). Heraclitus calls Pythagoras an
“imposter” (fr. B129 DK), someone who has studied many things but lacks understanding (B40 DK). Heraclitus was not
an easy fellow. Nonetheless, a reconciliation of these great thinkers is not only possible but plausible, and I set forth the
connections as they seem correct to me.
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4.3 The Discovery of Incommensurability
If one can still sense how sublime and fulfilling the Pythagorean worldview must have seemed
to believers, it helps to understand the shock caused by the discovery of incommensurability.
The Pythagoreans had an algorithm – today, we call it the Euclidean algorithm – to find the
greatest common measure of two like magnitudes. Subtract the smaller magnitude as often as
possible from the greater, and then the remainder from the smaller, and so on. Hippasus is
usually credited with the discovery that, for certain line segments – such as the diagonal and
side of a square or a regular pentagon – this algorithm never terminates (see Fig. 2 below). The
discovery of incommensurability thus also marks the beginning of the mathematical struggle
with infinity. Legend has it that Hippasus was drowned at sea as punishment for his blasphemy
(fr. 18 A4 DK).

Figure 2: Euclidean algorithm for the side and diagonal of a square. Trying to find a common measure leads
to an infinite regress. In the next step, we have to subtract the side of the new square (𝑎2 = 𝑑 − 𝑎) from its
diagonal (𝑑2 = 2𝑎 − 𝑑).

Euclid (Book X, Def. 1.3) and before him Plato (Rep. VII 534d, VIII 546c) already refer to
incommensurable line segments as irrational4, Plato in a way that suggests the term had been
established before, maybe by the Pythagoreans themselves. It is still a big conceptual leap from
here to understanding the proportions of incommensurable magnitudes as (irrational) numbers,
but the step seems almost inevitable.

The Pythagoreans had more immediate concerns. They had to save their sciences, in
particular geometry, whose arithmetic foundation crumbled with Hippasus’ discovery of in-
commensurability. A fundamental question that arose is what it means for different magnitudes
to stand in the same proportion if this proportion no longer corresponds to a ratio of natural
numbers. In other words, one needs an identity criterion for proportions that applies also in the
incommensurable case. The following solution is attributed to Eudoxus of Cnidus, a student
of Plato. It provides the basis for the theory of proportions presented in Book V of Euclid’s
Elements.

Definition 4.1. Let 𝐴, 𝐵 and 𝐶, 𝐷 be magnitudes of the same kind. The ratio 𝐴 : 𝐵 is equal to
𝐶 : 𝐷 if for all natural numbers 𝑛, 𝑚 one of the following three cases holds:

𝑚 · 𝐴 < 𝑛 · 𝐵 and 𝑚 · 𝐶 < 𝑛 · 𝐷
𝑚 · 𝐴 = 𝑛 · 𝐵 and 𝑚 · 𝐶 = 𝑛 · 𝐷
𝑚 · 𝐴 > 𝑛 · 𝐵 and 𝑚 · 𝐶 > 𝑛 · 𝐷

4árritos, which translates more literally to ineffable or inexpressible; also alogon.
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The second case can only occur for commensurable magnitudes (for which then 𝐴 : 𝐵 =

𝐶 : 𝐷 = 𝑛 : 𝑚). But if we take the step of recognizing rational numbers (and thus license
writing 𝑛

𝑚
), we can see from Eudoxus’ definition that any proportion partitions the rationals

such that either 𝑛
𝑚

< 𝐴 : 𝐵 or 𝑛
𝑚

≥ 𝐴 : 𝐵. This is precisely the idea behind Richard
Dedekind’s construction of the real numbers, though the fact that it took 2000 years (and the
invention of set theory) to carry out shows the magnitude of the achievement. While Dedekind
(1872) makes a point of looking for arithmetic as opposed to geometric principles for the
continuum, it is straightforward to translate his account into a completion of Eudoxus’ theory
of proportions with all the structure of the real numbers. For instance, multiplication: Given
two proportions 𝐴 : 𝐵 and 𝐶 : 𝐷, their product is the smallest proportion 𝐸 : 𝐹 such that, for
all 𝑘, 𝑙, 𝑚, 𝑛 ∈ N, 𝑛𝐵 < 𝑚𝐴 and 𝑘𝐷 < 𝑙𝐶 implies (𝑙𝑚)𝐸 ≤ (𝑘𝑛)𝐹. Non-positive numbers
can be included by admitting magnitudes of positive or negative orientation.

With the discovery of incommensurability, we lose the crutch of saying that the ratio of
two magnitudes is like the ratio of two (natural) numbers. Instead, we are led to recognize
proportions as numbers in their own right – those forming the continuum of reals.

4.4 The Birth of Modern Physics
The Pythagorean influence was still very present at the time of the scientific revolution, where
it combined with the right amount of empirical methodology (not too little, but also not too
much). Modern physics was born with the discovery of mathematical laws that are laws of
proportion for the motion of matter.

Galileo performed his acceleration experiments and reported that “the spaces traversed were
to each other as the squares of the times” (1638/1954 p. 179). Expressed here is not the
algebraic formula 𝑠 = 1

2𝑎𝑡
2, which relates dimensionful quantities on both sides, but the fact

that, for pairs (𝑠1, 𝑡1), (𝑠2, 𝑡2) of times and corresponding distances, 𝑠1 and 𝑠2 have the same
ratio as the squares of 𝑡1 and 𝑡2 (see Thm. II, Prop. II in the Discorsi). That Galileo thought
geometrically is also evident in the famous passage from Il Saggiatore (1623) that inspired the
title of the present essay:

Philosophy is written in this grand book, the universe, which stands continually
open to our gaze. But the book cannot be understood unless one first learns to
comprehend the language and read the letters in which it is composed. It is written
in the language of mathematics, and its characters are triangles, circles, and other
geometric figures without which it is humanly impossible to understand a single
word of it; without these, one wanders about in a dark labyrinth. (Quoted from
Drake (1957, p. 238))

Around the same time, Kepler combined Pythagorean ideas with Copernican heliocentrism and
found his harmonic law for planetary motion: The square of the orbital period is proportional to
the cube of the semi-major axis of its orbit. Two generations later, Newton proved that this law
follows from a centripetal force inversely proportional to the squares of the distances (Prop. XV,
Thm. VII in the Principia). In the Principia, one still looks in vain for differential equations or
even the famous formula 𝐹 = 𝐺𝑚𝑀

𝑟2 . Classical mechanics is developed geometrically, including
“the method of the first and last ratios of quantities” introduced to apply results of Euclidean
geometry to curve segments as they become vanishingly small.5

5 Why Laws of Nature are Mathematical
In the preface to the first edition of the Principia, Newton made explicit how he saw the rela-
tionship between mathematics and natural philosophy in the task of “reduc[ing] the phenomena
of nature to mathematical laws” (Newton 1687/1999, p. 381). The practical side of mechanics
involves the manual art of measuring magnitudes and carrying out geometrical constructions.
“[G]eometry is founded on mechanical practice and is nothing other than that part of universal

5Although Newton had developed a more abstract differential calculus in his Method of Fluxions (completed 1671,
but not published until 1736), it was not used in the Principia (first published 1687).
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mechanics which reduces the art of measuring to exact propositions and demonstrations” (p.
382). In essence, mechanics, as an empirical science, falls short of exact geometry only through
practical limitations, particularly the inaccuracies of measurements.

It would be an overstatement to call Newton a Pythagorean. But he is part and pinnacle
of a long tradition of thought that recognizes geometry – in the sense of the rational investi-
gation of relations between magnitudes – as the nexus between physics and mathematics. The
understanding we can gather from this tradition is that the appropriacy of mathematics for the
formulation of the laws of nature is neither accidental nor merely a matter of convenience. There
is something genuinely mathematical about the very concept of natural laws.

Why are the laws of physics mathematical? Because physics is the science of matter in
motion. Regularities of motion manifest themselves in proportions of times, distances, and
other geometric or perhaps kinematic quantities. Proportions are numbers. And numbers are
mathematical.

I believe this answer is still relevant today, as our physics and mathematics have become so
much more sophisticated. A physical theory can involve whatever kind of abstract calculus and
higher-order mathematical structures we need. But at the end of the day, the theory must link up
to matter in motion, and this is where mathematics meets the physical world, both conceptually
and metaphysically. This presupposes, however, two things that can no longer be taken for
granted in contemporary physics: the laws must be mathematically consistent and precise. And
the theory must postulate a clear ontology of matter as that to which the mathematical formalism
ultimately refers.6

There would thus be another story to tell about how the Pythagorean understanding has
been lost in more recent times; perhaps completely when Bohr declared that the formalism of
quantum mechanics “represents a purely symbolic scheme” (in Schilpp (1949, p.110)). What a
fall from grace for theory, from a vision of the divine logos to a meaningless manipulation of
symbols that refers to nothing in the world. But I’ll leave this tragedy for another time.

5.1 Numbers as Proportions
When I say that (real) numbers are proportions, I mean that they are relations between magni-
tudes. Magnitudes themselves are not numerical (only relative to a chosen unit of measurement)
and include spatiotemporal relations as well as concrete physical properties. The metaphysical
details of this proposal remain to be spelled out elsewhere.7 Here, I want to make the point that
the understanding of numbers as proportions (rather than abstract objects of set theory) narrows
the gap between what we now call Platonism and nominalism.

The ratio of the diagonal to the side of a square is
√

2, as is the ratio of the sides of two squares
where the first has twice the surface area of the second. These are true identity statements,
necessarily and a priori. Numbers are universals transcending their various instantiations since
everything that is particular to given lengths or areas or other magnitudes quite literally cancels
out when we consider their proportions. This is why the Pythagoreans insisted, as Proclus
reports, that “numbers are purer and more immaterial than magnitudes” and appear “to every
mind as one and not many, and as free of any extraneous figure or form” (1992, p. 78).

On the other hand, if space and time are actually continua, all real numbers are instantiated
in the physical world – in space-time itself and (if this is still too abstract) even in the motions
of material entities. This requires less than a metric structure since we don’t need absolute
distances. In fact, the nominalist program of Hartry Field (Science without Numbers, 2016),
which builds on Hilbert’s axiomatization of Euclidean geometry, can be read as an exploration
of how far one can get with only intrinsic structure, such as relations of congruence. I just don’t
think it thereby “eliminates” numbers in any metaphysically interesting sense. One can debate
the question of ontological priority (if one is so inclined). But if, say, a circle exists in your
universe, then the number 𝜋 exists as well.

6Ideally, it needs what Dürr, Goldstein, and Zanghı̀ (1992) named primitive ontology (see Lazarovici and Reichert
(2022) for a recent discussion) or what John Bell (2004, Chap. 7) called local beables.

7I will also not discuss the ontological status of other mathematical objects. Both a selective realism and full-blown
Platonism are consistent with the view I propose in regard to numbers.
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5.2 Conclusion
I am certainly not advocating a return to the mathematics of the early 18th century or dismissing
the awesome progress we have made ever since. We have explored so much more of the
mathematical universe, set our inquiries on solid logical foundations, and developed powerful
concepts and mathematical methods without which modern science and technology would not
be possible. We have gained tremendous knowledge, but we have also lost some of the wisdom
of past giants.

It is easy to get lost in formalism and mathematical abstraction, to the point that it seems a
great mystery how any of it could have anything to do with the natural world, let alone a logos
that is not of our own making. This often combines with a tendency to make us humans both
too small and too large at the same time: it seems inconceivable that we could have insight into
either mathematical truth or the laws of nature unless we are somehow the engineers of both.
Detlef Dürr strictly rejected such thinking. For him, the purpose of doing science was not only
to understand the cosmos, but also to recognize our proper place in it.

I believe – and this is one of the many insights I owe to Detlef – that the understanding of
numbers as proportions is at least the beginning of an answer to why the laws of nature are
mathematical. The more profound mystery is why laws of nature exist in the first place; what
explains the very rationality and comprehensibility of the universe. With this, I leave the final
word to my teacher:

What is the origin of physical law? We could answer: there is no origin; it is
a brute fact that everything can be described by a law, and in the end, it is our
human law because our senses experience regularities. And we are looking for a
code to describe these experiences. And mathematics is a good code that we have
developed in a process of trial and error. This is wrong. We are not working like
that, at least not as physicists. If we did, we would pile up all kinds of mathematical
garbage just as moles pile up mounds of earth. Galilei didn’t do that, Newton didn’t
do that, and least of all Einstein. To better understand why this idea is wrong, you
must understand the mathematical formulation of the law, or rather of the laws that
we have discovered so far. It is not a summary of our observations that all bodies
fall to the ground; it is not said that some bodies do this and others do that; it
is not a bookkeeper’s order that we write down. We are looking purposefully for
the underlying law of everything. We are guided by ideas of beauty, simplicity,
elegance that the law should satisfy, and with these categories, we are successful.
There is no good explanation for our successes [...].
— Detlef Dürr (2007): Was heißt und zu welchem Ende studiert man Physik?8

Acknowledgements: I owe most of the insights explored in this essay to Detlef Dürr, who owed
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8What is physics and to what end does one study it? Christmas lecture at the University of Munich. Translation D.L.
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