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Abstract 

Machine learning models, par2cularly deep ar2ficial neural networks (ANNs), are becoming 

increasingly influen2al in modern neuroscience. These models are oAen complex and opaque, 

leading some to worry that, by u2lizing ANNs, neuroscien2sts are trading one black box for 

another. On this view, despite increased predic2ve power, ANNs effec2vely hinder our 

scien2fic understanding of the brain. We think these worries are unfounded. While ANNs are 

difficult to understand, there is no fundamental trade-off between the predic2ve success of a 

model and how much understanding it can confer. Thus, u2lizing complex computa2onal 

models in neuroscience will not generally inhibit our ability to understand the (human) brain. 

Rather, we believe, deep learning is best conceived as offering a novel and unique epistemic 

perspec2ve for neuroscience. As such, it affords insights into the opera2on of complex 

systems that are otherwise unavailable. Integra2ng these insights with those generated by 

tradi2onal neuroscience methodologies bears the poten2al to propel the field forward. 
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1. Introduc5on 

Machine learning in general, and deep ar2ficial neural networks (ANNs) in par2cular, have 

become an increasingly influen2al methodological tool in the arsenal of modern 

computa2onal neuroscience. Because of their flexibility, ANNs are used in mul2ple dis2nct 

ways, from the iden2fica2on of predic2ve variables to serving as models of cogni2ve and 

perceptual facul2es (Glaser et al., 2019). As a result of their expressive power, ANNs have 

achieved unmatched success when it comes to task performance, predic2on of neural ac2vity, 

and replica2on of human-like behavioural paTerns (Cao & Yamins, 2021; Kanwisher et al., 

2023; Schrimpf et al., 2020). However, despite their undeniable predic2ve power, deep 

learning-based approaches to inves2ga2ng the brain are not without limita2ons. One such 

limita2on is that systems designed through deep learning are oAen highly complex and 

opaque to researchers. Because their func2onal structure is generated through an automated 

learning procedure, precisely how deep learning-based systems solve a given set of 

computa2onal problems oAen remains unclear, even to their designers. This applies not only 

to the use of deep learning in neuroscience but to deep learning systems at large. Many AI 

researchers worry that there is a “tension between machine learning performance (predic2ve 

accuracy) and explainability” (Gunning & Aha, 2019, p. 45; see Crook et al., 2023 for 

discussion). This general worry is also echoed with respect to neuroscience research 

specifically. For instance, Lindsay argues that “to have a model complex enough to perform 

real-world tasks, we must sacrifice the desire to make simple statements about how each 

stage of it works” (2021, p. 2024). Building on such worries, Chirimuuta portrays the situa2on 

as one where computa2onal neuroscience faces “a trade-off between predic2ve accuracy and 

the ability of [its] models to confer understanding” (2021, p. 787). 

While we agree with Lindsay’s statement, we believe that the fear expressed in Chirimuuta’s 

is misguided. There might indeed be a trade-off between the predic2ve success of individual 

models and the ease of understanding them; but this does not imply that u2lizing complex 

computa2onal models in neuroscience will generally inhibit our ability to understand the 

(human) brain. On the contrary: We firmly believe that rather than worrying about sacrificing 

understanding by u2lizing deep learning in neuroscience, we should welcome ANNs into the 

neuroscien2sts’ toolkit. They bear the poten2al to generate new insights about the brain from 

a yet unavailable epistemic perspec.ve (see Kästner, 2018) that is complementary to the 
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perspec2ves provided by established neuroscien2fic methodologies. That is, deep learning 

contributes to, and does not detract from understanding the phenomena neuroscien2sts 

inves2gate.  

We shall begin our exposi2on by diagnosing the source of trade-off worries in a misconcep2on 

of scien2fic understanding (sec2on 2). The reasoning behind the no2on that researchers are 

paying a high price for predic2ve success crucially depends on weighing the predic2ve power 

of models against the intelligibility of those models. While it is widely agreed that the aim of 

science is to understand phenomena,1 the argument for a trade-off depends on equa2ng this 

understanding with the intelligibility of par2cular models of those phenomena (see, e.g., 

Bokulich, 2017; Elgin, 2017).2 However, we think this is mistaken in two ways. First, while we 

agree that models play a key role in the produc2on of scien2fic understanding, we think such 

understanding depends upon integra2on of numerous distributed sources of explanatory 

informa2on. Second, the intelligibility of a model is not a reliable guide for how much 

understanding it can confer. While interpre2ng complex models may be challenging, so long 

as it is feasible, even rela2vely unintelligible models can induce scien2fic understanding of 

phenomena.  

Once we recognize this dis2nc2on between model understanding and model-induced 

understanding of phenomena, it becomes evident that the predic2on-understanding trade-

off is a bogeyman we need not fear: Deep learning can contribute to a progressive 

computa2onal neuroscience that yields both improved predic2ve performance and deeper 

scien2fic understanding (sec2on 3). This can be achieved by integra2ng insights from 

tradi2onal neuroscien2fic research with those delivered by ANNs and systema2c post-hoc 

interpretability strategies. Insights from these different epistemic perspec.ves will contribute 

to a store of distributed knowledge that neuroscien2sts can draw on to explain and 

understand phenomena.  

Because debates about what it takes to explain and understand complex systems have a 

par2cularly rich history in neuroscience, we focus our discussion on this field. S2ll, we think 

 
1 There is a rich debate in contemporary philosophy of science about what precisely phenomena are and how to 
best characterize them (e.g., Colaco, 2019; Craver & Darden, 2013; Feest, 2017; Shagrir & Bechtel, 2017). Here 
we simply use the term “phenomenon” to refer to any explanandum invesNgated by neuroscienNsts. Prototypical 
examples include such things as color vision, face recogniNon, or corNcal language processing. 
2 We use the term intelligible to capture how easy it is to understand a given model. 
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our insights will not only apply to neuroscience; but are likely to generalize to relevantly similar 

domains where deep learning is being u2lized to study complex systems.  

 

2. Trade-Off Worries 

In this sec2on, we discuss why trade-off worries come about. We shall first review arguments 

to the effect that a trade-off exists between the predic2ve success of a model and how much 

understanding it can confer (sec2on 2.1). Against this backdrop, we shall explain why we think 

these arguments are flawed: because they mistake model understanding for model-induced 

understanding of phenomena (sec2on 2.2). 

2.1 Why worry?  

A common concep2on is that models inducing understanding should be simple and 

intelligible, abstrac2ng away from or usefully idealizing the complexi2es of the real world (cf., 

Bokulich, 2017; Elgin, 2017; Potochnik, 2016). Against this backdrop, it seems natural to expect 

that scien2fic understanding is best conferred by simple transparent models that domain 

experts understand perfectly. In tradi2onal scien2fic modelling, scien2sts’ domain knowledge 

is encoded by the construc2on of a model of a target phenomenon (Craver, 2001; Frigg & 

Hartmann, 2020). These models can frequently be represented by intui2ve box-and-arrow 

diagrams or by simple equa2ons experts can grasp just by eyeballing them. The components 

of these models are oAen taken to represent relevant features of target phenomena, though 

these may be individuated func2onally rather than structurally (BenneT et al., 2019; Craver & 

Kaplan, 2020). The construc2on, evalua2on, and manipula2on of models that represent 

phenomena is oAen taken to be central to the produc2on of scien2fic understanding (de Regt, 

2009; Elgin, 2007; Morgan & Morrison, 1999).  

Deep learning models are different on various scores.3 First, because they are trained with 

large datasets and consist of many parameters, they can be exceedingly complex. As such, 

 
3 The word ‘model’ has mulNple meanings. In staNsNcs, any deep learning system is called a model, regardless of 
the purpose for which it is constructed. However, in the philosophy of science, a model is any structure, 
mathemaNcal, physical, or graphical, that is constructed to represent (some aspect of) a target system. In 
neuroscience, staNsNcal models based on deep learning are used both as tools (e.g., for data pre-processing; c.f. 
Glaser et al., 2019) and as models that represent target systems (Cichy & Kaiser, 2019). In what follows, we focus 
on the use of ANNs as scien,fic models (i.e., models constructed to represent), which is of greater philosophical 
interest. 



 5 

they break with the expecta2on of being simple. Second, and relatedly, unlike with tradi2onal 

modelling, domain knowledge typically only constrains choices about the ini2al architecture 

of deep learning-based models (Goodfellow et al., 2016). This consists of the number of layers, 

number and types of neurons in each layer, connec2vity profiles of each neuron, and learning 

rules of the network (Chollet, 2021; Richards et al., 2019). While this architecture is specified 

by researchers, the rest of what an ANN model encodes (e.g., the system’s func2onal units, 

their organisa2on, and how they interact to solve the computa2onal problem) is learned 

through an automated training procedure, typically involving backpropaga2on and some form 

of gradient descent (LeCun et al., 2015). On the one hand, this autonomy from human design 

is the central strength of deep learning. It is what gives ANNs the flexibility to learn subtle, 

task-relevant structure that eludes tradi2onal modelling and thus to expand the range of 

domains in which models can achieve predic2ve success (Boge, 2022; Jumper et al., 2021; 

Zhuang et al., 2021). On the other hand, especially when ANNs have many parameters, it is 

oAen unclear both i) how the internal structure of the model implements the mapping from 

input to output (this is ‘w-opacity’ in the terminology of Boge, 2022; see also Chirimuuta, 

2021; Creel, 2020), and ii) what rela2on this internal structure bears to the target 

phenomenon (this is what Sullivan, 2022 calls ‘link uncertainty’).4 As such, deep learning 

models can be predic2vely successful without necessarily illumina2ng how exactly the target 

phenomenon is produced; that is, without conferring understanding. 

As a result of these unique proper2es, several authors wri2ng about the increasing prevalence 

of deep learning in science have worried that the advantages we accrue in terms of predic2ve 

accuracy are offset by a decrease in explanatory power and understanding (Boon, 2020; 

Chirimuuta, 2021; Lindsay, 2021; López-Rubio & Ras, 2021; Srećković et al., 2022). For 

example, Srećković and colleagues suggest that increased use of deep learning models may 

“lead us away from the explanatory aspect of science” (2022, p. 172). Along similar lines, Boon 

imagines a future in which “scien2fic researchers and scien2fic knowledge become 

superfluous as learning from large data sets, algorithms and data-models will be developed at 

a degree of complexity and adequacy far beyond the capacity of the human intellect” (2020, 

pp. 49–50). Finally, López-Rubio and Ras express the view thusly: “when predic2ve 

 
4 There is a vast body of literature on opacity. For a classic see Burrell (2016), for a recent comprehensive 
taxonomy see Mann et al. (2023).  
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performances increase, the possibility of elabora2ng a (mechanis2c) explana2on necessarily 

decreases” (2021, p. 1332). While the exact claims and arguments of these authors differ 

slightly, the overall perspec2ve they present is clear: we must choose between increasing the 

predic2ve adequacy of our models and gaining understanding from them; we cannot have 

both.  

Worries about this hypothesized trade-off between predic2ve success and understanding 

have touched many areas of science, from protein-folding (BouaTa et al., 2021), to physics 

(Boge, 2022), to molecular biology (López-Rubio & Ras, 2021). In what follows we 

concentrate on neuroscience, the discipline with which we are most familiar. Though we spell 

out our response with this specific focus, we suggest that the broad shape of our argument is 

likely to carry over to relevantly similar scien2fic domains, even if the details may differ. 

Perhaps due to the intertwined history of neuroscience and AI research (Hassabis et al., 2017; 

McCulloch & PiTs, 1943), deep learning has had a par2cularly large and rapid influence on the 

study of the brain and nervous system (Cichy & Kaiser, 2019; Marblestone et al., 2016; 

Richards et al., 2019). As well as being used to iden2fy predic2ve features and solve 

engineering problems (Glaser et al., 2019), deep learning has been employed in 

computa2onal neuroscience to produce ANN models of cogni2ve and perceptual systems 

(Doerig et al., 2023; Kell et al., 2018; Schrimpf et al., 2020; Yamins & DiCarlo, 2016). It is in this 

capacity that deep learning’s contribu2ons to neuroscience have prompted worries of a trade-

off. While ANNs have proven successful at implemen2ng solu2ons to ethologically relevant 

tasks, predic2ng neural ac2vity, and recapitula2ng human-like error profiles, cri2cs have 

raised concerns that we are simply replacing one black box with another (Charles Leek et al., 

2022; Chirimuuta, 2021; Thompson, 2021). This argument has been made explicitly by 

Mazviita Chirimuuta, who claims that computa2onal neuroscience faces “a trade-off between 

predic2ve accuracy and the ability of [its] models to confer understanding” (2021, p. 787). We 

shall briefly reiterate her argument before explaining why we do not agree with its conclusion. 

Chirimuuta directs her argument at models “intended to represent the func2ons computed 

by neural systems” (2021, p. 772).5 As she details, tradi2onal models, such as Georgopoulos 

 
5 Chirimuuta argues for a principled disNncNon between efficient coding models which aim to capture the 
encoding funcNons used by the brain and mechanis,c models which (also) encode anatomical isomorphisms, 
intending her argument to apply only to the former. However, in our view, the properNes of ANNs that Chirimuuta 
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and colleagues’ (1986) Popula.on Vector Algorithm for es2ma2ng arm movements from 

primary motor cortex ac2vity, are fairly simple. Although such models knowingly encode false 

assump2ons, in Chirimuuta’s es2ma2on they end up being “highly intelligible, 

representa2onally inaccurate but surprisingly useful” (2021, p. 774). At the other end of the 

spectrum, models based on deep learning, such as Sussillo and colleagues’ (2012) recurrent 

neural network for decoding arm kinema2cs from neural ac2vity, are complicated beasts. As 

Chirimuuta puts it, such models are “non-linear, opaque but predic2vely accurate” (2021, p. 

776). This contrast recapitulates the dis2nc2on between tradi2onal modelling strategies and 

deep learning that we have already discussed, leading to the sugges2on that “there is a trade-

off between a model’s predic2ve power and its ability to increase the scien2st’s understanding 

of a neural response” (Chirimuuta, 2021, p. 768). However, we think this is too quick. To reach 

this conclusion, Chirimuuta uses the no2on of ‘model intelligibility’ to capture not just the 

idea that models are easy to understand but also their overall ability to confer understanding. 

It is the confla2on of these two no2ons that we take issue with.6  

At this point, it is important to introduce a subtle but important dis2nc2on concerning the 

source of the unintelligibility or opacity of ANNs.7 On the one hand, ANNs are trained via 

automated learning procedures. This is what makes it possible for researchers to develop 

models that solve certain tasks without understanding exactly how they do so. On the other 

hand, ANNs are typically very complex, consis2ng of many tuneable parameters which interact 

in subtle ways to produce the behaviour of the whole system. While these two sources of 

opacity are in2mately related in the methodology of deep learning, they are conceptually 

dis2nct. The first problem is that an explana2on is not given (i.e., automa2cally conferred 

through construc2on of the model), the second is that an explana2on is not simple. In 

principle, the first source of opacity might be overcome through systema2c post-hoc analysis 

and interpreta2on of a trained ANN (as we will discuss in sec2on 3). Assuming we might 

 
invokes to make her case creates a structurally analogous problem for both kinds of model. As such, we take our 
response to address a generalised version of Chirimuuta’s argument. This argument covers a broad class of ANN 
models in neuroscience, including those with mechanisNc explanatory goals.  

6 We wish to stress that this is not a semanNc dispute about how intelligibility should be defined, but a conceptual 
dispute about whether ‘ease of understanding’ and ‘ability to confer understanding’ ought to be equated with 
one another. 
7 We take opacity to mean “barrier to conferring understanding”. NoNce that opacity is at least parNally a 
subjecNve phenomenon. What is opaque to a layperson may not be opaque to an expert (Humphreys, 2009). 
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reverse engineer the func2onal structure of ANNs, however, we are s2ll leA with the second 

source of opacity, viz. the structure we uncover might be quite complex. Chirimuuta states 

clearly that in her view this second source is sufficient to ensure the trade-off obtains:  

“[…] even if we could write down by hand the equa2ons embedded in the trained 

ANN’s […], those models would s2ll be far less intelligible than their low-tech 

predecessors, because they would be nonlinear and contain very many more terms 

than the ones occurring in the tradi2onal models.” (2021, p. 782) 

So, even if an explana2on was given, it would not necessarily alleviate opacity because it might 

lack the simplicity required for humans to understand what a system is doing. In other words, 

even sophis2cated interpretability methods may be powerless to overcome the trade-off 

between the predic2ve success of deep learning models and their poten2al to confer 

understanding. With these arguments in view, let us turn to our own assessment of the trade-

off story. 

 

2.2 Why not to worry! 

We grant that there might be a trade-off between predic2ve success and ease of 

understanding for individual models. However, we do not think that this prevents 

neuroscien2sts from gaining understanding by u2lizing ANNs in their research. This is because 

what they are aAer, we think, is not intui2ve understanding of models of complex systems but 

understanding the phenomena that these systems exhibit with the help of models. Thus, there 

is no requirement for models to be simple. What maTers is that they confer understanding of 

the target phenomenon, even if that understanding requires significant interpreta2ve work. 

Indeed, as we will show below, there is nothing in principle stopping complex models from 

conferring greater understanding than simple ones. 

Before we con2nue, a note on what we take (scien2fic) understanding to be is in order. 

Generally speaking, we are sympathe2c to Elgin’s sugges2on that “understanding is a grasp of 

a comprehensive body of informa2on that is grounded in fact, is duly responsive to evidence, 

and enables non-trivial inference, argument, and perhaps ac2on regarding that subject the 

informa2on pertains to” (2007, p. 39). Put simply, we take understanding to be having some 
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kind of qualita.ve grasp of a target phenomenon (de Regt, 2009; Elgin, 2007; Strevens, 2013), 

some kind of insight into how a phenomenon of interest is exhibited by a system. It is a widely 

acknowledged feature of grasping is that it is gradable, i.e., it comes in degrees (Elgin, 2007; 

Hills, 2016). With this in mind, we can say a subject S grasps a phenomenon P to the extent 

that they are able to (i) make coarse-grained predic2ons about P without performing exact 

calcula2ons (cf., de Regt, 2009), (ii) give rich, detailed, and produc2ve answers to a broad 

range of ques2ons concerning P (cf., Chirimuuta, 2021), and (iii) intervene on and control P 

(or at least to describe such interven2ons, even if they would be imprac2cal) (cf., de Regt, 

2009). To serve these purposes, S might u2lize some kind of (mental) representa2on of P 

where this representa2on might be considered an explana2on for P or, alterna2vely, enable S 

to explain P. Given (i)-(iii) are also features commonly associated with good scien2fic 

explana2ons (see e.g., Craver, 2007; Pearl, 2009; Salmon, 1984; Woodward, 2003), this 2ght 

connec2on between understanding and explana2on is no accident. If Alice has a beTer grasp 

of P than Bob (in the sense of (i)-(iii)), then she is likely to not only have a beTer understanding 

of P but to also be able to explain it beTer. 

AdmiTedly, this brief characteriza2on of understanding in terms of grasping is fairly minimal. 

What we say about the rela2on between (i), (ii), and (iii), about the role of (mental) 

representa2ons, and about the precise rela2on between understanding and explana2on 

remains inten2onally sketchy. But since the argument we make in what follows is compa2ble 

with a range of more ar2culated accounts of understanding (see de Regt, 2009; Elgin, 2007; 

Hills, 2016; Strevens, 2013 for various detailed views; see Grimm, 2021 for an overview), we 

think this is a merit rather than a shortcoming. What is important for the current discussion is 

merely that scien2fic understanding is conferred by the very kind of informa2on we u2lize in 

scien2fic explana2ons. And that the targets of understanding and explana2on in science are 

phenomena (e.g., Bechtel & Richardson, 2010; Colaco, 2019; Craver, 2007; Feest, 2017; 

Glennan, 2017; Hochstein, 2016; Kästner, 2018). 

This takes us to our assessment of the trade-off arguments presented above (sec2on 2.1). In 

those arguments, a trade-off between model complexity and intelligibility is taken to imply a 

trade-off between model complexity and the poten2al of a model to confer understanding of 

phenomena. But understanding models is not the same as understanding phenomena. And 

the ease of understanding a model is not the same as how much understanding that model 
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can confer. Granted, all of the tell-tale signs of grasping just described can be straighworwardly 

applied to models and their behaviour (i.e., by cas2ng them as the target phenomenon). 

However, while models play a crucial instrumental role in our understanding of phenomena, 

they are not typically the ul2mate targets of inquiry in neuroscience or any other natural 

science; models are usually mediators (c.f., Morgan & Morrison, 1999), not explananda. We 

must take care not to mistake model understanding for phenomenon understanding.8  

The issue we are gesng at is nicely captured by Lawler and Sullivan’s (2021) dis2nc2on 

between model explana.on and model-induced explana.on.9 In model explana2on, the 

content of the model simply is the explana2on. In model-induced explana2on by contrast, 

“the relevant explanatory informa2on is independent of the model but only closely 

intertwined with the model due to the history of obtaining the informa2on” (Lawler & 

Sullivan, 2021, p. 1069). Talking about understanding we can reframe the point thusly: 

Whenever the content of our understanding of a phenomenon includes informa2on extrinsic 

to any par2cular model, model-induced understanding of a phenomenon is not reducible to 

model understanding. We think this is plainly the typical case in scien2fic prac2ce (cf., 

Hochstein, 2016; Kästner, 2018; Mitchell, 2002, 2019). As such, reducing understanding of 

phenomena to what is encoded in a model is both descrip2vely and norma2vely inadequate. 

It is descrip2vely inadequate because real-world scien2fic understanding of complex 

phenomena frequently depends upon facts and details extrinsic to any individual model. It is 

norma2vely inadequate because, unlike a more holis2c view of understanding, it ar2ficially 

prevents us from sa2sfying scien2fic desiderata that might otherwise be sa2sfied (i.e., 

increasing both predic2ve accuracy and understanding). 

With these dis2nc2ons in mind let us return to Chirimuuta’s argument. Recall her claim that 

“models of neural systems are either very intelligible, or predic2vely accurate, but not both” 

 
8 This is not to say model understanding cannot contribute to understanding phenomena. Indeed, model 
understanding plays a crucial role. However, the relaNonship between understanding models and understanding 
phenomena is complex. We will elaborate on this in secNon 3.2. 
9 Note that Lawler and Sullivan are talking about explanaNon rather than understanding. Though this kind of 
disNncNon is also uNlized in the debate on understanding (Strevens, de Regt ???), Lawler and Sullivan make the 
disNncNon most succinctly. As we stated above, we see an inNmate link between the two. Depending on how 
exactly the relaNon between understanding and explanaNon is being construed, the disNncNon might even 
collapses (e.g., when understanding is conceptualised as the possession of a mental representaNon of the right 
kind of explanaNon). 
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(2020, p. 781). In a certain sense, we agree with this claim. It is obviously easier to understand 

simple models than it is to understand complex models (perhaps tautologically so). However, 

that does not imply that we obtain a greater understanding of phenomena through 

construc2ng and using simple models than we do through construc2ng, using, and 

interpre2ng complex ones. In fact, complex models will oAen confer higher degrees of 

understanding of phenomena in the sense described above: They enable us to (i) make beTer 

predic2ons, (ii) answer more ques2ons about a phenomenon, and (iii) allow for more 

interven2on and control.  

But what about the opacity of ANNs – does it not interfere with (i)-(iii)? To address this 

ques2on, recall our dis2nc2on between whether explanatory informa2on encoded in an ANN 

is given and whether it is simple (sec2on 2.1). Suppose that the givenness issue is overcome 

and we obtain an equa2on describing the func2on the model has learned, e.g., through 

interpretability methods (we will address the feasibility of this in sec2on 3). Chirimuuta argues 

that, even so, “eyeballing an equa2on of such complexity would not give the neuroscien2st 

the same qualita2ve sense of how adjustment of parameters or variables would make a 

difference to the behaviour of the system [as tradi2onal, simpler models]” (2021, p. 782). 

Here, we think Chirimuuta conflates two things: the ease of coming to understand something 

is not the same as the degree of understanding that one might obtain from it. To make the 

point clear, we can return to Linday’s claim that “to have a model complex enough to perform 

real-world tasks, we must sacrifice the desire to make simple statements about how each 

stage of it works” (2021, p. 2024). Lindsay is probably right. However, we do not think that 

understanding of phenomena needs to consist in being able to make simple statements. Deep 

ANNs might be challenging to understand. It might be laborious to gain insights about how 

they work, those insights might not be simple, and establishing their rela2onship to target 

phenomena may be difficult. But they might s2ll enable a deeper scien2fic understanding than 

highly intui2ve but overly simple equa2ons or box-and-arrow models. How easy it is to 

understand a model does not strictly determine how instrumentally valuable that model will 

be to understanding and explaining a phenomenon all things considered.  

Importantly, par2al understanding of a complex but accurate model can lead to greater 

understanding of a phenomenon than complete understanding of a simple but inaccurate 

model. To see this, let us focus on predic2on for the moment (we will return to the other 
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criteria for understanding in Sec2on 3). Consider the following toy example: a system S elicits 

a behaviour P (the phenomenon of interest). S consists of 5 interac2ng factors (f1, …, f5) and 

P is described by a single scalar value y that can be obtained by simple mathema2cal 

opera2ons performed on values taken by f1, …, f5. Bob constructs a simple model to help him 

predict P. Bob’s model consists of two predictors, x1 and x2, which could (but do not have to) 

approximate f1 and f2, respec2vely. To make predic2ons about P, Bob es2mates x1 + x2 in his 

head, which he can do perfectly. As such, we can say that Bob understands his model perfectly; 

but (due to the simplicity of his model) his predic2ons about the phenomenon are very 

inaccurate. Meanwhile, Alice constructs a complex model to help her understand P. Alice’s 

model consists of five predictors x’1, …, x’5 which approximate all the factors of the target 

system. To make predic2ons about P, Alice es2mates 0.8*x’1 + 0.9*x’2 + 0.7*x’3 + 0.2*x’4 in 

her head. She usually does not get all the calcula2ons right, some2mes mixes up the 

mul2pliers, and always omits x’5 completely.10 Thus, we might say her grasp of the model is 

par2al or incomplete, even though the model itself might be perfect. S2ll, Alice’s predic2ons 

about P are reasonably accurate. So, despite Alice’s model understanding being par2al where 

Bob’s is perfect, Alice’s predic2ons about P are s2ll beTer than Bob’s. As such, all else being 

equal, we aTribute greater model-induced understanding of P to Alice than to Bob. 

This toy example makes it plain (again) that there is an important conceptual dis2nc2on 

between model understanding and model-induced understanding. Even if we can understand 

a simple model perfectly, we may gain less scien2fic understanding about a phenomenon P 

than we can from a complex model we only par2ally understand. However, whether we 

actually gain a deeper understanding of P by u2lizing complex models remains an empirical 

ques2on. S2ll, if our diagnosis is correct, then there is no principled trade-off between 

predic2ve accuracy and the poten2al for models to confer scien2fic understanding. There is 

no reason to fear the bogeyman! U2lizing deep learning in neuroscience need not 

systema2cally inhibit our understanding of the brain. Rather, we think, it can support our 

understanding of neuroscien2fic phenomena in previously unavailable ways. This takes us to 

the next sec2on. 

 

 
10 This detail about x’5 mirrors cases where parts of the internal structure of ANNs remain opaque. 
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3. Understanding the Brain with Deep Learning 

So far, we suggested that scien2fic understanding consists in having a qualita2ve grasp of 

target phenomena and that this involves being able to predict, control, and answer ques2ons 

about the phenomena in ques2on. Further, we claimed that such understanding is oAen 

model-induced. That is, scien2sts come to understand phenomena through the construc2on, 

use, and analysis of models; this applies to simple equa2ons or box-and-arrow-style models 

as well as to contemporary deep learning-based models. In this sec2on, we elaborate on how 

ANNs may contribute to an improved understanding of neuroscien2fic phenomena. First, we 

argue that deep learning-based models offer a novel epistemic perspec.ve which may render 

accessible previously inaccessible aspects of neuroscien2fic phenomena (sec2on 3.1). 

Second, we argue that understanding complex phenomena typically requires integra2ng 

distributed explanatory informa.on produced from mul2ple epistemic perspec2ves (sec2on 

3.2). With this conceptual machinery in place, we sketch a specific research strategy by which 

ANN-driven neuroscience may contribute to researchers’ understanding of biological brains 

(sec2on 3.3).  

 

3.1 A Novel Epistemic Perspec5ve 

Epistemic perspec2ves are best described as ways in which researchers approach a target 

phenomenon – through the use of tools, skills, and theore2cal assump2ons – to yield 

explanatory informa2on about how it is elicited by a system. Figura2vely speaking, we may 

think of an epistemic perspec2ve as the outlook or view a scien2st takes on a phenomenon; 

it is constrained by their specific knowledge and capaci2es, as well as their research ques2ons. 

More specifically, epistemic perspec2ves can be characterized with respect to the following 

dimensions: i) spa2otemporal granularity, ii) specificity, i.e., which kinds of en22es and 

dependencies are detected and described, iii) point of view, including ontological and 

theore2cal assump2ons, iv) sensi2vity to different factors, and v) scope, i.e., class of 

phenomena which are inves2gated (Kästner, 2018, p. 74). Crucially, different epistemic 

perspec2ves need not be conceived as compe2ng with each other. Although research from a 

par2cular perspec2ve is some2mes sufficient for answering specific ques2ons, deeper 
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understanding of complex systems requires figuring out how insights from mul2ple epistemic 

perspec2ves fit together (Mitchell, 2002, 2019). Before we consider the ques2on of how 

mul2ple perspec2ves can be integrated (sec2on 3.2), let us briefly sketch the core features of 

the epistemic perspec2ve a deep learning approach to computa2onal neuroscience provides. 

Needless to say, this will be unavoidably simplis2c. In reality, prac22oners construc2ng ANN 

models of neural func2ons may actually have different skills and tools and endorse various 

theore2cal commitments. S2ll, it is valuable to see where the contrast lies to more 

biologically-grounded neuroscience research.  

Spa.otemporal Granularity. Tradi2onal neuroscience methods are constrained with respect 

to both spa2al and temporal resolu2on, though in various ways (Churchland & Sejnowski, 

1988; Grinvald & Hildesheim, 2004). Similarly, the deep learning approach to computa2onal 

neuroscience can be applied at numerous spa2al scales, e.g., by targe2ng neural popula2ons 

in specific anatomical regions (Sussillo et al., 2012) or distributed processing along pathways 

like the ventral visual stream (Yamins et al., 2014). What is novel, though, is that the same 

model can shed light on neural phenomena across a wide range of temporal scales. If training 

is taken into considera2on, one model can be taken to represent processes extending all the 

way from a single perceptual judgement to evolu2onary learning (Cao & Yamins, 2021; Zador, 

2019). 

Specificity. Being based on automated learning procedures, the deep learning approach has 

the poten2al to pick up on paTerns in data and dependencies between factors that a human 

researcher will not usually see or hypothesize. A case in point are func2onal groups of neurons 

in V4 we discuss below (sec2on 3.3). For a detailed discussion of how deep learning-based 

models can help uncover structures inaccessible from other epistemic perspec2ves see 

Kästner & Crook (manuscript). 

Point of View. The deep learning approach casts the brain as an op2misa2on machine, with 

specialised modules solving individual computa2onal problems (Cao & Yamins, 2021; 

Marblestone et al., 2016). This can be contrasted with more biologically-grounded approaches 

to neuroscience which reject some of these theore2cal assump2ons (Buzsáki, 2006; Pessoa, 

2023; Pulvermüller et al., 2021).  
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Sensi.vity. Unlike biologically-grounded neuroscience, which may treat any and all features of 

neuroanatomy as relevant to understanding the brain (including, e.g., glial cells or endocrine 

signals), the deep learning approach is primarily sensi2ve to features which are necessary for 

solving the computa2onal task at hand. Further, because prac22oners are interested in how 

the brain solves these tasks, they especially value models which replicate characteris2c error 

profiles in behavioural tasks (say, object recogni2on) and display similar paTerns of neural 

ac2vity (as measured by, e.g., fMRI) (Bowers et al., 2022; Schrimpf et al., 2020).  

Scope. The flexibility of the deep learning approach renders it amenable to shedding light on 

a broad range of cogni2ve and perceptual phenomena, including vision (Zhuang et al., 2021), 

audi2on (Kell et al., 2018), language comprehension (Schrimpf et al., 2020) working memory 

(Kozachkov et al., 2022), and many more besides (see Cichy & Kaiser, 2019; Doerig et al., 2023 

for discussion). Unlike biologically-grounded neuroscience, this research is not constrained by 

ethical concerns or the availability of model organisms. Thus, the deep learning approach has 

a broader scope allowing prac22oners to study, for instance, the “evolu2onary goals and 

historical or developmental constraints that are responsible for shaping a system” (Cao & 

Yamins, 2021, p. 2; see also Lillicrap & Kording, 2019). These dependencies can be illuminated 

by focusing on the designed components of ANNs – objec2ve func2ons, architecture, and 

learning algorithms – which do not suffer from problems of opacity (Richards et al., 2019; 

Thompson, 2021). In addi2on, we think deep learning can also help uncover the func2onal 

and computa2onal structure of (biological as well as ar2ficial) neural networks (sec2on 3.3). 

In summary, our exposi2on makes it plain that the deep learning approach provides a novel 

epistemic perspec2ve on biological neural processing which renders accessible informa2on 

unavailable from other epistemic perspec2ves (i.e., those typically taken by more biologically-

grounded neuroscien2sts). As such, we think it crucially complements exis2ng research 

prac2ces aiming to understand the brain. To unlock its full poten2al, however, insights from 

the deep learning approach must likely be combined with those gained from tradi2onal 

modelling and biologically-grounded neuroscience. 

 

3.2 Distributed Explana5on, Integra5on, and Constraints 
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We already hinted that the rela2onship between understanding models and understanding 

phenomena is complex. One major reason this is so, we take it, is that in prac.ce a subject S’s 

understanding a phenomenon P will not usually rely on just a single model. According to 

Hochstein, “an individual model is rarely applied in isola2on, and is oAen used to complement 

a huge body of background informa2on and pre-exis2ng models about the target system” 

(2016, p. 1401). Recall that for S to understand P involves the abili2es to (i) make coarse-

grained predic2ons about P, (ii) give rich, detailed, and produc2ve answers to a broad range 

of ques2ons concerning P, and (iii) intervene on and control P (see sec2on 2.2). To achieve this 

all of this, it will usually be required to for S to draw on a distributed body of informa.on about 

P and the system elici2ng it.  

To clarify, it will be useful to briefly talk about distributed explana2ons – where the idea of a 

distributed body of informa2on has been explored. Distributed explana2ons consist, at least 

par2ally, in sets of models, where each model provides different explanatory informa2on 

about a given phenomenon by illumina2ng it from different epistemic perspec2ves (cf., Craver 

& Kaplan, 2020; Hochstein, 2016; Veit, 2020). If this is correct, philosophers limi2ng their 

analyses to “par2cular models instead of sets of models commit a fatal mistake” (Veit, 2020, 

p. 108). Individual models only ever yield par2al understanding of the phenomenon in 

ques2on. While we agree that sets of models are key cons2tuents of distributed explana2ons, 

we see no reason to stop there. The explanatory store which facilitates scien2fic explana2on 

and – as far as we are concerned – understanding should also admit data graphs, diagrams, 

explanatory wri2ng in natural language, and any other representa2onal vehicles that support 

understanding (Burnston, 2016; Kästner, 2018; Kohár & Krickel, 2021).11 Thus, the items that 

support scien2fic understanding (viz. the elements of the explanatory store) may be of very 

different kinds and, just as models, may come in varying degrees of complexity.  

Despite the looming messiness of the overall situa2on, we think it is important to 

acknowledge both the distributed character of the informa2on which supports scien2fic 

understanding and the varying contribu2ons that different elements in the explanatory store 

can make to it. First and foremost, this is because it accords with scien2fic prac2ce. For 

instance, Craver and Kaplan observe that “many models are involved, explicitly or implicitly, 

 
11 The term explanatory store is originally due to Kitcher (1981) and is also used by Craver and Kaplan (2020).  
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in most explana2ons” and that we use various models to “gesture towards explana2ons that 

invariably have more content about the causal structure of the world than any single, useful 

model can express” (2020, pp. 309–310). Besides, once we acknowledge that the informa2on 

that supports scien2fic understanding is distributed, we can circumvent undesirable trade-offs 

inherent to model building (MaThewson & Weisberg, 2009). There is no principled reason we 

cannot enjoy predic2ve success and improved understanding if we pool insights from mul2ple 

models in a common explanatory store.  

Unfortunately, these benefits do not come for free. Reaping them requires at least a 

provisional account of how different items in the explanatory store (viz. informa2on generated 

from mul2ple epistemic perspec2ves) can support greater understanding than mastery of 

par2cular models (c.f., Chang, 2012, Chapter 5). The answer, we think, is that many items in 

the explanatory store not only contribute explanatory informa2on but also constraints (Lawler 

& Sullivan, 2021; Sullivan, 2022). Based on these constraints, insights provided by different 

models (or other items) may be integrated with one another (see also Kästner, 2018). 

Focusing on models specifically, we might say that each model “provides a par2al grasp of the 

phenomenon, and each requires input and ongoing engagement with the other perspec2ves” 

(Mitchell, 2019, p. 179). In our view, the engagement Mitchell describes oAen consists of 

constraining interpreta.on. The interpreta2on of each source of explanatory informa2on is 

constrained by the rest of the explanatory store (or, for cogni2ve tractability, a small but 

relevant subset). The exact way this plays out in any single case is subtle, depending crucially 

on the eviden2ary support different sources of explanatory informa2on enjoy, their perceived 

relevance to the phenomenon at hand, and what aspects of the phenomenon scien2sts are 

par2cularly interested in. For illustra2on, we briefly present two cases that highlight ways in 

which the deep learning approach can support scien2fic understanding of biological neural 

processing. Though the cases are different, they each involve contribu2ng insights from a 

novel epistemic perspec2ve and integra2ng them with other evidence. 

Case 1: Vision. Bowers and colleagues’ (2022) make the case that the deep learning-based 

approach to vision neuroscience has paid inadequate aTen2on to research documen2ng the 

idiosyncra2c features of biological vision. The failure to adapt computa2onal models to these 

constraints has resulted in the development of models which fail to replicate observed 

experimental effects in human vision. For instance, while humans show a clear preference for 
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shape over texture, vision ANNs show the opposite paTern (Geirhos et al., 2018). As a result, 

Bowers and colleagues argue, we cannot (yet) u2lize these models to gain insights into the 

algorithmic structure of biological vision. However, in light of evidence showing similar 

func2onal specialisa2on of single neurons in ANNs and biological visual systems (Pospisil et 

al., 2018; Willeke et al., 2023), we think a more nuanced conclusion should be drawn. Our 

understanding of human vision should provisionally integrate some proper2es of vision ANNs 

(e.g., the hierarchical composi2on of representa2ons and the func2onal specialisa2on of 

individual units), while leaving others out (e.g., early layer neurons’ overly strong preference 

for texture). Then, by systema2cally varying ANN architectures (e.g., by introducing 

recurrence, Kar et al., 2019) and training procedures (e.g., switching from supervised to 

unsupervised learning, Zhuang et al., 2021) and comparing the resul2ng models with diverse 

sources of neuroscien2fic data, researchers can clarify which features of ANNs are really i) 

biologically plausible, and ii) func2onally relevant. This way, neuroscien2sts can refine 

predic2ons about how neural popula2ons will respond to certain s2muli and target loci of 

control (Bashivan et al., 2019). This effec2vely means integra2ng research from the epistemic 

perspec2ves of tradi2onal vision neuroscience and the deep learning approach to increase 

our understanding of biological vision. 

Case 2: Working Memory. Kozachov and colleagues (2022) use recurrent neural networks 

(RNNs) to explore the hypothesis that short-term synap2c plas2city (STSP) plays a func2onal 

role in working memory (Mongillo et al., 2008). The authors trained RNNs both with and 

without an STSP mechanism to maintain items in working memory over a delay period. They 

then assessed them with respect to three criteria: 1) the robustness of their performance in 

the face of distractors, 2) graceful degrada2on to synap2c loss, 3) similarity to the neural 

dynamics of the prefrontal cortex. Kozachov and colleagues found that both types of RNN 

were robust to distractors, but that those with the STSP mechanism degraded more gracefully 

and exhibited dynamics closer to those of the (primate) prefrontal cortex. In other words, the 

epistemic perspec2ve researchers adopted by applying the deep learning approach allowed 

them to reveal previously unknown dependencies between architectural and func2onal 

proper2es of neural structures. Put more generally, we might say that the deep learning 

approach lent credence to par2cular computa2onal and mechanis2c hypotheses about 

human brain func2on (e.g., Miller et al., 2018; Mongillo et al., 2008; see also Doerig et al., 
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2023). Crucially, in this case, too, it is the integra2on of insights from different epistemic 

perspec2ves that helps researchers advance their understanding of complex phenomena such 

as working memory. 

Thus far, we argued that deep learning-based models offer an addi2onal epistemic perspec2ve 

for brain researchers that can complement and constrain insights from tradi2onal modelling 

or biologically-grounded neuroscience by contribu2ng to a distributed store of knowledge. An 

argument to the same effect could have been made about other innova2ons in research, e.g. 

the inven2on of fMRI scans or the availability of even simple machine learning methods. 

Against this backdrop readers may wonder: is there anything really special about ANN-driven 

neuroscience? 

3.3 Understanding Biological Brains Through Re-engineering 

We already argued that we should not fear the bogeyman, but is there reason to welcome 

him with open arms? We think there is! By combining the strengths of deep learning with 

post-hoc interpretability techniques and biologically-grounded neuroscience, researchers can 

access the paTerns embedded in trained ANNs and use them to gain insight into the func2onal 

and computa2onal structure of neurobiological systems. Notably, the mechanis2c descrip2on 

of biological systems this enables is precisely what cri2cs fear might go missing when 

researchers u2lize ML-based models to try and understand the brain (Boge, 2022; Chirimuuta, 

2021; López-Rubio & Ras, 2021; Thompson, 2021). We do not think that the deep learning 

approach sacrifices func2onal and computa2onal structures, rather, it sheds a new light on 

them. 

To see why this is and how it might work, recall that deep learning models are usually opaque. 

While the learned parameters of the models are accessible, understanding how they 

represent informa2on and implement the mapping from input to output requires a dedicated 

research effort (i.e., this informa2on is – unlike with tradi2onal scien2fic models – not given, 

cf. sec2on 2.1). To uncover the func2onal structure and computa2onal proper2es of trained 

ANNs, the applica2on of systema2c post-hoc interpretability techniques is needed (e.g., Bau 

et al., 2017; Cammarata et al., 2020; Geiger et al., 2021, 2022; Nanda et al., 2023; Olah et al., 

2018). As of yet (and as far as we are aware), the research area that most vigorously employs 

post-hoc interpretability techniques is explainable AI (XAI), not neuroscience. While we are 
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certainly not the only ones to think that XAI presents opportuni2es for scien2fic discovery 

generally (see Zednik & Boelsen, 2022), we believe that applying post-hoc interpretability 

techniques to trained ANN models provides a unique opportunity for neuroscience by 

facilita2ng an itera.ve re-engineering process.  

The process we have in mind involves the following key steps. First, train an ANN to implement 

an ethologically relevant task (as described in Yamins & DiCarlo, 2016). Second, probe the 

behavioural characteris2cs of the trained ANN and evaluate the results with respect to 

explanatory informa2on distributed across the explanatory store (as in Bowers et al., 2022).12 

Third, employ systema2c post-hoc interpretability techniques to uncover the func2onal and 

computa2onal structure of the trained ANN (as in Cammarata et al., 2020). Fourth, use these 

findings to develop hypotheses about the target biological system (Willeke et al., 2023). FiAh, 

use a variety of more tradi2onal neuroscien2fic methods to test whether those hypotheses 

apply to biological target systems. Each step in the process may need to be refined and 

repeated mul2ple 2mes in light of the constraints provided by the other steps.  

The greatest source of uncertainty over the promise of the itera2ve re-engineering process is 

the plausibility of the third step, viz. the usefulness of post-hoc interpretability techniques 

(Cearns et al., 2019). However, recent work by a group around Chris Olah (Cammarata et al., 

2020, 2021; Elhage et al., 2021; Olah et al., 2018) serves as a proof of principle that the kind 

of strategy we have in mind is applicable in prac2ce. The researchers set out to characterise 

the func2onal structure of the image classifica2on ANN Incep.onV1 (note that this ANN was 

not developed explicitly as a model of biological vision). They applied systema2c post-hoc 

interpretability techniques to reverse engineer the opaque system. Focusing on curve 

detec2on specifically they found that: 

“although curve detec2on involves more than 50,000 parameters, those parameters 

actually implement a simple algorithm that can be read off the weights and described 

in just a few English sentences.” (Cammarata et al., 2021) 

Indeed, the detailed understanding of the system’s func2onal structure enabled the 

researchers to re-design this part of the system (i.e., a curve circuit) from scratch. 

 
12 Obtaining promising results in this step may be a pre-requisite for engaging in the laborious and challenging 
process of reverse-engineering an ANN. As such, steps 1 and 2 already form a mini-loop which may be iterated 
over numerous Nmes before step 3 is reached. 
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Subsequently, they inves2gated – with research strategies familiar from biologically-grounded 

neuroscience – to what extent this re-engineered system actually displayed the same 

proper2es as the original system (for a detailed discussion see Kästner & Crook manuscript). 

This way, they validated their interpretable model of incep2onV1’s curve detectors. Though 

this kind of research is s2ll in its infancy, it clearly illustrates that re-engineering these ANNs 

through the applica2on of post-hoc interpretability techniques is possible. As such, we think 

doing so on ANNs trained on ethologically relevant tasks might provide a fruiwul way to 

uncover func2onal and structural features that can be converted into hypotheses for brain 

research. 

Indeed, we know of one case in which this research has already inspired hypothesis 

genera2on. AAer synthesizing images (MEIs) to maximally excite V4 neurons in the macaque 

visual system, Willeke and colleagues (2023, p. 2) observed that units were arranged into 

func2onal groups selec2ve for “specific complex visual features such as eye-like structures, 

oriented fur paTerns, grid-like mo2fs, or curvatures.” Referring to Olah’s work, these 

researchers noted a “striking similarity between [the] single cell MEIs of V4 neurons and single 

units in the Incep2onV1 architecture” (2023, p. 10).13 Building on this similarity, Willeke et al. 

state that “the resemblance between V4 neuronal and deep ar2ficial neural network feature 

selec2vity can be used to generate specific hypotheses about visual tuning proper2es of 

primate V4 neurons”. More specifically, they suggest that ANNs can be used to “derive 

predic2ons about color boundary encoding in monkey V4 func2onal groups, which could 

subsequently be verified in in vivo experiments” (2023, p. 7). These descrip2ons capture steps 

3-5 of our itera2ve re-engineering process precisely. 

Naturally, which precise models, tools and theories will be u2lized most effec2vely throughout 

such a process obviously remains an empirical ques2on. Indeed, it will likely vary from case to 

case. S2ll, we believe that we have shown that the itera2ve re-engineering research strategy 

has great poten2al. It may improve scien2sts’ ability to make coarse qualita2ve predic2ons 

about brain behaviour, answer ques2ons about biological neural processing, and design 

 
13 Note that Willeke and colleagues performed psychophysics experiments and quanNtaNve analyses to verify 
the robustness of their qualitaNve similarity judgements. 



 22 

effec2ve interven2ons on the brain. That is, it provides an opportunity to foster our 

understanding of the brain in yet unimagined ways.  

 

4 Conclusion 

The aim of (neuro)science is to foster understanding of phenomena in the world. Machine 

learning approaches, par2cularly deep learning-based ANNs, can contribute to this endeavour 

by offering a novel and unique epistemic perspec2ve affording insights into the opera2on of 

complex systems that are otherwise unavailable. While some have been worrying that this 

strategy implies trading one black box for another and might actually hinder scien2fic 

understanding, we argued these worries are unfounded. There is no trade-off between the 

predic2ve success of a model and how much understanding it can confer. Thus, u2lizing 

complex computa2onal models in neuroscience will not generally inhibit our ability to 

understand the (human) brain. Quite to the contrary, we believe, deep learning is best 

conceived as complementary to established neuroscien2fic methodology. It offers a powerful 

addi2on to neuroscien2sts’ toolkit enabling constraint-based integra2on of numerous 

complementary epistemic perspec2ves.  

We thus conclude that deep learning contributes to – rather than detracts from – 

understanding the phenomena neuroscien2sts inves2gate. While our argument has focused 

on the domain of neuroscience specifically, we suggest that it is likely to carry over to 

relevantly similar scien2fic domains, even if the details may differ. 
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