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Abstract 

The issue of the relationship between predictive processing (PP) and the free energy 

principle (FEP) remains a subject of debate and controversy within the research community. 

Many researchers have expressed doubts regarding the actual integration of PP with the FEP, 

questioning whether the FEP can truly contribute significantly to the mechanistic understanding 

of PP or even undermine such integration altogether. In this paper, I present an alternative 

perspective. I argue that, from the viewpoint of the constraint-based mechanisms approach, the 

FEP imposes an important constraint, namely variational free energy, on the mechanistic 

architecture proposed by PP. According to the constraint-based mechanisms approach, high-

level cognitive mechanisms are integral parts of extensive heterarchical networks that govern 

the physiology and behavior of agents. Consequently, mechanistic explanations of cognitive 

phenomena should incorporate constraints and flows of free energy as relevant components, 

given that the implemented constraints operate as long as free energy is available. Within this 

framework, I contend that the FEP provides a relevant constraint for explaining at least some 

biological cognitive mechanisms described in terms of Bayesian generative models that 

minimize prediction errors. 

 

1. Introduction 

It has been established that proponents of the PP framework seek mechanistic explanations 

and that the various models of cognitive functions developed via PP are aimed at this kind of 

account (Friston, Fortier & Friedman, 2018; Gładziejewski, 2019). In line with this view, it has 

been argued that PP provides a sketch of a mechanism (Gładziejewski, 2019; Gordon et al. 

2019; Harkness, 2015; Harkness & Keshava, 2017; Hohwy, 2015), i.e., an incomplete 

representation of a target mechanism in which some structural aspects of a mechanistic 

explanation are omitted (cf. Piccinini & Craver, 2011). Understood in this way, the sketch is 

defined in terms of functional roles played by the respective components, disregarding to some 

extent their biological or physical implementation. This raises the important question of how to 

understand the causal structure responsible for predictive mechanisms. It can be a simple multi-



3 
 

level hierarchy from simple neural levels of, e.g., pattern recognition, edge detection, color 

perception etc. (implemented in the early sensory system), to high-level neural representations 

(implemented deep in the cortical hierarchy [Sprevak, 2021]), to increasingly abstract and 

general levels related to Bayesian beliefs and concerning the general properties of the world; or 

it can be a subtler structure implemented by several different, partially independent mechanisms 

responsible for various phenomena.1  

The key to this type of practice is the recognition of cognition in the categories of 

mechanistic causal relations (cf. Gładziejewski, 2019, 665). Gładziejewski suggests that 

sketches of mechanisms provided by PP should be understood in the sense that these models 

“share common core assumptions about relevant mechanisms” but do not describe a single 

cognitive structure (mechanism). This means that “there are a couple of ways in which a 

collection of mechanisms that fall under a common predictive template could provide a schema-

centered explanatory unification” (Gładziejewski, 2019, 666). This author points to four 

possible research heuristics which, by providing sketches, may allow the identification of actual 

mechanisms: 

1. There are separate neural mechanisms that follow the same predictive scheme; 

2. Different levels within one hierarchy can explain different cognitive phenomena; 

3. Various aspects of PP mechanisms are explanatory, which means that for a given 

mechanism, certain aspects of its functioning may explain specific phenomena; 

4. The ways in which distinct PP mechanisms become integrated may play explanatory 

roles (Gładziejewski, 2019, 666-667).  

Regardless of which of the indicated heuristics is actually employed by PP researchers 

(whether it be one or a combination of several), there is no doubt that many supporters of PP 

seek mechanistic explanations.  

As can be seen, the thesis about the mechanistic nature of PP is already reasonably well-

founded, but it seems that in light of the view advocated by some mechanists (cf. Bechtel, 2019; 

Winning & Bechtel, 2019), (at least) some mechanistic explanations should include constraints 

and flows of free energy as their constitutive component. This view, which I will refer to in this 

paper as the constraint-based mechanisms approach,2 could be of great importance to many 

 
1 Regardless of how to understand the exact causal basis of the implementation of predictive mechanisms, the 

mechanistic strategy of reconstructing these mechanisms by providing their sketches certainly corresponds to the 

actual practice of PP researchers (cf. Gordon et al. 2019; Keller & Mrsic-Flogel, 2018). 
2 This approach is based on the recent papers of William Bechtel and colleagues and, in a sense, unifies their views 

as presented in various papers. The very concept of constraint-based mechanisms approach has not appeared in 

the literature so far and, as such, is a novelty. The same is the case with heuristics of constraint-based mechanisms, 

which can be taken as a distinctive feature of this approach. 
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debates about PP and FEP theories as it allows for a rethink of the relationship between PP, 

FEP, and FEP-based Active Inference. 

The possibility of a mechanistic integration of PP and the FEP has already been raised by 

researchers. Some responses have also been offered. There are authors who share the viewpoint 

that the FEP carries mechanistic implications for PP, asserting that the FEP can be treated as a 

heuristic guide or regarded as a regulatory principle. Supporters of the first position include 

Paweł Gładziejewski who, in his paper Mechanistic unity of the predictive mind, states that the 

FEP is “a powerful heuristic guide for the development of PP” but “only puts extremely general 

constraint on the causal organization of organisms, perhaps to the point of lacking any non-

trivial commitments about it” (Gładziejewski, 2019, 664). Another supporter, Dominic 

Harkness, claims that “the upshot of this criticism lies within the free energy principle’s 

potential to act as a heuristic guide for finding multilevel mechanistic explanations” (Harkness, 

2015, 2). Jakob Hohwy supports the second position, claiming that the “FEP can be considered 

a regulatory principle, ‘guiding’ or ‘informing’ the construction of process theories” (Hohwy, 

2020, 39), meaning that the FEP provides “distinct process theories explaining perception, 

action, attention, and other mental phenomena” (Hohwy, 2020, 47). 

However, some researchers are not convinced by the FEP or its explanatory relationship 

with PP. For example, Daniel Williams in his recent paper Is the brain an organ for free energy 

minimization? argues that “the claim that the FEP implies a substantive constraint on process 

theories in cognitive science—namely, that they must describe how the brain’s mechanisms 

implement free energy minimization—rests on a fallacy of equivocation” (Williams, 2021, 8). 

Similarly, Mateo Colombo and Patricia Palacios in their paper Non-equilibrium 

thermodynamics and the free energy principle in biology note that “because of a fundamental 

mismatch between its physics assumptions and properties of its biological targets, model-

building grounded in the free energy principle exacerbates a trade-off between generality and 

biological plausibility” (Colombo & Palacios, 2021, 2). Colombo defends a slightly different 

position in a paper co-written with Cory Wright, where they take into account that the analysis 

carried out by the FEP’s supporters can be treated as sketches of mechanisms in the sense of 

Piccinini and Craver (2011). They do, however, only treat them as weak explanatory 

idealizations: “Some of the confusions in recent debates surrounding the FEP, organicism, and 

mechanism depend on indulging this sort of metaphysics without carefully considering the 

epistemic and pragmatic roles that ‘rampant and unchecked’ idealizations, like those involved 

in FEP, play in science” (Colombo & Wright, 2021, 3486).  
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In this paper I will take a different starting point. I want to demonstrate by reference to the 

constraint-based mechanisms approach, that the FEP offers an explanatory relevant 

(variational) constraint for the causal organization of any and all systems equipped with 

generative models, explained mechanistically by PP. In other words, I will claim that the FEP 

provides a constraint which determines PP's scheme of mechanism. 

This paper has the following structure: in Section 2, I present an overview of the PP and FEP 

frameworks and explain why, when analyzing predictive mechanisms, one should take into 

account the quantity described in the literature on the FEP as variational free energy (VFE). In 

Section 3, I sketch the new mechanical philosophy and its characteristic systems tradition, 

describing explanations in terms of the identification and decomposition of mechanisms. I also 

present the recent position based on mechanism, which I refer to as the constraint-based 

mechanisms approach and—characteristic for this approach—the so-called heuristics of 

constraint-based mechanisms. In the following part, I formulate a mechanistic interpretation of 

PP and wonder if it can meet the norm defined by the heuristics of constraint-based 

mechanisms. The context of the question is set by the discussion on the FEP and its explanatory 

relationship with PP. In Section 4, I discuss two main possible interpretations (realistic and 

instrumental) of the statement that self-organizing systems minimize VFE. Discussing them is 

important because it provides an initial answer to whether the FEP determines the energetic (in 

information-theoretic sense) constraint for mechanistic PP. In Section 5, I articulate the position 

of mechanistic realism, which asserts the feasibility of employing heuristics based on the 

constraint-based mechanisms approach. I argue that the interpretation of the FEP, which I called 

moderate realistic, is compatible with mechanistic realism. In Section 6, I discuss Karl Friston's 

argument from Bayesian mechanics that VFE coincides with thermodynamic free energy 

(TFE). If Friston's perspective is accurate, the FEP serves a similar explanatory role in 

elucidating living organisms as thermodynamics does in explaining physical systems. However, 

in this section, I reject Friston's argument because of its instrumental character, which precludes 

mechanistic realism and the application of the heuristics of constraint-based mechanisms. As a 

result, in Section 7, I present an argument in favor of moderate realism regarding the FEP and 

FEP-based PP. This argument is supported by empirical evidence from investigations into 

neural computations and the thermodynamics of information. Next I discuss the ontological 

commitments of this position, and I also formulate a provisional response to the objections of 

those authors who deny explanatory value to the FEP. In the Conclusion, I summarize the 

analyses carried out. 
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2. Predictive processing and variational free energy 

PP is a process theory of the brain that provides a computational model of cognitive 

mechanisms and core processes that underwrite perception and cognition. Some advocates of 

PP believe that it can be used to unify the models of perception, cognition, and action 

theoretically (Clark, 2013; Hohwy, 2015; Seth, 2015). Specific versions of PP are grounded in 

the same process of precision-weighted, hierarchical, and bidirectional message passing and 

error minimization (Clark, 2013; Hohwy, 2020a). In this framework, perceptual and cognitive 

processes are conceived as being the result of a computational trade-off between (hierarchical) 

top-down processing (predictions based on the model of the world) and bottom-up processing 

(prediction errors tracking the difference between predicted and actually sensed data). A 

characteristic feature of this view is the assumption that, in order to perceive the world, the 

cognitive system must resolve its uncertainty about the ‘hidden’ causes of its sense states. This 

is because the causes of the sensory signals are not directly recognized or detected, but instead 

must be inferred by a hierarchical, multi-level probabilistic (generative) model. In PP, the 

activity of the brain (or cognitive system) is understood as instantiating or leveraging a 

generative model (cf. Clark, 2016), which is, generally speaking, a model of the process that 

generated the sensory data of interest. In short, PP purports to explain the dynamics of the brain 

by appealing to hierarchically organized bidirectional brain activity, cast as instantiating a 

generative model. 

The generative model is defined as the joint probability of the “observable” data e - sensory 

state, and h—a hypothesis about these data (trees, birds, glasses etc.). In other words, 

a generative model is the product of p(h) (priors over states) and p(e|h) (likelihood of evidence 

probability if the hypothesis is true). This means that the generative model is a statistical model 

of how observations are generated (strictly speaking, a description of causal dependencies in 

the environment and their relation to sensory signal). It uses prior distributions p(h) (which 

determine the probability of hypothesis before evidence) that the system applies to the 

environment about which it makes inferences. 

The model minimizes the so-called prediction errors, i.e., the differences between the 

expectations of the organism—its “best guess” about what would be the case (what caused its 

sensory states) and what the organism factually observes. To minimize prediction errors, the 

generative model continuously creates statistical predictions about what is happening or can 

happen in the world. This means that updating the likelihoods and priors based on prediction 

errors is a mechanism that can be described in terms of Bayesian inference, i.e. a statistical 
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inference in which a Bayesian rule is used to update the probability for a hypothesis as more 

evidence or data becomes available. 

Technically speaking, according to the Bayesian rule  

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)𝑝(ℎ)

𝑝(𝑒)
, 

the generative model p(h|e) calculates the posterior probability p(e|h), which in practice allows 

the system to assume the most probable hypothesis explaining the nature and causes of the 

sensory signal, taking into account the available sensory data.3 This hypothesis enables the 

minimization of the long-term average prediction error (Hohwy, 2020a). Moving from p(h|e) 

to p(e|h), i.e., inverting the likelihood mapping, allows one to update beliefs from prior to 

posterior beliefs (Smith, Friston & White, 2022, 3). Proponents of the PP framework argue that 

the model approximates Bayesian inference rather than computing it exactly (cf. Clark, 2013). 

In PP, the model implements an algorithm that computes Bayesian inferences so that the 

prediction error is gradually minimized, which maximizes the posterior probabilities of the 

hypotheses.  

This way, when the model minimizes the prediction error, it also minimizes a certain quantity 

that is always greater than or equal to the surprisal - negative log probability of an 

observation/outcome - the surprisal model itself cannot be minimized directly due to ignorance 

of the underlying causes of the sensory signals (Friston, 2009, 294). This quantity refers to the 

objective function that is known as VFE or an evidence lower bound (cf. Winn & Bishop, 2005). 

The introduction of VFE helps to convert exact Bayesian inference into approximate Bayesian 

inference.4  

Why is this important? Approximate Bayesian inference uses VFE minimization, which can 

be described as the difference between the approximate posterior distribution of the model and 

the target distribution. The introduction of an approximate posterior distribution over states, 

denoted q(e) (such that each q(e) ∈ Q is a possible approximation to the exact posterior 

distribution), makes simplifying assumptions about the nature of the true posterior distribution. 

 
3 In this sense, the model update proceeds in a rational manner. 
4 VFE was introduced by Richard Feynman to solve an intractable inference problem in quantum electrodynamics 

(Feynman, 1998, cf. Friston et al. 2006, 221). Minimization of a computable objective function will approximate 

the minimization of the evidence. This evidence is always upper bounded by VFE. This means that by introducing 

VFE, an intractable integration problem was converted into a tractable optimization problem; namely minimizing 

VFE (Dayan et al., 1995; Friston, 2011). Thus, in variational inference, the model does not directly compute the 

intractable true posterior. Instead, it optimizes a tractable upper bound on this divergence, called the VFE. VFE is 

a tractable quantity because it is the discrepancy between two qualities (which we know as modeling subjects) i.e., 

the variational approximate posterior and the generative model. And because VFE is an upper bound, minimizing 

it brings us closer to true posterior. 
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By iteratively updating the approximate posterior (initially arbitrary), one can find a distribution 

that approximates the exact posterior. The next step is to measure the similarity between 

approximated p(h|e) and the true posterior p(e|h). Formally, this means minimizing the so-called 

Kullback–Leibler divergence (KL-divergence). It is important that KL-divergence cannot be 

directly estimated, and therefore the model must optimize a different function (i.e. VFE) which 

bounds the model evidence. The smaller the VFE, the smaller the KL-divergence. When KL-

divergence is zero, then the distributions match. It gets larger the more dissimilar the 

distributions become. In variational inference, the model iteratively updates approximate 

posterior q(e) until it finds the value that minimizes VFE at which q(e) will approximate the 

true posterior p(e|h) (Smith, Friston & White, 2022; cf. Buckley et al. 2017).  

The association of PP with VFE helps explain how the generative model minimizes 

prediction errors by Bayesian inference approximation, which can be interpreted as the way in 

which neural information processing mechanisms perform variational inference. This remark is 

crucial for further analyses.  

To sum up: predictive mechanisms can be described in terms of the realization of variational 

principles (cf. Friston et al. 2017). In research practice, this means that in order to be able to 

concretize any variational inference algorithm, we must define the forms of the variational 

posterior and the generative model, which in the case of PP means (relying on the Laplace 

assumption) that posterior probability densities are normal (Gaussian). With this assumption in 

place, free energy can be viewed as the sum of the long-term average prediction error, which is 

supposed to be linked to the FEP (cf. Friston, 2010). It means that in the context of PP, the 

process involves the minimization of long-term average prediction error through the model's 

optimization of the statistics of an approximate posterior distribution. Modelers postulate and 

refine this distribution to align with the desired target distribution (Millidge, Seth & Buckley, 

2021, 7). This is an important observation for the very understanding of PP because it allows 

us to think about the normative function of the predictive mechanisms, which is the long-term 

average precision-weighted error in terms of free energy minimization.  

At this point, however, difficulties arise regarding the linking of the PP framework with the 

research framework motivated by the FEP. Before discussing them (cf. §4), it is necessary to at 

least briefly explain what the FEP is. 

The FEP was introduced by Karl Friston and colleagues as a mathematical framework that 

specifies the objective function that self-organizing systems need to minimize in order to 

change their relationship with the environment and maintain thermodynamic homeostasis 

(Friston, 2009; 2010; 2012; Friston, Kilner & Harrison, 2006; Friston & Stephan, 2007; cf. 
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Andrews, 2021). Originally, the FEP was a principle explaining how the sensory cortex infers 

the causes of its inputs and learns causal regularities. What distinguished the FEP from other 

theories of inference (cf. Gregory, 1966; Rock, 1983) is the fact that all cognitive processes and 

functions, not only perceptual, can be explained in terms of one unifying principle, which is the 

minimization of free energy (Bruineberg et al. 2021, 3; cf. Friston, 2010). Later, the validity of 

the FEP was extended from perception and action to organization of all self-organizing systems: 

from unicellular cells to social networks (cf. Friston, 2009, 293; Friston, 2013; Wiese & Friston, 

2021).5  

According to the current formulation of this principle6 any self-organizing system that is at 

a nonequilibrium steady-state (NESS) with its environment must minimize its free energy.7 In 

other words, any “thing” that achieves NESS can be construed as performing a Bayesian 

inference with posterior beliefs that are parameterized by the thing’s (model’s) internal states. 

In other words, the FEP offers an interpretation of mechanical theories of systems as if they 

possess (Bayesian) beliefs (Ramstead et al. 2023, 2). This is related to the fact that the state 

flow of a given self-organizing system can be described as a function of their NESS density. 

The system, if it exists, can be described in terms of a random dynamic system (in terms of 

Dynamic System Theory—DST) that evolves, which means that it can be said to change over 

time, subject to random fluctuations. It must be added that any self-organizing system that is at 

NESS, i.e., one that has an attracting set, can be described in terms of Markov blankets (Friston, 

2013; Friston, Wiese & Hobson, 2020; Wiese & Friston, 2021).8 

 
5 In the light of the analyses carried out, one can invoke Jakob Hohwy's observation that the FEP as a mathematical 

principle is a regulatory principle. Hohwy is probably right when he states that the FEP itself does not imply 

cognitive architecture (Hohwy, 2021, 47). However, it is important to answer whether the FEP is a regulatory 

principle or has a specific explanatory power in the explanation of neurocognitive mechanisms modelled by the 

PP framework. 
6 I use the term “current” because the FEP and the Active Inference framework are constantly modified by their 

proponents. This can of course be explained by the internal dynamics of the theory development, but for this 

reason, for the opponents of using this research framework “FEP can appear like a moving target, each time 

introducing new constructs that make the previous criticism inapplicable” (Bruineberg et al. 2021, 2). 
7 The notion of NESS comes from statistical mechanics, in which it denotes the energy dynamics between the 

system and the surrounding heat bath. NESS is best understood as a breach of this balance. 
8 The full presentation of Markov blankets goes beyond these considerations, so I will only discuss them to the 

extent necessary for further analysis. The concept of Markov blankets comes from research on Bayesian inference, 

Bayesian networks, and graphical modeling (Pearl, 1988; cf. Bruineberg et al. 2021), and basically means a set of 

random variables which “shield” another set of random variables from other variables in the system. One set of 

variables (we can call them states) makes states internal to the blanket conditionally independent of external states. 

For a Bayesian network (described in terms of a directed acyclic graphical model) the Markov blanket comprises 

the parents, children, and parents of the children of a state. Markov blankets allow for the division of blanket states 

into internal and external states via their conditional independence. Then the blanket states can be further divided 

into sensory and active states where sensory states are not influenced by internal states, and active states are not 

influenced by external states. Internal and external states can only influence each other through a blanket (Friston, 

2013). Understanding of Markov blankets proposed by Friston differs from that introduced by Pearl. The latter 

understands blankets in an instrumental way, as a mathematical construct. According to Friston, they gain an 
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NESS density means a certain probability of finding it in a particular state when the system 

is observed at random (Friston, Wiese & Hobson, 2020, 4). In this sense, everything that exists 

is characterized by properties that remain unchanged or stable enough to be measured over time. 

In other words, this means that the states of a given system behave as if they are trying to 

minimize exactly the same quantity: the surprisal of states that constitute the thing, system, and 

so on. That is, everything that exists will act as if to minimize the entropy of its particular states 

over time. Thus, open systems that are far away from equilibrium resist the second law of 

thermodynamics (Friston & Stephan, 2007; cf. Davies, 2019; Ueltzhöffer, 2019). What exists 

must be in a sense self-evidencing, meaning that it must maximize a particular model evidence 

or equivalently minimize surprisal (cf. Hohwy, 2016). This way, according to Friston and 

colleagues, it is possible to interpret the flow of (expected) autonomous states of the model as 

a gradient flow on something what we know as VFE,9 and at the same time allows us to think 

of systems that have Markov blankets as “agents” that optimize the evidence for their own 

existence. In this sense, their internal states with the blanket surrounding them are (in some 

sense) autonomous (Kirchhoff et al. 2018, 2; cf. Friston, Wiese & Hobson, 2020). Autonomy 

understood in this way allows us to think of “agents” as adaptive systems, where adaptivity 

refers to an ability to operate differentially in certain circumstances. This means that a system 

that is not adaptive, suggesting that it does not have a Markov blanket and cannot exist.10 

On the basis of the conducted analyses, it can be concluded that the FEP, as a formal 

statement—the existential imperatives for any system that manages to survive in a changing 

environment—can be treated as a generalization of the second law of thermodynamics to NESS 

(Parr, Da Costa & Friston, 2019). In that sense, the FEP is true for any bounded stationary 

system that is far from equilibrium, because the FEP applies to all self-organizing systems at 

NESS (meaning that the FEP applies to all systems equipped with the generative model because 

NESS density can be described in the terms of generative model [Friston, 2019, 89; cf. 

Sakthivadivel, 2022]).11 

 
“ontic” interpretation that is not “philosophically innocent” (Bruineberg et al. 2021). Without going into detail, I 

emphasize that in these analyses, I refer to Markov blankets in a Fristonian manner. 
9 Information geometry is also related to the parameterizing states. Information geometry offers a formalism for 

describing the distance between probability distributions in an abstract space. In this space, each point represents 

a possible probability distribution. According to Friston (2019), all systems with NESS distribution and Markov 

blankets can be described in terms of information geometry (cf. Friston, Wiese & Hobson, 2020, 9-11). The 

analysis of this issue, however, goes beyond the scope of this paper. 
10 Not all existing self-organizing systems are alive. The FEP also applies to such systems—non-biological 

agents—which have a certain degree of independence from the environment (Wiese & Friston, 2021, 3). 
11 This corresponds in some way to the concept of living organisms defended by mechanists as autonomous 

dissipative structures, i.e., those “that [...] actually use the second law of thermodynamics to their advantage to 
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3. Systems tradition of mechanistic explanation and the constraint-based mechanisms 

approach 

In §1, I drew attention to the fact that many researchers either have doubts about the actual 

integration of PP with the FEP - where the FEP would offer an explanatory significant 

contribution to the mechanistic PP (cf. Gładziejewski, 2019; Harkness, 2015; Hohwy, 2020), 

or even negate such a possibility (cf. Colombo & Wright, 2021; Colombo & Palacios, 2021; 

William, 2021). In this paper, I propose a different research perspective, according to which the 

FEP imposes an explanatory relevant informational constraint (i.e. VFE) on the mechanistic 

architecture postulated by PP. In order to justify this view, I will refer to the position I call the 

constraint-based mechanisms approach. Before I develop my argument, however, it is necessary 

to explain, albeit briefly, what this approach is. 

Scientific research can be described in terms of discovering and describing mechanisms. In 

many fields of science, it is assumed that in order to formulate a satisfactory explanation of the 

phenomenon under study, one needs to provide a decomposition of its mechanism. Mechanistic 

explanations are used with great success in neuroscience as well as in biological, physical, and 

social sciences (cf. Glennan & Illari 2018). This new mechanistic explanatory program became 

the dominant view across many debates in the philosophy of science (Bechtel & Richardson, 

1993/2010; Bechtel, 2008; Craver, 2007; Craver & Darden, 2013; Machamer, Darden & 

Craver, 2000). 

The introduction of a new mechanism comes with the assumption that a distinction should 

be made between explanations which are componential or constitutive and etiological 

explanations, which explain a phenomenon by describing its antecedent causes. Constitutive 

explanations detail a phenomenon by describing its underlying mechanism, i.e., the relation 

between the behavior of a mechanism as a whole and the organized activities of its individual 

components is constitutive (cf. Salmon, 1984).12 The latter’s explanations assume a strategy of 

decomposing high-level cognitive capacities into components that are responsible for various 

information processing operations, and then using various computational models, showing how 

these operations together explain a given phenomenon. Decomposition is a characteristic 

determinant of the ‘systems tradition’ (Craver, 2007; cf. Bechtel & Richardson, 1993/2010; 

Fodor, 1968; Cummins, 1975; Simon, 1969). In this tradition, explanation is understood as a 

 
maintain their organization” (Winning & Bechtel, 2018, 3; cf. Friston & Stephan, 2007; Kirchhoff et al. 2018; 

Ueltzhöffer, 2019) 
12 In this paper, by “explaining” I mean “constitutive explanations”. 
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matter of decomposing systems into their parts to show how those parts are organized in such 

a way to emphasize the explanandum phenomenon.  

Systems tradition is currently the dominant approach to explanations formulated in biology, 

system research, and cognitive neuroscience, while decomposition is the central heuristic 

strategy in mechanistic explanations besides the identification of mechanisms (Bechtel & 

Richardson, 1993/2010; cf. Bechtel, 2008; Craver; 2007; Illiari & Williamson, 2012). However, 

the mechanistic view of explanation has met with controversy (cf. Koutroufinis, 2017; 

Silberstein & Chemero, 2013). Moreover, some authors defend dynamical explanation as an 

alternative to mechanistic explanation (cf. Stepp, Chemero & Turvey, 2011).13  

 

3.1. What about constraints? 

Some researchers (cf. Bechtel, 2018; 2019; 2020; Bechtel & Bollhagen, 2021; Winning & 

Bechtel, 2018; Winning, 2020) point out that the decomposition strategy, as understood by 

mechanism, assumes that there is a composition or causation relationship (i.e., causal 

production) between processes present in mechanisms (where one process, an organized set of 

causal processes is “responsible for” the implementation of another). Such a view, however, 

ignores two important features of cognitive mechanisms: 

1. Mechanisms of this kind primarily act to control production mechanisms, i.e., 

mechanisms which are responsible for bodily movement and physiological processes. 

This type of relationship can be called control, and it is as important for the 

understanding of the nature of mechanisms and their explanations as the relationships 

of causation and composition (Winning & Bechtel, 2018, 2). These are, therefore, 

mechanisms that help to maintain the internal environment of the given organisms. The 

analysis of control mechanisms is important because they allow organisms to quickly 

adapt to their environment. Therefore, they perform an important adaptive function and 

are responsible for the autonomy of the individual, as they contribute to the maintenance 

of the existence of a given organism. In this sense, they are normative because they 

contribute to the self-maintenance that is the norm of autonomous living systems (cf. 

Bickhard, 2003). Self-maintenance is the norm (what is good or bad for the system) in 

the sense that it “is not externally interpreted or derived from an adaptive history but 

 
13 My goal here is not to argue with models of explanations that are alternative to mechanism, or to discuss their 

validity, especially since there are strong arguments that dynamic models are ultimately mechanistic (cf. Bechtel 

& Abrahamsen, 2010; Kaplan & Bechtel, 2011; Zednik, 2008). I am rather interested in the discussion that took 

place within mechanism about the limitations of this view (cf. Bechtel, 2018; 2019; 2020; Bechtel & Bollhagen, 

2021; Winning & Bechtel, 2018; Winning, 2020). 
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defined intrinsically by the very organization of the system” (Barandiaran & Moreno, 

2006, 174); 

2. High-level cognitive mechanisms are components of a highly developed and complex 

network of heterarchically organized control systems whose aim is to perform a given 

cognitive task (Bechtel, 2019, 621, cf. Pattee, 1991). By heterarchical organization, I 

mean a such distributed causal network in which a given (production) mechanism is 

regulated by multiple (control) mechanisms without these control mechanisms being 

themselves subsumed under a higher-level controller. This means that their organization 

is horizontal and not vertical, as is the case with hierarchical organization (cf. Bechtel 

& Bich, 2021).14 

These features (1) and (2) are extremely important and their omission in explaining 

cognitive mechanisms makes these explanations incomplete, violating the standard of 

mechanistic explanations (Kaplan & Craver, 2018). This may result in “incorrect accounts of 

cognition” (Bechtel, 2019, 621).15 Taking account of these two aspects of cognitive processes, 

i.e., their function in the production of control mechanisms and their non-autonomous character, 

leads to the conclusion that their explanation should also cover other components (some of 

which are flexible and able to be operated on and altered by other mechanisms) than those 

previously considered.16 This means that the mechanisms are organized not only in terms of 

production and composition, but also in terms of control. Such a view thus presupposes a 

revision of the systems tradition in which “processes are controlled by other processes, and 

mechanisms are controlled by other mechanisms, often hierarchically” (Winning & Bechtel, 

2018, 3). 

A drift from the classical understanding of systems tradition does not mean a departure from 

the norms of mechanistic explanations, but rather their extension and the recognition that the 

concept of constraint is also important from the explanatory perspective. The concept of 

constraint comes from classical mechanics. It was used to describe the reduction of the degree 

 
14 “In both machines and human institutions, control mechanisms are often organized hierarchically. In a hierarchy, 

individual control mechanisms are themselves controlled by higher-level control mechanism, with a single 

controller ultimately in charge. The system is organized as a pyramid. In living systems, however, control 

mechanisms are typically organized heterarchically” (Bich & Bechtel, 2021, 2). The notion of heterarchy first 

introduced McCulloch (1945). See also Cumming (2016).  
15 This is not to say that the systems tradition does not recognize the importance of constraints (cf. Craver, 2007; 

Darden, 2006; 2008). I do claim, however, that it treats constraints as background conditions or as factors that limit 

the space of possible mechanisms. In the constraint-based mechanisms approach, the constraints are primarily 

control mechanisms. 
16 Certain mechanists have engaged in discussions regarding specific control mechanisms, such as circadian 

mechanisms (Bechtel & Abrahamsen, 2010) and feedback mechanisms (Bechtel, 2008, Ch. 7). Nevertheless, they 

did not talk much about the effects of these mechanisms on others within certain complexes. 
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of freedom available to components organized into macroscale objects. Constraints define some 

limits on independent behavior but also create possibilities (Hooker, 2013). For example, in 

contexts where there is a source of (thermodynamic) free energy, constraints can be used to 

direct the flow of this energy. This means that elements of biological mechanisms can be used 

to limit the flow of available free energy so that work is done (which can be used to generate 

particular phenomena). Some (control) mechanisms are therefore systems of constraints that 

restrict the flow of free energy to perform work. Therefore, the operation of control mechanisms 

leads to such behaviors or physiological processes that would not be possible if not for the 

changes that constraints make in the mechanisms of production. Controlling the production 

mechanisms is essential because they are constrained to do work as long as free energy is 

available. The same is true for artifacts. For example: turning on the on/off switch enables the 

user of a given machine to control it so that it can use energy and carry out its design activities 

(Bechtel, 2019, 623).17 

Constraints understood in this way do not only (or at all) function as the context or 

background conditions in which a given mechanism is implemented, but most of all they are its 

constitutive (in the sense of being responsible for producing a given phenomenon, resp. 

mechanism) component because “mechanical systems inherently contain a 'thicket' of 

constraints” (Winning, 2020, 20).18  

Bechtel (2018; 2019; 2020), Bechtel & Bollhagen (2021), Winning & Bechtel (2018), and 

Winning (2020) emphasize the need to refer to constraints, linking them with the necessity to 

include both constraints and energy flows as those elements which, apart from entities and 

activities, are relevant for the explanation of mechanisms at higher levels of organization.19 It 

is the constraints and the flows of free energy that make living organisms “dissipative 

structures”,20 which means “that they actually use the second law of thermodynamics to their 

advantage to maintain their organization” (Winning & Bechtel, 2018, 3; cf. Moreno & Mossio, 

 
17 The concept of constraint, as used in this context, was originally proposed by Howard Pattee (1972) and David 

Marr (1982). Marr drew attention to the fact that specific processes can be defined by indicating and separating 

physical or natural constraints. The importance of Marr's observation was not duly noted by mechanists at first, 

but in recent years, several authors have advocated the necessity of referring to various types of constraints, either 

in explaining neuronal mechanisms (cf. Weiskopf, 2016) or in explaining wide cognition (Miłkowski et al. 2018).  
18 It is important that such a view to constraints is conditioned by the research perspective. However, an explanatory 

strategy that favors certain constraints at the expense of others must be distinguished from the fact that these 

constraints exist and define a given organism or structure (Pattee, 1972). 
19 “Higher-level activities, just as those at the bottom-out level, depend upon the release of energy. Higher-level 

entities also constrain those at the bottom level, determining how energy released in molecular motors, ion pumps, 

etc. results in activities at higher levels” (2021, 21) 
20 Far from the equilibrium state, these are stable stationary states, the formation of which is accompanied by an 

increase in order. 
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2014). This way, living organisms—unlike most “things”—develop while maintaining their 

autonomy, rather than being degraded by the flow of energy and interaction with the 

environment.21  

Biological mechanisms derive their causal efficacy from being constrained systems: “An 

active causal power exists when a system within a larger system is internally constrained in 

such a way as to externally constrain under certain conditions” (Winning, 2020, 28). In other 

words, constraints determine the causal powers of mechanisms in such a way that they direct 

the flows of free energy so that biological systems may remain in a state of energy non-

equilibrium with the environment. Such mechanisms are part of a heterarchical network of 

controllers that guarantees the biological autonomy of a given system. Based on this, 

mechanisms are systems of constraints that restrict the flow of free energy to perform work 

(Bich & Bechtel, 2021, 2). 

Mechanisms are active and serve to maintain the autonomy of biological systems as a result 

of the constrained flows of free energy. Including these kinds of constraints in the explanation 

of activities means breaking with the standard account of mechanistic explanation (systems 

tradition).22 If the energetic dimension is ignored, “at some point, such research typically 

bottoms out” and “this process leaves the active nature of activities unexplained” (Bechtel & 

Bollhagen, 2021, 17) because “a completely unconstrained system will have no behaviors; it 

would simply be a disorganized motion of particles” (Winning & Bechtel, 2018, 7). The 

approach that takes into account the need to refer to constraints and flows of free energy will 

be referred to as the ‘constraint-based mechanisms approach’ and its postulate as heuristics of 

constraint-based mechanisms. It is important to emphasize that this approach is not so much a 

break with the systems tradition, but its significant modification.23 

 

 
21 For the purposes of the analyses, I assume that biological autonomy and the related self-organization and 

integrity (which enable living organisms (systems) to achieve, maintain, and propagate a high degree of 

complexity) define the “situatedness” of biological systems in their environment and their “grounding” in 

thermodynamics. Thanks to this, biological systems do not disintegrate: they construct, maintain and replicate 

themselves in a changing environment. It means that an organism lives as long as it remains in an energetic non-

equilibrium with the environment (cf. Friston & Stephan, 2007; Moreno & Mossio, 2014). A paradigmatic example 

of such a system is a living cell that uses metabolic processes to convert energy and materials from the environment 

into chemical energy and organic molecules, which are essential for the processes that keep the cell alive. All 

living autonomous organisms “must procure matter and energy from their environment and use these to construct 

and repair themselves” (Bich & Bechtel, 2021, 1). 
22 Earlier, Darden (2006, 272) drew attention to this, claiming that the process of decomposition of selected 

mechanisms consists in constructing, evaluating and revising them in relation to empirical and experimental 

limitations. In other words: constraints limit the space of possible mechanisms to a specific area that the model is 

to reconstruct (cf. Craver, 2007). 
23 This modification assumes the need to analyze (at least) some mechanisms in terms of heterarchical organization 

and network organization of constraints. 
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3.2. What about predictive processing? 

 In §1, I have already discussed the mechanistic commitments of PP. We can now take 

the next step. From the point of the view of the constraint-based mechanisms approach we 

should note that, if PP explains its phenomena mechanistically, then it is legitimate to ask 

whether the mechanistic explanations based on the PP framework include constraints and the 

energy dimension as their constitutive component. This is not a trivial or secondary question, 

because, according to the heuristics of constraint-based mechanisms, mechanistic PP should 

also include energy processes. This case is not obvious. Let us note, however, that there are 

indications that the above heuristic is used by researchers working in the PP framework. 

On the one hand, many of PP’s supporters use the term “constraint” in their considerations 

to refer to perceptual inference in the brain. For example, “the only constraint on the brain’s 

causal inference is the immediate sensory input” (Hohwy, 2013, 14), but “immediate sensory 

input is not the only constraint; there are, in addition, general beliefs about the world, specific 

hypotheses about the current state of the world, and ongoing sensory input” (Anderson, 2017, 

3) and “perceptual experience is determined by the mutual constraint between the incoming 

sensory signal and ongoing neural and bodily processes, and no aspect of that content can be 

definitively attributed to either influence” (Anderson, 2017, 17). It is also worth adding that the 

levels of bidirectional hierarchical structure are constraints for each other (Clark, 2013, 183; cf. 

Gordon et al. 2019). Conversely, some have suggested that “without independent constraints 

on their content, there is a significant risk of post hoc model-fitting” (Williams, 2020, 1753). 

However, it is not clear in what sense these authors use this term and whether they use it in the 

same way.24  

These various uses of the concept of constraint are difficult to relate directly to the 

understanding of constraints as control mechanisms, which I defend in this paper. The 

constraints discussed by these authors, however, reveal the non-trivial commitment of PP. 

Namely: the functioning of predictive mechanisms depends on the existence of various types 

of constraints, which on the one hand limit the content of the generative model, and on the other 

hand, enable its adaptation to the environment, making it an effective adaptive tool to maintain 

the autonomy of the organism. The perspective I defend allows us to specify the functions of 

 
24 One can also point to the “model” understanding of the concept of constraint concerning the very architecture 

of model building in PP (Millidge et al. 2020). It is worth adding that Sprevak has recently drawn attention to the 

difficulties faced by PP regarding the inclusion of the explanation of constraints: “In general, it is not obvious how 

predictive coding should reconcile two opposing forces: (i) permitting the implementation to be complex, 

idiosyncratic, and varied in ways that we do not yet understand; and (ii) imposing some constraints on which 

physical states do and do not implement the model in order to render the view empirically testable” (Sprevak, 

2021, 26). 
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constraints in PP and to study them in a more systematic way. What is important is the question 

of how certain constraints are constitutive of predictive mechanisms. In other words, the point 

is to demonstrate how such and such organization of predictive mechanisms constrains free 

energy so that it is possible to perform the work required to generate particular phenomena, 

resp. predictions. 

On the other hand, broadly speaking, we have to note that the findings within the FEP and 

NESS mathematics (expressed in the language of DST)—according to which, if something 

exists then it must exhibit properties as if it is optimizing a VFE—look like they coincide with 

the heuristics of constraint-based mechanisms whereby mechanisms are active and serve to 

maintain the autonomy of biological systems as a result of the constrained release of free 

energy. It seems that mechanistic PP should take into account the energetic dimension of 

predictive mechanisms. Is it really so? The full answer to this question depends on further 

empirical solutions, and it is certainly not only an a priori answer. Nevertheless, I argue that if 

the arguments presented above are correct, then it should be asked if FEP-based PP meets the 

requirements of the constraint-based mechanisms approach and allows one to think of 

predictive mechanisms as constitutive control mechanisms for autonomous systems armed with 

a generative model. I will devote my further analysis to answering this question. 

 

4. What does it mean for the system that it minimizes variational free energy? 

The connection between PP and the FEP raises a number of doubts, which can be reduced 

to two main issues: (1) the very interpretation of the FEP as a principle of modeling self-

organizing systems armed with generative models; (2) the question of how the FEP determines 

the energetic (in the information-theoretical sense) constraint for the mechanistic PP. Let me 

start by outlining the first difficulty. I will devote another section to the second. 

I stated earlier that under the mathematical framework of the FEP, PP looks like it coincides 

with the heuristics of constraint-based mechanisms. But why do I use the terms “looks like” 

and “as if”?25 I do it because this is how some proponents of the FEP define its application to 

autonomous systems: “physical systems that look as if they encode probabilistic beliefs about 

the environment”; “self-organising system that looks as if it is modelling its embedding 

environment” or “all systems that look as if they engage in inference” (Ramstead et al. 2023, 1, 

2, 18) and so on. What does the phrase “as if” mean? Simon McGregor defines its use as 

follows: “To say that something behaves ‘as if’ it has property X usually implies that it does 

 
25 I use those two terms interchangeably in this context. 
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not, in fact, have property X. However, there is clearly a sense in which a system possessing 

property X must also behave as if it had property X; it is in this, less restrictive, sense that we 

intend the phrase ‘as if’. In other words, we classify both the regulation of temperature by a 

thermostat, and also the pursuit of prey by an eagle, as ‘as if’ agency” (McGregor, 2017, 72). 

McGregor distinguishes between two senses of “as if”. In the first one (“instrumental”), the 

system can be described as if it had a given property, even though it does not actually have it, 

and in the second (“realistic”), it can be described as if it had a given property precisely because 

it has it.26  

This duality allows us to see that the use of the phrase “as if” in relation to systems that are 

supposed to minimize VFE can be interpreted in at least several ways: from the realistic 

interpretation, where VFE is a quantity (or means a quantity) that is minimized by biological 

systems that maintain their organization – in this approach, VFE cannot be reduced to 

researches’ construction or explained only in terms of the practice of modeling;27 to various 

anti-realistic or instrumental interpretations in which the FEP is a construction devised by 

scientists to describe the dynamics of any self-organizing system that is at NESS with its 

environment without any implications for their actual causal structure. In this approach, VFE 

looks like a quantity that relates to the models made by scientists, while the FEP serves to 

designate a model structure on the basis of which specific models are constructed (cf. Andrews, 

2021).28  

The discussion so far concerning the ontological and epistemological commitments of the 

FEP is rich. It is worth mentioning the papers of Andrews (2021; 2022), Bruineberg et al. 

(2021), Kirchhoff, Kiverstein & Robertson (2022), Ramstead, Sakthivadivel & Friston, (2022) 

or Van Es (2021). I will not discuss them here. However, I would like to draw attention to the 

fact that the mechanistic perspective adopted in this paper is realistic (see §5) and therefore 

imposes certain theoretical commitments on the understanding of the FEP and VFE, which 

 
26 Indeed, in the latter sense (as one reviewer pointed out to me), there is no need to describe a system as behaving 

“as if” it had a given property if this is indeed how the system behaves. However, we can still relate the phrase “as 

if” to our best models or simulations and assert that the given model or simulation behaves “as if” it had a certain 

property of the target system. In this context, the term “as if” serves to acknowledge the use of models or 

simulations as approximations or representations that imitate certain aspects of the target system's behavior. 
27 This interpretation assumes that systems can be described as if minimizing VFE, because they implement some 

causal mechanism that can be described (approximately) in terms of minimizing VFE, resp. long-term average 

prediction error. In other words, there is a definite causal pattern that is the object of scientific interpretation. 
28 In addition to the above-mentioned positions, one should also take account of the views of authors such as 

Williams (2021), Colombo and Wright (2021) or Colombo and Palacios (2021), who treat the FEP as (at best) a 

general idealization. Their views can be collectively described as eliminativism about the FEP. 
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bring my positions closer to a realistic interpretation of the FEP, which I will call moderate.29 

It is moderate in the sense that it assumes that systems can be described as if minimizing VFE, 

because they implement some causal mechanism that can be described (approximately) in terms 

of minimizing VFE, resp. long-term average prediction error (see §6).30  

Therefore, considering the goal I have set for myself in this paper, which is to apply the 

heuristics of constraint-based mechanisms in relation to PP and determine the energetic 

constraint for the mechanistic architecture proposed by this framework, it is important to 

acknowledge that the FEP provides a relevant (variational) constraint for the causal 

organization of all autonomous systems equipped with generative models, as explained 

mechanistically by PP. If this is true, than the FEP provides a relevant constraint for PP's scheme 

of mechanism.31 

 

5. Mechanistic realism and the free energy principle 

Many mechanists emphasize that there are objective structures in the world that are in some 

sense richer than mere aggregations of causes. Entities, their hierarchical-heterarchical 

organization and the operations binding them, produce mechanisms. The task of scientists is to 

identify and decompose them (cf. Bechtel, 2008; Craver, 2007; Craver & Darden, 2013; 

Machamer, Darden & Craver, 2000). This view can be called mechanistic realism. It is not a 

clear-cut position, as recently demonstrated by Dewhurst and Isaac (2021), because its 

ontological commitments are unclear. There is no space in this paper to discuss this issue in 

 
29 The notion of moderate realism I have proposed can be related to some extent to Hilary Putnam's (1978, cf. 

Hacking, 1982) distinction between metaphysical realism and internal realism. The first position assumes that the 

world contains a specific set of objects that exist independently of the human mind and the ways of its conceptual 

articulation. Our theories are true if they denote what the world is like. The position of internal realism (i.e. the 

moderate realism I propose) assumes that objects in the world depend on accepted conceptual schemes. Thus, there 

may be different objects, depending on the conceptual schemes adopted. This means that there is no fixed set of 

objects that exists independently of conceptual schemes. 
30 This interpretation should be distinguished from the approaches that treat self-organizing systems as literally 

minimizing VFE, while the use of the phrase “as if” implies that systems behave as if they were minimizing VFE, 

because in fact they implement the mechanism of VFE minimization, resp. long-term average prediction error (in 

this view, the phrase “as if” is redundant – see footnote 26). In this sense, my analysis corresponds to the critique 

of what Kirchhoff, Kiverstein & Robertson (2022) call the literalist fallacy. The fallacy is that the instrumentalist 

position is accepted or adopted due to the belief that FEP-based models are not literally mapped onto real target 

systems. 
31 It is important to bear in mind that based on the difference between realistic and instrumental, resp. antirealistic 

approaches to the FEP, one can distinguish between free energy minimizing systems that use gradients (VFE-

users) and systems that are just minimizers of those gradients (VFE-minimizers) (Kuhn, 2022, 94-95). 

Consequently, if there are any VFE-users that exist, they must actually minimize VFE and not just be described as 

minimizing VFE. This would mean that the FEP indicates an energetic constraint that has significant causal powers 

necessary for the implementation of specific mechanisms regulating the work of those systems. From this 

perspective, it is reasonable to claim that the human brain armed with the generative model is actually a VFE-user 

(cf. Kuhn, 2022, 95). 
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more detail, but I believe it is reasonable to say that the architecture implied by the heuristics 

of constraint-based mechanisms assumes a certain mechanistic realism in relation to the causal 

patterns present in the world (cf. Winning, 2020). In other words, the fact that production 

mechanisms are limited and activated in one way or another by specific constraints and flows 

of free energy suggests that the causal relationships between specific patterns or, in Bayesian 

modeling terminology, sensory signal statistics cannot be described merely as an aggregation 

of causes (cf. Craver & Bechtel, 2007). This means that there must be some facts about the 

structure of mechanisms that explain them and determine what mechanisms should be and what 

components and operations will appear at a given level of their hierarchical-heterarchical 

structure (Dewhurst & Isaac, 2021; cf. Craver, 2013).  

Because of this realistic nature of the mechanistic explanations, I argue that if the heuristics 

of constraint-based mechanisms can be applied to VFE-constrained predictive mechanisms, 

then realism must be assumed for the FEP. Instrumentalism imposes no commitments on the 

explanations regarding the architecture of the mechanisms, and treats the mechanisms 

themselves as useful fictions. The heuristic interpretation of the FEP defended by Gładziejewski 

(2019) and Harkness (2015), while not excluding realism in relation to mechanisms, denies any 

explanatory power to the FEP.32 In this sense, it does not allow VFE flows to be treated as 

significant for the functioning of predictive mechanisms.  

I can now present the realistic interpretation of what it means to say that self-organizing 

systems minimize VFE. The moderate realistic interpretation, which I defend, does not impose 

strong commitments on mechanistic architecture that would involve committing the literalist 

fallacy (cf. Kirchhoff, Kiverstein, & Robertson, 2022). Moderate realism assumes that the 

concepts implied by Bayesian modeling are not precisely mapped to the target phenomena. 

Thus, they can be treated as approximations (cf. Laudan, 1981; Weisberg, 2007). Bayesian 

formal structures are rather non-arbitrary (in the instrumental sense) interpretations of causal 

patterns in the world, which, according to mechanistic realism, have specific structures that 

cannot be reduced to being aggregates of causes.  

I argue that the proper interpretation that allows PP to be integrated with the FEP framework 

in accordance with the heuristics of constraint-based mechanisms, follows a moderate realistic 

 
32 Let us recall: in line with the classic view of Herbert Simon, heuristics strategies allow researchers to limit their 

investigations to particular regions within a given space (cf. Simon, 1977). However, it is important to emphasize 

that heuristics as such “cannot itself provide evidence for any particular hypothesis over an empirically equivalent 

alternative” (Zednik & Jäkel, 2016, 3969). “They are not adequate explanations” and “often provide only the 

illusion of understanding a mechanism” (Craver, 2006, 361, 373). 
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approach to the FEP. Why? In order to answer this question, it is necessary to look at the 

arguments that concern the possibility of linking VFE with TFE.  

It seems that the first step in demonstrating that VFE is a relevant constraint for predictive 

architecture has been made. To sum up: in accordance with the realistic approach to the FEP, 

VFE is not only a scientists’ construct, but in a sense models the actual property of the target 

phenomena, which do not have to be treated as exact representations of formal structures. 

We thus come to the second difficulty, which I indicated at the beginning of §4: does the 

FEP determine the energetic (in the information-theoretical sense) constraint for the 

mechanistic PP, and to what extent? 

 

6. Is variational free energy the same thing as thermodynamic free energy? 

Let us first cite the observation of William Bechtel, who explicitly states that “The notion of 

free energy invoked in mechanical action is distinct from the free-energy principle articulated 

by Friston (…). The conception of free energy required in the account of mechanisms is that 

appealed to in mechanics to explain work of any form” (Bechtel, 2019, 634; cf. Bich & Bechtel, 

2021, 52). This claim seems to exclude the idea of using VFE as a constraint for mechanistic 

PP, at least in the sense that Bechtel and colleagues propose. However, it seems that it is 

doubtful, however, whether Bechtel rightly excludes Fristonian VFE. In the quoted paper, he 

refers to a 2010 piece by Friston. In this work, free energy is understood as “an information 

theory measure that bounds or limits (by being greater than) the surprise on sampling some 

data, given a generative model” (Friston, 2010, 127) and as such it is distinguished from the 

thermodynamic free energy referred to by Bechtel (cf. Moreno & Mossio, 2014). However, in 

more recent papers, Friston argues, based on the mathematical relationships between non-

equilibrium dynamics, variational inference, and stochastic thermodynamics, that VFE is the 

same as TFE, because VFE “is consistent with the notion of free energy as the thermodynamic 

energy available to do work when an ensemble is far from equilibrium” (Friston, 2019, 66 -67; 

Parr, Da Costa & Friston, 2019).33 This statement, as I will soon show, may raise reasonable 

doubts and ultimately does not justify the belief that VFE is a constraint for mechanistic PP. 

What is Friston's argument for equating VFE with TFE, and why is it important? I will start 

with the second point. Let us recall: the fact that cognitive mechanisms are active and can serve 

to maintain the autonomy and self-organization of biological systems is a result of the 

constrained flows of free energy. It is important to explain “how that free-energy is converted 

 
33 Friston earlier integrated predictive coding with the FEP (Friston, Kilner, & Harrison, 2006) by identifying the 

Rao and Ballard's energy function (Rao, Ballard, 1999) with VFE. 
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into a specific activity” (Bechtel & Bollhagen, 2021, 3). It seems that Friston goes a step further: 

mechanisms are constrained and made active not only by the energy in the thermodynamic 

sense, but also the energy in the information-theoretical sense (i.e. VFE) that the system 

optimizes to achieve NESS (cf. Friston, 2013; Wiese & Friston, 2021). If Friston is right, then 

there are some phenomena that need to be explained by taking into account the energetic 

constraint of VFE. This means that there are mechanisms that are implemented because they 

minimize the VFE quantity.  

Let us now return to the identification of VFE with TFE. If VFE coincides with TFE, then it 

looks like the FEP (as a framework for explaining minimization of VFE) is fundamental to 

explaining many biological and cognitive mechanisms by analogy with the scientific 

importance of explanations using statistical mechanics and the concept of TFE. In the latest 

papers, Friston and colleagues introduce the concept of Bayesian mechanics, which “is a 

probabilistic mechanics, comprising tools that enable us to model systems endowed with a 

particular partition (i.e., into particles), where the internal states (or the trajectories of internal 

states) of a particular system encode the parameters of beliefs about external states (or their 

trajectories)” (Ramstead et al. 2023, 1). In other words, according to these authors, Bayesian 

mechanics is exactly the same as all these other mechanics but with the added variational energy 

constraint (i.e., the assumption of Markov blankets) (Friston, 2019, 122). We will therefore take 

a closer look at Friston's argument in favor of equating VFE with TFE. I will call it an argument 

from the Bayesian mechanics. 

In this perspective, the assumption of the compatibility of TFE and VFE can entail both ontic 

commitments characteristic of the realistic interpretation of the FEP and epistemic 

commitments characteristic of instrumentalism. In the latter case, instrumentalism would imply 

treating TFE and VFE as constructs of scientists, or useful fictions. As I will argue in the 

remainder of this paper, however, that from the point of view of the constraint-based 

mechanisms approach to mechanistic PP, instrumentalism cannot be reconciled with 

mechanistic realism. This means, therefore, that the application of the heuristics of constraint-

based mechanisms to mechanistic PP is possible only in two cases: either when the 

compatibility of TFE and VFE is justified in realistic terms, or when both of these quantities 

are treated as independent interpretations of such and such patterns or causal structures present 

in the world (cf. Weisberg, 2013).  
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6.1. The Bayesian mechanics argument 

According to Friston and colleagues, the concept of VFE can only be applied on the basis of 

Bayesian mechanics: “At the core of Bayesian mechanics is the variational free energy principle 

(FEP)” (Ramstead et al. 2023, 2). This belief, however, reveals a deeper assumption about the 

nature of mechanics: every kind of mechanics has its own reified constructs (such as 

thermodynamic energy, temperature, second law or very VFE). It means, Friston claims, that 

the existence of this type of construct is justified by a given type of mechanics (classical, 

statistical, quantum, or Bayesian). For example, from the point of view of quantum mechanics, 

the temperature construct has no object reference. According to Friston, recognizing the 

existence of this type of reified constructs presupposes the so-called ensemble assumption (that 

all particles in your ensemble are exchangeable) which entails a weak coupling between fast 

and slow modes (Friston, 2019, 47).34 In statistical physics or thermodynamics, the ensemble 

assumption is an idealization according to which there are collections of a very large number 

of systems in different (quantum) states with common macroscopic attributes. The ensemble is 

distinguished by which thermodynamic variables are held constant (cf. Gibbs, 1902). This 

means that their properties result from the laws of classical or quantum mechanics. The 

ensemble assumption, Friston argues, translates into a weak coupling between internal particles 

and their Markov blanket, which means that the states of the ensemble are partitioned so that 

the states of each constituent particle can be identified with the homologous states of another. 

This makes it possible to associate the NESS density with an ensemble density. This means that 

instead of describing the probability of a given particle appearing in a certain state over time, 

the NESS density describes a greater number of particles that occupy the same (or adjacent) 

states (Friston, 2019, 64).  

So, how does the use of the ensemble assumption in Bayesian mechanics differ from its use 

in other mechanics? Friston claims that Bayesian mechanics adds a variational energy constraint 

(i.e., assumption of Markov blankets). With this additional constraint in place, one can speak 

of states of something as relative to something else, which is directly applicable to living 

organisms or neural structures. According to Friston, only Bayesian mechanics can do this (cf. 

Parr, Da Costa & Friston, 2019). The other types of mechanics assume that a Markov blanket 

 
34 For example: mechanisms that underwrite self-organization rest upon bottom-up causation and top-down 

causation, which means top and bottom-up causation is necessary in the sense that it defines what variables and 

relevant variables (in the language of the renormalization group) matter (define the coupling and the shape of the 

coupling). Top down causation means that these variables also have a very slow dynamic, and crucially 

contextualize and constrain the dynamic at the lower faster level (cf. Ellis, 2012). 
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and the states outside the blanket can be ignored, which is related to, for example, talking about 

a heat bath or a thermal reservoir in terms of statistical mechanics (Friston, 2019, 122).  

This is where the important question arises as to why only Bayesian mechanics should allow 

the separation of internal and external states. Why should this not be possible to achieve 

through, for instance, a constraint-based mechanistic approach as understood by Bechtel and 

colleagues or the biological autonomy approach as characterized by Barandiaran, Moreno, 

Varela and so on? According to Friston and colleagues, it is important to bear in mind that the 

above-mentioned approaches already assume solutions that are only enabled by the Bayesian 

mechanics. The new mechanical philosophy of neural mechanisms or an account of biological 

autonomy based on autopoiesis are only possible on the basis of the ensemble assumption with 

a variational constraint. To be more precise: the statement that there are some mechanisms, 

presupposes the mechanistic nature of certain phenomena. Friston claims that without the 

ensemble assumption, it seems impossible. Nevertheless, it is not difficult to see that the 

ensemble assumption follows from the assumptions of statistical mechanics, thermodynamics, 

or even mechanistic realism (cf. Dewhurst & Isaac, 2021). However, Friston argues, it is only 

on the basis of Bayesian mechanics that one can recognize active mechanisms (e.g. information 

processing neuronal mechanisms) that are characteristic for the organization of living systems 

such as, for example, bacteria and our brains (Friston, 2019, 1). In other words, only Bayesian 

mechanics allows us to explain why biological systems “exist the way they do” (Sakthivadivel, 

2022, 2), i.e. indicate what physical mechanisms and constraints enable biological systems to 

be what they are, rather than being inanimate matter. 

According to Friston, VFE can be applied only in the realm of Bayesian mechanics and thus 

refers to autonomous or active things, while TFE can only be applied in the realm of the 

statistical ensemble. Thus, both of these mechanics are based on quantum mechanics (cf. Friston 

et al. 2022, 5-6). For this reason, it can be said that VFE and TFE are two consequences or 

expressions of the same thing of a more elemental mechanistic or quantum nature.35  

 

6.2. Instrumental interpretation of the Bayesian mechanics argument 

Note that, if the Bayesian mechanics argument is valid, then VFE is an explanatory relevant 

constraint for the PP’s mechanistic architecture. This means that according to the heuristics of 

constraint-based mechanisms, predictive mechanisms are active because they are a result of the 

constrained release of free energy (both in terms of TFE that crucial for physical mechanisms 

 
35 “The ensuing Bayesian mechanics is compatible with quantum, statistical, and classical mechanics and may 

offer a formal description of lifelike particles” (Friston, 2019, 1).  
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and VFE as constitutive for information processing neural mechanisms). From my point of view 

the main difficulty in accepting this argument lies in its instrumental interpretation defended by 

Friston and colleagues (cf. Friston, 2019; Friston et al. 2022). 

In instrumental interpretation this argument assumes that TFE and VFE turn out to be two 

sides or aspects of some more primal dynamics, which, depending on the measurement tools, 

in one case reveals properties are thermodynamic, in another variational. In this sense, 

“Bayesian and stochastic mechanics are equivalent formulations of the same thing. One can 

either regard Bayesian inference is a necessary consequence of thermodynamics (i.e., gradient 

flows on a thermodynamic potential). Alternatively, Bayesian mechanics is a corollary of 

thermodynamics” (Friston, 2019, 119). As Friston claims, each type of mechanics posits a 

different kind of reified constructs, and what they all have in common are random dynamic 

systems. This means that VFE and TFE can be understood as constructs that are relativized to 

the description and method of measurement, and each type of mechanics is a complementary 

description of the behavior of dynamic systems.  

Therefore, we should distinguish the map (models developed by science) from the territory 

(what the models represent) (cf. Friston, 2019, 123; Andrews, 2021). In the instrumental 

interpretation, the FEP allows for the construction of “a map of that part of the territory which 

behaves as if it were a map” (Ramstead, Sakthivadivel & Friston, 2022, 8). In this sense, VFE 

is a tool that is used to explain the dynamics of self-organizing systems (given the state of our 

knowledge) (Ramstead, Sakthivadivel & Friston, 2022, 17) without making any ontological 

commitments regarding the representational or architectural properties of these systems. 

Therefore, the FEP is only a tool for modeling phenomena. It is arbitrary in the sense in which 

the choice of measurement tools or labels to name objects is arbitrary.  

From this perspective, FEP-based models address the causal structure of the world in the 

sense that they are epistemically useful. Their use in modeling some empirical data may speak 

in their favor (cf. Smith, Friston & Whyte, 2022). However, it is difficult to talk about their 

mechanistic character in this case (at least if mechanisms are understood ontically). This means 

that the constructions postulated by the FEP or PP can be treated as useful fictions 

(cf. Ramstead, Friston & Hipólito, 2020; van Es, 2021; van Es & Hipólito, 2020). 

We have to conclude that instrumental interpretation does not allow for a satisfactory 

mechanistic integration of the FEP and PP from the perspective of the constraint-based 

mechanisms approach, because instrumentalism imposes no mechanistic commitments 

regarding the causal structures under study. Therefore, it is challenging to regard it as 

compatible with the earlier-discussed mechanistic realism, which I deemed normative for the 
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using of heuristics of constraint-based mechanisms (cf. §5). In such a situation, the only 

possible position justifying the mechanistic integration of the FEP and PP seems to be moderate 

realism about the FEP. Is it really so? 

 

7. Moderate realism about the free energy principle and predictive 

processing 

According to the moderate realistic interpretation of the FEP, the system minimizes VFE 

because it implements some causal mechanism that can be described (approximately) in terms 

of minimizing VFE. In this sense, VFE can be treated as a constraint of such active mechanisms, 

which researchers explain in terms of the minimization of long-term average prediction errors. 

In other words, there are causal structures whose organization cannot be reduced to an 

aggregation of causes and must be explained in terms of mechanisms constrained by quantity 

flows described in terms of minimizing VFE or maximizing mutual information between 

sensory states and internal states (cf. Friston, 2010; Friston et al. 2022).36 In the moderate 

interpretation that I defend, this means that some mechanisms are systems of constraints that 

restrict the flow of information to perform work (cf. Bich & Bechtel, 2021, 2) in such a way 

that they minimize the discrepancy (i.e. prediction error) between estimate-based predictions of 

the system and the actual sensory stimulation coming from the input to stay at NESS. Why are 

these systems VFE-users and not just prediction error-users? Because, the minimization of 

prediction errors by the approximation of Bayesian inference happens through VFE 

minimization (cf. §2).  

The argument from neural computation supports the adoption of a moderate realistic 

interpretation of the FEP. According to this argument, there is a trade-off between neural 

information processing and thermodynamic energy consumption, the explanation of which 

makes it possible to understand how some states of biological systems have characteristically 

low Shannon entropy, which enables them to adapt and survive in the environment. 

 

7.1. Argument from neural computation 

Research on the thermodynamics of information clearly indicates the existence of a trade-

off between neural information processing and thermodynamic energy consumption. There is 

an energetic cost of information processing (cf. Niven & Laughlin, 2008; Sagava & Ueda, 

2011). This energy cost can be associated both with Landauer's principle, according to which 

 
36 Such mechanisms can be associated with the existence of systems that I previously defined after Peter Kuhn as 

VFE-users (see footnote 31). 
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information erasure increases the entropy of the environment, i.e., energy dissipation 

(Landauer, 1961; cf. Sartori et al. 2014), and with Gregory Bateson's observation that 

information (a single bit of information) is a difference which makes a difference, which in the 

case of living organisms means that the power of a given process by metabolic energy depends 

precisely on the difference (information) contained in certain states of the organism. For this 

reason, Bateson claims that the mechanical interaction of muscles can be treated as a 

computational model (Bateson, 1987, 322). 

It has recently been shown that the minimum energy required by a biological sensor to detect 

a change in an environmental signal is proportional to the amount of information processed 

during this event (Sartori et al. 2014). Sengupta, Stemmler, and Friston (2013) proved that 

minimizing VFE is a significant constraint to the tendency to maximize both metabolic and 

statistical efficiency in the sense that the motivation for minimizing VFE is to maintain a 

constant external environment that is encoded by the physical variables measured by TFE. 

Thus, the reference to the VFE constraint allows for the explanation of the homeostatic nature 

of neural processes, which mathematically means that states of biological systems have 

characteristically low Shannon entropy, understood—according to the ergodic theory—as the 

long-term average of self-information or surprise. Without reference to informational VFE, we 

would not be able to explain not only the homeostatic nature of neural computational 

mechanisms, but also their energy consumption, which is related to their ability to transmit 

information (cf. Laughlin, 2001). In other words, from this perspective, it follows that the use 

of only thermodynamics to explain the work of the brain is not fully justified.  

A full explanation of how the brain works, i.e. what makes neural mechanisms active and 

able to perform their functions, requires taking into account information constraints that can be 

characterized in terms of VFE minimization. They are responsible for action potentials in the 

brain's sensory system, forming a neural code that efficiently represents sensory information by 

minimizing the number of spikes needed to transmit a given signal according to Barlow's (1961) 

principle of efficient coding (cf. Abbot & Dayan, 2005, 123-150).  

The argument from neural computation can be formally justified by the interpretation of 

Jarzynski equality (Jarzynski, 1997) proposed by Friston (2019). According to Friston, 

Jarzynski equality shows that whenever you do any belief updating by changing the information 

inherent in the configuration of any dynamical system (e.g., belief updating in the Bayesian 

generative model), there is necessarily a thermodynamic work cost. Any Bayesian belief 

updating involves a change in biophysical encoding of these beliefs, or any belief updating has 

to have a concomitant energy expenditure in terms of thermodynamic free energy. Furthermore, 
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it is important to highlight that this thermodynamic cost we actually measure that in brain 

imagining using brain mapping to detect the thermodynamic activity in terms of activation foci 

in the brain (cf. Davatzikos et al. 2001).37 

I argue that both empirical and formal findings will most probably determine that there are 

such phenomena (e.g., the neural computations performed by brains), the explanation of which, 

according to the constraint-based mechanisms approach, should take into account the energetic 

constraint of VFE. Otherwise, such an explanation fails to capture the characteristic properties 

that distinguish the biotic systems that are at NESS from those that can be thermodynamically 

described as a heat bath. 

 

7.2. Ontological commitments of the moderate realism 

If it is true that the free energy flows constitutive of the active mechanisms can be described 

in terms of minimization of VFE, then it seems that there are no formal obstacles to 

acknowledging that the mechanistic decomposition of generative models minimizing the 

average prediction error should refer to the minimization of VFE as a constitutive constraint for 

these mechanisms. For this reason, I argue that one should adopt moderate realism about the 

FEP and PP. Its legitimacy is supported by explanatory considerations, integration possibilities 

regarding PP and perhaps other research frameworks, as well as relatively weak ontological 

commitments regarding the architecture of target phenomena. Moderate realism allows one to 

maintain the quantity of VFE without incurring the debts of adopting instrumentalism.  

Let's take a closer look at these ontological commitments that result from adopting moderate 

realism about PP and FEP, resp. VFE. Firstly, this position assumes that formal structures such 

as generative models, VFE or TFE, are interpreted as part of explanations in the ontic sense, 

i.e. the exhibitions “of the ways in which what is to be explained fits into natural patterns or 

regularities ... [and] usually takes the patterns and regularities to be causal” (Salmon, 1984, 293, 

cf. Craver, 2013). In this sense, moderate realism corresponds to mechanistic realism and the 

constraint-based mechanisms approach. In practice, this means that moderate realism does not 

map literally the formal structure (generative model or Bayesian network) onto the target 

phenomena, which would involve committing the literalist fallacy, but assumes that there are 

structures that cannot be reduced solely to the aggregation of causes and which implement some 

 
37 Jarzynski equality can be used in two ways. Either as formal support for the argument from neural computation, 

or, as suggested by Friston (2019), as justification for the choice of the Bayesian mechanics as the appropriate 

explanatory framework for systems armed with generative models which are “shielded” by Markov blankets. The 

latter solution leads, of course, to the difficulties I pointed out in my discussion of and instrumentalism about the 

FEP. 
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causal mechanism that can be described (approximately) in terms of generative models 

minimizing VFE, resp. long-term average prediction error. Therefore, it is important to assert 

that the formal structures (Bayesian modeling in our case) are such and such, because the world 

has genuinely causal structures, at least some of which are entities and activities organized to 

form mechanisms responsible for the phenomena that are described in terms of Bayesian 

optimization.  

This view can be further elucidated through the findings of Kirchhoff, Kiverstein, and 

Robertson. These authors state that realism in science does not mean that all entities postulated 

by a given theory or model are literally true (Kirchhoff, Kiverstein & Robertson, 2022, 12). 

A theory may incorporate both “OK-entities” (such as electrons and similar entities) and 

“supposedly non-OK-entities” (such as numbers or theoretical ideals) (Psillos, 2011, 6). 

Consequently, it is important to acknowledge that each model includes parts that are fictional 

entities, which bear resemblance to target systems in various ways. These fictional entities 

facilitate the understanding of real system dynamics within the model (Kirchhoff, Kiverstein & 

Robertson, 2022, 13), but they do not themselves represent specific causal structures in a literal 

sense. The expectation of a literal interpretation of fictional entities gives rise to the literalist 

fallacy, as mentioned earlier. One such fictional entity is VFE. Therefore, process theories like 

PP should be viewed as approximations of the actual causal structures or patterns in the world. 

They are approximations due to the inherent complexity of target systems. Hence, I argue that 

moderate realism posits that a given model fits the data without a literal mapping. Instead, it is 

approximately true in relation to the data (cf. Kirchhoff, Kiverstein & Robertson, 2022, 16; 

Stanford, 2003). 

Let us now delve into the relationship between the FEP and PP. Friston argues that Bayesian 

mechanics provides a “formal description of lifelike particles” (Friston, 2019, 1). This means 

that the Bayesian mechanics, by establishing a relationship between TFE and VFE, tells 

researchers something about mathematical models, i.e., formal structures, and only about them. 

Consequently, process theories such as PP are indispensable for addressing target phenomena. 

In line with the stance I advocate, the existence of control mechanisms that constrain the flow 

of free energy (both in terms of TFE and VFE) enables the formulation of theorems regarding 

the interplay between state theory (the FEP) and process theory (PP). Therefore, it is crucial to 

distinguish between three distinct elements: the FEP as a formal principle, PP as 

a computational modeling framework grounded in this formal principle, and the biological 

systems that PP is employed to model, which are independent of the FEP.  
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How, then, is the transition from the FEP to target phenomena possible? On one hand, if the 

view presented in this paper is correct, mechanistic PP, employing the heuristics of constraint-

based mechanisms, is utilized to model control mechanisms and systems. One such control 

system is the brain, modeled by predictive coders as a hierarchical generative model that 

approximates Bayesian inference. On the other hand, the relationship between VFE and TFE 

established by Bayesian mechanics informs us about target phenomena because computational 

models of these systems in PP are constructed using the mathematics of the FEP. Ultimately, 

this implies that the position of moderate realism concerns not only the FEP and Bayesian 

mechanics themselves, but rather the application of the FEP in a specific process theory, such 

as PP, which is a concrete FEP-based model. It is important to note that the FEP, as a formal 

principle, does not imply any ontological commitments or resolutions (cf. Andrews, 2021).38 

These commitments and resolutions arise at the level of applying the FEP through a particular 

process theory. The use of the constraint-based mechanisms approach justifies why such an 

understanding of PP should be interpreted in terms of moderate realism. 

There are also further benefits of the FEP and PP interpretation presented here. According 

to the position defended by Friston, FEP is a (normative) state theory that things may or may 

not conform to it, and PP is a process theory—a hypothesis on how that principle is realized 

(Friston, Fortier & Friedman, 2018, 21). It means that PP as the process theory provides 

“a possible (mechanistic) story about how the FEP is implemented in real-world, target 

systems” (Kirchoff, Kiverstein & Robertson, 2022, 6).39 The proposed mechanistic integration 

of PP with FEP reveals that the FEP serves as a normative theory for PP, setting a norm that 

mechanistically non-trivial PP models should strive to meet, assuming the utilization of the 

constraint-based mechanisms approach and its heuristics. According to this norm, PP models 

should have an energetic component if they are to be mechanistic.40  

 
38 For this reason, it can be argued that there should ultimately be no moderate realistic interpretation of the FEP 

itself. However, if the perspective I am advocating is correct, then the integration of the FEP with the PP based on 

it can be seen as part of a broader scientific view that could align with a properly developed moderate realism. 

This perspective largely aligns with what Kirchhoff, Kiverstein & Robertson describe as scientific realism, which 

asserts that one reasonable goal of our best scientific theories and models is to provide descriptions and 

explanations of reality that are either literally true, probably true, or approximately true (Kirchhoff, Kiverstein & 

Robertson, 2022, 1). 
39 In the sense, that „The free energy minimizing dynamics at play are implemented by different kinds of 

mechanisms in different individual organisms and species, as a function of the coupling between their evolved 

phenotypes and biobehavioural patterns and the niches they inhabit and the scales under scrutiny” (Ramstead, 

Badcock & Friston, 2017, 6). In this view, the FEP can be regarded as a target-directed model in the Weisberg 

sense (2013) (cf. Andrews, 2021; Kirchoff, Kiverstein & Robertson, 2022). 
40 It is worth adding that research on systems responding to a stochastic driving signal emphasizes that there is a 

profound connection between the effective use of information and efficient thermodynamic operation: “any system 

constructed to keep memory about its environment and to operate with maximal energetic efficiency has to be 

predictive” (Still et al. 2012, 1). 
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The view I defend can be treated as a voice in the discussion on the status of PP and its 

relation to the FEP, because FEP not only constrains the space of possible algorithms for PP 

(cf. Spratling, 2017), but also indicates energetic constraint for the causal organization of all 

autonomous systems, including those that are armed with generative models and are or should 

be the subject of (mechanistic) explanations formulated on the basis of PP. In practice, this 

means that all autonomous systems that can be described in terms of (Bayesian) generative 

models realizing updating priors and likelihood based on (average) prediction error should be 

treated as if they approximate Bayesian inference constrained by VFE. In other words: FEP 

offers a normative framework for the PP process theory, and that the PP explains the 

(biologically reliable) implementation of the FEP in terms of hierarchical and heterarchical 

active mechanisms that implement the generative model. 

 

7.3. Why the free energy principle is not a heuristic or a regulatory principle or an 

idealization 

The analyses carried out in this paper allow to refer to various positions concerning the 

explanatory status of FEP and its relation to PP. If the approach proposed here is valid, it has 

certain consequences for a number of discussions among PP and FEP researchers (see §1). Due 

to the limited space, I can only give provisional answers to the questions raised. 

Foremost, I think that the presented approach allows for a new way of describing the PP-

FEP relationship. If the FEP refers to self-organizing adaptive systems, as described in DST 

and that are at NESS with their environment, then with the appropriate interpretation of the 

notion of mechanism, dynamical FEP models may in fact turn out to be descriptions of 

mechanisms: “dynamical models and dynamical analyses may be involved in both covering law 

and mechanistic explanations—what matters is not that dynamical models are used, but how 

they are used” (Zednik, 2008, 1459).41 In this view, the FEP provides specific constraint for a 

PP's scheme of mechanism.  

Therefore, it is a stronger commitment than that suggested by Gładziejewski (2019) and 

Harkness (2015), stating that the FEP offers (only) heuristics. The approach I propose suggests 

that the FEP is not so much a heuristic that can aid the process of designing experiments or 

constructing a space of possible mechanisms, but above all points to a constitutive constraint—

 
41 An example of this type of practice can be found, among others, in Badcock, Friston & Ramstead (2019, 105): 

“mechanisms involve a dynamic, bidirectional relationship between specialized functional processing mediated 

by dense, short-range connections intrinsic to that scale (i.e., its local integration); and their global (functional) 

integration with other neural subsystems via relatively sparse, long-range (e.g., extrinsic cortico-cortical) 

connections”. 
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VFE, which is needed “not just for mechanisms to perform work, but also to maintain the 

mechanisms themselves” (Winning & Bechtel, 2018, 11). VFE as a constraint determines the 

causal powers of mechanisms in such a way that the flows of (variational) free energy guarantee 

that biological systems may remain in a state of energy non-equilibrium with the environment. 

Such mechanisms are part of a heterarchical network of controllers that guarantees the 

biological autonomy of a given system. From this point of view, biotic mechanisms are systems 

of constraints that restrict the flow of free energy to perform work.42  

For the above reasons, it is also difficult to agree with Hohwy’s thesis that the FEP is a 

regulatory principle. Surely Hohwy is right when he states that the “FEP itself (does not) implies 

cognitive architecture” and adds that “notions of architecture will need to build on assumptions 

about the particular system in question, which will constrain processes for message passing 

structure” (Hohwy, 2021, 47). However, the constraint relationship is reciprocal: on one hand, 

a particular system constrains flow of VFE, and on the other hand, those flows constrain the 

system to perform given work. Therefore, the FEP, as an explication of the dynamics of flows 

of VFE, possesses a specific explanatory power in the explanation of cognitive phenomena, 

distinct from its regulatory function. Therefore, it is agreeable to conclude, following Tomasz 

Korbak, that the FEP can be regarded as a functional principle that offers a general framework 

for understanding the mechanisms involved in free energy minimization, which can then be 

further specified through concrete models applied to specific phenomena (Korbak, 2021, 2754). 

It seems that these considerations may also shed some light on a number of critical works 

concerning either the FEP itself or its relationship with the PP. In Introduction, I referred to the 

papers of Williams, Colombo, Palacios and Wright. Let us recall: Colombo and Palacios (2021) 

emphasize that there is an inalienable tension between the “physics assumptions and properties 

of its biological targets”, which in practice makes it impossible to use the FEP to explain living 

organisms or, in other words, to integrate it with models developed by mechanists and/or 

organicists (cf. Colombo & Wright, 2021). This objection seems to be thwarted by emphasizing, 

as I do in my paper, the mechanistic status of explanations of biological phenomena offered in 

terms of constraints and free energy flows. If, for living organisms, autonomy is a constitutive 

property (cf. Moreno & Mossio, 2014; Ruiz-Mirazo & Moreno, 2004; Varela, 1979), then the 

FEP—contrary to what Colombo and Palacios claim—offers specific constraints to mechanistic 

 
42 “Higher-level activities, just as those at the bottom-out level, depend upon the release of energy. Higher-level 

entities also constrain those at the bottom level, determining how energy released in molecular motors, ion pumps, 

etc. results in activities at higher levels” (Bich & Bechtel, 2021, 21). 
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explanations formulated on the basis of biology and neuroscience, in the sense that it allows 

one to treat descriptions, using the language of DST, as sketches of mechanisms.  

From this perspective, it is also difficult to agree with the belief of Colombo and Wright 

that the FEP offers a weak explanatory idealization. Even if, as these authors claim, the analyses 

carried out by FEP supporters can be treated as (weak explanatory) sketches of mechanisms, 

then in the light of the constraint-based mechanisms approach and arguments presented here, 

sketches of free energy flow mechanisms can be used in the formulation of schemes of 

mechanisms with specific explanatory powers. 

Finally, let’s note that conducting a detailed discussion that addresses all the 

aforementioned positions and responds to every objection exceeds the scope of the intended 

framework for this analysis. Nevertheless, I believe that the general direction of the response 

has been set. 

 

Conclusion 

In this paper, I defended the view that the FEP indicates an explanatory relevant 

constraint (i.e. VFE) for cognitive mechanisms that can be mechanistically explained by PP. 

The arguments made here were based on the postulate of some mechanists about the need to 

include in the explanations such constitutive components as constraints for mechanisms and 

free energy flows. I found that the position defined by me as the constraint-based mechanisms 

approach has important implications for PP, because the actual research practice in this 

framework corresponds to the heuristics of constraint-based mechanisms and is related to those 

approaches that assume the FEP to be a normative framework for the process theory realized 

by PP. According to the presented approach, non-trivial PP models should include an energetic 

component, if they are to be mechanistic. The discussion presented here has great importance 

for considering the relationship between PP, the FEP, and Active Inference.  

The advantage of the position I defend—moderate realism about the FEP and PP —is, 

firstly, that it implies only minimal commitments regarding the architecture of target 

phenomena; and secondly, it does not reduce the constructions used by scientists to their purely 

instrumental functions, recognizing them, for example, as useful fictions. I argue that the 

approach presented here may also contribute to the formulation of a mechanism scheme, which 

would be defined by a common predictive template combining various mechanisms under one 

PP flag. Last but not least, this approach (I believe) also enables fruitful discussions with those 

researchers who regard the FEP as an explanatory weak heuristic, idealization or regulatory 

idea, as well as with those who deny any explanatory power to the FEP. 
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