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Abstract

The paper discusses Daniel Jafferis et al.’s Nature publication on

”Traversable wormhole dynamics on a quantum processor.” The exper-

iment utilized Google’s Sycamore quantum processor to simulate a sparse

SYK model with a learned Hamiltonian. A debate ensued when Bryce

Kobrin, Thomas Schuster, and Norman Yao raised concerns about the

learned Hamiltonian’s reliability, which Jafferis and the team addressed.

Recently, there has been an update in the wormhole experiment saga.

In an attempt to rescue the commuting Hamiltonian from its inevitable

fate of being invalidated, a recent paper by Ping Gao proposed a creative

solution to reinvigorate the concept within the context of teleportation

through wormholes. This paper delves into the ongoing debate and the

recent endeavor to address the comments made by Kobrin et al. I remain

skeptical about the efforts to address Kobrin et al.’s challenges. By its

nature, a commuting Hamiltonian does not exhibit chaotic behavior like

non-commuting Hamiltonians. Moreover, it’s always essential to assess

the sensitivity of the Hamiltonian to noise to understand its practical

feasibility for the real-world Sycamore processor.
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1 Introduction

The experiment of Daniel Jafferis et al. published in Nature on ”Traversable
wormhole dynamics on a quantum processor” [7] garnered significant attention.
The experiment harnessed the computational power of Google’s Sycamore quan-
tum processor to simulate a sparse SYK model with the aid of a learned Hamil-
tonian.1 This achievement presented exciting prospects for exploring traversable
wormholes through quantum means. In Sections 2 and 3, I introduce the ex-
periment and delve into its intricacies and nuances.

However, as I show in section 4, the paper’s progress was not without its
share of controversy. Bryce Kobrin, Thomas Schuster, and Norman Yao raised
valid concerns about the reliability [5] of the learned Hamiltonian, prompting
a heated debate within the scientific community and popular media [11]. Nev-
ertheless, Jafferis and the team diligently addressed these concerns, attempting
to salvage the credibility of their approach [8]. Another paper, authored by
Ping Gao, was subsequently published in response to Kobrin et al.’s challenges
[4]. Like Jafferis and his research team, Gao attempted to demonstrate that a
commuting Hamiltonian is reliable from the standpoint of teleportation through
a traversable wormhole.

In section 4, I aim to analyze the multifaceted debate surrounding Jafferis
et al.’s work and analyze the recent efforts undertaken to confront the critiques
put forth by Kobrin et al. I delve into the intricacies of the learned Hamilto-
nian’s reliability and the ingenious proposal that seeks to revitalize the notion
of commuting Hamiltonians in the context of holographic wormholes. Through
this exploration, I seek to shed light on the current state of affairs in quantum
wormhole dynamics and the exciting potential that lies ahead.

In section 5, I discuss robustness [5]. The learned Hamiltonian might lack
robustness against noise and errors in the actual conditions in the Sycamore
processor, such as fluctuations in gate parameters and environmental noise. As
a result, it could produce inaccurate results on the Sycamore processor. I then
apply Ian Hacking’s notion of material models, which enables scientists to gain
insights and improve their understanding of phenomena while suggesting en-
hancements to experiments, to Jafferis et al.’s experiment. Hacking emphasizes
that such models are not exact representations of reality. In light of Hacking’s
ideas, it is important to question whether the experiment on the Sycamore quan-
tum processor can be regarded as a Planckian wormhole in real physical space.

1The Sachdev-Ye-Kitaev (SYK) model serves as a theoretical framework for the onset of
quantum chaos and holography. The SYK model was initially proposed in condensed matter
physics by Subir Sachdev, Jinwu Ye, and Alexei Kitaev. The model’s large N limit exhibits
emergent scale invariance, resembling conformal symmetry, due to many N interacting Ma-
jorana fermions. As the number of fermions increases, the system displays maximally chaotic
behavior, characterized by chaotic dynamics and universal scaling properties of correlation
functions. The SYK model demonstrates non-Fermi liquid behavior and possesses a low-
temperature entropy that matches the Bekenstein-Hawking entropy of black holes. A notable
feature of the SYK model is the all-to-all interactions between Majorana fermions resulting
from random and uncorrelated interaction terms. This feature accounts for the model’s chaotic
behavior and other unconventional phenomena observed in the system.
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I show that this holds significant implications for the realistic interpretation of
the phrase ”quantum circuit as wormholes” and calls into question the necessity
to simulate the model on a quantum processor.

2 Teleportation through a traversable wormhole

Adam Brown, Leonard Susskind, and a team of scientists expound in their
paper titled ”Quantum Gravity in the Lab” that they explore a potential avenue
through which quantum gravity can be experimentally examined. Specifically,
they investigate a particular entangled state—one that is feasible to create in
an atomic physics laboratory — and examine the consequences of introducing a
message into the system in a specific manner. One approach to understanding
this phenomenon is employing the Schrödinger equation through brute force.
However, the researchers argue that the phenomenon can be elucidated much
more straightforwardly within the framework of holographic quantum gravity.
They propose an explanation involving a traversable wormhole connecting two
black holes, simplifying the understanding of the observed effects [1].

The two black holes or eternal black hole’s left and right external bulk regions
are linked through a wormhole. They are dual to two identical copies of the
original Conformal Field Theory (CFT) in the thermofield double (TFD) state,
as proposed by Juan Maldacena [12]. The TFD state represents an entangled
pure state between these two copies of the quantum system (CFT):

1
√

Zβ

|TFDβ〉 = e−β(HL+HR) |n〉L ⊗ |n〉R , (1)

where |n〉L and |n〉LR are the energy eigenstates of the right system and the
left system, respectively.2

2System R is introduced to mimic system L and ensure maximal entanglement between
the two systems. We can effectively treat the mixed state as pure by working with the TFD
state instead of the thermal density matrix. A thermal state is described by a density matrix:
ρ = e−βH , where β = 1/kBT is the inverse temperature, with kB being the Boltzmann
constant and T the temperature. This density matrix represents a mixed state. To purify
ρ, we introduce an additional Hilbert space that is isomorphic to the original Hilbert space
of the system. Instead of working with the thermal density matrix ρ, we consider the pure
state |ψ〉 in the enlarged Hilbert space of the |TFD〉. In essence, the thermofield double
formalism enlarges the Hilbert space and introduces an entangled state that encodes the
statistical properties of the thermal state. Let’s consider the reduced density matrix of the
system L, denoted as ρL. To obtain ρL, we trace out (disregard) system R from the TFD
state. In other words, we consider subsystem L in isolation and ignore any correlations and
entanglement with subsystem R. If we compare ρL with the density matrix in e−βHL , where
HL is the Hamiltonian of the system L for subsystem L in a thermal state, we can see that
they have the same form. When we restrict our attention to subsystem L, the |TFD〉 state
appears indistinguishable from a thermal state described by e−βHL . This similarity implies
that the reduced state of subsystem L when the complete system is in |TFD〉 resembles a
mixed, thermal state described by e−βHL .
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The entangled state of the CFT subsystems manifests as a connected ge-
ometry in the bulk, represented by the wormhole.3 This dual possibility made
Gao, Jafferis, and Aron C. Wall realize they could create a teleportation model
through a traversable wormhole [3], [2]. Brown, Susskind, et al. discovered that
a process called unscrambling comes after scrambling in a wormhole.

The discovery of the scrambling and unscrambling process has significantly
enhanced the possibility of realizing a quantum teleportation protocol in the lab
called teleportation-by-size: a qubit (message) is scrambled on the left side of the
wormhole. Since the two sides, right and left of the wormhole, are coupled, the
qubit is unscrambled and pops out on the right side. In the dual gravitational
interpretation, teleportation-by-size leads to the interesting conclusion that a
particle can pass through the holographic wormhole. Two essential things enable
traversability: the two sides of the wormhole must be entangled before sending
the information, and the two sides must be coupled after sending the message
[1].

Brown, Susskind, and their team introduced an Ansatz known as size wind-

ing to describe the transmission of a signal through a semi-classical holographic
wormhole. Initially, they described size winding from a boundary perspective
and then extended its application to the traversable wormholes within the bulk.

Around the scrambling time concerning the SYK model, they inserted a
thermal operator denoted as P into the left boundary (corresponding to the left
side L).4 The growth of the operator’s size serves as a fundamental manifesta-
tion of quantum chaos and the system’s complexity. Notably, the distribution of
operator sizes exhibits a winding pattern in the clockwise direction. A coupling
is applied to examine the influence of coupling between the two subsystems, L
and R. This coupling leads to the unwinding of the complex winding of the
operator size distribution and results in winding the size distribution in the
opposite direction, effectively reversing the winding direction. Consequently,
the thermal operator P from the left side becomes accurately mapped to its
counterpart on the right side. Size-winding behavior in thermal operators near
the scrambling time has been demonstrated for the SYK model, and there is
a conjecture that this phenomenon could also be present in other holographic
systems.

Furthermore, perfect-size winding is necessary for traversable wormhole be-
havior. It specifically occurs in the ground state, where the temperature is at its
lowest possible point (essentially zero temperature through the wormhole). In
this context, the ground state of a pair of coupled SYK models closely resembles
the TFD state. It has been anticipated that systems with a holographic dual
would exhibit this perfect size winding behavior [1], [13].

3This connection suggests that entanglement is not merely an abstract concept but has
a corresponding geometrical interpretation in the bulk spacetime. A wormhole links the
entangled pairs in the CFT. Two copies of the CFT in TFD state, equation (1), would be
dual to the two-sided eternal black hole, and an eternal black hole can be thought of as having
two separate black holes connected by a wormhole.

4The scrambling time refers to the characteristic timescale within the system during which
information becomes highly mixed and spread out throughout the system.
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As a consequence of the teleportation-by-size protocol and the perfect-size

winding Ansatz, a team of researchers led by Jafferis suggested a quantum circuit
that draws inspiration from the quantum circuit proposed by Brown, Susskind,
and their team for the concept of wormhole teleportation. The researchers aimed
to develop a quantum circuit that emulates a holographic wormhole. Specifi-
cally, the quantum circuit is designed to be dual to a semi-classical holographic
traversable wormhole. The following outlines the primary steps of the circuit[1]
and [9]:

Two identical copies of the quantum system - SYK models - are prepared:
a system of N qubits on the left (side L) and a system of N qubits on the right
(side R). The two subsystems are initially entangled in the TFD state.

Register P holds a reference qubit entangled with a qubit q (the message)
on register Q; both are inserted into the wormhole.5

1) The first step involves evolving all the qubits on side L (register L) back-
ward in time by applying the inverse of the time-evolution operator (exp−iHt).6

A qubit q is injected, namely, swapped into the left side L at the time t = −t0.
7

2) Subsequently, we progress by evolving register L forward in time, utiliz-
ing the time-evolution operator (exp−iHt).8 Consequently, q becomes rapidly
scrambled and entangled with the carrier qubits present in subsystem L.

3) Step 3 involves weakly coupling side L to side R at t = 0, employing the
coupling operator expiµV , where the operator V is defined in equation (6).

This coupling occurs suddenly, connecting all the qubits on side L with those
on side R.9

4) Finally, in Step 4, we evolve all the qubits on side R forward in time using
the time-evolution operator (exp−iHt). At a later time t = t1, we measure side
R (register T ). Remarkably, the qubit q reappears on the side R unscrambled,

5Several components are involved in the described quantum circuit: registers P , Q, L,
R, and T , SWAP gates, unitary operators, and interaction across the left and right subsys-
tems with coupling operators. Quantum teleportation within a wormhole aims to replicate
the teleportation process observed in quantum mechanics. Recall that teleportation involves
transferring the state of a qubit from one location to another without physically moving the
qubit itself. In teleportation through a traversable wormhole, specifically utilizing the Google
Sycamore chip, a reference qubit is needed to establish entanglement with the qubit on register
Q. The reference qubit allows the transfer of quantum information from the qubit on register
Q to the corresponding qubit situated on the opposite side of the wormhole. This process
resembles a typical teleportation protocol found in quantum mechanics.

6The notion of ”running time backward” does not refer to physically reversing the flow of
time. Instead, it is a conceptual approach to describe the sequence of events in the teleporta-
tion process through a wormhole. Running time backward in this context means we consider
the qubit injection event to occur at a negative time (−t0) relative to the coupling interaction
at t = 0. This choice of assigning negative values to the time parameter is merely a convention
to consistently describe the sequence of events.

7The SWAP gates achieve qubit injection and arrival readout in the teleportation protocol.
The SWAP gates enable the qubit on register Q to enter the wormhole and the resulting qubit
on register T to be read out at the appropriate times.

8The time evolution operators are implemented using a series of single qubit gates and the
controlled Z gate.

9This interaction, along with the time evolution, is implemented using a Trotter step. The
single Trotter step involves breaking down the exponential evolution operator into smaller
operations, typically achieved through single-qubit and controlled gates [8], [9], [16].
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requiring no decoding. The message is effortlessly refocused on side R.
To measure the entanglement of the qubits, one computes the mutual infor-

mation IPT (t):
10

IPT (t) = SP (t) + ST (t)− SPT (t), (2)

where S is the von Neumann entropy.
Brown, Susskind et al. and Jafferis et al. identified two distinct mechanisms

through which the quantum circuit can accomplish teleportation [1],[7]:
1. Low-temperature teleportation, near the scrambling time. This regime

involves teleportation through the wormhole and is applicable to Hamiltonians
with a holographic dual. There are two transmission mechanisms associated
with low-temperature teleportation, with a strong dependence on the sign of µ
[1]:

a) If µ < 0, the qubit q experiences a time advance and reappears on side
R, representing traversable wormhole teleportation. In this case, a peak in the
signal IPT (t) is reached around t (t being approximately the scrambling time),
indicating quantum teleportation within the time window when the wormhole
is traversable. The LR coupling applied between the two sides of the wormhole
allows for its traversability. If µ < 0, the coupling operator generates a negative
energy shockwave in the bulk, modifying the wormhole’s geometry and enabling
traversability. The traversing qubit experiences a Shapiro time advance upon
encountering the pulse of negative energy shockwave, causing it to emerge on
the wormhole’s other side (R) at t = t1.

b) On the contrary, in the case where µ > 0, the qubit becomes entan-
gled with the qubits on side L, but it remains scrambled, indicating scrambling
teleportation. This scenario involves a reversal of the sign of the coupling inter-
action, resulting in a positive energy shockwave leading to the generation of a
positive energy shockwave that draws the qubit toward the singularity instead
of repelling it. Consequently, the qubit is inevitably drawn to the singularity,
preventing its emergence on the wormhole’s right side (R).

2. High-temperature teleportation, for t > the scrambling time. This mech-
anism, unexpected from gravity, does not involve signals traversing a geometric
wormhole.

Jafferis and his team opted to examine the hypothesis of many-body tele-
portation by simulating the described quantum circuit on the quantum device
called Sycamore developed by Google [7].

In particular, the SYK model is only dual to teleportation through a semi-
classical holographic wormhole in the low-temperature limit, and in this regime,
it exhibits perfect-size winding. However, this relationship holds specifically for
scenarios involving large N Majorana fermions interacting with a large number

10The mutual information IPT measures the correlation shared between the two systems.
The IPT tracks the flow of information between the sender and the receiver during this process.
It quantifies how much information is gained about the qubit’s state as a function of time. A
peak in IPT within a certain time window indicates the occurrence of quantum teleportation.
This peak represents when the left side obtains the maximum information about the qubit’s
state, suggesting that the qubit has successfully teleported through the wormhole.
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(q) of other Majorana fermions, effectively allowing for the teleportation of q
fermions. This presented a considerable challenge as simulating the dense SYK
model on a noisy quantum device was deemed impractical. In response to the
aforementioned findings, the team of scholars led by Jafferis embarked on a
project to simplify the SYK model.

3 Simplification and sparsification

Certain simplifications were made. To study the emergence of gravitational
behavior at small N and a few terms of the Hamiltonian, Jafferis and his team
considered the Hamiltonian dual to a two-dimensional Anti-de Sitter (AdS2)
space. This dual relationship allowed them to relate the properties of the SYK
model to gravitational phenomena in AdS2. The Hamiltonian dual to nearly
AdS2 space was expressed in terms of the left Hamiltonian (HL) and right
Hamiltonian (HR), as well as the Majorana fermions and the coupling constant
Jijkl associated with the interaction between the left and right sectors. The left
Hamiltonian (HL) and right Hamiltonian (HR) refer to the Hamiltonians of the
left and right CFTs, respectively. In the context of the Hamiltonian dual to
nearly AdS2 space:

HL =
∑

1≤i<j<k<l≤N

Jijklψ
i
Lψ

j
Lψ

k
Lψ

l
L, HR =

∑

1≤i<j<k<l≤N

Jijklψ
i
Rψ

j
Rψ

k
Rψ

l
R,

(3)
Jijkl ∼ N(0, σ2),

the coupling constant Jijkl is considered a random variable drawn from a Gaus-
sian distribution [15], [16].11

The large-N SYK model dual to nearly-AdS2 is expected to exhibit perfect-
size winding behavior in the low-temperature limit.

Afterward, Jafferis and his team posed a fundamental question: What is
the most straightforward Hamiltonian that preserves the gravitational physics
observed in the dense SYK model? Their response to this inquiry is presented in
their paper published in Nature: ”Our numerical simulation shows that N = 10
[with 210 terms] is sufficient to produce such traversable wormhole behavior”
[7]. The N = 10 SYK model represents a system composed of 10 interacting
Majorana fermions. Jafferis and his team demonstrated that the N = 10,
q = 4 dense SYK model is sufficient to exhibit the size winding behavior and,
more broadly, the phenomenon of teleportation through a wormhole. Their
findings revealed that the ground state of this model closely resembles a TFD
state, highlighting the system’s potential for emulating wormhole teleportation.
They simulated the N = 10 SYK model on a classical computer and collected

11It is commonly assumed to follow a normal distribution with zero mean and variance of
σ2: Jijkl ∼ N(0, σ2). This assumption of randomness in the coupling constant Jijkl arises
from the chaotic behavior of the underlying quantum system, which is a key feature of the
AdS2/CFT correspondence.
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data that provided insights into perfect-size winding. Once the simulation was
complete, the collected data was analyzed to investigate whether the system
exhibited the desired teleportation through a wormhole-like behavior in the
low-temperature regime.

But simulating this SYK model on a noisy quantum processor is very chal-
lenging due to the complexity of the model and the required number of qubits
and gates.12

The team subsequently used classical machine learning to reproduce the
teleportation behavior of the N = 10 SYK model with only a few Hamilto-
nian terms [see equation (9), section 4].13 The sparsification procedure reduced
the N = 10 SYK Hamiltonian with 210 terms to a large population of candi-
date sparse Hamiltonians thought to preserve the gravitational properties of the
original model (see equations in section 4).

Jafferis and his research team aimed to simplify the N = 10, q = 4 SYK
model by reducing it to a Hamiltonian with the smallest N and the most re-
duced number of terms while preserving the essential characteristics of the orig-
inal model, specifically the gravity-like effects. They utilized machine learning
techniques to acquire a Hamiltonian operator with only a few non-zero terms.14

12Simulating the described N = 10 SYK model on the Sycamore quantum computer is
currently not feasible for the following reasons. The N = 10 SYK model requires 10 Majorana
fermions, typically represented using 20 qubits. Each Majorana fermion corresponds to two
qubits. In a quantum processor, qubits are usually represented using two-level quantum
systems, such as the energy levels of a superconducting circuit. However, in the case of
Majorana fermions, they are represented using two qubits. The two qubits correspond to
the two possible states of the Majorana fermion, which are related to each other in a non-
local manner. These qubits encode the information about the occupation of the Majorana
fermion. The Sycamore processor with 72 qubits cannot accommodate the required qubits.
The SYK model requires a large number of gate operations. However, the Sycamore processor
has a limited number of gate operations before the quantum states become too noisy due to
errors. Moreover, implementing the complex SYK interactions using the native gate set of
the Sycamore processor is not straightforward. As the number of qubits and gates increases,
the circuit depth grows, and the susceptibility to noise and errors also increases. The N = 10
SYK model would require a substantial circuit depth, which is likely beyond the capabilities
of the Sycamore processor. Given these limitations, simulating an N = 10 SYK model on the
Google Sycamore quantum chip is currently not viable. Hence, for simulating the N = 10
SYK model, Jafferis and his research team used classical computational methods.

13A kind of approximation called Trotterization was applied to optimize the procedure.
Many couplings Jj1...j4 in equation (3) were set to zero to obtain the sparse Hamiltonian.
This sparsity was introduced to simplify the model and reduce its computational complexity.

14Using machine learning techniques on a classical computer, the team trained an analog
of a neural network to sparsify the SYK model with N = 10 and 210 terms, backpropagated
over the Hamiltonian coefficients, and applied regularization, interpreting the Hamiltonian
coefficients as neural network weights. Each term in the N = 10 SYK Hamiltonian was
treated as a feature, and the corresponding coefficient was seen as the weight of that feature.
Each data point in the dataset represented a specific configuration of the Hamiltonian terms.
A neural network was constructed that mimics the structure of the SYK model. The network
had an input layer with neurons corresponding to each term in the original Hamiltonian.
These neurons serve as the inputs to the neural network. The training process involved
adjusting the neural network’s weights (Hamiltonian coefficients) to sparsify the model. This
was done using backpropagation, where the errors were propagated from the output layer
back to the input layer, and the weights were updated accordingly. The training objective
was to find a set of weights that reduce the N = 10 SYK model to an N = 7 model with five
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The following N = 7 model, referred to as the learned Hamiltonian, repre-
sents the result consisting of five terms:

HL,R = −0.36ψ1ψ2ψ4ψ5 + 0.19ψ1ψ3ψ4ψ7 (4)

−0.71ψ1ψ3ψ5ψ6 + 0.22ψ2ψ3ψ4ψ6 + 0.49ψ2ψ3ψ5ψ7.

According to the team’s claim, this model successfully captures the fundamental
characteristics of the original N = 10 SYK model while substantially reducing
its overall complexity [8], [9].

But the sparsification process resulted in an N = 7 Hamiltonian with only
commuting terms. Since the reduced N = 7 learned Hamiltonian consists solely
of commuting terms, other scientists suggested that the specific features related
to the gravitational behavior were not accurately captured in the simplified
model [11], as discussed in section 4.

Reproducing the gravitational behavior of a traversable wormhole using the
sparse N = 7 SYK Hamiltonian is challenging. The success of sparsification
depends on various factors, including the details of the machine learning proce-
dure, the quality and quantity of training, and the underlying assumptions and
approximations made during the modeling process. The machine-learning pro-
cedure uses a reduced number of Hamiltonian terms to mimic the teleportation
behavior through a wormhole of the dense N = 10 SYK model. This results
in a Hamiltonian, denoted as HL,R, involving specific operator combinations.
When the teleportation protocol is implemented using this Hamiltonian, which
is holographically dual to gravity, the process is described from the perspective
of a particle traveling through the wormhole.

As demonstrated by equations (3) and (4), the Hamiltonian is doubled to
yield left HL and right HR Hamiltonians, each simulating the SYK model and
each containing seven Majorana fermions on their respective sides. In addition,
the wormhole teleportation protocol incorporates a pair of entangled qubits,
namely, a reference qubit that is entangled with the injected qubit. Conse-
quently, the entire circuit involves a total of nine qubits. The five terms in the
Hamiltonian describe the interactions between these qubits, forming the 9-qubit
circuit for the protocol [7].15

To determine the ground state of the learned Hamiltonian (equation 4),
the researchers employed a hybrid classical-quantum algorithm known as the

terms. To encourage sparsity, weight regularization techniques were applied. These techniques
introduced a penalty term encouraging the model to have fewer non-zero weights. This helped
select the most relevant terms and discard the less significant ones. Terms with low weights
were removed. The Hamiltonian coefficients were interpreted as the neural network weights
once the training process was complete. The non-zero coefficients indicate the terms selected
in the reduced N = 7 model.

15Considering two SYK models, each with N = 7, and the need for two additional qubits
for teleportation, the total number of qubits used on the Google Sycamore chip would be
seven qubits for the left SYK model, seven qubits for the right SYK model, and two qubits
for the teleportation process. Therefore, in this scenario, the total number of qubits used on
the Sycamore chip would be 7 + 7 + 2 = 16 qubits.
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Variational Quantum Eigensolver (VQE). They utilized the VQE algorithm to
the following Hamiltonian:16

HTFD = HL +HR + iµV, (5)

where V is the interaction term:

V =
∑

j

ψ
j
Lψ

j
R, (6)

and µ represents the coupling interaction.
The researchers’ findings reveal that the ground state of HTFD closely ap-

proximates the TFD state.
Equation (5) bears a resemblance to the Hamiltonian corresponding to the

traversable wormhole equivalent, known as the eternal traversable wormhole

Hamiltonian, denoted as Htot:

Htot = HL +HR + iµ′V. (7)

This similarity is a consequence of the ground-state behavior of the coupled
Hamiltonian.

The team of scholars demonstrated that the learned Hamiltonian, repre-
sented by equation 4, displays similar scrambling and thermalization behavior to
the originalN = 10 SYK model. This behavior is characterized by the two-point
and four-point functions, where the two-point function indicates thermalization
time, and the four-point function indicates scrambling time.17

In the left side HL, the transmitted fermions undergo thermalization and
scrambling, as evidenced by the decay of two-point correlators and out-of-time
ordered correlators (OTOC). The averages of these correlators over Majorana
operators were plotted, demonstrating a correspondence between the curves of
the N = 10 SYK model and the learned Hamiltonian [7], [9].

It is worth noting that the large-N SYK model exhibits a significant dif-
ference between the thermalization time and the scrambling time, with the
scrambling time occurring just before the onset of chaotic behavior. However,
the scrambling time is approximately equal to the thermalization time for the
N = 10 SYK model and the learned Hamiltonian represented by equation (4).
This observation is consistent with wormhole-like teleportation properties.

16Initializing the wormhole at t = 0 with |TFD〉 using a VQE algorithm is done on the
Google Sycamore chip by preparing the individual qubits in the state |0〉, and then entangling
them appropriately using a sequence of controlled gates and single-qubit rotations.

17The two-point function is a correlation function that tracks the relationship between
two observables as time progresses in a quantum system. In thermalizing quantum systems,
correlations between observables diminish over time until thermal equilibrium is reached,
and this duration is the thermalization time. The four-point correlation function probes
scrambling behavior in chaotic quantum systems. In such systems, the four-point function
deviates significantly from its initial value and rapidly increases, indicating the spread of
entanglement, and the time at which it reaches a characteristic value is referred to as the
scrambling time.
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Jafferis et al. first investigated the low-temperature limit and verified that
the behavior of the learned Hamiltonian aligns with the original N = 10 SYK
model for both µ = −12 and µ = +12. This correspondence was illustrated
through the similarity in the curves of the two models. Notably, the similarity
was evident in the peak positions of the N = 10 SYK model and the learned
Hamiltonian [see equation 4]. For a fixed injection time of −t0 = −2.8, it
was anticipated that IPT (t) would reach its peak around the scrambling time
t∗ (t0 ≈ t1 ≈ t∗) for µ = −12 (the interaction) due to the negative energy
shockwave making the wormhole traversable. Through a simulation carried out
on the Sycamore quantum processor with gate errors, a peak in IPT (t) was
observed solely for µ = −12, suggesting the occurrence of teleportation.

The outcomes also revealed an asymmetry in IPT (t) when considering op-
posite signs of µ, specifically, a peak for µ = −12 and a trough for µ = +12
(corresponding to teleportation occurring by means of scrambling instead of
through the wormhole, consistent with theoretical expectations). This obser-
vation demonstrated qualitative consistency with the numerical simulation per-
formed on classical computers using the N = 10 SYK model.

Furthermore, the researchers demonstrated that in the high-temperature
regime, non-gravitational teleportation occurred, and there was no size-winding
effect [7].

Multiple noisy simulations were conducted, and a noteworthy trend emerged
regarding the behavior of traversable wormhole teleportation. It was consis-
tently observed that IPT (t) exhibited a peak around the scrambling time across
various noisy runs. On the other hand, when coherent noise was present, it
was more likely to lead to random fluctuations in IPT (t). The above signa-
tures were verified on classical computers, confirming that the quantum system
dynamics were consistent with a quantum gravity interpretation and the holo-
graphic principle [15]. Based on these findings, Jafferis and his team concluded:
Teleportation was more pronounced when the interaction introduced a nega-
tive energy shockwave than a positive one. The distinct asymmetric signature
observed in the results aligns with the physical interpretation that the qubit
underwent teleportation through the wormhole [7].

Graphs were presented that show curves with their coarse-grained SYK
model preserving key properties of the traversable wormhole physics: perfect
size winding, coupling interaction on either side of the wormhole that is consis-
tent with a negative energy shock wave, a Shapiro time delay, causal time-order
of signals emerging from the wormhole, and scrambling and unscrambling [7].18

18In addition to teleporting a single qubit from the left side to the right side, the researchers
conducted another experiment where a qubit was sent from the right side to the left side.
This resulted in what they termed ”time-ordered teleportation,” which they interpreted as
an indication of gravitational teleportation. The process involved swapping a qubit Q into
the left side (L) at time −t0, and simultaneously swapping a qubit R into the right side
(R). At the time t1, the team performed measurements and compared the two processes.
In this experiment, the causal time ordering played a crucial role. Qubits inserted earlier
emerged while qubits inserted later would pop out later, providing evidence supporting the
gravitational interpretation. However, sending one qubit into L and another into R with the
expectation of them meeting in the middle resulted in a slight delay. This phenomenon was

11



4 Examining the controversy: the reliability of

the learned Hamiltonian

A few months after the publication of Jafferis et al.’s Nature paper, a com-
ment was published by three researchers led by Norman Yao. Their comment
raised concerns about the validity of Jafferis et al.’s 5-term commuting learned
Hamiltonian, as described in equation (4). They identified multiple flaws and
challenged its reliability [11]. Kobrin et al. focus on evaluating the reliability
of the sparsification method and the learned Hamiltonian. The central aim of
Yao and his team’s inquiry was to establish whether this equation aligns with
the gravitational dynamics (specifically, a qubit emerging from a traversable
wormhole) of the original SYK model. In other words, they were interested in
determining whether the Hamiltonian could be considered a dependable model
for simulating the teleportation of a qubit through a semi-classical wormhole
[14].

Recall from section 3 that certain simplifications were made to the dense
N = 10 SYK model during the sparsification process to reduce its complexity.
These idealizations were instrumental in obtaining a sparser representation of
the model while preserving its essential gravitational properties. However, spar-
sification comes with a trade-off between model complexity and accuracy. While
a simpler model may be suitable for implementation on the Google Sycamore
quantum processor, it may not fully capture all the intricate details of the orig-
inal dense SYK model. Some physical effects might be overlooked or underesti-
mated in the process. Additionally, the sparsified Hamiltonian has limitations
in its range of validity. Its predictions and behavior may only be reliable within
certain conditions. To address these potential issues, Jafferis et al. carefully
analyzed the reliability and applicability of the sparsified learned Hamiltonian
in their experiment. They demonstrated that the behavior of the mutual infor-
mation IPT (t) between the N = 10 model and the learned Hamiltonian remains
almost the same, indicating that the sparsified model captures relevant informa-
tion despite its simplifications. By thoroughly examining the agreement between
the sparsified learned Hamiltonian and the N = 10 SYK model, they sought to
validate the reliability of their simplified representation within the experimental
setup.

But some critics argued that the measures taken were insufficient to tackle
the issues adequately. Kobrin et al. discovered a gap in equation (4), asserting
that it fails to encompass both the global physics seen in typical SYK models
and the complete characteristics of gravitational physics. In other words, the
equation does not fully represent the broader aspects of ordinary SYK models
nor adequately capture the intricacies associated with gravitational physics.

According to Kobrin et al., the learned Hamiltonian falls short in represent-
ing the dense SYK model in the following aspects [11]:

1. The teleportation signal only resembles the N = 10 SYK model used in

identified as a ”Shapiro time delay,” wherein a qubit injected into R would interact with a
qubit injected into L [7], [16].
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the machine-learning training process for certain Majorana operators. The com-
plexity of the teleportation through the wormhole and the associated dynamics
in the N = 10 SYK model is influenced by the interactions among different
operators and the specific Hamiltonian terms. While effective for the trained
operators, the machine-learning procedure may not fully capture the intricacies
of all operators in the system, leading to limited resemblance to the behavior of
the N = 10 SYK model. During the machine-learning procedure, the training
is conducted on teleportation involving specific fermions, namely ψ1 and ψ2.
Jafferis and his team evaluate the interaction on these two qubits numerically,
involving the time evolution operator expiHt, which yields results demonstrat-
ing asymmetry for opposite signs of µ (where µ = 12 represents scrambling
teleportation and µ = −12 represents wormhole teleportation). This finding
indicates a qualitative agreement of equation (4) with the numerical simulation
of the N = 10 SYK model.

However, Kobrin et al. argue that the observed teleportation signal, char-
acterized by a negative energy shockwave, causal time-ordering of teleported
signals, and a Shapiro time delay, as well as perfect size winding, is specific
to the fermions ψ1 and ψ2, which were involved in the training process. The
agreement between equation (4) and the N = 10 SYK model is observed for this
trained pair of fermions. Yet, these distinctive characteristics are not observed
when the teleportation protocol is attempted with other fermions not included
in the training procedure.

Kobrin et al. specifically identified an issue with the untrained fermions
ψ4 and ψ7. They observed that these fermions display poor size winding at
t0 ≈ 2.8, which is the time of the wormhole teleportation signal or injection
time. In simpler terms, the size winding and teleportation behavior, involving
µ = −12 and at t0 ≈ 2.8, are exclusively observed for the trained Majorana
fermions ψ1 and ψ2, and not for any other fermions that were not part of the
training process.

To generate the Hamiltonian, the machine-learning procedure is specifically
trained on the behavior of two operators, ψ1 and ψ2. Consequently, the Hamilto-
nian is optimized to capture the teleportation dynamics involving these specific
operators. However, its performance might not generalize well to other opera-
tors, such as ψ3 and ψ4, as the Hamiltonian is tailored to the training data of
ψ1 and ψ2. Thus, the behavior of untrained operators might not be accurately
represented in the generated Hamiltonian.

2. Equation (4) comprises solely commuting terms, but a crucial distinc-
tion exists in the structure of time-evolved operators between fully-commuting
models, such as equation (4), and non-commuting models, like the original SYK
model. The original SYK model, with non-commuting Hamiltonian terms, ex-
hibits distinctive properties such as information scrambling, strong entangle-
ment, rapid thermalization, and chaotic behavior. The non-commutative nature
of the Hamiltonian terms plays a crucial role in generating these characteristics.
In this model, interactions between Majorana fermions occur all-to-all, allow-
ing any pair of fermions to interact. On the other hand, if we consider a fully
commuting Hamiltonian, where each term commutes with every other term, the
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system demonstrates more regular and integrable behavior. As acknowledged
in their paper, Jafferis and his research team state that the Hamiltonian in
question with five terms consists of all commuting terms [8].

Kobrin et al. examine two alternatives to equation (4):
1) In Jafferis et al.’s Nature paper, they demonstrate that the machine-

learning procedure used to derive equation (4) actually generates a 6-term
Hamiltonian. Unlike equation (4), this 6-term Hamiltonian does not consist
entirely of commuting terms [7]:

HL,R = −0.35ψ1ψ2ψ3ψ6 + 0.11ψ1ψ2ψ3ψ8 (8)

−0.17ψ1ψ2ψ4ψ7 − 0.67ψ1ψ3ψ5ψ7 + 0.38ψ2ψ3ψ6ψ7 − 0.05ψ2ψ5ψ6ψ7.

Equation (8) represents a weakly perturbed version of a fully commuting Hamil-
tonian.

However, Kobrin et al. identified a flaw in this Hamiltonian. They demon-
strate that the key observations made about equation (4) are also applicable
to equation (8). In other words, the issues and concerns raised in relation to
equation (4) carry over to the perturbed equation (8). Specifically, the telepor-
tation signal does not resemble the N = 10 SYK model for untrained operators.
However, the size winding behavior is similar to that observed in equation (4).
Notably, there is a distinct difference between equation (8) and the N = 10 SYK
model regarding the timescale during which ψ1 and ψ2 were trained. For equa-
tion (8), the teleportation signal displays an initial peak, followed by significant
revivals as time progresses, unlike the N = 10 SYK model.

Jafferis and his team assert that ”the learned Hamiltonian scrambles and
thermalizes similarly to the original SYK model as characterized by the four-
and two-point correlators” [7]. However, Kobrin et al. present a different per-
spective. Both the SYK model and equation (4) display decay in their two-point
functions. In the case of the SYK model, this decay aligns with the expected
quantum thermalization. However, for equation (4), the individual two-point
correlators exhibit strong revivals as time progresses. According to Kobrin et
al., this behavior suggests that the training procedure was unsuccessful and un-
reliable. They also emphasize that such discrepancies were not demonstrated or
discussed in the Nature paper. Consequently, they concluded that the apparent
agreement between equation (4) and the SYK model is, in reality, an artifact
resulting from averaging over the two-point and four-point correlation functions
[11].

2) In their Nature paper, Jafferis et al. employ an alternative machine-
learning approach to create another Hamiltonian featuring N = 10 and 8 terms.
The specific objective of this Hamiltonian is to maximize the distinction in the
teleportation signal between −µ (associated with wormhole teleportation) and
+µ (related to scrambling teleportation) [7].

HL,R = 0.60ψ1ψ3ψ4ψ5 + 0.72ψ1ψ3ψ5ψ6 (9)

14



+0.49ψ1ψ5ψ6ψ9 + 0.49ψ1ψ5ψ7ψ8

+0.64ψ2ψ4ψ8ψ10 − 0.75ψ2ψ5ψ7ψ8 + 0.58ψ2ψ5ψ7ψ10 − 0.53ψ2ψ7ψ8ψ10.

Jafferis and his team explain that as the number of terms increases in equa-
tion (9), the number of gates needed for Trotterization also rises linearly. This
implies that the gate count required to implement the Hamiltonian must at
least double. Unfortunately, the fidelity of circuits exponentially decreases with
the number of gates and qubits, and the experimentally measured fidelity was
already below half of the noiseless fidelity. Consequently, Jafferis and his team
conclude that equation (9) ”cannot provide a stronger teleportation signal when
experimentally measured” and does not exhibit perfect size winding but rather
a slightly damped one [7].

However, despite the technical explanation being essentially correct, there
are dissenting opinions, as Kobrin et al. provide an alternative interpretation,
leading to different perspectives on the matter. Kobrin et al. identify a concern
with small-size fully-commuting Hamiltonians consisting of only a few terms,
including equation (9). Despite being non-commuting, they comment that this
particular Hamiltonian shows clearer indications of thermalization over a longer
time scale, approximately t ≈ 30. Unlike the expected perfect-size winding,
the teleportation signal for this Hamiltonian displays a single peak structure
for nearly all operators. The phenomenon of perfect-size winding is generally
observed in fully commuting Hamiltonians with only a few terms. However, it
does not persist in larger fully-commuting or non-commuting systems. Kobrin
et al. demonstrate that introducing random numerical coefficients in front of
the terms in equation (4), or considering random commuting terms, also yields
a perfect-size winding. Thus, Kobrin et al. conclude that perfect-size winding
in small-size fully-commuting Hamiltonians with only a few terms is likely a
side effect of the sparsification method and does not imply that equation (4) is
holographically dual to gravity [11].

Kobrin et al. conclude that the reported perfect-size winding in the Nature

paper is contingent on the small size of the system and equation (4). Therefore,
unlike the N = 10 SYK model, equation (4) does not undergo thermalization,
and any agreement in thermalization behavior between the two is merely an
artifact [11]. In other words, the observed similarity in thermalization is not a
genuine characteristic of equation (4), but rather a consequence of the specific
conditions in which it was examined.

Kobrin et al. are raising concerns that the machine-learning procedure used
by the authors may not have been entirely reliable and unbiased. In essence,
they question the validity and robustness of the machine-learning procedure,
implying that the obtained results might not be entirely trustworthy. In other
words, the assumption of perfect-size winding in the learned Hamiltonian (for
N = 7) may not be accurate due to the influence of bias introduced during
the machine-learning process. They argue that introducing bias among the
trained operators could have influenced the results, potentially leading to in-
accuracies or misleading conclusions [11]. The presence of this bias may have
affected the results, casting uncertainty on the validity of the observed perfect-
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size winding in relation to teleportation through the wormhole. Their main
point is that the observed perfect-size winding in [7] is contingent on the small
size of the system, which is the fundamental aspect they emphasize. Moreover,
these fully-commuting models contradict other essential features of holography,
thermalization, complexity, and chaos. This raises doubts about whether the
observed perfect-size winding is genuinely connected to the gravitational picture
in a significant way.

The criticism focuses on the reliability and appropriateness of the fully-
commuting Hamiltonians in reproducing a dual gravitational behavior. The
gravitational picture itself is not being questioned or challenged; rather, the
scrutiny is directed toward whether these Hamiltonians can effectively model
the well-established features of holography that are assumed to be true. In
essence, the criticism is centered on the capability of the learned Hamiltonian
equation (4) to accurately capture the expected holographic properties, given
the specific nature of the fully-commuting Hamiltonians under consideration.

One month later, Jafferis and his team published a comment in response to
the concerns raised by Kobrin et al. In their response, they presented a com-
pelling solution to defend their learned Hamiltonian, equation (4), as expected.
Jafferis et al. found an elegant way to counter the main arguments put forth by
Kobrin et al. To properly examine Jafferis et al.’s response, we must analyze
its specific points and arguments. It may shed light on how they addressed the
criticisms raised by Kobrin et al. and how they defended their learned Hamil-
tonian, equation (4). A thorough examination of their response could provide
a clearer understanding of their perspective and whether they could effectively
address the concerns raised by Kobrin et al.

The comment argued that the single-sided Hamiltonian HL in equation (4)
consists of commuting terms and does not thermalize later after teleportation
due to the recurrence of these commuting terms. Jafferis et al. found a way, in
the context of the eternal traversable wormhole Hamiltonian Htot to rebut this
claim: evolving under Htot [equation (7)] from the Nature paper, shows that
equation (7) exhibits operator growth and thermalizes at high temperatures af-
ter teleportation. A single Trotter step of time evolution under the Hamiltonian
Htot can be understood as being equivalent to the teleportation quantum circuit
described in the Nature paper [8].

Jafferis et al. further found another counterclaim stating the following:
In the context of the gravitational interpretation of thermalization rates, each
fermion corresponds to a distinct mass. When a fermion is inserted onto the
TFD and then time-evolved under a single-sided Hamiltonian HL, it leads to
operator growth, where lighter fermions experience slower growth. This phe-
nomenon is attributed to the fact that the wave packet of a lighter fermion is
more spread out, causing its two-point function to decay at a slower rate. Jaf-
feris et al., in their work [8], reach the conclusion that the two-point function
described by equation (7) decays for all fermions, signifying thermalization. As
a result, they note that the fermions exhibiting the slowest operator growth
in HL are precisely the same fermions that thermalize the slowest in Htot, as
indicated by equation (7). In equation (7), Jafferis et al. observed that all
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fermions exhibit significant size winding within the time range 2 & t . 5. On
the other hand, Kobrin et al.’s comment only focused on analyzing size winding
at a specific time point, approximately t0 ≈ 2.8, and claimed it to be an arti-
fact. Jafferis et al. examined a counterfactual scenario to gain deeper insights,
revealing meaningful gravitational behavior. They demonstrated that even at
later times, specifically in the range 5 & t . 10, the wormhole teleportation
phenomena persist despite the introduction of a strong non-commuting per-
turbation represented by equation (10). Although the late-time dynamics are
now governed by a noncommuting Hamiltonian, the system’s behavior during
teleportation at t0 ≈ 2.8 remains unchanged and consistent with the expected
gravitational signature [8].

Kobrin et al. assert that equation (4) displays a bias, resulting in favorable
size winding behavior only for the two fermions implemented in their exper-
iment [11]. Furthermore, they stress that particular emphasis is placed on a
specific pair of input operators, namely, ψ1 and ψ2. In other words, Jafferis
et. all discovered a representation within the sparse N = 7 Hamiltonian that
replicated the gravitational behavior demonstrated by the N = 10 model when
these specific operators were considered. The N = 7 Hamiltonian mimics the
dynamics and properties observed in the N = 10 model, specifically concern-
ing the behavior of these selected operators, ψ1 and ψ2. However, Jafferis and
his team challenge this claim and present a compelling physical justification for
their findings. They observe that fermions exhibiting slower thermalization in
the eternal traversable wormhole Hamiltonian [equation (7)] demonstrate sig-
nificant size winding at later times. This behavior is attributed to the varying
masses of the fermions: lighter fermions undergo slower thermalization and con-
sequently take longer to traverse the wormhole. Specifically, fermions ψ4 and
ψ7 are the slowest to thermalize, leading to their achievement of size winding
at slightly later times.

The argument put forth by Jafferis and his team may initially seem peculiar,
as it relies on physical reasoning. In contrast, the criticism raised by Kobrin et
al. concerning the two operators, specifically fermions ψ3 and ψ4, is grounded
in considerations derived from machine learning and sparsification techniques.
Jafferis and his team’s explanation is rooted in the physical behavior of the
system, where they observe that fermions with slower thermalization achieve
size winding at later times, corresponding to different masses across fermions.
This reasoning delves into the fundamental physics underlying the phenomena.
On the other hand, Kobrin et al.’s criticism revolves around machine learning
and sparsification aspects. They point out that the machine-learning proce-
dure, focused on specific operators such as ψ1 and ψ2, might not effectively
generalize to untrained operators like ψ3 and ψ4. This limitation could affect
the accuracy of the generated Hamiltonian in capturing the behavior of these
untrained fermions during teleportation. Therefore, these two arguments stem
from different perspectives, with Jafferis and his team’s approach drawing on
physics-based reasoning. In contrast, Kobrin et al.’s critique centers around the
machine learning and sparsification aspects of the problem.

Jafferis and his team further point out that the fermions identified in Kobrin
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et al.’s comment as having poor size winding at t0 ≈ 2.8 also experience slower
thermalization and operator growth. However, their size winding occurs later at
around t0 ≈ 4 instead of the previously assumed time of t0 ≈ 2.8 as mentioned
in the comment. Jafferis and his team interpret this delay as being consistent
with the notion that these fermions take longer to traverse the wormhole. In
conclusion, Jafferis and his team establish that, eventually, all fermions achieve
size winding, regardless of initial differences, indicating a consistent pattern of
behavior in the system [8].

As a reminder, Kobrin et al. discovered an issue with small-size fully-
commuting Hamiltonians that consist of only a few terms. They argued that
the perfect-size winding observed in those systems is likely a side effect and does
not indicate a holographic duality to gravity [11]. Jafferis et al.’s next rebuttal
against Kobrin et al.’s arguments concerns the assertion that the commuting
structure of equation (4) is not directly linked to the size winding properties
and dynamics. Jafferis and his team introduced a significant non-commuting
term, denoted as H1, to the original equation (4), which they refer to as H0.
Therefore, the perturbed Hamiltonian can be expressed as follows:

H0 +H1 = H0 + 0.3ψ1ψ2ψ3ψ5. (10)

Jafferis and his team straightforwardly addressed Kobrin et al.’s issue by
proposing that equation (10) exhibits sufficient size winding, leading to an
asymmetric teleportation signal. According to Jafferis et al., introducing the
non-commuting term, H1, generates a behavior that resembles that of the SYK
model. Despite thermalizing later, the perturbed Hamiltonian exhibits compa-
rable size winding and teleportation behavior with a parameter value of µ = −12
and occurs approximately at t0 ≈ 2.8. Jafferis et al. found that the non-
commuting perturbation H1 has little impact on the physics during teleporta-
tion, indicating that the commuting structure is not essential for the presence of
gravitational physics. Furthermore, similar to the N = 10 SYK model, the two
fermions, ψ1 and ψ2, traversing the wormhole do not display significant revivals
over time after the initial peak. This observation supports their argument and
suggests that the behavior exhibited by equation (10) aligns with the expected
gravitational physics [8].

Jafferis et al. believed that they had effectively addressed the concern raised
by Kobrin et al. They thought they had successfully resolved the issue.

As previously mentioned, Kobrin et al. suggested that size winding might
result from the sparsification process rather than an inherent characteristic of
the Hamiltonians. Moreover, the perfect-size winding is commonly observed in
fully commuting Hamiltonians at smaller system sizes [11].

In response to this criticism, a recent paper by Gao proposed that a large-
N commuting SYK model, with q = 4, demonstrates ”pseudo-holographic”
features, including size winding at high temperatures and a teleportation mech-
anism that exhibits several similarities to the semiclassical traversable wormhole
teleportation but operates in distinct parameter regimes. The paper also argued
that a commuting SYK model with N = 8, q = 4, and six terms also displays
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size winding, namely, that the small N Hamiltonian is nearly identical to the
large N case. Gao writes that upon closer examination of his model and the
learned Hamiltonian, it becomes apparent that the underlying mechanism is
not solely attributed to size winding. Remember that Kobrin et al. proposed a
Hamiltonian specifically optimized for achieving the best teleportation fidelity
for a particular operator ψ1. However, for other operators ψi, the quality of
size-winding diminishes. In contrast, Gao comments that his N = 8 model per-
forms equally well for all operators ψi, exhibiting a consistent and average level
of teleportation efficiency. Furthermore, he claims that the thermalization of
his Hamiltonian is nearly complete [4].

As mentioned in Sections 3 and 4, high-temperature teleportation occurs for
values of t greater than the scrambling time, this mechanism, unexpected from
gravity, does not involve signals traversing a geometric wormhole. Finally, Jaf-
feris et al. demonstrated that in the high-temperature regime, non-gravitational
teleportation occurred, but there was no size-winding effect [7]. In fact, Gao
points out that upon closer examination of his model, the size winding in the
large N limit differs significantly from the size winding in an ordinary SYK
model [4]. As such, it remains unclear how Kobrin et al.’s criticism is refuted
in light of this current state of affairs.

There appears to be a complication. Gao notes that the size winding ob-
served in the large N model differs significantly from that in a typical SYK
model. The operator size distribution in his model is narrowly peaked, indicat-
ing that it does not undergo rapid scrambling like a holographic model would [4].
Rapid scrambling is associated with chaotic behavior. Now, when Gao mentions
that the operator size distribution in his model is ”narrowly peaked” and ”does
not scramble as fast as a holographic model,” he is suggesting that the informa-
tion in his model does not spread and get entangled as quickly as it would in
a holographic model, such as one with properties analogous to a semi-classical
holographic wormhole. Instead, the information remains more localized. In
other words, Gao’s model possesses ”pseudo-holographic” (or non-holographic)
features and has different properties than the holographic models.

I, therefore, remain skeptical about the large-N and the N = 8 commuting
Hamiltonians. Given that the large N model does not display significant scram-
bling and chaotic behavior, an N = 8 model derived from it would likely also
share similar characteristics. Reducing the number of degrees of freedom from
a large N model to N = 8 simplifies the system and makes it more tractable.
But it seems to me that this reduction also leads to a loss of some complex
behaviors observed in the original large N model, including rapid scrambling
and chaotic dynamics. In this case, the N = 8 model is not expected to show
rapid scrambling and chaotic dynamics.

Kobrin et al.’s criticism is based on the notion that it is unlikely for a
commuting Hamiltonian at larger system sizes to exhibit perfect-size winding,
similar to what is expected from a semi-classical traversable wormhole arising
from a non-commuting Hamiltonian at low temperatures. The key point here
is that the semi-classical traversable wormhole, associated with large-N non-
commuting Hamiltonians in the context of holography, involves fast scrambling
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and non-trivial quantum dynamics, which are typically absent in commuting
systems known for their lack of complexity and chaotic fast scrambling. In gen-
eral, a commuting Hamiltonian cannot exhibit chaotic behavior, at least not in
the same way as non-commuting Hamiltonians do, because the system’s time
evolution is integrable.

5 Assessing reliability in noisy quantum systems

Jafferis and his team’s quantum circuit was run on the Google Sycamore proces-
sor, which is susceptible to noise. Indeed, Jafferis et al. conducted a simulation
involving inherent noise on the Sycamore quantum processor.

As said in section 3, Jafferis et al. simplified the N = 10 SYK model using
machine learning techniques while retaining its crucial gravitational properties.
They implemented the sparse model through a quantum circuit that employed
164 controlled Z gates 19 and 295 single-qubit gates.20 While a more complex
model than the learned Hamiltonian could have offered enhanced accuracy, it
would also entail a higher number of gates and, consequently, a higher error
rate. To enhance the accuracy of the simulation, Jafferis et al. conducted
XEB calibration (Xmon’s Error Model and Benchmarking). They addressed
readout errors21, specifically focusing on the 9 qubits region of the Sycamore
quantum processor. The Sycamore chip comprises 72 qubits; however, not all
qubits exhibit the same levels of noise and errors. Hence, Jafferis et al. carefully
selected the 9 least noisy qubits on the chip for their experimentation. They
then applied the calibration tools to these 9 qubits.

Despite the inherent errors and noise present in the Sycamore chip, Jaf-
feris et al. successfully achieved a teleportation signal on the 9 noisy qubits,
as reported in their Nature paper. In their paper, Jafferis et al. reported that
their approach, which involved using machine learning to simplify the quantum
model while preserving crucial gravitational properties and combining it with
calibration techniques, enabled the successful execution of quantum teleporta-
tion. According to Jafferis et al., their method proved effective even on qubits
characterized by significant noise levels.

However, skeptics could challenge the experiment by proposing that coher-
ent errors cause the observed teleportation signal. As said above, the Sycamore
processor is prone to errors and can introduce noise and uncertainty into the
experimental results, making it difficult to discern the true quantum teleporta-
tion signal. In their Nature paper, Jafferis and his team rebut this claim. They
have reported their findings, stating that ”device noise is primarily influenced
by an incoherent channel, making it improbable for coherent errors to imitate
the traversable wormhole signal.” On the other hand, they noted that ”coherent
errors are largely overshadowed by the genuine teleportation signal” [7]. Jafferis

19A two-qubit gate introduces entanglement between the qubits, i.e., operates on two qubits
simultaneously.

20A gate that allows for individual qubit operations.
21Inaccuracies in measuring the quantum state of qubits.
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et al. contend that despite the presence of coherent errors, the observable effects
of the genuine quantum teleportation signal are more prominent. In light of this
situation, they assert that they have effectively discerned and differentiated the
true teleportation signal from the surrounding background noise.

If Kobrin et al. deemed the learned Hamiltonian problematic, it could pose
challenges in differentiating between coherent noise and the genuine quantum
teleportation signal. In such a scenario, accurately identifying the true signal
from the background noise becomes more complex, and the observable effects be-
come less pronounced and more ambiguous. The ability to distinguish between
the two may be compromised due to the issues with the learned Hamiltonian,
leading to uncertainties and potential limitations in Jafferis et al.’s findings on
quantum teleportation through a holographic wormhole.

Moreover, during the training process of the Hamiltonian, the system’s be-
havior was approximated using simplified models that cannot fully capture all
the complexities of the actual Sycamore processor. Even if the training process
relies on noisy simulations rather than idealized models of the Sycamore proces-
sor, discrepancies and errors inevitably arise. The problem is that the learned
Hamiltonian probably performs well in simulations but fails to capture the true
behavior of the Sycamore process due to the noise inherent in the processor not
being accounted for during training. Consequently, the trained model might
not be as accurate when deployed on the Sycamore because of gate parameter
fluctuations and environmental noise. As a result, it could produce inaccurate
or inconsistent results on the Sycamore processor.

Thus, due to the presence of noise, we cannot have complete confidence in
the reliability of the processor. Quantum gates are susceptible to errors stem-
ming from imperfect control over quantum systems and imprecise calibration.
Additionally, quantum measurements can introduce noise and disturb the quan-
tum state, affecting subsequent computations. Achieving high confidence in the
Sycamore processor poses significant challenges. Noise introduces uncertainties
that limit the reliability of the Sycamore processor [10].

Considering these challenges and the wormhole experiment using only 9
qubits without aiming to demonstrate quantum supremacy, opting for a classi-
cal simulation could have been preferable. We can observe why using a classical
simulation is preferable by applying Ian Hacking’s ideas to the wormhole exper-
iment.

According to Hacking, the term ”model” can sometimes refer to a material
model constructed in a laboratory, essentially a simulation of an experiment.
For instance, scientists might find it helpful to build a desktop model to gain
clearer insights into a particular phenomenon [6].

In the case of the experiment performed by Jafferis et al., they utilized
the Sycamore, a superconducting quantum processor consisting of transmons
(Josephson junctions). By running the experiment on the 9 qubits, Jafferis et
al. studied how the qubit is transferred from the left side to the right side, thus
deepening their understanding of the teleportation-through-a-wormhole phe-
nomenon. Implementing the simulation of teleportation between the left and
right sides involves precise control and manipulation of the 9 qubits (or trans-
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mons). It requires carefully designed quantum gates and methods to prepare,
entangle, and measure the qubits appropriately.

According to Hacking, using the material model allows scientists to obtain
accurate inputs and outputs, leading to a better understanding of the phe-
nomenon and potentially generating ideas for enhancing experiments. However,
Hacking emphasizes that such a model is not an exact representation of reality;
it is not a literal depiction of how things truly exist [6].

In other words, the experiment by Jafferis et al. involves running a quantum
teleportation simulation using 9 qubits in a superconducting quantum proces-
sor. But it’s essential to understand that such a model does not accurately
represent reality; namely, Jafferis et al.’s simulation does not literally represent
an actual teleportation through a traversable wormhole event. The quantum
teleportation process, as simulated in the laboratory, does not mean that phys-
ical particles are instantaneously moving between the left and right sides of the
processor. A (superconducting) qubit is not a particle. It typically comprises
several physical devices and components working together to represent and ma-
nipulate quantum information (the Josephson junction22, microwave pulses to
manipulate the qubit’s quantum state, etc.). In other words, the model serves
as a tool for investigation and exploration, but it should not be confused with
a genuine manifestation of a traversable wormhole.
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