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How etiology does, and how it should, shape modeling choices in neuroscience 

Lotem Elber-Dorozko 

Abstract: It is common today in machine-learning research for scientists to design 

and train models to perform cognitive capacities, such as object classification, 

reinforcement learning, navigation, language processing and more. Neuroscientists 

compare the processes of these models with neuronal activity, with the purpose of 

learning about computations in the brain. These machine-learning models are 

constrained only by the task they must perform. Therefore, it is an interesting, 

somewhat surprising, scientific finding that the workings of these models correlate 

with neuronal activity, as several prominent papers reported. Such correlations are 

usually explained by suggesting that the model and the brain have learned or adapted 

to perform similar tasks. This general approach has much promise. However, I argue 

that to the extent that its aim is to explain how cognitive capacities are performed in 

the brain, it must be much more careful in making etiological claims. For not every 

function performed by brains is usefully treated as a function that is the result of a 

distinct optimizing process. Being too permissive about such functions, and referring 

to adaptation too quickly, may lead to the acceptance of models that are very poor 

descriptions of cognitive capacities. 
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1. Introduction 

As the capabilities of machine-learning algorithms grow, it is becoming increasingly 

common in the cognitive sciences to utilize the following methodology: identify some 

cognitive capacity,1 use machine learning research to build and train algorithms to 

achieve this capacity, and compare the workings of these algorithms with neuronal 

activity. When neuronal activity is found to correlate with processes in the machine-

learning algorithm, this finding is worthwhile for two reasons - First, we gain a new 

way to predict neuronal activity, often with better accuracy than previous models. 

Second, the finding of correlation suggests that computation in the brain is similar in 

some ways to the machine-learning algorithm. Such work was done for object 

recognition (Cao and Yamins 2022a; Yamins et al. 2014; Yamins and DiCarlo 2016; 

Zhuang et al. 2021), reinforcement-learning (Cross et al. 2021), language processing  

(Goldstein et al. 2022; Kell et al. 2018; Schrimpf et al. 2021), navigation2 (Banino et 

al. 2018; Cueva and Wei 2018), orientation during self-motion (Mineault et al. 2021) 

and more.  

Borrowing from (Yamins et al. 2014), I will henceforth call this methodology 

‘performance-based methodology’, because it aims to create models that can perform 

capacities that people perform. This methodology is not unlike Marr’s (1982) 

framework for levels of analysis: it begins by describing the performed computation, 

then it identifies an algorithm that can perform this computation, and finally it 

searches for the algorithm’s neuronal correlates. This approach emphasizes the 
 

1 In lieu of a better term, I use the term ‘capacity’ in this paper to indicate some behavior a system 
can perform. Under this meaning one can say that people have the capacity to bite their nails or 
fidget. Some may interpret the word to indicate some relation to fitness, this is not how I use it here. 
In fact, the relation between investigated capacities and fitness is one of the questions I discuss 
throughout the paper. 

2 Navigation is a slightly different case because neuronal activity is already characterized as 
representing location in a grid like manner, and therefore neuronal activity is well explained with a 
simple concept. Scientific works show how these representations arise as part of learning navigation-
related tasks. 
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usefulness of environmental and functional constraints in modeling neuronal activity 

– instead of focusing on biological processes in the brain, this approach investigates 

the tasks an organism faces and suggests ways in which they can be addressed. At 

least in the step of constructing the algorithm for the cognitive capacity, this approach 

also minimizes the importance of physical, developmental, or evolutionary constraints 

– the only constraint on the algorithm is that it achieves high performance on the 

relevant tasks. For this reason, it is often a pleasant surprise for scientists when they 

discover similarities between the model and neuronal activity.  

How can such similarities between brain processes and artificial algorithms be 

explained? Researchers point to shared features in the ways the two capacities come 

about. One line of argument is that the performed task strongly constrains the 

algorithms that underly it, so that all systems that can perform a task are very similar. 

As Kell et al. (2018, 630) write: “The underlying hypothesis was that everyday 

recognition tasks may impose strong constraints on the auditory system, such that a 

model optimized to perform such tasks might converge to brain-like representational 

transformations”. Yamins and DiCarlo (2016, 360) write: “within the class of HCNNs 

[hierarchical convolutional neural networks], there appear to be comparatively few 

qualitatively distinct, efficiently learnable solutions to high-variation object 

categorization tasks, and perhaps the brain is forced over evolutionary and 

developmental timescales to pick such a solution”.  

Others, point to similarities between adaptation and learning in people, and 

architecture choice and training in artificial models. Hasson et al. (2020, 425): 

“Similar to natural selection, the family of models to which both ANNs [artificial 

neural networks] and BNNs [biological neural networks] belong optimizes parameters 

according to objective functions to blindly fit the task-relevant structure of the world, 
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without explicitly aiming to learn its underlying generative structure”. Cao and 

Yamins (2022b) write: “Structurally, the kinds of search through possibility space that 

the modeler undertakes are analogous to the kinds of search that result in competent 

adult brains shaped by evolutionary and learning and development … perhaps we 

should not be so surprised that our two known solutions to one of those problems (that 

of visual object classification) were arrived at by structurally similar routes.” 

Here, I argue that such a view of the etiological processes leading to cognitive 

capacities overly emphasizes the similarity between the etiologies of brain and 

artificial processes, while ignoring crucial differences. Often, this appeal to etiological 

similarity add to the support of the models as good models of the cognitive capacities, 

when the differences in etiology should rule out the suggested models as reflecting 

brain processes.  

As has been pointed out before (Novick 2023), generally, biological properties are the 

result of the interaction of several different elements. These include selection of 

certain properties to improve fitness, but also structural, developmental and physical 

constraints biasing and limiting the range of possible properties. Not every cognitive 

capacity is well-described as the result of an optimizing process, such as adaptation or 

learning (Gould and Lewontin 1979). Some capacities may be better described as 

side-effects of the selection and learning of other functions, and other capacities are 

too specific or too broad to be described as the result of a distinct optimizing process. 

Using the described ‘performance-based methodology’ to model behaviors that are 

not the result of a distinct optimization processes will overlook important constraints 

on the way these behaviors are performed, and therefore is unlikely to result in 

processes that are similar to brain processes.  
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This point does not mean to overemphasize history. It is not the case that two systems 

differ because they have different histories, as it is certainly possible for a capacity to 

be performed in the same way in two systems with different histories. Instead, the 

point here is that, given that scientists are in the middle of a process of identifying 

how cognitive capacities are performed, just like neuronal and behavioral data, 

etiological considerations also serve as crucial points of evidence to whether the 

model can explain how a capacity is performed. 

Finally, papers employing ‘performance-based methodologies’ report findings of 

similarities, be it correlations or causal relations, between artificial and brain 

processes. This is often taken as strong evidence that artificial neural networks are 

good models for computation in the brain. However, this paper argues that while 

identification of correlates or mapping of causal relations between a model and the 

brain can help us learn about computation in the brain, it is not, in and of itself, 

decisive evidence for a specific brain computation. Computational models can yield 

significant correlations when compared with systems that are designed to perform an 

essentially different computation from the model, as several scientific publications 

have shown (Elber-Dorozko and Loewenstein 2018; Jonas and Kording 2017; Marom 

et al. 2009). Generally, we should expect many various computations to correlate with 

neuronal activity, and therefore considerations of evolutionary and developmental 

processes cannot be eliminated, even with much empirical data about neuronal 

activity. Therefore, putting too much weight on correlational data while being lax 

with etiological considerations, may lead to erroneous attribution of computation to 

the brain. 

The next section describes one example of the methodology this paper addresses – 

modeling object classification. Section three will describe the argument for the 
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importance of considering other etiological features affecting cognitive capacities in 

addition to an optimizing process. It will make this argument by demonstrating three 

ways in which failure to do so can lead us astray. Then, section three will discuss the 

difficulties this argument raises for current scientific practice and will suggest a way 

forward. Finally, section four will address some objections to the argument of the 

paper, most notably the objection that the neuronal data demonstrates that we 

identified the right computations. 

 

2. An example for performance-based modeling – object classification 

The case of object classification is one well-known example for the use of 

performance-based models to explain neuronal activity. In their famous paper, 

Yamins et al. (2014) create a model that can perform an object classification task at 

near human performance; the model can classify objects from images in various 

perspectives into one of eight categories: animals, boats, cars, faces, etc.  

The architecture of the model is inspired by the structure of the visual ‘ventral stream’ 

in the brain (the areas associated with object recognition) in that it includes several 

feedforward ‘layers’ where the connectivity between layers is determined according 

to the ‘Linear-Non Linear’ (LN) view of neuronal processing, so that the function 

performed by the neurons is some linear operation on neuronal activity in the previous 

layer (the ‘input neurons’), followed by a non-linear operation. However, the model 

does not aim to copy neuronal processing, only to use it as an inspiration to 

successfully perform the task.  

To achieve high performance on the object classification task the model is ‘trained’: 

the model performs a task that is similar to the test task in principle but with different 

image input and different semantic categories for classification. Then, after each 
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input, the weights of the connections between ‘neurons’ in the model are slightly 

changed to decrease the error on that input. Through cumulative change in the 

weights, the model ‘learns’ to perform the task well. Finally, Yamins et al. (2014) 

chose a model architecture that had the best performance from variety of 

architectures. They found that the chosen model was able to perform object 

classification at a human level on the test task, which was new to the model. 

Crucially, the model was only trained to perform the training task as best as possible, 

and information about neuronal activity was not used during training. 

After training the model, Yamins et al. (2014) recorded neuronal activity in visual 

areas of monkeys and discovered that the activity of simulated neurons in the highest 

layer in their performance-optimized model was able to predict activity in the inferior 

temporal cortex (IT). IT is a ‘high’ area in the ventral stream, which receives inputs 

after several stages of neuronal processing, and can support object categorization for a 

variety of object positions over a wide range of tasks. By linearly regressing the 

activity of IT neurons on the activity of simulated ‘neurons’ in the highest layer of 

their model, they were able to predict 48.5 ±1.3% of the variance in activity in 

individual neurons in IT across the presentation of 1600 different photos. This is a 

two-fold improvement in prediction over the other, non-performance-optimized, 

models they tested. Moreover, Yamins et al. (2014) discovered that intermediate 

layers in their model were able to predict 51.7± 2.3% of the variance of neuronal 

activity in the intermediate brain area V4, while the first and last layer in the model 

predicted a much smaller fraction of the variance. Thus, they found strong correlates 

between neuronal activity and simulated activity in their model, which fitted with the 

processing stages in the model and in the brain. 
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Yamins et al. conclude, in a paragraph which emphasized the role of etiological 

considerations in building models for neuronal computation: “[the paper presents] a 

top-down perspective characterizing IT as the product of an 

evolutionary/developmental process that selected for high performance on recognition 

on tasks like those used in our optimization... This type of explanation is qualitatively 

different from more traditional approaches that seek explicit descriptions of neural 

responses in terms of particular geometrical primitives”.  

In a follow-up paper, they demonstrate how they view machine learning algorithms as 

models for neuronal processing in the ventral pathway (Fig. 1). They write: “HCNNs 

are good candidates for models of the ventral visual pathway. By definition, they are 

image computable, meaning that they generate responses for arbitrary input images; 

they are also mappable, meaning that they can be naturally identified in a component-

wise fashion with observable structures in the ventral pathway; and, when their 

parameters are chosen correctly, they are predictive...” (Yamins and DiCarlo 2016). 

 

Fig. 1, from (Yamins and DiCarlo 2016), a performance-based model for object 

classification (c) as a model of computation in the brain (b). Each layer in the model 

is mapped to an area in the brain, with corresponding processing stages. 
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These last two quotes demonstrate two different ways in which the results of the 

performance-based methodology can be used. First, machine learning algorithms as 

means to predict neuronal activity is a useful shift from the ‘explicit descriptions … in 

terms of particular geometrical primitives’ that Yamins et al. (2014) talk about, 

because it allows scientists to describe neuronal activity even when it does not 

resemble a known concept. A second, stronger, claim scientists can make based on 

results of these correlations go beyond description of neuronal activity to argue that 

these results are evidence that the performance-based model can answer the question 

of how the brain performs the relevant cognitive capacity. As (Yamins and DiCarlo 

2016) write: “HCNNs are good candidates for models of the ventral visual pathway”. 

This paper targets the second, stronger, claim about computation in the brain, which is 

often explicitly stated, or otherwise may be tacitly implied. 

Performance-based methods have been used to predict neuronal activity for a variety 

of capacities, including reinforcement-learning (Cross et al. 2021)  - where brain 

activity of participants playing video games was found to correlate with activity in 

deep layers of a model that was trained to play the same games from inputs of images 

to outputs of actions; and language processing (Goldstein et al. 2022) – where 

neuronal activity while listening to a podcast could be predicted from representations 

created by language models, to name a few.  

In some cases, it has been explicitly argued that performance-based models are 

models for neuronal computation. (Goldstein et al. 2022) write: “[T]he human brain 

and autoregressive DLMs [deep language models] share three fundamental 

computational principles”; (Zhuang et al. 2021) claim: “[These results] present a 

strong candidate for a biologically plausible computational theory of primate sensory 

learning.” It has even been suggested that such computational models whose 
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simulated activity maps onto neuronal activity according to specific criteria, met by 

the model in Yamins et al. (2014), are mechanistic explanations of how the brain 

performs the capacity (Cao and Yamins 2022a).3  

Following impressive results of correlations between neuronal activity and 

performance-based models from a variety of papers (Banino et al. 2018; Cross et al. 

2021; Cueva and Wei 2018; Mineault et al. 2021; Schrimpf et al. 2021; Yamins et al. 

2014) it may seem that this methodology can yield new understanding of the 

underlying computation for any capacity of our choosing. However, in the next 

section I point out that for many capacities, some of them investigated in the cited 

papers, portraying them as the result of a distinct optimizing process misses crucial 

aspects of how they came about. If one ignores these aspects, although simulated 

activity may show some mapping to neuronal activity, the computational models are 

likely to be different in important ways from the ones employed by the brain. For they 

will miss important constraints on how the capacity is performed at present.  

 

3. How etiological considerations matter 

The next three sub-sections describe three different ways in which the etiology of a 

capacity majorly affects how it is currently performed. Specifically, a capacity that is 

the result of a distinct optimizing process is performed in a substantially different way 

from a capacity that had additional constraints in its history. Thus, models that 

erroneously treat a cognitive capacity as the former will substantially diverge from the 

true processes underlying the capacity. 

A. Modeling side effects, rather than adapted functions 

 
3 See (Craver 2007; Kaplan and Craver 2011; Piccinini 2015) for detailed frameworks of mechanistic 

explanations  
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The brain does many things, some of them it has been adapted to do and some are 

‘side-effects’ of other evolutionary or developmental processes. Biological functions 

have been extensively discussed in philosophy (Boorse 2002; Cummins 1975; 

Millikan 1989; Neander 1991; Wouters 2005). The major question has been what 

differentiates the functions of the system from other things the system does. To give 

the oft used example, the heart both pumps blood and makes thumping sounds, but we 

usually only take the former to be its function. On perspectivalist views of function, 

the functions of the system are not an objective matter, but rather depend on the 

interests of the observers (Craver 2013). On such views the heart’s function may well 

be to make thumping sounds if the observer is interested in building stethoscopes. 

This observer may also be interested in explaining the underlying mechanism that is 

responsible for the thumping sounds.  

Another set of views take functions to be an objective matter. One such popular view 

of functions is the ‘selected-effects’ view. This view describes functions by reference 

to their evolutionary history; the function of a system is to bring about effects that in 

the past were relevant to its selection (Millikan 1989; Neander 1991). Hence, hearts 

have the function of pumping blood but not the function of making thumping sounds, 

because only their ability to pump blood was causally relevant to the existence of the 

organism today. Therefore, there is a difference between functions the system has 

because they were previously relevant for its selection, and functions the system can 

perform, i.e., side-effects.  

It is not my intention to make an argument in favor of one view or other of function. 

Nonetheless, the distinction between ‘side-effects’ and ‘selected-effects’ is relevant to 

the epistemological practice of building and assessing computational models for 

cognitive tasks. This, because capacities that are considered side-effects according to 
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the selected-effects view are, by definition, very unlikely to be the result of a process 

optimizing them as capacities. Instead, they are the result of processes optimizing 

other, related, capacities. Therefore, using performance-based methodology, they are 

unlikely to be given a computational model that is similar to the computation that 

takes place in the brain.  

As a thought experiment, consider a scientist who encounters for the first time a 

lightbulb. The scientist has no idea what the function of the light bulb is, or if it even 

has one. She notices that the lightbulb emits heat and tries to explain how it does so. 

She comes up with a model for a heat emitting device – a radiator. The radiator is just 

as good at emitting heat as the lightbulb. Therefore, according to the performance-

based methodology it is a model that can be compared with the activity of the light 

bulb. Furthermore, correlations between the activities of the two may even be 

identified, as I also argue in section 4. For example, both heat up when connected to 

electricity. Nonetheless, there is some deep sense in which the scientist missed how 

the lightbulb emits heat – it does so via a mechanism that was designed to emit light. 

The lightbulb emits heat, but it has the function of emitting light, and this puts 

specific constraints on its mechanism for emitting heat, leading to electricity being 

passed through thin cords in a glass tube, for example. Models constructed 

specifically to emit heat are likely to miss these constraints. Similar scenarios will 

occur if someone tries to explain how a coffee machine emits such a strong noise 

using a performance-based approach; the issue isn’t that the suggested models do not 

make coffee, but rather that they are very unlikely to suggest the right answers for the 

source of the noise – grinding coffee beans and foaming milk. Therefore, they are 

very unlikely to come up with a model that is similar to how the coffee machine 

produces noise. 



 

13 
 

In relation to human cognition, we can consider chess playing. The performance-

based methodology would build a machine-learning algorithm that can play chess and 

compare its activity with brain activity. Such chess-playing models have already been 

created and rivaled human champions. However, according to the selected-effects 

view, people can play chess, but they do not have the function of playing chess. 

Brains were not adapted for chess playing so it would be astonishing to discover that 

neuronal computation is similar to algorithms designed specifically for chess playing, 

such as deep blue (Campbell, Hoane, and Hsu 2002). An accurate computational 

model of human chess playing will take into account that this capacity utilizes 

mechanisms that were adapted for other purposes. Similar points can be made 

regarding driving, baking a cake and synchronized swimming. While some of these 

capacities are useful today, such as driving, it is clear that they exist not as the result 

of a dedicated optimizing process, but as a side-effect of our perceptual and motor 

abilities more generally.  

One could argue that, while some capacities are clearly not the result of a distinct 

adaptive process, they may be the result of another optimizing process, namely 

learning. Therefore, they will be well-modeled as such. It is still an open question the 

extent to which the learning of a specific skill can be treated as independent of other 

brain processes. Generally, we would expect the learning of new skills to rely at least 

on existing perceptual and motor capacities. Whatever one’s view on this question, it 

should figure in the discussion when modeling learned skills. Moreover, we should be 

careful not to overestimate the ability of learning to shape brain processes in 

idiosyncratic experimental tasks. Thus, building models that are optimized to perform 

‘side-effects’ or learned tasks without considering additional constraints on the 
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optimization process is unlikely to yield similar processes to how they are performed 

in the brain.  

B. Modeling overly specific capacities 

Not every capacity that is considered a function according to the selected-effects view 

will be the result of a specific optimizing process. Some cognitive functions may only 

be partial descriptions of the capacities that brains have adapted to have. When 

considering capacities that are the result of evolution, it is useful to consider what 

evolutionary psychologists call ‘Darwinian modules’ (not to be confused with Fodor’s 

modules, which are characterized differently) – capacities that are the result of a 

distinct evolutionary process (Machery 2007b, 2007a). As Machery (2007b) writes: 

“evolutionary psychologists are adamant that many competences, such as reading, 

programming in C++,   and piloting an airbus, are not underwritten by dedicated 

modules. There is no module whose evolved function is, say, to read, since, 

obviously, reading is a recent cultural invention. Rather, reading is underwritten by a 

collection of modules that evolved for other reasons.” 

The examples given by Machery may be considered side-effects from an evolutionary 

perspective, since they are too recent to be the result of an adaptive process. But the 

general point serves well for capacities that are not side-effects, but simply partial 

descriptions of capacities with distinct optimization processes. 

The fact that our ancestors were able to distinguish zebras and tigers increased their 

fitness, and this capacity would be considered a function according to the selected-

effects view, but we do not think ancestral brains have adapted for this specific task 

independently of other perceptual tasks, and so we do not expect the capacity to 

differentiate zebras and tigers to be a ‘Darwinian module’. Imagine a scientist using 

the performance-based methodology to explain how people distinguish between 
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zebras and tigers. They build a model and train it to make this distinction. With 

current technology, the model will probably do very well. But this model is likely to 

solve this problem in a very different manner than people. It may classify black and 

white objects as zebras and the rest as tigers, for example. People are unlikely to use 

this method because they don’t learn to distinguish zebras and tigers alone, they must 

learn perform a much more complex capacity, also to distinguish zebras from cats, 

chess boards, and cross walks. Thus, because the scientist chose an overly narrow 

description of a capacity as the target of a distinct optimization process, it is very 

unlikely they come up with good models. 

As another example, consider an attempt to explain how people swim. The 

performance-based approach will attempt to come up with the best model for 

controlling movement in water. This model will likely resemble a fish. It will widely 

diverge from how people use their bodies to swim, because it ignores other constraints 

on the human body, specifically that it needs to be able to also move on land, and 

therefore cannot be distinctly optimized for swimming.  

The point made here is not unlike that famously made by (Gould and Lewontin 1979). 

They criticize evolutionary biology as prone to telling ‘just-so’ stories, describing any 

biological feature as an adaptation without supporting evidence. Here I suggest an 

even stronger interpretation of this point. Not only is it not obvious for many 

capacities that they are adaptations, but for some, such as baking or playing computer 

games, it is obvious that they cannot be reasonably described as the result of a unique 

optimization process, without further constraints. This insight can be useful in 

modeling cognitive capacities. 

C. Modeling tasks with unnatural data  
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There is a long line of researchers advocating for examining behavior in more natural 

scenarios (Gibson 1979; Krakauer et al. 2017; to name a few). This section will do the 

same, albeit for different reasons. For even if one is convinced that conducting a 

simple experiment in the lab is a good proxy for behavior in natural environments, 

this does not mean that training models on the same unnatural stimuli will yield 

models that are similar to the computation in the brain. 

There is some overlap between this subsection and the previous two subsections, in 

that unnatural stimuli tend to be either stimuli that people do not encounter in their 

natural environment and therefore we do not expect them to have adapted to perform 

the corresponding task, or they are stimuli that are overly simplified and do not 

capture the true complexity of the modeled capacity. In both cases training models on 

such stimuli is unlikely to lead to models that resemble computation in the brain. 

Consider as one example a two-armed bandit task where participants repeatedly 

choose between two actions (Fox et al. 2020). Presumably people use in this case a 

general system for decision making, which can be utilized in various scenarios, with 

3, 4, or infinite options, where states and actions may change in unpredictable ways, 

etc. Nonetheless, having people perform this task in the lab may lead to worthwhile, 

albeit simplified, insights (Fox et al. 2020; Shteingart, Neiman, and Loewenstein 

2013). However, if we train a model in our simple scenario there is no promise that it 

will be able generalize to other cases and in this sense, it will significantly differ from 

computation in the brain. The only exception is if we think that the brain went through 

a specific optimization process to repeatedly decide between two options. Thus, 

training models on experimental tasks that are used to assess human behavior is likely 

to lead to models performing capacities that fall into one of the discussed pitfalls – 
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either they are unnatural ‘side-effects’, or they are overly simplified. Both these 

options describes many capacities modeled in scientific practice. 

D. Current scientific practice 

While current neuroscientific practice strives to use stimuli and tasks that are as 

natural and complex as possible, in various cases it is still quite clear that the 

capacities that models are trained to perform cannot be capacities that are the result of 

a distinct optimization process.  

Consider object classification. Clearly, identifying objects is beneficial for survival. 

However, when delving into the details we see that the model was trained to classify a 

restricted set of objects from a variety of photos where objects are placed on 

unmatching backgrounds (see Fig. 2). 

 

 

 

 

Fig. 2. Example of two test images from (Yamins et al. 2014). Left – a chair. Right 

- a face. 

This choice for training data is understandable, as matching backgrounds may lead the 

model to use the background to classify the object. Nonetheless, the result is that the 

task is clearly one for which there was no distinct optimization process. The ability to 

perform this specific task is a side-effect of classifying objects in natural 

environments, in which objects are placed in specific contexts in time and in space, 

and so we would expect the computation performed by the brain in this task to be 

different from the trained model in (Yamins et al. 2014). Moreover, even in cases 

where training is done on natural images, as in (Zhuang et al. 2021) there is room to 
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wonder if this task should be considered the result of a distinct optimization process. 

Perhaps it is more reasonable to say that object classification adapted and was learned 

for actively extracting relevant information from moving visual scenes, in a specific 

environmental context, into a wide and complex array of categories. Moreover, 

proponents of embodied cognition have suggested that it is likely that perception has 

adapted to support actions that contribute to fitness rather than to accurately represent 

the environment (Proffitt 2006) and (Bowers et al. 2023) have suggested other 

selection pressures on the ventral visual stream besides maximizing classification 

accuracy.  

Similar claims can be made regarding other cognitive capacities. For example, models 

for reinforcement learning from visual inputs are generally trained and tested in video 

game environments (Cross et al. 2021). While these environments are meant to 

imitate decision making processes, they substantially differ from natural environments 

in various elements, including a simple and discrete structure of states and actions, 

and explicit rewards. Therefore, one could call the ability to play video games a side-

effect of the human capacity for decision-making. To the extent that playing video 

games relies on a decision-making capacity, it is a capacity for simpler environments 

than natural environments, one which is unlikely to be the result of a distinct 

optimization process in the human brain that deals with complex, changing, and 

continuous environments. 

The claim that current scientific practice ignores important constraints on cognitive 

capacities that are the result of specific etiological processes is not meant to 

discourage this specific area of research. It is certainly an area worth pursuing, in 

which scientists are demonstrating how machine-learning models can perform more 

complex and impressive capacities. What this paper aims to do instead is to point out 



 

19 
 

a specific relevant domain which scientists should pay attention to when assessing 

such models; it is not enough that a model can perform the capacity and that there are 

correlates between the model and neuronal activity. An artificial neural network that 

has come to perform some capacity through a distinct optimization process can serve 

as a good model for that capacity to the extent that the cognitive capacity has also 

come about through a distinct optimization process. 

E. Identifying capacities that result from distinct optimization processes 

So far, this paper has described several cases where, intuitively, the modeled capacity 

is not a capacity for which there was a distinct optimization process and therefore we 

do not expect the model to correspond to computation in the brain. The question that 

arises is how one can identify capacities that can be well-modeled using the 

performance-based methodology. 

One aspect of this issue has been described as the ‘grain problem’ – evolutionary 

pressures can be described at finer or at courser grain and there doesn’t seem to be a 

principled reason to choose one grain level over the other. As (Atkinson and Wheeler 

2004)  point out, this is also true for phenotypic traits, so one cannot appeal to them to 

decide on the right grain level. There clearly isn’t a clear-cut answer to the question of 

which biological capacities can be usefully modeled as the result of distinct processes, 

because all capacities in an organism depend on each other.  

Although this issue stands, it is an empirical fact that we can divide many biological 

systems into subsystems in a way that aids the explanation of phenomena – bodies can 

be divided into organs and sub-systems such as the immune and endocrine systems, 

organs into cells, cells divided into organelles, and so forth. In physiology as well, 

while it is a scientific achievement to say which processes can be modeled as distinct 

functions, some processes are clearly poor contenders for performance-based 
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modeling. Consider a model for the immune system that can only account for its 

response to a limited set of pre-defined pathogens. While this model may explain part 

of the immune system’s function, it is a very poor model for the immune system as a 

whole, because it misses a crucial aspect of its function, specifically that it must be 

able to respond to new pathogens. 

Dividing cognition into systems that can be analyzed distinctly is a much more 

challenging task. There are many debates about cognitive ontology and whether 

cognitive capacities can be individuated in space or whether they can be treated as 

consistent in time (McCaffrey 2023). Furthermore, there are debates about whether 

cognition can be divided into Darwinian modules at all (Machery 2007b; Quartz 

2002).  

In dealing with these challenges a few notes are worth considering. First, it may turn 

out that good models for some cognitive capacities must be a very general ones, and 

that perception cannot be modeled independently of decision making, for example.  

Although these results mean greater challenges to scientists, contending with these 

issues may be necessary to explain cognition. Nonetheless, it is worth mentioning that 

for some cognitive capacities, there have been suggested models that focus 

specifically on the performance of the capacity, and those have been well-supported 

and widely accepted as good models.  

It is known that, in certain birds, the neurons in the nucleus magnocellularis and the 

nucleus laminaris (areas in the brain stem) serve as a system that implements the 

‘Jeffress model’ to compute the difference in time delay of sound between the two 

ears (Ashida and Carr 2011). This computation is the basis for sound localization for 

certain frequencies. There is also strong evidence that an area in the central complex 

of the fly brain implements a computational model known as the ‘ring attractor’ to 
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represent head direction (Turner-Evans et al. 2020). Hence, it is not impossible to 

model some cognitive capacities with ‘performance-based models’4 

How can we identify capacities that are fit to performance-based modeling? I suggest 

that to identify computation in the brain we should appeal to an interplay of evidence 

with common-sense assumptions from different domains. In this interplay, etiological 

considerations should be used to challenge existing models and to suggest ways such 

models can be made more plausible, rather than being abused post-hoc to support 

existing models. Attempting to model capacities that are more plausibly the result of a 

distinct optimizing process is likely to lead to better prediction of behavior and 

neuronal activity. Similarly, correlates with neuronal activity is also evidence for the 

etiology of capacity. If a ‘performance-based’ computational model could predict 

99% of neuronal variance (which is currently not likely due to individual 

heterogeneity, [Cao and Yamins 2022a]), this would be strong evidence also for the 

etiology of the capacity – this is the computation the brain has historically been 

specifically optimized to perform. Additionally, anatomical evidence about sub-

structures and experiments testing for double dissociation can also be used and have 

been used to provide evidence for distinct functions. However, etiological 

considerations never disappear entirely, even a 99% prediction of neuronal activity 

would not convince us that the brain is computing the location of Mars relative to 

Neptune (see also section 4B). Thus, there is reciprocity between considerations of 

 
4  While the Jeffress model and the ring model are not deep learning models and have not been 
optimized through gradual change to perform the capacity, they can still be considered ‘performance-
based models’ in the sense that they can perform the capacity and were built for this purpose, 
without knowledge of brain processes. 
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etiology and considerations of similarity to neuronal activity,5 and one should be 

careful not to put too much weight on the latter.  

It is not impossible to suggest the right computational model without etiological 

considerations. As mentioned before, the etiology of a capacity does not define it, and 

two systems can perform a capacity in the same manner despite having very different 

etiologies. But from an epistemological perspective, when attempting to identify the 

computations and mechanisms underlying capacities, using models that ignore 

important constraints on how a capacity came about is very likely to be unfruitful.  

In the next section I present some objections to this paper’s argument. 

 

4. Some objections 

A. Neuronal correlates can fully support specific computations 

One evident objection to the claim that computational must consider etiology more 

carefully, is to note that this argument completely ignores the successes of this 

practice. The described scientific projects in previous sections identified correlations 

between neuronal activity and simulated activity in the model. Is this not evidence 

that these are the models that are implemented in the brain? 

Although this claim seems obviously true, several scientific publications have 

demonstrated that it is entirely possible to identify correlations and causal relations 

that map with one computational model, when the system is designed to perform a 

completely different computation6 (Elber-Dorozko and Loewenstein 2018; Jonas and 

 
5 Interestingly, (Atkinson and Wheeler 2004) suggest a similar approach: “Ideally there is a dynamic 
and mutually constraining relationship between attempts to infer architectural solutions from 
adaptive problems and attempts to infer adaptive problems from architectural solutions.” 

6  Some readers with a philosophical background may be reminded of ‘the triviality arguments about 
computational implemental’ (Sprevak 2018). These arguments expose why it is problematic to define 
computation as mapping between a physical system and a computational model. It has been argued 
that, without constraints on the mapping relations between the physical system and the 
computation, any physical system can be mapped to any computational model. If computation 
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Kording 2017; Marom et al. 2009). Famously, Jonas and Kording (2017) utilized 

standard neuroscientific methods to understand the workings of a microprocessor that 

performed a simple task of booting one of three video games. They arrived at 

ridiculous results such as a “Donkey Kong transistor or a Space Invaders transistor.” – 

transistors that are taken to have a function that relates only to one specific game, 

when it is well-known that this is not how microprocessors are designed.  

Elber-Dorozko and Loewenstein (2018) analyzed the case of ‘action-value 

representations’. Many previous scientific findings reported brain representation of a 

variable called ‘action-value’. Elber-Dorozko and Loewenstein (2018) specifically 

designed a model for decision making which does not include any implicit or explicit 

representation of ‘action-value’, and demonstrated that standard analyses performed 

on this model still erroneously identified significant representation of ‘action-value’.  

These results demonstrate that correlation cannot distinguish competing hypotheses 

about computation (and, for the same reason, neither do mapping of causal relations). 

It is easier to understand why this is so when we consider that when performing a 

correlation analysis, the null hypothesis is that the neuronal activity is completely 

orthogonal to the computational variable. Any other case with sufficient data will 

result in a significant correlation. Thus, identification of a correlation between 

neuronal activity and some variable is not an indication that this variable is computed, 

but only that neuronal activity is not completely orthogonal to this variable (see also 

(Elber-Dorozko and Loewenstein 2023) for a more detailed argument). Given that any 

computational variable that performs some capacity is likely to correlate with 

properties of the inputs and the outputs of the capacity, there are many possible 

 
depends solely on mapping, the resulting picture is one of pan-computationalism. The scientific 
papers here similarly demonstrate the problem of relying on mapping to identify (rather than define) 
computation, even within the methods employed in neuroscience. 
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computational models that correlate with neuronal activity without being identical to 

neuronal computation. 

Even though scientific results of correlation with neuronal activity cannot 

conclusively support a specific computational model over its competitors, still much 

can be learned from them. First, if they are not taken as the sole relevant evidence, 

they can be invaluable in comparing suggested models. Schrimpf et al. (2020) built a 

platform for comparison of various computational models with neuronal data in a 

variety of visual tasks. Such comparisons can certainly assist in determining what 

computational properties lead to closer resemblance to neuronal processing (but see 

(Bowers et al. 2023) on the domains in which such evidence should be sought). 

Relatedly, as I argued in the previous section, evidence that neuronal activity 

correlated with a computational model can also support the hypothesis that the 

modeled capacity has been distinctly optimized for. But, if it is implausible that the 

modeled capacity is the result of a distinct optimization process, the evidence from 

neuronal activity should be overwhelming to convince us that our plausibility 

considerations have been wrong. So far, very rarely is evidence for neuronal 

correlates of a model overwhelming. 

 

B. Etiology does not determine computation 

The reader may have noticed that the argument made in section 3 moved quickly 

when discussing what is the ‘right’ and what is the ‘wrong’ computational model for 

the computation performed in a system. The examples in section 3 and the scientific 

papers described in 4A, refer either to adaptation or to design as the determinant of 

the computation the system performs; that is, conclusions about computation are 

erroneous because they do not fit with what the system was designed to do or with our 
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intuitions about what the system has adapted to do. There are no ‘donkey-kong’ 

transistors because no transistors were designed as such, and there is no chess playing 

module because the brain has not adapted or developed for chess-playing. This notion 

fits with the philosophical view that the question of what a physical system computes 

depends on its etiology. One could adopt such a view if one takes computing systems 

to be systems that have the function to perform some computation and this function is 

defined according to the etiology of the system.  

One could, of course, deny that etiological considerations are relevant to determine 

what the brain computes. There are several popular views of computation in 

accordance with such claims. Shagrir (2022) argues that the individuation of a 

computation depends on its semantic content (this would be a non-etiological view 

only if we take semantic content to not be determined etiologically). Piccinini’s 

(2015) framework of physical computation describes computing systems as 

mechanisms that have the function of performing a specific computation. He is 

explicit, however, that the functions he refers to are not defined by their evolutionary 

history, but rather by their current causal contributions (2015, chap. 6).  

Such views are worthwhile alternatives to the etiological view. Moreover, there are 

several criticisms of etiological views of function. One such criticism is that it defies 

our common-sense view of computation to think that the history of a system should be 

relevant to determine what a system is currently computing (Craver 2013; Piccinini 

2015).  

As an answer to this criticism, note that these philosophical debates center on the 

question of what computation is, while I aim to discuss questions about how 

computation can be identified. Thus, one can adopt an ontological view where 

etiology does not matter for computation, but still agree that it is relevant 
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epistemically. Claims that etiology is irrelevant to current computation often rely on 

rare cases where etiology and computation come apart. The case of a swamp-person 

miraculously created de-novo, or the case of a major first mutation which turns out to 

be beneficial. While it may certainly be true that in these cases what the system 

computes comes apart from its history, they are too rare to merit overlooking history 

in general. For swamp-people never happen, and first mutations tend to be small and 

to build upon previous states. Thus, ontologically it may be true that etiological 

considerations do not determine what a system computes. However, empirically, for 

practically all systems we view as computing, their etiology is useful for 

understanding how they perform the computations: Organisms have evolutionary 

histories and computers are designed.  

Another challenge to the claim that careful etiological considerations are essential is 

that it is very difficult to know the etiology of various capacities, so it is difficult to 

see how they can be taken into account in identifying computation, and nonetheless 

scientists move forward with assigning functions and computations. One answer to 

this is that scientists do take etiology into account when modeling cognition, 

explicitly and implicitly. Explicit considerations can be seen in all the citations in this 

paper referencing optimizing processes as leading causes to cognitive capacities. 

Implicit considerations are seen in the capacities scientists choose to model. Visual 

perception is an extremely popular choice, while baking is not.  

The point of this paper is that the use of these etiological considerations can be made 

better by being more selective about the capacities that are treated as the result of a 

distinct optimizing process, and taking into account other constraints that affect 

capacities other than optimizing processes. Some such constraints which are available 

to use without conducting phylogenetic research (which is also important) is to ask 
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‘what other task properties has the brain adapted/learned to have?’ and ‘what is the 

relationship between the task learned by artificial models and the task performed by 

people in natural environments?’. Moreover, as described in section 3, models that 

have an etiology similar to that of the modeled capacity are also more likely to yield 

similar behavior and internal processes as brains, leading to potential reciprocal 

improvement of the models.  

Finally, I present a challenge to non-etiological views. it is not clear what 

epistemological alternative non-etiological views of computation suggest. Without 

constraints on mapping between computational and physical states an incredibly large 

variety of computations can be considered to be implemented in a system, as 

demonstrated in the ‘triviality arguments about computational implementation’ 

(Sprevak 2018). Therefore, views that deny that etiological considerations are relevant 

for computation, describe other constraints on the computations implemented in a 

system. The challenge to these views is to explicate the implications of these 

constraints to scientific practice. Without such implications to neuroscientific 

practice, although individuation of computation may be well-defined ontologically, it 

is not clear how questions about what a system computes can be answered. Etiological 

considerations at least offer some way to advance in this regard for the vast majority 

of computing systems.  

 

C. Current models are a good approximation of cognitive capacities 

There is worry that my criticism of the functions that neuroscientists model is too 

harsh. Surely, they are limited, but they are still a great improvement relative to 

earlier, simpler models and they are making effortful attempts to be realistic. To this I 

answer that this paper does not aim to invalidate the progress that is achieved with 
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this practice, these performance-based models are certainly a step forward towards 

more accurate models of cognitive capacities. However, I do suggest that as they are, 

they cannot yet provide a realistic model for these capacities, and it is useful to keep 

this in mind. Moreover, claims about similarities in etiological processes between 

artificial and brain processes to ignore the important differences between them may 

cause false convictions that such models explain the performance of cognitive 

capacities from all perspectives.  

If neuroscientists wish to claim that their models aim to capture a specific capacity 

which was created by distinct optimization processes, it would be beneficial if they 

would do so explicitly. To illustrate, Yamins et al. (2014) may claim that their model 

describes the first forward pass in the ventral stream where only feedforward 

connections are relevant and an object is recognized quickly from a single snapshot. 

This is different from arguing that their model is a model of ‘the ventral steam’ and 

may be much more plausible. Then, the question shifts whether it is reasonable that 

this quick classification in the forward pass is the result of a distinct optimization 

process.  

Finally, to the extent that the computational models created in the performance-based 

methodology are close to computation in the brain, if one is convinced by the 

argument in this paper, then it paints a path forward for existing models; rather than 

aiming to account for more neuronal variance, or improve performance on pre-

existing tasks, we should focus on trying to model capacities that were distinctly 

optimized. While we should not undervalue our current successes, it is important to 

keep in mind the way still to go. 
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D. Even when ignoring considerations of adaptation, we may still identify the 

right computation 

Cao and Yamins (2022b) write: “…given a challenging task, we should take seriously 

the possibility that two systems that solve it share deep explanatory similarities … 

difficult tasks are more constraining tasks, and success at difficult tasks justifies 

mechanistic/causal interpretations of our successful model”. Thus, they suggest that 

for difficult enough tasks the realm of possible solutions may be constrained enough 

that any two algorithms that can solve this task are likely to exhibit ‘deep explanatory 

similarities’. Even without careful etiological considerations, scientists may suggest 

the ‘right’ model. This is an interesting suggestion. But it seems to me that it is 

motivated by empirical results of correlations between simulated and neuronal activity 

that are related to object classification tasks. As I argued in 4A, however, such results 

do not show that the same computation is taking place in those two systems. 

Moreover, some counterexamples come to mind. Chess-playing seems like a difficult 

enough task, yet it is believed that ‘deep-blue’ solves it in a different manner than 

people. Finally, the argument in this paper is exactly that the functions the brain and 

the model are optimized to perform are different, while the latter is optimized for the 

function, the former may only perform it, without being optimized for it specifically. 

Therefore, the computations performed are likely to differ between the brain and the 

model.  

 

5. Some concluding remarks 

This paper argued that scientists must be more careful when appealing to etiological 

considerations when using the performance-based methodology. This is because not 

every capacity can be reasonably considered to be the result of a distinct optimizing 
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process and treating it as such is likely to miss important aspects of how it is 

performed. Two main issues are worth emphasizing. First, although neuronal data can 

certainly be used to guide scientific search for the computations the brain performs, it 

is not a deciding factor. For neuronal correlations and causal relations can be 

identified for a variety of competing hypotheses about computations. Second, the fact 

that a function increases or increased the fitness of an organism does not mean that 

this is the result of a distinct optimization process, as demonstrated for the case of 

object recognition. In general, to discover what the brain computes, scientists should 

be sensitive to the manner in which the computations became possible and be much 

more careful in assigning histories to cognitive capacities. Without such caution, 

discovering computations in the brain is not necessarily impossible, but vastly more 

difficult. 
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