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Abstract

Drawing on recent work by Weatherall (2018), I provide an explicit

presentation of Newtonian gravitation theory set on Maxwellian

spacetime which avoids reference to any derivative operators or equiv-

alence classes thereof. The resulting theory bears a close relation-

ship to Dewar’s (2018) “Maxwell gravitation”; it also sheds light on

arguments by Wallace (2020) concerning the relationship between

Newton-Cartan theory and Saunders’s (2013) vector relationism.
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1 Introduction

In recent years, philosophers of physics have considered afresh the question

of the appropriate spacetime setting for Newtonian gravitation theory. At the

centre of this debate have been two apparently conflicting proposals for what one

should take this geometry to be: on the one hand, Saunders’s (2013) proposal

that Corollary VI to the Laws of Motion in Newton’s Principia reveals that

Maxwellian spacetime is the correct setting for Newtonian physics, and on the
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other hand, Knox’s (2014) proposal that Corollary VI motivates a transition to

a geometrised formulation of Newtonian gravitation, known as Newton-Cartan

theory. Their claims have sparked a series of discussions of theories of Newtonian

gravitation set on Maxwellian spacetime, and their relation to Newton-Cartan

theory.1

One focus of these discussions has been on how Maxwellian spacetime –

which is supposed to be equipped with a standard of rotation, but not a standard

of absolute acceleration – should best be characterised. Earman (1989) originally

defined the standard of rotation in terms of an equivalence class of derivative

operators. But a number of authors have voiced concerns about this approach.

For example, Weatherall (2018, 34) notes that it “makes reference to structure

that one does not attribute to spacetime,” Jacobs (2022) argues that it is not

suitably “intrinsic” and so fails to offer a perspicuous formalism from which we

can read off the theory’s ontology,2 and Wallace (2019, 2020) goes so far as to

suggest that the awkwardness of standard differential-geometric presentations

of Maxwellian spacetime obscures the similarity between Newton-Cartan theory

and theories of Newtonian gravitation set on Maxwellian spacetime, and (more

generally) shows that coordinate-free differential geometry is not an intuitive

way of characterising certain spacetime structures. In response, Weatherall

(2018) has offered an alternative definition of a standard of rotation, but there

have as yet been no attempts to formulate Newtonian gravitation theory in

terms of this object.3

The aim of this paper is to provide an explicit presentation of a theory which

addresses the concerns raised by Weatherall, Wallace, and others – a theory of

Newtonian gravitation set on Maxwellian spacetime, which is formulated in a

coordinate-free way without reference to any derivative operators or equiva-

lence classes thereof. First, I review some essential background from discussions

of Maxwellian spacetime, including Dewar’s (2018) “Maxwell gravitation”. I

then, in section 3, turn to the task of formulating Newtonian gravitation theory

in terms of Weatherall’s standard of rotation. Section 4 provides some prelimi-

1. See Weatherall (2016), Teh (2018), Wallace (2020), Jacobs (2023).
2. See also Dürr & Read (2019, 1094-1096), who raise similar concerns.
3. Although several authors – Weatherall included – have noted that such a formulation

would be desirable (see Dürr and Read 2019; Jacobs 2022).
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nary results concerning the relationship between this theory, Dewar’s (2018) ap-

proach, and Newton-Cartan theory; sections 5 and 6 aim to dispel the remainder

of Wallace’s concerns about coordinate-free presentations of Maxwellian space-

time by showing that the arguments of his (2020) can also be made in the

language of coordinate-free differential geometry. Section 7 concludes.

2 Background

Let M be a smooth four-manifold (assumed connected, Hausdorff, and para-

compact). A temporal metric ta on M is a smooth, closed, non-vanishing 1-

form;4 a spatial metric hab on M is a smooth, symmetric, rank-(2, 0) tensor

field which admits, at each point in M , a set of four non-vanishing covectors
i
σa,

i = 0, 1, 2, 3, which form a basis for the cotangent space and satisfy hab i
σa

j
σb = 1

for i = j = 1, 2, 3 and 0 otherwise. A spatial and temporal metric are compat-

ible iff hantn = 0. We say that a vector field σa is spacelike iff tnσ
n = 0, and

timelike otherwise. Given the structure defined here, ta induces a foliation of M

into spacelike hypersurfaces, and relative to any such hypersurface, hab induces

a unique spatial derivative operator D such that Dah
bc = 0.5 We say that hab

is flat just in case for any such spacelike hypersurface, D commutes on spacelike

vector fields, so that D[aDb]σ
c = 0 for all spacelike vector fields σ. Finally, let

∇ be a connection on M . We say that ∇ is compatible with the metrics just in

case ∇atb = 0 and ∇ah
bc = 0.

With these structures in place, we can now introduce Earman’s (1989) orig-

inal definition of a standard of rotation. Let ta, h
ab be compatible temporal

and spatial metrics on M , and let ∇, ∇′ be a pair of flat derivative opera-

tors on M , both compatible with the metrics. We say that ∇ and ∇′ are

rotationally equivalent just in case for any unit timelike vector field ηa on M ,

∇[aηb] = 0 ⇔ ∇′[aηb] = 0. Then a standard of rotation compatible with ta

and hab is an equivalence class [∇] of rotationally equivalent compatible flat

derivative operators.

4. Here and throughout, abstract indices are written in Latin script; component indices
are written in Greek script, with the exception of i, j, k, which are reserved for the spatial
components of tensor fields in some coordinate basis; and the Einstein summation convention
is used. Round brackets denote symmetrisation, square brackets antisymmetrisation.

5. See Weatherall (2018, 37-38) and Malament (2012, §4.1) for further details.
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Within this framework, Dewar (2018) shows that one can formulate New-

tonian gravitation theory as follows. Let ta, h
ab be compatible temporal and

spatial metrics onM , [∇] an equivalence class of rotationally equivalent compat-

ible flat derivative operators, and T ab the Newtonian mass-momentum tensor

for whichever matter fields are present. Let ρ := tatbT
ab be the scalar mass

density field. Then ⟨M, ta, h
ab, [∇], T ab⟩ is a model of Maxwell-Dewar gravita-

tion6 just in case for all points p ∈ M where ρ ̸= 0, the following equations hold

at p:

ta∇nT
na = 0 (1a)

∇m(ρ−1∇nT
nm) = −4πρ (1b)

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = 0, (1c)

where ∇ is an arbitrary member of [∇].

Recently, however, Weatherall (2018, 34) has queried this definition of a

standard of rotation, noting that it “makes reference to structure that one does

not attribute to spacetime.” Weatherall points to two criticisms of this approach.

First, if a standard of rotation is defined as an equivalence class of derivative

operators, then we must select an arbitrary member of this class to perform

calculations. But some of the terms in these calculations may depend on the

choice of derivative operator, and it is not clear how these should be interpreted.

Secondly, one might worry that the appeal to derivative operators somehow

obscures the structure of Maxwellian spacetime.

In response, Weatherall offers an alternative definition: if ta, h
ab are com-

patible temporal and spatial metrics on M , a standard of rotation ⟳ compatible

with ta and hab is a map from smooth vector fields ξa on M to smooth, anti-

symmetric rank-(2, 0) tensor fields ⟳b ξa on M , such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =

α ⟳a ξb + ξ[bda]α;

6. Note that Dewar (2018) calls this theory Maxwell gravitation; here, I reserve that name
for presentations of the theory which do not make reference to any structure which is not
definable from that of Maxwellian spacetime, such as the theory presented in section 3.
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3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb].

One can then define a Maxwellian spacetime as a structure ⟨M, ta, h
ab,⟳⟩, where

⟳ is compatible with ta and hab.

As Weatherall (2018, footnote 5) notes, this definition of a standard of ro-

tation “only draws more attention to the question of whether this structure

is sufficient to formulate Newtonian gravitational theory. One would like to

find a coordinate-free presentation of the theory that makes use of precisely

Maxwellian spacetime, as characterised here, and nothing else.” But there have

as yet been no attempts to formulate such a theory. It is this task to which I

now turn.

3 Maxwell gravitation

I will begin by introducing some terminology. Fix a spacetime ⟨M, ta, h
ab⟩, and

let ∇ and ⟳ be a connection and standard of rotation on M , both compatible

with the metrics. In what follows, we will often want to consider connections

and standards of rotation which “agree” with one another in the following sense:

for any vector field ηa on M , ∇[aηb] = ⟳a ηb. In this case, I will say that the

connection and standard of rotation are compatible. This idea is made precise

in proposition 1 of Weatherall (2018); the basic fact is that any connection

determines a unique compatible standard of rotation, but a standard of rotation

does not similarly determine a unique compatible connection.

We will also (sometimes) extend this idea to spacetimes. Thus a connection

∇ is compatible with a spacetime ⟨M, ta, h
ab,⟳⟩ just in case it is compatible

with the metrics and ⟳. Finally, I will say that a spacetime ⟨M, ta, h
ab,⟳⟩ is

flat derivative operator compatible just in case some flat derivative operator is

compatible with ⟨M, ta, h
ab,⟳⟩. As Weatherall (2018, proposition 1) proves, a

spacetime is flat derivative operator compatible just in case hab is flat and there
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exists a unit timelike vector field ξa on M such that ⟳a ξb = 0 and £ξh
ab = 0.7

Where there is no ambiguity over the temporal and spatial metrics in question,

we will sometimes drop talk of the metrics and simply refer to ⟳ instead.

Finally, we need to say something about the Newtonian mass-momentum

tensor T ab. We have already seen that we can extract the scalar mass density

field ρ from T ab using the temporal metric. But in Maxwell-Dewar gravitation,

we also used derivative operators to extract vector fields from T ab. In what

follows, we will likewise want to extract vector fields from T ab, but without the

use of derivative operators. To do this, we first impose the “Newtonian mass

condition”: whenever T ab ̸= 0, Tnmtntm > 0. This captures the idea that

the matter fields we are interested in are massive, in the sense that there can

only be non-zero mass-momentum in spacetime regions where the mass density

is strictly positive.8 Since T ab is symmetric, the Newtonian mass condition

guarantees that whenever T ab ̸= 0, we can uniquely decompose T ab as

T ab = ρξaξb + σab (2)

where ξa = ρ−1tnT
na is a smooth unit timelike future-directed vector field

(interpretable as the net four-velocity of the matter fields F ), and σab is a

smooth symmetric rank-(2, 0) tensor field which is spacelike in both indices

(interpretable as the stress tensor for F ).

We are now in a position to formulate Newtonian gravitation theory in terms

of Weatherall’s standard of rotation. Let ⟨M, ta, h
ab,⟳⟩ be a Maxwellian space-

time, and let T ab be the Newtonian mass-momentum tensor for whichever mat-

ter fields are present. Then ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell gravita-

tion9 just in case

(i) ⟨M, ta, h
ab,⟳⟩ is flat derivative operator compatible; and

7. Here and throughout, £ denotes the Lie derivative.
8. For example, Weatherall (2012, 211) suggests that “[one] might take [the Newtonian

mass condition] to be a benign and unsurprising characterisation of what we mean by “massive
particle” in Newtonian gravitation.”

9. Again, this should be distinguished from Dewar’s (2018) “Maxwell gravitation”, which
I refer to here as Maxwell-Dewar gravitation.
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(ii) For all points p ∈ M such that ρ ̸= 0, the following equations hold at p:

£ξρ−
1

2
ρĥmn£ξh

mn = 0 (MG1)

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) = −4

3
πρ− 1

3
Dm(ρ−1Dnσ

nm) (MG2)

£ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m+ ⟳c (ρ−1Dnσ
na) = 0, (MG3)

where ĥab is the spatial metric relative to ξa,10 the
i

λa are three orthonormal

connecting fields for ξa, and ∆ is the “restricted derivative operator” defined in

Weatherall (2018). This acts on arbitrary spacelike vector fields σa at a point

p according to

ηn∆nσ
a := £ησ

a + σn ⟳n ηa − 1

2
σn£ηh

an (5)

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect

to any extension of ηa off of p). It also has the property that ηn∆nσ
a = ηn∇nσ

a

for any derivative operator ∇ compatible with ⟳ (Weatherall 2018, 37).

As promised, this theory does not make reference to any structure not de-

finable from that of Maxwellian spacetime. The equations (MG) and the flat

derivative operator compatibility condition require only the standard of rota-

tion, and two kinds of derivatives:

• The Lie derivative, which is well-defined wheneverM is a smooth manifold;

and

• The spatial derivative operator D, which is just the unique Levi-Civita

connection induced by hab on each spacelike hypersurface.

Let us now consider the dynamics of Maxwell gravitation in detail. I will

begin by making two comments on the flat derivative operator compatibility

condition. First, note that this is a necessary condition if Maxwell gravitation

is to reproduce the empirical predictions of Galilean gravitation, since absolute

rotations do have empirically detectable consequences in Galilean gravitation

10. That is, the unique symmetric tensor field on M such that ĥanξn = 0 and hanĥnb =
δab − tbξ

a.
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theory (think of Newton’s bucket experiment). Secondly, we can already see

an immediate connection to Newton-Cartan theory here. Expressed in terms of

some derivative operator compatible with ⟳, flat derivative operator compati-

bility becomes the requirement hab is flat, and that there exists a unit timelike

vector field ηa on M which is twist-free (∇[aηb] = 0) and rigid (∇(aηb) = 0). But

this is equivalent to the condition that Rab
cd = 0 (Malament 2012, proposition

4.2.4), which is one of the supplemental curvature conditions in Newton-Cartan

theory.

It is also helpful to express the equations (MG) in terms of some compatible

derivative operator. First, consider (MG1). This becomes11

ξn∇nρ+ ρ∇nξ
n = 0,

which is just the familiar continuity equation for the mass density field ρ. Like-

wise, (MG2) becomes

1

3

3∑
i=1

i

λrξ
n∇n(ξ

m∇m

i

λr) = −4

3
πρ− 1

3
∇m(ρ−1∇nσ

nm). (6)

The left hand side of (6) is the familiar expression for the average radial ac-

celeration of the vector field ξa – that is, the average radial component of the

relative acceleration of “neighbouring” integral curves of ξa. The right hand

side of (6) asserts that this relative acceleration has two components – one due

to the mass density field ρ, and one due to the stress tensor σab. This latter

term we can interpret as the non-gravitational component of the average radial

acceleration.12 Finally, a straightforward calculation shows that (MG3) can be

written13

ξn∇n(ω
ca) = 2ωn[cθn

a] −∇[c(ρ−1∇nσ
|n|a])

11. For this it suffices to note that the expansion tensor θab = ∇(aξb) = −1/2£ξh
ab associ-

ated with ξa is related to the quantity ∇nξn via ∇nξn = θ = ĥnmθnm.
12. The −4/3πρ term is less straightforward. On the one hand, it is tempting to interpret it

as the gravitational component of the average radial acceleration, as Dewar (2018, 259) does.
But unlike in Galilean gravitation, there is no explicit representation of the gravitational field
within the formalism of Maxwell gravitation. As such, whilst we can always attribute the
−4/3πρ term to “the gravitational field”, it is not clear that this can be the gravitational field
understood in the usual sense – pace Dewar. For further discussion, see section 6.
13. cf. Malament (2012, proposition 4.3.6).
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where ωab = ∇[aξb] is the rotation tensor and θab = ∇(aξb) the expansion tensor

associated with ξa. As such, I suggest that we interpret (MG3) as a continuity

equation for the rotation tensor ωab, with a source term −∇[a(ρ−1∇nσ
|n|b]) due

to the presence of non-gravitational interactions.

4 Maxwell gravitation, Maxwell-Dewar gravita-

tion, and Newton-Cartan theory

At this point, we have not said anything about the relation between Maxwell

gravitation and Maxwell-Dewar gravitation, and it is perhaps not clear that

the two are even empirically equivalent. In fact, there is a particularly close

relationship between these theories, as summarised in the following two propo-

sitions:

Proposition 1. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation.

Then there exists a unique equivalence class of rotationally equivalent flat deriva-

tive operators [∇] such that all the ∇ ∈ [∇] are compatible with ⟳ and ⟨M, ta, h
ab, [∇], T ab⟩

is a model of Maxwell-Dewar gravitation.

Proof. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation, and consider

the class [∇] of all flat derivative operators compatible with ⟳. The class [∇]

is manifestly unique in this regard, and is non-empty since ⟨M, ta, h
ab,⟳⟩ is

flat derivative operator compatible. Flat derivative operator compatibility also

guarantees that [∇] is an equivalence class of flat derivative operators under the

equivalence relation ∇[aηb] = 0 ⇔ ∇′[aηb] = 0 for all unit timelike vector fields

ηa on M (Weatherall 2018, proposition 1). It follows that ⟨M, ta, h
ab, [∇], T ab⟩

is a kinematically possible model (KPM) of Maxwell-Dewar gravitation.14

We now show that ⟨M, ta, h
ab, [∇], T ab⟩ is a model of Maxwell-Dewar grav-

itation. Let ∇ be an arbitrary member of [∇], and consider an arbitrary point

p ∈ M such that ρ ̸= 0. A straightforward calculation shows that, at p

∇nT
na = ρξn∇nξ

a + ξa(£ξρ−
1

2
ρĥmn£ξh

mn) +Dnσ
na, (7)

14. That is, a structure ⟨M, ta, hab, [∇], Tab⟩ which does not necessarily satisfy the equations
(1).

9



so that

ta∇nT
na = £ξρ−

1

2
ρĥmn£ξh

mn (8)

= 0.

Next, recalling (6), we can write

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) =
1

3

3∑
i=1

i

λrξ
n∇n(ξ

m∇m

i

λr)

=
1

3
∇a(ξ

n∇nξ
a) (9)

where the last equality follows from proposition 3 of Dewar (2018). Then making

use of (MG1) and (7), we have that

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) =
1

3
∇m(ρ−1∇nT

nm)− 1

3
Dm(ρ−1Dnσ

nm),

so that comparison with (MG2) immediately yields that (1b) holds with respect

to ∇. Moreover, some calculation shows that

⟳c (ξn∇nξ
a) = £ξ(⟳

c ξa) + 2(⟳c ξn)(∇nξ
a) + 2(⟳n ξa)(∇nξ

c)

We note that, since da(tnξ
n) = da(1) = 0, it follows from the definition of ⟳

that ⟳a ξb is spacelike in both indices. Moreover, we have (Malament 2012,

equation 4.1.42),

∇aξ
b = ĥan(⟳

n ξb − 1

2
£ξh

nb) + taξ
n∇nξ

b. (10)

Hence,

⟳c (ξn∇nξ
a) = £ξ(⟳

c ξa) + (⟳c ξn)ĥnm(2 ⟳m ξa −£ξh
ma)

+ (⟳n ξa)ĥnm(2 ⟳m ξc −£ξh
mc)

= £ξ(⟳
c ξa)− (⟳c ξn)ĥnm£ξh

ma − (⟳n ξa)ĥnm£ξh
mc

= £ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m. (11)
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Then, again from (MG3) and (7),

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = ⟳c (ρ−1∇nT
na)

= £ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m

+ ⟳c (ρ−1Dnσ
na)

= 0.

Proposition 2. Let ⟨M, ta, h
ab, [∇], T ab⟩ be a model of Maxwell-Dewar grav-

itation. Then there exists a unique standard of rotation ⟳ such that all the

∇ ∈ [∇] are compatible with ⟳ and ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell

gravitation.

Proof. Let ∇ be an arbitrary member of [∇]. By proposition 1 of Weather-

all (2018), there exists a unique standard of rotation ⟳ compatible with ∇;

moreover, it follows from proposition 1 of Dewar (2018) that all the ∇ ∈ [∇]

determine the same standard of rotation ⟳.

To show that ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell gravitation, let ∇

be an arbitrary member of [∇], and again consider some point p ∈ M such that

ρ ̸= 0. (MG1) follows immediately from (8); (MG2) and (MG3) result from

substituting (1a) and (8) into (9) and (11), respectively. Finally, note that ⟳ is

flat derivative operator compatible by construction.

As such, there is a one-to-one correspondence between the models of Maxwell

and Maxwell-Dewar gravitation.15 Since this one-to-one correspondence relates

models with the same mass-momentum tensor, this should at least provide reas-

surance that the two theories are empirically equivalent. But we can go further.

Weatherall (2018, footnote 5) suggests that we might find “a version [...] of Neil

Dewar’s “Maxwell gravitation” expressed using only a standard of rotation.”

15. Is there a similar correspondence between the KPMs of Maxwell and Maxwell-Dewar
gravitation? It turns out that the answer depends on a rather technical issue, viz. whether
one takes the flat derivative operator compatibility condition in Maxwell gravitation to arise
at the level of kinematic or dynamical constraints. If it is a kinematic constraint, then the
KPMs of the two theories will also be in one-to-one correspondence. If it is a dynamical
constraint, they will not. An arbitrary standard of rotation need not be flat derivative operator
compatible, whereas the standard of rotation associated with an equivalence class of flat
derivative operators is flat derivative operator compatible by construction.
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One might also take propositions 1 and 2 to show that Maxwell gravitation, as

I have presented it here, is precisely that theory.

It is now straightforward to extend our discussion to Newton-Cartan theory.

Let ⟨M, ta, h
ab⟩ be a non-relativistic spacetime, ∇ a metric-compatible deriva-

tive operator on M , and T ab the mass-momentum tensor for whichever matter

fields are present. Then ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory

just in case

∇nT
na = 0 (NCT1)

Rab = 4πρtatb (NCT2)

Ra c
b d = Rc a

d b (NCT3)

Rab
cd = 0. (NCT4)

The relation between Maxwell gravitation and Newton-Cartan theory is then

characterised in the following two results:

Proposition 3. Let ⟨M, ta, h
ab,∇, T ab⟩ be a model of Newton-Cartan theory.

Then there exists a unique standard of rotation ⟳ such that ∇ is compatible with

⟳ and ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell gravitation.

Proof. This follows immediately from proposition 2 and the proof of proposition

5 of Dewar (2018).

Proposition 4. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation.

Then there exists a unique equivalence class of derivative operators [∇] such

that:

• All the ∇ ∈ [∇] are compatible with ⟳;

• For any two ∇, ∇′ ∈ [∇], ∇′ = (∇, tbtcσ
a), where σa is a spacelike and

twist-free vector field which satisfies ∇nσ
n = 0 and ρσa = 0;16

16. The notation here follows Malament (2012, proposition 1.7.3): ∇′ = (∇, Ca
bc ) iff for all

smooth tensor fields αa1...ar
b1...bs

on M ,

(∇′
n −∇n)α

a1...ar
b1...bs

= αa1...ar
mb2...bs

Cm
nb1

+ ...+ αa1...ar
b1...bs−1m

Cm
nbs

− αma2...ar
b1...bs

Ca1
nm − ...− α

a1...ar−1m

b1...bs
Car

nm .
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• For any ∇ ∈ [∇], ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory.

Proof. That there exists at least one derivative operator ∇ such that ∇ is com-

patible with ⟳ and ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory

follows immediately from proposition 1 and the proof of proposition 6 of Dewar

(2018). So let ∇ be such a derivative operator, and suppose that ∇′ is another

derivative operator compatible with ⟳ such that ⟨M, ta, h
ab,∇′, T ab⟩ is a model

of Newton-Cartan theory. So ∇nT
na = ∇′

nT
na = 0. But since ∇ and ∇′ are

both compatible with ⟳ and satisfy (NCT3) and (NCT4), we must have (De-

war 2018, proposition 4) that ∇′ = (∇, tbtcσ
a), for some spacelike and twist-free

vector field σa. Hence

∇′
nT

na = ∇nT
na − (tmtnσ

n)Tma − (tmtnσ
a)Tnm

= ∇nT
na − ρσa

= ∇nT
na

so that ρσa = 0. Moreover, Rab = R′
ab = 4πρtatb, so that

R′
ab = Rab +∇n(tatbσ

n)

= (4πρ+∇nσ
n)tatb

= 4πρtatb

and hence ∇nσ
n = 0. Finally, define [∇] to be the class of all derivative oper-

ators such that ∇′ = (∇, tbtcσ
a), where σa is a spacelike and twist-free vector

field such that ∇nσ
n = 0 and ρσa = 0. [∇] is clearly unique in this regard.

Corollary 4.1. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation such

that at all points p ∈ M , ρ ̸= 0. Then there exists a unique derivative operator

∇ such that ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory.

As such, the relationship between Maxwell gravitation and Newton-Cartan

theory is less straightforward than that between Maxwell and Maxwell-Dewar

gravitation. Whenever ρ is nowhere vanishing, each model of Maxwell gravi-

tation is uniquely associated with a model of Newton-Cartan theory, and vice

13



versa. But typically, a model of Maxwell gravitation does not carry enough

information to fix a unique Newton-Cartan connection in regions where ρ = 0.

Now, in section 3, we noted that there is a close connection between the

condition (NCT4) in Newton-Cartan theory, and the flat derivative operator

compatibility condition in Maxwell gravitation. As a result, one might wonder

if there is an analogue of propositions 3 and 4 for Künzle-Ehlers geometrised

Newtonian gravitation, which drops the condition (NCT4).17 It turns out that

the answer is not quite. From any model of Künzle-Ehlers geometrised Newto-

nian gravitation, we can recover a unique KPM of Maxwell gravitation which

satisfies the equations (MG). But if we drop flat derivative operator compat-

ibility, then we cannot recover (NCT3) from the equations (MG), even if we

still impose spatial flatness (for further details on this, see figure 1 in section 6

and the subsequent discussion). We can make some progress by dropping both

(NCT3) and (NCT4). In this case, one can show that whenever hab is flat and

ρ ̸= 0, there is a one-to-one correspondence between KPMs of Newton-Cartan

theory which satisfy (NCT1) and (NCT2), and KPMs of Maxwell gravitation

which satisfy (MG1) and (MG2). But unlike propositions 3 and 4, we are only

guaranteed that this is possible at all by the condition that ρ ̸= 0. Without flat

derivative operator compatibility, there is nothing to ensure that (NCT2) holds

in regions where ρ = 0.

Nevertheless, one can still use Weatherall’s standard of rotation to say some-

thing interesting about Künzle-Ehlers geometrised Newtonian gravitation. In

particular, it is sometimes suggested that this theory lacks an absolute standard

of rotation. For example, Knox (2011, 266) claims that “the constraints on the

connection given by [metric compatibility and equations (NCT1)-(NCT3)] do

not sufficiently restrict the class of connections to provide either an absolute

standard of rotation or an absolute standard of acceleration.” However, from

the perspective of Weatherall’s standard of rotation, this is not strictly true.

Any Künzle-Ehlers connection is associated with a (unique) standard of rota-

tion just as much as any Newton-Cartan connection. Rather, the difference

between the two is that an arbitrary Künzle-Ehlers connection need not be ro-

17. Dewar (2016, 157) asks a similar question about the possibility of a “Maxwellian” ana-
logue of Künzle-Ehlers geometrised Newtonian gravitation.
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tationally equivalent to any flat connection.18 And as I take it, this is the salient

difference between Newton-Cartan theory and Künzle-Ehlers geometrised New-

tonian gravitation, and is what explains why the latter theory is not empirically

equivalent to standard Galilean gravitation.

This also leads us to a more general question about standards of rotation.

Weatherall (2016, 88) asks “are there different, essentially inequivalent ways of

characterising a standard of rotation?” The foregoing discussion suggests that

the answer is yes. On one view, any derivative operator ∇ is associated with an

absolute standard of rotation, since this is just the structure common to all those

derivative operators which agree with ∇, for arbitrary ηa, on their determina-

tions for ∇[aηb]. This is precisely the idea which is captured by Weatherall’s

definition. But there are other plausible ways of defining a standard of rota-

tion. For example, one might say that only derivative operators which commute

on spacelike vector fields are associated with an absolute standard of rotation.

Such a definition can be motivated by the idea that a unit timelike vector field

ξa is irrotational just in case we can parallel transport any connecting field for

ξa to another point on the same integral curve of ξa, and it remains parallel

to itself. Or, one might say that only those derivative operators which admit

irrotational unit timelike vector fields are associated with an absolute standard

of rotation.

But this need not tell against adopting Weatherall’s definition, at least as

a definition of some “generalised” standard of rotation.19 One motivation for

this approach is that it avoids reference to spacetime structure which we then

declare not to exist. Weatherall’s definition also ensures that any derivative

operator is associated with a unique standard of rotation, whereas if we adopt

one of the other definitions suggested above, we are forced to say that some

spacetimes have a connection but lack a standard of rotation. Since a standard

of rotation is supposed to be “less structure” than a connection, this appears to

be an advantage of Weatherall’s definition.

There is also another advantage. If we define a standard of rotation as an

18. In particular, it is not that Künzle-Ehlers connections do not admit any irrotational unit
timelike vector fields, as Knox (2011, 267) appears to suggest.
19. Indeed, a spacetime ⟨M, ta, hab⟩ equipped with Weatherall’s standard of rotation is es-

sentially what Teh (2018) takes to define a “proto-Maxwell” spacetime, for exactly this reason.
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equivalence classes of flat derivative operators, then this obscures the fact that

there are more general notions of a standard of rotation available. Meanwhile,

if we start with Weatherall’s definition, we can then discuss what additional

constraints, if any, might be needed.

5 Maxwell gravitation, vector relationism, and

Newton-Cartan theory

To finish (and as a partial illustration of what one can do once Newtonian grav-

itation theory has been formulated using Weatherall’s standard of rotation), I

turn to Wallace’s (2020) arguments concerning Saunders’s (2013) vector rela-

tionism and Newton-Cartan theory. Here, Wallace claims to show that “math-

ematically speaking, there is no real distinction between Newton-Cartan theory

[...] and vector relationism” (Wallace 2020, 24), and suggests that any differ-

ences between the two theories are partly an artefact of the awkwardness of

standard differential-geometric presentations of Maxwellian spacetime (Wallace

2020, 28). As a result, Wallace adheres to a coordinate-based presentation of

both theories in setting out his argument. My final aim here is to show that

with Maxwell gravitation in hand, the same argument can also be made from a

coordinate-free differential-geometric perspective.

Wallace’s (2020) discussion of vector relationism and Newton-Cartan the-

ory centres on the behaviour of dynamically isolated subsystems of particles

embedded in a larger universe – showing that within vector relationism, such

systems exhibit emergent inertial behaviour which can be idealised in terms of

test particles. This forms the basis of his argument that vector relationism and

Newton-Cartan theory are equivalent. When non-gravitational interactions van-

ish, the equations governing the relative acceleration vectors of infinitesimally

separated test particles can be written to take the same form as the (coordinate-

based) equation of geodesic deviation in Newton-Cartan theory, and thus, Wal-

lace claims, may equally well be interpreted as such (Wallace 2020, §8).

Wallace is not explicit about the standard of theoretical equivalence he is

working with here. But it is fairly straightforward to reconstruct from his re-
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marks the sort of criterion he may have in mind. Having recovered the Newton-

Cartan equation of geodesic deviation within vector relationism, Wallace claims

of the two theories that

both are built using Maxwellian spacetime as a background; both

have dynamics that can be expressed as a set of inertial trajecto-

ries defined by the matter distribution and in turn constraining the

matter distribution via a matter dynamics according to which ma-

terial particles follow those trajectories except when acted on by

non-gravitational forces. (Wallace 2020, 24)

Similarly, in his concluding remarks, Wallace argues that

there is essentially no difference between Newton-Cartan theory [...]

and Saunders’s relational version of Newtonian dynamics: at the

formal level, the latter can be reformulated as the former; at the

substantive level, the inertial structure of Saunders’s theory is well

defined and coincides with that defined by the Newton–Cartan con-

nection. (Wallace 2020, 28)

These comments suggest the following standard of theoretical equivalence: two

theories are equivalent just in case they have the same background spacetime

structure, and their central dynamical equations can be rewritten so as to take

the same form.20

The connection to our current framework is immediate. Given (NCT4), any

Newton-Cartan spacetime determines a unique flat derivative operator compat-

ible Maxwellian spacetime. And as Malament (2012, proposition 4.3.2) shows,

(NCT2) holds at a point p just in case for all geodesic reference frames ξa,

the average radial acceleration of ξa at p is equal to −4/3πρ. But this, to-

gether with (NCT1), entails (MG2). The only difference, as far as this pair

of equations is concerned, is the interpretation of (MG2) – in Newton-Cartan

20. Why only the central dynamical equations? Wallace does not explicitly consider all the
equations of Newton-Cartan theory in his comparison with vector relationism, and as we will
see in section 6, not all the equations of Maxwell gravitation and Newton-Cartan theory (or
vector relationism and Newton-Cartan theory, for that matter) can be written so as to appear
mathematically identical.
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theory, the −4/3πρ term is naturally understood as a manifestation of geodesic

deviation in curved spacetime, whereas in Maxwell gravitation it is not.

However, in order to make the link to Wallace’s argument precise, we need to

say something about the relationship between Maxwell gravitation and vector

relationism. I will begin by considering Wallace’s (2020, 8) claim that vector

relationism should also be thought of as a theory set on Maxwellian spacetime.

Saunders (2013) presents vector relationism as a theory of the displacement

vectors between point particles, formulated with reference to some Maxwellian

coordinate system. Within this framework, the dynamics are specified by the

following pair of equations:

rij = Xi −Xj (VR1)

d2rij
dt2

=
1

mi

∑
k ̸=i

Fik − 1

mj

∑
k ̸=j

Fjk, (VR2)

where Xi(t) denotes the position of particle i at time t with respect to such a

coordinate system, mi its mass, and the Fij denote interparticle forces. These

are taken to be antisymmetric in i and j (this is the import of Newton’s third

law) and functions of rij only. The equations (VR) are invariant under the

Maxwell group of symmetries – transformations of the form

t → t+ τ (13a)

xi(t) → Ri
jx

j(t) + ai(t), (13b)

where Ri
j is an arbitrary rotation matrix, ai(t) an arbitrary vector-valued func-

tion of time, and τ an arbitrary scalar.

To argue that Maxwellian spacetime is the appropriate setting for vector

relationism, Wallace then makes tacit appeal to Earman’s (1989, 46) “adequacy

conditions” on the construction of spacetime theories.21 These demand that

there be a match between the spacetime and dynamical symmetries of a theory,

in the following sense:

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .

21. For recent discussion of the status of these conditions, see Myrvold (2019).
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SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

It is then straightforward to argue that the automorphism group of any flat

derivative operator compatible Maxwellian spacetime ⟨M, ta, h
ab,⟳⟩ is, indeed,

the Maxwell group. These transformations must preserve the spatial metric, so

act rigidly on each spacelike hypersurface. Since the spacetime is flat derivative

operator compatible, they must preserve the property that parallel transport of

spacelike vectors, relative to any compatible connection, is path independent.

And they must preserve the temporal metric. This is sufficient to restrict the

spacetime symmetries to the Maxwell group. Hence, Wallace claims that Saun-

ders’s theory is naturally set on (flat derivative operator compatible) Maxwellian

spacetime.

We can then connect vector relationism to Maxwell gravitation via the equa-

tions (MG) and (VR). First, following Wallace (2020, 11), we can decompose

the forces in (VR2) into “universal” and “non-universal” components – charac-

terised, respectively by whether the ratio qi/mi is constant for that force, where

mi is the inertial mass of a particle and qi its charge. For the case of only

potential forces, (VR) may then be written as

d2Xi

dt2
− d2Xj

dt2
= −

∑
k ̸=i

∇ϕ(Xi −Xk) +
∑
k ̸=j

∇ϕ(Xj −Xk)

− qi
mi

∑
k ̸=i

∇V (Xi −Xk) +
qj
mj

∑
k ̸=j

∇V (Xj −Xk), (14)

where ϕ is the potential associated with the universal force, and V the poten-

tial for the non-universal force (there could be multiple such; I omit them for

simplicity). Now consider the continuum limit, where point-particle trajectories

are parametrised by some continuous spatial parameter x. In this limit, (14)

becomes

∂i

(
d2X(x, t)

dt2

)
δxi = −∂i

∫
d3x′∇ϕ(x− x′, t)δxi

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∇V (x− x′, t)δxi,

where ρ(x, t) is the mass density, and ρ̃(x, t) the charge density associated with
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the non-universal interaction, so that

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∫
d3x′(∂jϕ(x− x′, t) + ρ̃(x, t)ρ−1(x, t)∂jV (x− x′, t)).

(15)

When ϕ is the familiar gravitational potential, we have

ϕ(x− x′, t) =
ρ(x′, t)

|x− x′|
,

so that

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∫
d3x′ρ(x′, t)∂j(|x− x′|)−1

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∂jV (x− x′, t). (16)

We have seen that the appropriate spacetime setting for vector relationism

is a flat derivative operator compatible Maxwellian spacetime, ⟨M, ta, h
ab,⟳⟩.

Since we can always (if M is simply connected) find a globally defined scalar

field t such that dat = ta, we can then set up an arbitrary Maxwellian coordinate

system xµ on M as follows: we take xµ = (t, xi), where t is as above and the xi

are three smooth scalar fields such that the vector fields (∂/∂xi)a are spacelike,

orthonormal, and twist-free (with respect to ⟳).22

Let xµ be such a coordinate system, and let ∇ be the coordinate derivative

operator onM canonically associated with xµ.23 ∇ is flat (since it is a coordinate

derivative operator); it is compatible with ta by construction, and is compatible

with hab since the (∂/∂xi)a are spacelike and orthonormal. Moreover, since the

(∂/∂xµ)a are all twist-free with respect to ⟳ and ⟳ is flat derivative operator

compatible, ∇ is also compatible with ⟳.24 Now consider a smooth unit time-

like vector field ξa on M . The integral curves ξ of any such field can always

be parametrised by their temporal length, which differs from t by at most an

22. If M is not simply connected then the same analysis goes through locally; I suppress it
here for reasons of brevity.
23. That is, the unique derivative operator such that all the ∇a(∂/∂xµ)b = 0.
24. Note that (∂/∂t)a is twist-free by construction, since ta is closed.
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arbitrary additive constant. Then on any such curve ξ, we have

ξa =
dxµ(ξ(t))

dt

(
∂

∂xµ

)a

so that, since ∇ is flat

ξn∇nξ
a =

d2xµ(ξ(t))

dt2

(
∂

∂xµ

)a

.

Clearly, the only non-vanishing d2xµ/dt2 are the d2xi/dt2. Moreover, if σab is

a (symmetric) tensor field which is spacelike in both indices, then we can write

Dnσ
na = ∂µσ

µν

(
∂

∂xν

)a

where the only non-vanishing ∂µσ
µν are the ∂µσ

µi. If we now take ξa to rep-

resent the four velocity field of a fluid, and σab the stress tensor for that fluid,

then these suggest the following identifications:

ξn∇nξ
m(dmxi) =

d2Xi(x, t)

dt2
(17a)

ρ−1Dnσ
nm(dmxi) =

∫
d3x′ρ̃(x, t)ρ−1(x, t)∂iV (x− x′, t). (17b)

Why? Take (17a). We are looking for something with which to identify the

(non-zero) components of the acceleration vector field of a fluid ξn∇nξ
m(dmxi)

with respect to the coordinate derivative operator canonically associated with

some Maxwellian coordinate system xµ. Not only is this precisely what the

d2Xi(x, t)/dt2 represent, we have also seen that when ∇ is such a derivative

operator, the ξn∇nξ
m(dmxi) = d2xi(ξ(t))/dt2 take this same form. Now con-

sider (17b). The left hand side of this equation are the (non-zero) components

of a spacelike vector field which is supposed to describe the acceleration due to

non-gravitational interactions – think of (the geometrised version of) Newton’s

second law

ρξn∇nξ
a = −∇nσ

na. (NII)

And this is precisely the role of the term on the right hand side. We can then
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write (16) as

∇r(ξ
n∇nξ

m)(dmxj)

(
∂

∂xi

)r

= −∂i

∫
d3x′ρ(x′, t)∂j(|x− x′|)−1

−Dr(ρ
−1Dnσ

nm)(dmxj)

(
∂

∂xi

)r

. (19)

Now consider the case where i = j. In this case, carrying out the differentiation

in the right hand side of (19) gives

∇m(ξn∇nξ
m) = −4πρ−Dm(ρ−1Dnσ

nm)

where we have used the fact that ξn∇nξ
a and ρ−1Dnσ

na are both spacelike.

This immediately yields (MG2). Meanwhile, if we take i ̸= j in (19), then

differentiating and raising indices we have

∇r(ξn∇nξ
m)(dmxj)(drx

i) =

∫
d3x′ρ(x′, t)

(
3
(xj − x′j)(xi − x′i)

|x− x′|5

)
−Dr(ρ−1Dnσ

nm)(dmxj)(drx
i),

so that, since ⟳a (ξn∇nξ
b) is spacelike in both indices,

∇a(ξn∇nξ
b)−∇b(ξn∇nξ

a) = −Da(ρ−1Dnσ
nb) +Db(ρ−1Dnσ

na),

which, given the continuity equation (MG1) and the fact that ∇ is flat by

construction, entails (MG3) (see the proof of proposition 2). For (MG1) itself,

note that in Newtonian point particle mechanics, mass is transported only by

particles along their (continuous) worldlines, and is a fortiori locally conserved.

Conversely, it is also possible to recover (VR) from (MG). Given the iden-

tifications (17), we can use (MG) to derive expressions for ∂i(d
2Xi/dt2) and

∂[i(d2Xj]/dt2) in any Maxwellian coordinate system xµ on M . These are suffi-

cient to specify (15) uniquely, providing that ∂i(d
2Xi/dt2) and ∂[i(d2Xj]/dt2)

fall off at least as 1/r2 at spatial infinity. If we then specialise to the case

of a point-particle distribution (which justifies making the above assumptions

about d2Xi/dt2), this gives ϕ(x − x′, t) → ϕ(x − x′, t)
∑

i δ
3(x′ − Xi(t)) and
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analogously for V . Hence,

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∑
k

∂jϕ(x−Xk, t)− ∂i
∑
k

ρ̃ρ−1∂jV (x−Xk, t). (20)

Since ρ̃ρ−1 =
∑

i qi/miδ
3(x −Xi(t)), (14) then follows from integrating along

any path between Xi(t) and Xj(t).

This suggests a particularly close relationship between Maxwell gravitation

and vector relationism. Both are set on a flat derivative operator compatible

Maxwellian spacetime. Moreover, the equations of Maxwell gravitation emerge

naturally in the continuum limit of vector relationism, whilst vector relationism

is precisely what results from restricting Maxwell gravitation to the point par-

ticle sector. Since Wallace’s arguments also involve the limit of infinitesimally-

separated particles (Wallace 2020, 23), one would therefore expect them to carry

over once we move from vector relationism to Maxwell gravitation.

Before turning to discuss Wallace’s claims in detail, however, it is worth

pausing briefly on some other immediate consequences of this relationship be-

tween Maxwell gravitation and vector relationism. One is that it suggests a

particularly elegant way of interpreting the equations (MG2) and (MG3) – as

encoding the radial and transverse components of the relative acceleration vec-

tor field between neighbouring fluid elements. This, in turn, provides a sense

in which Maxwell gravitation, like Saunders’s theory, might be thought of as

one which is fundamentally concerned with relative accelerations. The other is

that this lends additional support to Dewar’s (2018, 268) claim that “[Maxwell-

Dewar] gravitation [...] represents the natural extension of Saunders’s remarks

to the field-theoretic context.” Dewar argues for this on the basis that Maxwell

gravitation, like vector relationism, collapses the distinction between models

of Newton-Cartan theory which disagree only as to the connection in regions

where ρ = 0. However, the fact that Maxwell gravitation emerges naturally in

the continuum limit of vector relationism, and vice versa, provides a more direct

route to this conclusion.
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6 UnderstandingWallace from a coordinate-free

perspective

To make the link to Wallace’s argument, it is instructive to begin by comparing

the equations of Maxwell gravitation with those of Newton-Cartan theory. In

particular, let ⟨M, ta, h
ab,⟳⟩ be a Maxwellian spacetime. Then for any deriva-

tive operator ∇ compatible with ⟨M, ta, h
ab,⟳⟩, the following implications hold

(illustrated in figure 1).

(NII)

(NCT3) (NCT4) (NCT2) (NCT1)

ρξn∇nξ
a = −∇nσ

na

(NII)

∇n(ρξ
n) = 0

flat derivative
operator

compatibility

(MG3) (MG2) (MG1)

(NII) (NII)(NII)

Figure 1: Relationships between the equations of Maxwell gravitation and
Newton-Cartan theory. Labelled arrows are to be understood as in the scope of
a conditional – so, for example, the first arrow from the left says that if (NII)
holds, then (NCT3) implies (MG3)

There are several features of figure 1 worth noting. First, whilst (NCT4) is

equivalent to flat derivative operator compatibility, there is no similarly sharp

correspondence between (NCT3) and (MG3). (NCT3) and (NII) jointly imply

(MG3), but (MG3) and (NII) do not imply (NCT3). This points to the fact that

the flat derivative operator compatibility condition plays double duty in relating

the two theories. From (MG3) and (NII) we can infer that ξnξm(Rc a
n m −

Ra c
m n) = 0; the flat derivative operator compatibility condition allows us to

further infer from this that ηn(Rc a
n m − Ra c

m n) = 0 for arbitrary ηa, which

yields (NCT3).25

25. We know from propositions 4.2.4 and 4.3.1 of Malament (2012) that a Maxwellian space-
time is flat derivative operator compatible just in case parallel transport of spacelike vectors
is at least locally path-independent. The idea is to appeal to the fact that an arbitrary vector
field ηa can be written as ηa = αξa + σa for some scalar field α and spacelike vector field
σa, rewrite the expression ξnηm(Rc a

n m − Ra c
m n) in terms of ∇, and then use that, since
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Secondly, although (NCT2) and (MG2) are not in general equivalent, they

are equivalent on assumption of (NII) and flat derivative operator compatibil-

ity. Likewise, given (NII), flat derivative operator compatibility and (MG3) are

equivalent to (NCT4) and (NCT3). As such, once (NII) has been fixed, we can

then move freely between the remaining pairs of equations.

Now recall that for Wallace, what underwrites the claim that vector relation-

ism and Newton-Cartan theory are equivalent is that for an idealised congruence

of test particle trajectories, the equations (VR) can be rewritten so as to take

the same form as the equation of geodesic deviation in Newton-Cartan theory.

But we have just seen that this has an obvious analogy for Maxwell gravita-

tion and Newton-Cartan theory: by replacing (NCT2) with the expression for

the average radial acceleration (MG2), we can reformulate the two theories so

that their central dynamical equations appear mathematically identical. Within

Newton-Cartan theory, (MG2) encodes the relative acceleration of neighbouring

fluid elements due to both spacetime curvature and non-gravitational interac-

tions, so represents the natural generalisation of Wallace’s geodesic deviation

equation to non-test matter. And just as in Wallace’s example, the resulting

pair of equations differ at most as to whether they are interpreted as describing

the influence of universal (i.e. gravitational) forces, or geodesic deviation in

curved spacetime.

Moreover, once we move from vector relationism to Maxwell gravitation, the

case for regarding this disagreement as merely verbal appears even stronger.

After all, in vector relationism, the gravitational field is explicitly represented

elsewhere in the formalism. But in Maxwell gravitation, we do not even have

that. Of course, we are always free to ascribe the −4/3πρ term in (MG2) to

“the gravitational field” – but without some further indication of what this

is supposed to be, the gravitational field is simply that whereby neighbouring

test particles have non-zero relative acceleration. And since this is precisely

the role of the Newton-Cartan spacetime curvature, the difference between the

two begins to look insubstantive. As such, we seem to have in the relationship

between (MG2) and (NCT2) a coordinate-free realisation of Wallace’s argument.

parallel transport of spacelike vectors is path-independent, ∇ commutes on spacelike vector
fields. Repeating this argument twice gives the desired result.
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However, we can also say a little more about this reasoning. Given the

relationships illustrated in figure 1, not only are we free to replace (NCT2) with

(MG2) in Newton-Cartan theory, we can also replace (NCT3) with (MG3),

(NCT4) with the flat derivative operator compatibility condition, and rewrite

(NCT1) as the conjunction of (NII) and (MG1). From this perspective, the only

difference between these sets of equations is the presence of (NII) in Newton-

Cartan theory, whose role is essentially to provide a (partial) gauge fixing of

the connection. This provides a further sense in which Wallace’s argument is

strengthened when we move from vector relationism to Maxwell gravitation –

all the equations of Newton-Cartan theory, with the exception of (NII), can be

written so as to appear mathematically identical to the equations of Maxwell

gravitation.26

All this serves to blunt the force of Wallace’s (2019, 134; 2020, 28) recent

claims that Maxwellian spacetime is not naturally characterised in coordinate-

free differential geometric terms, and that this is partly what obscures the sim-

ilarities between Maxwell gravitation and Newton-Cartan theory. Rather, we

have seen that once cast in terms of Weatherall’s standard of rotation, the

formal similarities which Wallace discusses re-emerge from a coordinate-free

perspective. As a result, one might suspect that the problem lies not with

coordinate-free differential geometry per se, but with formulating a theory in

terms of geometric objects which cannot be defined from the structure it ascribes

to the world.27

But it does suggest an alternative moral. Both Maxwell and Maxwell-Dewar

gravitation are formulated in the language of coordinate-free differential geom-

etry. But the fact that a theory has been formulated in a coordinate-free way

does not automatically mean that this is a perspicuous way of presenting that

theory. When working with coordinate-free differential geometry, as ever, it is

important to be attentive to this possibility.

26. Note that this also highlights why it is that Newton-Cartan theory cannot be the con-
tinuum limit of vector relationism. If one assumes that the dynamics for test particles in
Newton-Cartan theory are given by the geodesic equation, then it is possible to show that
in both Newton-Cartan theory and the continuum limit of vector relationism, test particles
satisfy the equation of geodesic deviation. But precisely what one cannot recover in the
continuum limit of vector relationism is the geodesic equation itself.
27. For an extended discussion of other possible issues relating to this in the context of the

interpretation vs. motivation and reduction vs. sophistication debates, see Jacobs (2022).
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7 Conclusions

I have provided an explicit presentation of a theory of Newtonian gravita-

tion, which is formulated in a coordinate-free way, using just the structure of

Maxwellian spacetime. Moreover, I hope to have shown that this theory of New-

tonian gravitation is not “awkward” – it does not make reference to structure

which we then declare not to exist, and its equations can be given sensible phys-

ical interpretations. This theory also makes apparent the similarities between

vector relationism and Newton-Cartan theory which Wallace (2020) discusses

from a coordinate-based perspective. Along the way, I have made some remarks

of independent interest about Künzle-Ehlers geometrised Newtonian gravita-

tion, vector relationism, and standards of rotation in general.

This is sufficient to address the concerns raised by Weatherall, Wallace, and

others about previous attempts to formulate a theory of Newtonian gravitation

set on Maxwellian spacetime. It also provides a useful basis for future work.

One would like to consider what light, if any, this sheds on the question of

whether Maxwell gravitation is equivalent to Newton-Cartan theory. A proper

treatment of that issue will have to wait for another time.
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