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We complete a non-relativistic geometric trinity of gravity, by (a) taking the non-relativistic limit
of the well-known geometric trinity of gravity, and (b) converting the curvature degrees of freedom
of Newton-Cartan theory to purely non-metric degrees of freedom.

I. INTRODUCTION

It has become increasingly well-known that general rel-
ativity (GR) constitutes but one vertex in a ‘geometric
trinity’ of gravitational theories [1]. The other two ver-
tices of this trinity are ‘teleparallel gravity’ (TPG), in
which the curvature degrees of freedom of GR are traded
for spacetime torsion, and ‘symmetric teleparallel grav-
ity’ (STGR), in which the curvature degrees of freedom of
GR (and torsion degrees of freedom of TPG) are traded
for spacetime non-metricity. The actions of all three the-
ories are equivalent up to a total divergence term—in this
sense, all three theories are dynamically equivalent.

In a parallel vein, it has been known since Trautman in
the 1960s [2] that standard Newtonian gravity (NGT) is
equivalent to a formulation of non-relativistic gravity in
which, as with GR, gravitational effects are again a man-
ifestation of spacetime curvature: this theory is known as
Newton-Cartan theory (NCT), and was first developed in
the 1920s by Cartan and Friedrichs: see [3, 4] for the orig-
inal sources, and [5] for a recent review of non-relativistic
gravity. In [6], it was shown that there is a precise sense
in which NGT can be understood as the teleparallelised
version of NCT, in which the gravitational potential of
flat-spacetime NGT can be understood as a manifesta-
tion of the ‘mass torsion’ which arises once one gauges
the Bargmann algebra (on which see e.g. [7]). Adding
to this, it was shown recently in [8] that NGT can be
secured as the non-relativistic limit of TPG using a 1/c
expansion of the TPG action (in [6] the same result was
shown using null reduction), just as NCT is by now well-
known to be the non-relativistic limit of GR (on which
see [5] and references therein).

These results invite the following question: can one
complete a non-relativistic geometric trinity, by con-
structing a ‘purely non-metric’ theory equivalent to both
NGT (understood as a torsionful theory) and NCT (un-
derstood as a theory with spacetime curvature)? In
this article, we answer this question in the affirmative—
indeed, we triangulate a non-relativistic version of New-
tonian gravity (which we dub ‘symmetric Newtonian
gravity’, shortened to SNGT) in two ways: (a) by tak-
ing the non-relativistic limit of STGR (using exactly the
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same 1/c expansion found in [8]), and (b) by proving
the analogues of the Trautman geometrisation/recovery
theorems (see [9, Ch. 4]) relating NCT and SNGT.
The structure of this article is as follows. In §II,

we review the essential details of the geometric trin-
ity of gravity; in §III, we construct SNGT by taking
a non-relativistic limit of STGR; in §IV, we state and
prove geometrisation/recovery theorems relating NCT
and SNGT. We close in §V with some discussion of the
upshots of this work.

II. BACKGROUND: THE GEOMETRIC
TRINITY

The bulk of this section constitutes a review of the rel-
ativistic geometric trinity of gravity (§II A). In addition,
we review briefly the state-of-play regarding geometric
reformulations of non-relativistic gravity (§II B).

A. Relativistic Gravity

Spacetime theories are typically formulated in terms of
a metric tensor gµν and an affine connection Γα

µν . General
relativity (GR) is of course the paradigmatic theory of
gravity and makes use of the Levi-Civita connection, with
components{

α
µν

}
:=

1

2
gαλ (gλν,µ + gµλ,ν − gµν,λ) , (1)

which is the unique connection that is compatible with
the metric and torsion-free. The metric-compatibility
condition is given by ∇αgµν = 0 and the torsion-free con-
dition is given by Γα

[µν] = 0 [10, Ch. 3]. Famously, GR

describes gravity as a manifestation of spacetime curva-
ture, as encoded in the Riemann tensor, which has com-
ponents

Rα
βµν(Γ) := ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ .
(2)

Spacetime curvature measures the rotation of a vector
when it is parallel transported along a closed curve.
One can alter or otherwise relax the above assumptions

in order to construct spacetime theories that manifest
torsion and/or non-metricity. Torsion is given by the
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antisymmetric part of the connection

Tα
µν := 2Γα

[µν] (3)

and can be thought of as a measure of the non-closure of
the parallelogram formed by two vectors being parallel
transported along each other. Non-metricity is given by
the non-vanishing of the covariant derivative of the metric
tensor

Qαµν := ∇αgµν (4)

and can be thought of as a measure of how the length of
a vector changes when parallel transported.

We can thus categorize spacetimes as

1. metric (i.e., Qαµν(Γ) = 0)

2. torsionless (i.e., Tα
µν (Γ) = 0)

3. flat (i.e., Rα
βµν(Γ) = 0)

As we have seen, GR is a spacetime theory that is metric
and torsionless but non-flat as the Levi-Civita connec-
tion possesses curvature. In this article, we will also be
concerned with two other spacetime theories: ‘telepar-
allel gravity’ (TPG) and ‘symmetric teleparallel gravity’
(STGR). TPG spacetimes are metric and flat but pos-
sess torsion; STGR spacetimes are torsionless and flat
but possess non-metricity. Both TPG and STGR are dy-
namically equivalent to GR, in the sense that the actions
of all three theories are equivalent up to total divergence
terms; thereby, the theories are capable of modelling the
same empirical phenomena, and constitute a ‘geometric
trinity’ of gravity—see [1, 11, 12] for recent discussions.

Curvature, torsion, and non-metricity are all geomet-
ric properties of an affine connection which can, in full
generality, be decomposed in the following way [13]:

Γα
µν =

{
α
µν

}
+Kα

µν + Lα
µν , (5)

where

Kα
µν :=

1

2
Tα

µν + T α
(µ ν) (6)

is referred to as the ‘contorsion tensor’, and

Lα
µν :=

1

2
Qα

µν −Q α
(µ ν) (7)

is referred to as the ‘distortion tensor’. We can use (5)
to facilitate translations between different spacetime the-
ories with different connections (and associated differ-
ent geometrical properties). For example, we can find
GR’s torsionful and non-metric equivalents by taking the
expressions for the Riemann curvature and Ricci scalar
in GR in terms of the Levi-Civita connection, and re-
expressing these in terms of the ‘Weitzenböck’ connection

of TPG or the non-metricity connection of STGR. Con-
sider that we can express a generic Riemann curvature
tensor R̂α

βµν as [14]:

R̂α
βµν = Rα

βµν +∇µM
α
νβ −∇νM

α
µβ

+Mγ
νβM

α
µγ −Mγ

µβM
α
νγ ,

(8)

where Rα
βµν is the standard Riemann tensor from the

Levi-Civita connection and Mα
µν := Kα

µν + Lα
µν .

One can choose to work with TPG and the contorsion
tensor (Kα

µν ̸= 0 and Lα
µν = 0) or with STGR and

the distorsion tensor (Kα
µν = 0 and Lα

µν ̸= 0). Upon
index contraction, one constructs the curvature scalar
and finds:

−R = T + 2∇αT
λα

λ = Q+∇α

(
Qα λ

λ −Qλ α
λ

)
, (9)

where R is the scalar curvature of the Levi-Civita connec-
tion, T is the scalar torsion of the TPG connection, and
Q is the non-metricity scalar of the STGR connection
[1]. Importantly, this shows that the scalar expressions
of curvature, torsion, and non-metricity are equivalent
up to a boundary term.1 This justifies the above claim
that GR, TPG, and STGR can be formulated in terms
of dynamically equivalent Lagrangian expressions.
While these particular theories are empirically equiv-

alent to each other, there are a number of reasons why
physicists are interested in investigating such alternative
geometric representations. One reason has to do with
the fact that these theories possess different gauge struc-
ture. In particular, TPG and STGR can be understood
as gauge theories of translations [18, 19], which allows one
to formulate the theories in a language more closely re-
sembling other fundamental interactions and potentially
suggests different routes towards quatisation. Another
reason can be found in resolving cosmological puzzles.
Despite the incredible successes of the current ΛCDM
model, there are a number of unresolved issues that are
the subject of heated debate, including our modeling of
both early and late time expansion of the universe [20–
23]. While the theories within the trinity are indeed
equivalent, their geometric structures based on curva-
ture, torsion, and non-metricity suggest different routes
to modifying gravity. Indeed, the equivalence is broken
when we move to modifications that consist in higher or-
der scalar invariants of the relevant geometric quantities.
That is, f(R), f(T ), and f(Q) theories are not equiva-
lent to each other, and this has motivated exploring this
theory space as possible novel realisations of dark energy,
inflation, and bouncing cosmologies [24–27]

B. Non-Relativistic Gravity

So much by way of background on the relativistic geo-
metric trinity of gravity; what is the current state-of-the-

1 See [15–17] for some discussions concerning the role and signifi-
cance of these boundary terms.
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FIG. 1. The geometric trinity and its (conjectured) non-
relativistic limit.

art with respect to non-relativistic physics? It has been
known since the 1960s that standard, flat-spacetime New-
tonian gravity (NGT) is equivalent to a curved space-
time theory known as ‘Newton-Cartan theory’ (NCT);
this equivalence is codified in the Trautman geometri-
sation and recovery theorems [9, Ch. 4]. NCT (and
non-relativistic gravity more generally) is still a very ac-
tive field of research as it has found important applica-
tions in non-relativistic holography [28], quantum gravity
[29, 30], and condensed matter systems [7, 31–33]. What
constitutes much more recent knowledge is that it is pos-
sible to understand NGT as the teleparallel equivalent of
NCT, in the sense that the gravitational field Gµ := dµφ
in the theory can be understood as the torsion of the
mass gauge field mµ obtained by gauging the Bargmann
algebra; moreover, NGT can be obtained by taking a 1/c
expansion of TPG [8].

This invites the following questions: (a) can one con-
struct a purely non-metric non-relativistic theory of grav-
ity by taking a 1/c expansion of STGR, and (b) can one
prove Trautman-style geometrisation and recovery theo-
rems relating this theory to NCT? In the remainder of
this article, we answer in the affirmative both (a) and (b);
thereby, we fill in the dotted lines in the Figure 1, and
so complete for the fist time a non-relativistic geometric
trinity of gravity.

III. THE NON-RELATIVISTIC LIMIT OF STGR

We begin by taking the non-relativistic limit of STGR
via a 1/c expansion—this will give us a non-relativistic
theory of gravity the degrees of freedom of which are
purely non-metric. Our non-relativistic limit begins with
an expansion of the relativistic objects in terms of powers
of c. As there is no speed limit in non-relativistic physics,
one takes c→ ∞, which can be thought of as ‘flattening’
the null cones at all spacetime points. Essentially, “in the
limit the cones are all tangent to a family of hypersur-
faces, each of which represents “space” at a given “time”,
which corresponds to the standard Newtonian picture of
spacetime” [34].

More precisely, consider (using adapted coordinates at

some spacetime point) the metric tensor can be written

gµν = diag
(
+1,−1/c2,−1/c2,−1/c2

)
(10)

while its inverse can be written

gµν = diag
(
+1,−c2,−c2,−c2

)
. (11)

Upon taking the c → ∞ limit, we have that gµν →
diag (+1, 0, 0, 0) and gµν/c2 → diag (0,−1,−1,−1).
Thus, under this limit, the metric tensor and its inverse
(appropriately scaled by c, per the above) become degen-
erate, splitting into the spatial metric hµν and temporal
metric tµν = tµtν of a non-relativistic spacetime (here,
we assume temporal orientability—see [9, Ch. 4]).

In the case of taking the non-relativistic limit of TPG,
the prescription followed in [8] is this: (a) write the Ein-
stein equations of GR in terms of the TPG connection
(and associated torsion); (b) take the non-relativistic
limit—construed in the above way—of that equation.
Following the same prescription for the non-relativistic
limit of STGR, we first express the Einstein equations as

−
n

∇αL
α
µν +

n

∇µL
α
να − Lα

µβL
β
αν + Lα

αβL
β
µν

=
8πG

c4

(
Tµν +

1

2
Rgµν

)
,

(12)

where the LHS is the Ricci tensor of the Levi-Civita
connection expressed terms of the distorsion and the
non-metric connection. Throughout this paper, we will

denote the curvature based connection as
c

∇ and the

non-metricity based connection as
n

∇. Taking the non-
relativistic limit of the RHS gives [8, p. 20]:

8πG

c4

(
Tµν +

1

2
Rgµν

)
→ 4πGρtµtν . (13)

In order to take the non-relativistic limit of the LHS,
we now specialise to the case of ‘Weylian’ non-metricity,
of the form Qαµν = σαgµν—we will remark on this fur-
ther in §V. (In brief: without this specialisation, one can-
not use the known behaviour of the metric tensor under
the limit to fix the behaviour of the non-metricity ten-
sor in that limit.) In the non-relativistic limit, the non-
metricity and distortion tensors become

Qαµν → σαtµtν , Lα
µν → −Q α

(µ ν) = −σ(µδ
α
ν) , (14)

where σα is a nowhere vanishing 1-form such that
σβh

αβ = 0. This follows because 1
2Q

α
µν vanishes in the

limit, which is equivalent to σβh
αβtµtν = 0.

Taking the non-relativistic limit of (12) then leads to:

− 3

2

n

∇µσν +
3

4
σµσν = 4πGρtµtν . (15)

These are the field equations of STGR in the non-
relativistic limit, expressing gravity in terms of non-
metricity—we take them to be the field equations of
SNGT.
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IV. THE NON-RELATIVISTIC TRINITY OF
GRAVITY

Having taken the non-relativistic limit of STGR, we
now demonstrate that the non-relativistic geometric trin-
ity of gravity functions in an analogous manner to the
relativistic geometric trinity, in the sense that it is pos-
sible to ‘translate’ between the geometrical structures of
each vertex of the trinity via Trautman-style geometrisa-
tion/recovery theorems. As a starting point, we have
standard NCT with degenerate temporal and spatial

metrics. The connection
c

∇ is metric compatible:

c

∇αtµ = 0,
c

∇αh
µν = 0.

(16)

Furthermore, as in GR, gravity is a manifestation
of spacetime curvature, so that test bodies traverse
geodesics of the curved connection:

ξλ
c

∇λξ
α = 0. (17)

However, we also know that in the relativistic case we
have an empirically equivalent theory to GR (namely,
STGR) which uses a non-metric but flat connection. By
analogy, then, we consider a non-metric non-relativistic

connection
n

∇:

n

∇αtµ = σαtµ,
n

∇αh
µν = σαh

µν ,
(18)

where σα is a 1-form such that hµασα = 0. Curiously,
the particular scaling of hµν will not much matter for our
purposes, since the geometrised Poisson equation of NCT
does not feature hµν (for further discussion on the scal-
ings of hµν and tµ, see [35]). In addition, we assume that
σα is exact, i.e. such that σα = dαλ where λ is some scalar
function and d denotes the exterior derivative. This can
be motivated by considering some conformally rescaled

t̄µ := ηtµ compatible with
n

∇—we then have:

n

∇ν t̄µ = (
n

∇νη)tµ + η
n

∇νtµ = 0 (19)

Defining

σα := dαlnη =: dαλ (20)

justifies our assumption. Finally, from hµασα = 0, it
follows that

σα = κtα (21)

for some scalar function κ [9, p. 253]; one can also show
that κ is spatially constant [35, p. 1421].
As can be verified straightforwardly, the difference ten-

sor between
c

∇ and
n

∇ is

Uα
µν := σ(µδ

α
ν) , (22)

which can also be seen from the non-relativistic limit
taken in (14). Given that our task is to construct an
equivalent theory to NCT which expresses gravity using
purely non-metric degrees of freedom, we move between
the connections in the geodesic equation as follows:

ξλ
c

∇λξ
α = ξλ

n

∇λξ
α − Uα

ρλ ξ
ρξλ = 0. (23)

We can now compute the Ricci from this new connec-
tion using (8):

n

Rα
βµν =

c

Rα
βµν + 2

c

∇[νU
α
µ]β + 2Uλ

β[νU
α
µ]λ. (24)

Following straightforward computations and contrac-
tions, we obtain:

c

Rµν = −3

2

c

∇µσν − 3

4
σµσν , (25)

because of course
n

Rα
µνβ = 0 as this spacetime is flat.

Now we have

c

Rµν = 4πρtµtν , (26)

which is the familiar dynamical equation of NCT; to-
gether with (25), this yields:

4πρtµtν = −3

2

c

∇µσν − 3

4
σµσν (27)

which is, of course, equivalent to (15) because we have
that

(
n

∇µ −
c

∇µ)σν = σµσν . (28)

Reassuringly, therefore, one obtains the same dynamics
for SNGT whether one proceeds via (a) taking a non-
relativistic limit of STGR or (b) converting the connec-
tion of NCT to one manifesting pure non-metricity.
In a sense, our job is done. Indeed, what we have

just presented is, in effect, a ‘recovery theorem’-type re-
sult, mapping models of NCT to those of SNGT. This
is correct—although it is worth noting a disanalogy with
the recovery theorem relating NCT to NGT (on which
see [9, Ch. 4]). In that case, one finds that the map-
ping one-to-many, in the sense that a given NCT model

(M, tµ, h
µν ,

c

∇, ρ) will map to an orbit of NGT mod-
els (M, tµ, h

µν ,∇′, φ, ρ), parameterised by the ‘Trautman
symmetry’ (see e.g. [36, p. 205]):

c

∇ 7→ ∇′ =

(
c

∇, tµtν∇λψ

)
,

φ 7→ φ′ = φ+ ψ.

(29)

One might, therefore, wonder whether the mapping from
NCT to SNGT is likewise one-to-many. But what would
the relevant gauge orbits be in this case? By analogy with
the well-known ‘Weyl symmetry’ of Weyl geometries (see
e.g. [37, §3]), which likewise manifest non-metricity of the
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form Qµνλ = σµgνλ, one might postulate the following
Weyl-type symmetry for SNGT:

tµ 7→ e−f tµ,

hµν 7→ e−fhµν ,

σα 7→ σα −
n

∇αf.

(30)

While these transformations are indeed symmetries of the
kinematical conditions (18), an elementary computation
confirms that they are not dynamical symmetries of (15).
Thus, if there is indeed a ‘gauge orbit’ in the recovered
theory SNGT, (30) cannot be it. In any case, one can
prove a Trautman-style recovery theorem relating NCT
and SNGT. We do so now, in the style found in [9, Ch. 4].

Proposition 1 Let (M, ta, h
ab,

n

∇) be a time-orientable
classical spacetime where tµ and hµν are orthogonal and
n

∇ is flat (
n

Rα
µνβ = 0), but

n

∇ is not compatible with the

metrics tµ and hµν such that
n

∇αtµ = σαtµ and
n

∇αh
µν =

σαh
µν . Let σµ and ρ be smooth fields on M satisfying

− 3
2

n

∇µσν +
3
4σµσν = 4πρtµtν . Let

c

∇ = (
n

∇, Uα
µν ), where

the difference tensor Uα
µν := −σ(µδ

α
ν). Then all the

following hold.

(G1) (M, ta, h
ab,

c

∇) is a classical spacetime in which the

connection
c

∇ is compatible with the metrics tµ and
hµν and the metrics are orthogonal.

(G2)
c

∇ is the unique derivative operator onM such that,
for all timelike curves on M with four-velocity field
ξα,

ξλ
c

∇λξ
α = 0 ⇐⇒ ξλ

n

∇λξ
α = Uα

ρλ ξ
ρξλ. (31)

(G3) The curvature field
c

Rα
µνβ associated with

c

∇ has
the following properties.

c

Rµν = 4πρtµtν ,
c

Rα µ
ν β =

c

Rµ α
β ν ,

c

Rαµ
νβ = 0,

(32)

Proof: We take (G1)–(G3) in turn:

(G1) This follows from
c

∇αtµ =
n

∇αtµ−σαtµ = 0 because
n

∇αtµ = σαtµ Similarly, for the spatial metric.

(G2) Compatible, torsion-free non-relativistic derivative
operators are parameterised by a 2-form Fµν ,
known as the ‘Newton-Coriolis 2-form’; this object
encodes the difference tensor relating any such con-
nection (see [7, 33]). Given this, (31) picks out
just one element of the ‘gauge orbit’ of compatible
connections parameterised by Fµν (cf. [36]), for all
others will manifest geodesic deviation.

(G3) This follows from a simple computation of the Ricci
tensor. Beginning with the derivation of the first
curvature condition (i.e., the geometrised Poisson
equation), we have

c

Rα
βµν =

n

Rα
βµν + 2

n

∇[νU
α
µ]β + 2Uλ

β[νU
α
µ]λ. (33)

from which it follows that

c

Rµν = −3

2

n

∇µσν +
3

4
σµσν , (34)

Using − 3
2

n

∇µσν + 3
4σµσν = 4πρtµtν , we have of

course that
c

Rbc = 4πρtµtν . The other two cur-
vature conditions can likewise be verified straight-
forwardly using that σα is closed, which follows on
the assumptions (20) and (21). □

V. CONCLUSION

In this article, we have taken the non-relativistic limit
of STGR, and have also converted the curvature degrees
of freedom of NCT into non-metricity; thereby, we have
triangulated a purely non-metric alternative theory to
NCT and NGT, and so in turn have completed a non-
relativistic geometric trinity for gravity—this also makes
good on a question raised in [8] as to what one would
obtain on taking the non-relativistic limit of STGR.
It is worth closing with two remarks. First: we should

be completely explicit that we have specialised to the
‘Weylian’ case of non-metricity, Qµνλ = σµgµλ; this as-
sumption was necessary in order to track the behaviour of
the non-metricity tensor under the non-relativistic limit.
Second, we should be explicit that we have assumed
moreover that σα = dαλ = κtα.
There are many future prospects. To name just two,

(1): recently, in [38], a novel version of NCT (so-called
‘Type II NCT’) has been constructed by taking a more
careful and systematic 1/c expansion of the GR dynam-
ics. Type II NCT has revealed several novel features
of non-relativistic gravitational theories, including that
non-relativistic theories can account for many of the
strong gravitational effects previously believed to belong
to relativistic theories and can also reproduce much of the
solution space of GR [39, 40]. This raises the question:
what would be the ‘Type II’ equivalents of NGT and
SNGT? Indeed, finding such theories would have con-
ceptual payoff, for in this article we have demonstrated
equivalence of the three vertices of the non-relativistic ge-
ometric trinity only at the level of equations of motion,
whereas the equivalence of the relativistic geometric trin-
ity can—as we have seen—be demonstrated at the level
of the action. However, action principles for the ‘Type I’
theories provably do not exist [40]; not so for ‘Type II’
theories (and, indeed, an action for Type II NCT is ex-
plicitly constructed in [40]); therefore, to construct a non-
relativistic trinity using action principles (as in the rela-
tivistic case), one would have to construct and work with
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the ‘Type II’ theories. And (2): it has very recently been
shown that there exists an ‘extended’ geometric trinity
between (roughly) f(R), f(T ) and f(Q) theories [41]—
does a similar extension of the non-relativistic geometric
trinity exist?
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[27] J. Beltrán Jiménez, L. Heisenberg, T. S. Koivisto,
and S. Pekar, Phys. Rev. D 101, 103507 (2020),
arXiv:1906.10027 [gr-qc].

[28] J. Hartong, N. A. Obers, and M. Sanchioni, JHEP 10,
120 (2016), arXiv:1606.09543 [hep-th].

[29] R. Andringa, E. Bergshoeff, S. Panda, and M. de Roo,
Classical and Quantum Gravity 28, 105011 (2011).

[30] J. Hartong and N. A. Obers, Journal of High Energy
Physics 2015 (2015), 10.1007/jhep07(2015)155.

[31] D. T. Son, (2013), arXiv:1306.0638 [cond-mat.mes-hall].
[32] W. J. Wolf, J. Read, and N. J. Teh, Found. Phys. 53, 3

(2023), arXiv:2111.08052 [cond-mat.mes-hall].
[33] X. Bekaert, E. Meunier, and S. Moroz, JHEP 02, 113

(2012), arXiv:1111.3656 [hep-th].
[34] D. Malament, “Gravity and spatial geometry,” in Stud-

ies in Logic and the Foundations of Mathematics, Vol.
114, edited by R. Barcan Marcus, G. J. W. Dorn, and
P. Weingartner (Elsevier, 1986) pp. 405–411.

[35] N. Dewar and J. Read, Foundations of Physics 50, 1418
(2020).

[36] N. J. Teh, Philosophy of Science 85, 201 (2018).
[37] J. T. Wheeler, General Relativity and Gravitation 50, 80

(2018).
[38] D. Hansen, J. Hartong, and N. A. Obers, Phys. Rev.

Lett. 122, 061106 (2019).
[39] D. Hansen, J. Hartong, and N. A. Obers, Int. J. Mod.

Phys. D 28, 1944010 (2019), arXiv:1904.05706 [gr-qc].
[40] D. Hansen, J. Hartong, and N. A. Obers, Journal of High

Energy Physics 2020, 145 (2020).
[41] S. Capozziello, V. D. Falco, and C. Ferrara, (2023),

arXiv:2307.13280 [gr-qc].

https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
http://eudml.org/doc/81430
http://eudml.org/doc/81430
https://doi.org/10.1007/BF01451608
https://doi.org/10.3389/fphy.2023.1116888
https://doi.org/10.3389/fphy.2023.1116888
http://arxiv.org/abs/2212.11309
https://doi.org/10.1088/1361-6382/aad70d
https://doi.org/10.1088/1361-6382/aad70d
http://arxiv.org/abs/1807.11779
https://doi.org/10.1063/1.4932967
https://doi.org/10.1063/1.4932967
http://arxiv.org/abs/1503.02682
https://doi.org/10.1088/1361-6382/accc02
http://arxiv.org/abs/2211.11796
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1140/epjc/s10052-022-10823-x
https://doi.org/10.1140/epjc/s10052-022-10823-x
http://arxiv.org/abs/2208.03011
http://arxiv.org/abs/2307.10074
https://doi.org/10.1017/CBO9780511616563
https://doi.org/ 10.1103/PhysRevD.97.124025
https://doi.org/ 10.1103/PhysRevD.97.124025
https://doi.org/10.1103/PhysRevD.96.044042
http://arxiv.org/abs/1705.10436
https://doi.org/10.1088/1361-6382/ac987d
https://doi.org/10.1088/1361-6382/ac987d
http://arxiv.org/abs/2203.13914
http://arxiv.org/abs/2203.13914
http://arxiv.org/abs/2302.07180
http://arxiv.org/abs/2302.07180
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
http://arxiv.org/abs/1710.03116
https://doi.org/10.1007/978-94-007-5143-9
https://doi.org/10.1007/978-94-007-5143-9
https://doi.org/10.1146/annurev-nucl-102115-044553
https://doi.org/10.1146/annurev-nucl-102115-044553
http://arxiv.org/abs/1601.06133
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.1007/s10701-016-0057-0
http://arxiv.org/abs/1603.05834
https://doi.org/10.1103/PhysRevD.100.083537
http://arxiv.org/abs/1902.03951
http://arxiv.org/abs/1902.03951
https://doi.org/10.1086/725096
https://doi.org/10.1086/725096
http://arxiv.org/abs/2210.14625
https://doi.org/ 10.1088/1361-6633/ac9cef
https://doi.org/ 10.1088/1361-6633/ac9cef
http://arxiv.org/abs/2106.13793
https://doi.org/ 10.1088/0264-9381/28/21/215011
http://arxiv.org/abs/1104.4349
https://doi.org/10.1140/epjp/s13360-020-00918-3
https://doi.org/10.1140/epjp/s13360-020-00918-3
http://arxiv.org/abs/2011.01248
https://doi.org/10.1103/PhysRevD.101.103507
http://arxiv.org/abs/1906.10027
https://doi.org/10.1007/JHEP10(2016)120
https://doi.org/10.1007/JHEP10(2016)120
http://arxiv.org/abs/1606.09543
https://doi.org/10.1088/0264-9381/28/10/105011
https://doi.org/10.1007/jhep07(2015)155
https://doi.org/10.1007/jhep07(2015)155
http://arxiv.org/abs/1306.0638
https://doi.org/10.1007/s10701-022-00615-4
https://doi.org/10.1007/s10701-022-00615-4
http://arxiv.org/abs/2111.08052
https://doi.org/10.1007/JHEP02(2012)113
https://doi.org/10.1007/JHEP02(2012)113
http://arxiv.org/abs/1111.3656
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70703-7
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70703-7
https://doi.org/10.1007/s10701-020-00386-w
https://doi.org/10.1007/s10701-020-00386-w
https://doi.org/DOI: 10.1086/696375
https://doi.org/10.1007/s10714-018-2401-5
https://doi.org/10.1007/s10714-018-2401-5
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1142/S0218271819440103
https://doi.org/10.1142/S0218271819440103
http://arxiv.org/abs/1904.05706
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/10.1007/JHEP06(2020)145
http://arxiv.org/abs/2307.13280

	The Non-Relativistic Geometric Trinity of Gravity
	Abstract
	Introduction
	Background: The Geometric Trinity
	Relativistic Gravity
	Non-Relativistic Gravity

	The Non-Relativistic Limit of STGR
	The Non-Relativistic Trinity of Gravity
	Conclusion
	Acknowledgements
	References


