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Abstract
I show that, in acyclic causal models, post-intervention probabilities are

imaging probabilities which in turn are conditional probabilities.

1 Acyclic causal models
Let us consider an acyclic causal model M of the sort that is central to causal
modeling (Spirtes et al. 1993/2000, Pearl 2000/2009, Halpern 2016, Hitchcock
2018). Readers familiar with them can skip this section.
M = ⟨S,F ⟩ is a causal model if, and only if, S is a signature and F =

{F1, . . . ,Fn} represents a set of n structural equations, for a finite natural number
n. S = ⟨U,V,R⟩ is a signature if, and only if, U is a finite set of exogenous
variables, V = {V1, . . . ,Vn} is a set of n endogenous variables that is disjoint
fromU, and R :U ∪V → R assigns to each exogenous or endogenous variable
X inU ∪V its range (not co-domain) R (X) ⊆ R. F = {F1, . . . ,Fn} represents a
set of n structural equations if, and only if, for each natural number i, 1 ≤ i ≤ n:
Fi is a function from the Cartesian productWi = ×X∈U∪V\{Vi}R (X) of the ranges
of all exogenous and endogenous variables other than Vi into the range R (Vi)
of the endogenous variable Vi. The set of possible worlds of the causal model
M is defined as the Cartesian product W = ×X∈U∪VR (X) of the ranges of all
exogenous and endogenous variables.

A causal modelM is acyclic if, and only if, it is not the case that there are m
endogenous variables Vi1, . . . ,Vim inV, for some natural number m, 2 ≤ m ≤ n,
such that the value of Fi( j+1) depends on R

(
Vi j

)
for j = 1, . . . ,m−1, and the value

of Fi1 depends on R (Vim). Importantly, dependence is just ordinary functional
dependence: Fi depends on R

(
V j

)
if, and only if, there are arguments w⃗i and w⃗i

′

in the domain Wi = ×X∈U∪V\{Vi}R (X) of Fi that differ only in the value from
R
(
V j

)
such that their values under Fi differ, Fi

(
w⃗i
)
, Fi

(
w⃗i
′
)
.
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Let Pa (Vi) be the set of variables X inU ∪V such that Fi depends on R (X).
The elements of Pa (Vi) are the parents of the endogenous variable Vi, that is,
the set of variables that are directly causally relevant to Vi. Let An (Vi) be the
ancestral, or transitive closure, of Pa (Vi), which is defined recursively as follows:
Pa (Vi) ⊆ An (Vi); if V ∈ An (Vi), then Pa (V) ⊆ An (Vi); and, nothing else is
in An (Vi). The elements of An (Vi) are the ancestors of the endogenous variable
Vi. A variable Y is a non-descendant of a variable X if, and only if, X and Y are
different and X is not an ancestor of Y.

A context is a specification of the values of all exogenous variables. It can
be represented by a vector u⃗ in the Cartesian product R (U) = ×U∈UR (U) of the
ranges of all exogenous variables. A basic fact about causal models is that every
acyclic causal model has a unique solution wu⃗ for any context u⃗. LetW0 be the
set of these “legal” possible worlds (Glymour et al. 2010). An acyclic causal
model determines a unique directed acyclic graph whose nodes are the exogenous
and endogenous variables inU∪V and whose arrows point into each endogenous
variable Vi from all of the latter’s parents in Pa (Vi).

Acyclic causal models provide a semantics for some counterfactuals. The
language includes atomic sentences of the form V = v which say that endogenous
variable V takes on a specific value v from its range R (V), as well as the Boolean
combinations that can be formed from these atomic sentences by finitely many
applications of negation ¬, conjunction ∧, and disjunction ∨. The variables must
be endogenous. Sentences of the form V ∈ S, for a subset S of R (V) with more
(or less) than one element are not allowed. The antecedent of a counterfactual
must by a finite conjunction X1 = x1 ∧ . . . ∧ Xk = xk of one or more atomic
sentences with distinct endogenous variables. The consequent must a Boolean
combination ϕ of atomic sentences. Among others, this means that we cannot
consider counterfactuals with a counterfactual in the antecedent or consequent.

An atomic sentence V = v is true in M in u⃗ if, and only if, all solutions
to the structural equations represented by F assign value v to the endogenous
variable V if the exogenous variables in U⃗ are set to u⃗. Since we are restricting
the discussion to extended acyclic causal models which have a unique solution in
any given context, this means that V = v is true in M in u⃗ if, and only if, v is
the value of V in the unique solution wu⃗ to all equations in M in u⃗. The truth
conditions for negations, conjunctions, and disjunctions are given in the usual
way. The counterfactual X1 = x1 ∧ . . . ∧ Xk = xk � ϕ, or simply X⃗ = x⃗� ϕ,
is true in M = ⟨S,F ⟩ in u⃗, M, u⃗ |= X⃗ = x⃗ � ϕ if, and only if, ϕ is true in
MX⃗=x⃗ = ⟨SX⃗,F

X⃗=x⃗
⟩ in u⃗.
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The latter causal model results from M by removing the structural equation
for Xi and by freezing the value of Xi at xi, for each i = 1, . . . , k. Formally,
this means that S is reduced to SX⃗ = ⟨U,V \ {X1, . . . ,Xk} ,R ↾U∪V\{X1,...,Xk}

⟩, where R ↾U∪V\{X1,...,Xk} is R with its domain restricted from U ∪ V to U ∪
V \ {X1, . . . ,Xk}; as well as that F is reduced to F X⃗=x⃗ which results from F by
deleting, for each i = 1, . . . , k, the function FXi representing the structural equation
for Xi and by changing the remaining functions FY inF \

{
FX1 , . . . ,FXk

}
as follows:

restrict the domain of each FY from ×X∈U∪V\{Y}R (X) to ×X∈U∪V\{Y,X1,...,Xk}R (X);
and, replace FY by FX⃗=x⃗

Y which results from FY by setting X1, . . . ,Xk to x1, . . . , xk,
respectively.

2 Probability
Next let us consider a regular probability measure Pr on the power-set ofW. This
means that every non-empty proposition overW receives a positive probability,
including the singletons containing a possible world which I will identify with
each other. The conditional probability Pr (· | W0) is the probability measure
conditional on the assumption that M is true and no intervention takes place.
Note that Pr (wu⃗ | W0) = Pr

(
⟦U⃗ = u⃗⟧W

)
, where ⟦U⃗ = u⃗⟧W is the proposition

over W that is expressed by the sentence U⃗ = u⃗. This means that Pr (· | W0)
allocates the entire probability mass of context u⃗ onto the single possible world
wu⃗; every other possible world that agrees with wu⃗ on the values of the exogenous
variablesU receives probability zero.

If the set of exogenous variables U is probabilistically independent in the
sense of Pr (· | W0), Pearl (2000/2009: 30)’s theorem 1.4.1 applies. In this case
Pr (· | W0) satisfies the causal Markov condition for the directed acyclic graph
that is determined byM: each variable inU∪V is probabilistically independent
of its non-descendants given its parents. In this case the pair ⟨M,Pr (· | W0)⟩
is Markovian; it is semi-Markovian, if the set of exogenous variables U is not
probabilistically independent in the sense of Pr (· | W0). The significance of this
theorem lies in connecting acyclic causal models to probability.

It is here that I am departing slightly from the approach usually taken. Usually
(e.g., Pearl 2000/2009: ch. 3), one starts with a regular probability measure PrU
over the power-set of R (U) and then extends PrU to a unique regular probability
measure PrM over the power-set ofW0. While

PrU
(
⟦U⃗ = u⃗⟧R(U)

)
= PrM

(
⟦U⃗ = u⃗⟧W0

)
= Pr

(
⟦U⃗ = u⃗⟧W | W0

)
= Pr

(
⟦U⃗ = u⃗⟧W

)
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for every context u⃗, as well as, for every possible world wu⃗ that is legal in M,
PrM (wu⃗) = Pr (wu⃗ | W0), the sentence U⃗ = u⃗ picks out different propositions
over R (U),W0, andW. In addition, the probability measures PrU and PrM do
not assign any probability to propositions comprised by possible worlds that are
illegal in M, while these propositions receive probability zero from Pr (· | W0)
and positive probability from Pr. It is this slight departure that enables me to
prove my claims.

The post-intervention probability Pr (· | W0)do(X⃗=x⃗) after intervening on the

endogenous variables X⃗ and setting their values to x⃗ is calculated from the pre-
intervention probability Pr (· | W0) as follows: Pr (w | W0)do(X⃗=x⃗) equals

Pr ∗
(
⟦X⃗ = X⃗ (w)⟧W

)
×

∏
Y∈U∪V\{X1,...,Xk}

Pr (⟦Y = Y (w)⟧W | (⟦Pa (Y) = Pa (Y) (w))⟧W ∩W0) ,

where X⃗ (w) are the values of X⃗ in possible world w and the intervention-function
Pr∗ takes on value 1 for X⃗ (w) = x⃗ and 0 otherwise. Of particular significance is
the fact that the post-intervention probability Pr (· | W0)do(X⃗=x⃗) satisfies the causal
Markov condition for the directed acyclic graph that is determined by the acyclic
causal model MX⃗=x⃗ if the pre-intervention probability Pr (· | W0) satisfies the
causal Markov condition for the directed acyclic graph that is determined byM.

To establish my claims, let me amend a concept of Lewis (1973: 133)’: the
interventionist theory of X⃗ = x⃗ in context u⃗, IT

(
X⃗ = x⃗, u⃗

)
, is the set of sentences

that would be true inM in u⃗ if X⃗ = x⃗ were made true inM in u⃗ by an intervention
that sets the value of X⃗ to x⃗:{

ϕ :M, u⃗ |= X⃗ = x⃗� ϕ
}
.

IT
(
X⃗ = x⃗, u⃗

)
is true in precisely one possible world, viz. the unique solution wX⃗=x⃗

u⃗
to all equations inMX⃗=x⃗ in u⃗. In the framework of Stalnaker (1968) whose central
ingredient is a selection function f , the corresponding set of sentences picks out
the unique possible world f

(
X⃗ = x⃗,wu⃗

)
that is selected by f in the possible world

wu⃗ for the antecedent X⃗ = x⃗ as the unique possible world that is closest or most
similar to wu⃗ and in which X⃗ = x⃗ is true. In the slightly less demanding framework
of Lewis (1973) the corresponding set of sentences may be empty if one does
not make Lewis (1973: 19)’s “limit assumption” (Herzberger 1979). I can only
speculate, but perhaps this is why, as far as I am informed, Lewis never considered
the conditional probabilities introduced momentarily.
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When one brings about X⃗ = x⃗ by an intervention that sets the value of X⃗ to
x⃗ and one assumes thatM is true, the information one receives is the proposition
expressed by the disjunction or intersection of all sets IT

(
X⃗ = x⃗, u⃗

)
, for every

context u⃗, i.e.,

IT
(
X⃗ = x⃗

)
=
⋂

u⃗

{
ϕ :M, u⃗ |= X⃗ = x⃗� ϕ

}
.

IT
(
X⃗ = x⃗

)
is true in all and only the possible worlds inWX⃗=x⃗

0 , which is the set

of legal possible worlds of the acyclic causal modelMX⃗=x⃗. IT
(
X⃗ = x⃗

)
says that,

assuming thatM is true, what would be the case if X⃗ = x⃗ were made true by an
intervention that sets the values of X⃗ to x⃗ is the case. IT

(
X⃗ = x⃗

)
implies X⃗ = x⃗

(but, in general, is not implied by it). This is so also in the frameworks of Stalnaker
(1968) and Lewis (1973), as well as any other framework that validates X⃗ = x⃗�
X⃗ = x⃗ (such as Huber 2021’s).

Note that, for every context u⃗,

Pr
(
wX⃗=x⃗

u⃗ | W0

)
do(X⃗=x⃗) = Pr

(
⟦U⃗ = u⃗⟧W | W0

)
do(X⃗=x⃗)

and

Pr
(
⟦U⃗ = u⃗⟧W | W0

)
do(X⃗=x⃗) = Pr

(
⟦U⃗ = u⃗⟧W | W0

)
do(Y⃗=y⃗) = Pr

(
⟦U⃗ = u⃗⟧W

)
for any two interventions on endogenous variables X⃗ and Y⃗. This means that the
post-intervention probability Pr (· | W0)do(X⃗=x⃗) re-allocates the probability mass

Pr
(
⟦U⃗ = u⃗⟧W

)
away from the possible world wu⃗ that is legal inM to the possible

world wX⃗=x⃗
u⃗

that is legal in MX⃗=x⃗. This in turn means that the post-intervention
probability Pr (· | W0)do(X⃗=x⃗) is what Lewis (1976: 310) calls the image of the

pre-intervention probability Pr (· | W0) (not Pr) on ⟦X⃗ = x⃗⟧W, which is the pre-
intervention probability of counterfactuals with antecedent X⃗ = x⃗,

Pr
(
⟦X⃗ = x⃗� ·⟧W | W0

)
.

My claims follow by noting that both of them are identical to the conditional
probability Pr

(
· | ⟦IT

(
X⃗ = x⃗

)
⟧W
)
= Pr

(
· | W

X⃗=x⃗
0

)
.
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These results remain true if the intervention on the endogenous variables X⃗
does not set their values to x⃗ but imposes a probability distribution on them so
that the intervention-function Pr∗

(
⟦X⃗ = X⃗ (w)⟧W

)
takes on not just the values 1

and 0, but values between 1 and 0 that sum to 1. In this case we are conditioning
in a more generalized way (Jeffrey 1965/1983):

Pr (· | W0)do(X⃗=x⃗) =
∑

x⃗

Pr
(
· | ⟦IT

(
X⃗ = x⃗

)
⟧W
)
× Pr ∗

(
⟦X⃗ = x⃗⟧W

)
.

Intervening is imaging is conditioning.

3 Conclusion
The mathematics establishing them is entirely trivial, but that does not mean that
my claims are trivial also philosophically. They show that, for an important class
of conditionals, probabilities of conditionals are conditional probabilities. They
show that, on at least one version of it (Meek & Glymour 1994), causal decision
theory is a species of evidential decision theory (Jeffrey 1965/1983) – specifically,
one that respects Carnap (1947)’s “principal of total evidence”: expected utility
is calculated with respect to the probability conditional on not just the evidence
that an act is taken, but the decision maker’s total evidence. Normally, this will
include the information that the decision maker herself brings about this act all by
herself. And they reinforce a message that is at least implicit in the interventionist
approach to causation (Spirtes et al. 1993/2000, Pearl 2000/2009, Woodward
2003): causation is correlation – correlation not between what is observed and
observed, but between what is done and observed.1

1As a postscriptum, let me briefly address an issue I discuss in detail elsewhere. IT
(
X⃗ = x⃗

)
is defined only relative to an acyclic causal modelM. In the context of decision theory (Meek &
Glymour 1994, Hitchcock 2016) one may want to allow for uncertainty over which acyclic causal
modelM is true. Stern (2017) offers one way of doing so by assigning degrees of certainty to pairs
of directed acyclic graphs D (possibly determined by acyclic causal modelsM) and probabilities
Pr such that Pr satisfies the causal Markov condition for D. Like Savage (1954)’s classical, as well
as Lewis (1981)’s and Skyrms (1980, 1982)’s causal (Weirich 2020), the resulting interventionist
decision theory fails to be partition-invariant: the recommendations of the theory depend on which
set of mutually exclusive possible states of the world the decision maker considers.

An alternative is to generalize acyclic causal models to acyclic models of causality (Huber ms).
Unlike in causal models, in acyclic models of causality each possible world has its own “causal
laws” (possibly, but not necessarily an acyclic causal model) and directed acyclic graph.
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