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Abstract

This paper argues for the appropriateness of Maxwell spacetime as the
minimal spacetime structure in which one may formulate a theory of Newto-
nian gravity. I begin by presenting an intrinsic characterization of Maxwell
gravitation that, eschewing covariant derivative operators, makes use only
of a standard of rotation and other more primitive structures. I then revisit
the question of whether Maxwell gravitation and Newton-Cartan theory are
equivalent, demonstrating that previous results may be extended to all but
the vacuum case since candidate geometrizations are not free to vary through
purely gravitational degrees of freedom. Lastly, I consider the space of pos-
sible geometrizations of Maxwell gravitation more broadly and argue for a
sense in which curvature is not entirely a matter of convention in classical
spacetimes.



1 Introduction

What is the proper spacetime setting for Newtonian gravitation theory? Over
the past decade, papers by Saunders (2013) and Knox (2014) have revitalized
discussion of this question in the context of corollary 6 to Newton’s laws of motion:

If bodies are moving in any way whatsoever with respect to one another
and are urged by equal accelerative forces along parallel lines, they will
all continue to move with respect to one another in the same way as
they would if they were not acted on by those forces. (Newton, 423)

Both contend that neo-Newtonian spacetime has superfluous structure and that
one should move to a spacetime with a standard of rotation but no means of
distinguishing freely-falling from inertial frames. However, Saunders has taken
this to motivate a move to Maxwell spacetime, which is defined merely in terms of
a standard of rotation, while Knox sees it as impetus instead for a move to Newton-
Cartan theory, which is endowed with a curved derivative operator. In light of this
apparent discrepancy, what is the relationship between the two theories?

Weatherall (2016) tackles this question and shows that if one takes into account
a set of dynamically-allowable trajectories for some mass distribution, there corre-
sponds to every Maxwell spacetime a unique Newton-Cartan spacetime. With this,
Weatherall concludes that “Knox and Saunders do not end up in different places
at all [...] Once one fully considers the effects of gravitation in Maxwell-Huygens
space-time, Newton-Cartan theory is precisely the result” (Weatherall, 2016, 90).1

This work has been followed by Dewar (2018), who gives an explicit formulation
of Newtonian gravitation on Maxwell spacetime. Dewar demonstrates, moreover,
that the resulting theory, “Maxwell gravitation,” is equivalent to Newton-Cartan
theory when one’s mass density is everywhere nonvanishing. The discrepancy be-
tween the two theories, then, is merely apparent and the structural gap may be
bridged by dynamical considerations.

But two difficulties remain. Part of the appeal of Maxwell spacetime is its
minimalism—one has excised all superfluous structure and preserved only what
is required to support Newtonian physics. Yet, in formulating Maxwell gravita-
tion, Dewar makes use of an equivalence class of covariant derivative operators and
expresses his conditions on the mass-momentum tensor in terms of arbitrary mem-
bers of this class, each of which possesses structure that was meant to be expressly
excluded from the theory. The motivating minimalism of Maxwell spacetime, how-
ever, ought to extend both to those structures in which it is defined, as well as

1Wallace (2020) has similarly argued that the difference between Maxwell spacetime and
Newton-Cartan theory disappears once one considers the inertial structure that emerges in the
former from the behavior of isolated subsystems.
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those to which one explicitly appeals when constructing its dynamical theories.2

In response to this worry, Weatherall (2018) has characterized Maxwell space-
time in terms of an alternative “standard of rotation” that makes no reference
to covariant derivative operators at all. The question is left open, however, as to
whether this new standard of rotation is sufficient to articulate Newtonian gravity:
“One would like to find a coordinate-free presentation of the theory that makes
use of precisely Maxwellian spacetime, as characterized here, and nothing else—a
version, say, of Neil Dewar’s ‘Maxwell gravitation’ expressed using only a standard
of rotation” (Weatherall, 2017, 83). Such a presentation would circumvent worries
of mathematical impropriety plaguing Maxwell gravitation while also being the
most direct characterization of the theory.

Secondly, the equivalence between Maxwell spacetime and Newton-Cartan the-
ory relies on substantive further assumptions: one must either have knowledge of
the dynamically-allowable trajectories, be content with an effective spacetime ge-
ometry of subsystems, or restrict attention to the case where nature is a plenum.
This is adequate as a demonstration that there are indeed conditions under which
the apparent structural deficit may be bridged. But if the two theories are truly
to be seen as on a par, one would like an equivalence result supported by much
more modest physical assumptions. It seems reasonable to require that the result
extend to generic mass distributions, be cast in terms of information available to
local observers, and preserve the ambition that Maxwell gravitation might yet be
a fully cosmological theory.

In this paper, I begin by remedying the first concern and present a formulation
of Newtonian gravitation that uses only the resources intrinsic to Maxwell space-
time. I then clarify the extent to which Maxwell gravitation and Newton-Cartan
theory are equivalent, and show that one may relax the above assumptions and
only require that the universe not be a vacuum. To make sense of this equivalence,
I consider the space of possible geometrizations and argue for a sense in which cur-
vature is not entirely a matter of convention in classical spacetimes. I take this
to redeem Maxwell spacetime as an appropriate, minimal setting for a theory of
Newtonian gravitation.

2 Preliminaries

I here present some preliminaries concerning the relevant background formalism of
Newtonian gravitation theory. Readers familiar with the recent literature should

2Knox makes this same criticism in her talk from the 2017 conference “The Philosophy of
Howard Stein.”
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feel free to skip ahead to the next section.3

A Leibnizian spacetime is a triple (M, ta, hab) where (i) M is a smooth, simply
connected, four-dimensional manifold; (ii) ta is a “temporal metric,” a smooth 1-
form onM , which we require to be closed;4 (iii) hab is a “spatial metric,” a smooth
symmetric field on M of signature (0,1,1,1);5 and (iv) the “orthogonality” con-
dition habtb = 0 is satisfied. Conceptually, ta induces a foliation of spacetime into
hypersurfaces of constant time, with hab inducing a metric on each such hyper-
surface. It will be assumed that these hypersurfaces are complete relative to this
induced metric and diffeomorphic to R3. Given a temporal metric ta, moreover,
a vector ξa at a point p ∈ M is said to be “timelike” if taξa ≠ 0, and “spacelike”
otherwise. Finally, a covariant derivative operator ∇ onM is said to be compatible
with the spatial and temporal metrics if both ∇atb = 0 and ∇ahbc = 0.

A Galilean spacetime is a structure (L,∇), where L is a Leibnizian spacetime
and ∇ is a flat covariant derivative operator compatible with ta and hab. Models
of Galilean gravitation are composed of a Galilean spacetime along with a mass
density ρ and gravitational potential ϕ satisfying Poisson’s equation 4πρ = ∇a∇

aϕ.
When only gravitational forces are present, a body will obey the following equation
of motion: ξn∇nξa = −∇aϕ, where ξn is the body’s four-velocity.6

A model of Newton-Cartan theory, or geometrized Newtonian gravitation, is
a structure (L, ∇̃, T ab) where L is again a Leibnizian spacetime, but now ∇̃ is
a derivative operator compatible with L whose associated curvature tensor R̃a

bcd

satisfies (i) R̃ ab
cd = 0 and (ii) R̃ a

b
c
d = R̃ c

d
a
b, and T ab is a smooth, symmetric

tensor field such that (iii) R̃bc = 4πρtbtc and (iv) ∇̃nT na = 0. Such models may be
systematically related to families of Galilean spacetimes whose covariant deriva-
tive operators [∇] are rotationally equivalent—or such that, for all unit timelike
vector fields ξa and any pair ∇,∇′ ∈ [∇], ∇[nξa] = 0 iff ∇′[nξa] = 0. This rela-
tion is captured by the Trautman Geometrization Lemma and Recovery Theorem:
test particles will traverse the geodesics of a Newton-Cartan connection ∇̃ just
in case they satisfy an equation of motion of the same form as that above for
all rotationally-equivalent flat derivative operators ∇ (and appropriately chosen

3This is roughly in keeping with Weatherall (2016) and Dewar (2018), stemming from Earman
(1989). For further details about Newtonian gravitation theory more generally, see Malament
(2012).

4This is to guarantee that ta will be exact, and so capable of being expressed as the gradient
of a smooth scalar field t, or time function.

5We require, moreover, that hab is flat, i.e. D[cDd]µ
a = 0 for all spacelike fields µa. (We

define the spatial derivative operator D below.)
6In anticipation of equations (1)-(3), one may alternatively express models of Galilean gravi-

tation as structures (L,∇, ϕa, T ab) where L and ∇ are as above, while ϕa and T ab represent the
gravitational field and mass-momentum tensor, respectively, and satisfy the following relations:
(i) ρϕa = ∇nT

na, (ii) −4πρ = ∇aϕ
a, and (iii) 0 = ∇[cϕa]. See Dewar (2018) for more details.
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gravitational potentials ϕ).7

Accordingly, one may wish to broaden attention beyond individual Galilean
spacetimes and instead consider the structure that is shared by rotationally-equivalent
families of Galilean spacetimes. This shared structure is naturally captured by the
following definitions: a Maxwell spacetime* is a pair (L, [∇]) consisting of a Leib-
nizian spacetime L = (M, ta, hab), along with an equivalence class of flat covariant
derivative operators [∇] whose members are rotationally equivalent and compati-
ble with ta and hab.8 Amodel ofMaxwell gravitation*—denoted (L, [∇], T ab)—consists
of two parts: a Maxwell spacetime* (L, [∇]) and a smooth, symmetric tensor field
T ab satisfying the following equations for each ∇ ∈ [∇] wherever ρ = T abtatb ≠ 0:

0 = ta∇nT
na (1)

−4πρ = ∇a(ρ
−1∇nT

na) (2)

0 = ∇[c(ρ−1∇nT
∣n∣a]). (3)

The first of these equations expresses the conservation of mass, i.e. ξn∇nρ+ρ∇nξn =
0; the second is Poisson’s equation stated in terms of the gravitational field ϕa =

ρ−1∇nT na; while the third guarantees the existence of a smooth scalar field ϕ, or
gravitational potential, such that ϕa = ∇aϕ.

As mentioned before, one may argue that these definitions are problematic on
the grounds that they use equivalence classes of covariant derivative operators,
and so cast doubt on the suitability of Maxwell spacetime as a setting for a the-
ory of Newtonian gravitation. I will therefore characterize these notions so as to
circumvent these worries and place the theory on more secure footing. To do so,
we must first introduce the alternative “standard of rotation” found in Weatherall
(2018), along with a new definition of a Maxwell spacetime.

A standard of rotation compatible with a particular ta and hab is a map ↻
from pairs (n, ξa) to smooth, antisymmetric fields ↻n ξa =↻[n ξa] on M such
that for any vector fields ξa and ηa, scalar field α, and spacelike vector field σa:
(i) ↻ commutes with vector addition; (ii) ↻n (αξa) = α↻n ξa + ξ[adn]α; (iii) if
da(ξntn) = 0, then ↻n ξa is spacelike in both indices; (iv) ↻n σa = D[nσa];9 and
(v)↻ commutes with index substitution.10

7See propositions 4.2.1. and 4.2.5., respectively, of Malament (2012).
8Since we will define both Maxwell spacetime and models of Maxwell gravitation somewhat

differently, these terms will be followed by an asterisk when referring to Dewar’s definitions.
With proposition 2, however, the two formulations will be shown to be equivalent.

9The operator da is the exterior derivative and D is the spatial derivative operator defined
in the next subsection. Here and in what follows, an underlined contravariant index indicates
that the tensor is spacelike in that index, while an underlined covariant index indicates that the
tensor’s action on timelike vectors is undefined in that index.

10For those curious about the transformation properties of ↻, note that there is a natural
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Relative to a standard of rotation↻, a unit timelike vector field ξa will be said
to be nonrotating just in case ↻n ξa = 0. This is intended to be a direct analog
of the case in Galilean spacetime where a unit timelike vector field ξa may be said
to be nonrotating when ∇[nξa] = 0. Accordingly, a derivative operator ∇ is said to
determine, or agree with, a standard of rotation↻ just in case ∇[nξa] =↻n ξa for
all smooth vector fields ξa.11

With this in hand, we may define a Maxwell spacetime as a structure (L,↻)
where (i) L is a Leibnizian spacetime (M, ta, hab), and (ii) ↻ is a standard of
rotation compatible with ta and hab. It remains to be shown, however, that one
may re-express the restrictions on the mass-momentum tensor T ab using this new
standard of rotation.

To do this, we will need to disassemble the covariant derivative into two re-
stricted operators, such that each acts only on either spacelike or timelike vectors,
respectively, in spacelike directions. We have the former from Weatherall (2018):
fixing a spatial metric hab onM guarantees the existence of a unique spatial deriva-
tive operator D compatible with hab taking pairs (x,α

a1...an
b1...bm

) to smooth tensors

Dxα
a1...an
b1...bm

, where α
a1...an
b1...bm

is a smooth tensor field with exclusively underlined in-

dices, all distinct from x.12 The next section shows how to capture the latter
of these operators, as well as how to use them to formulate a theory of Maxwell
gravitation.

3 Maxwell Gravitation Anew

Since Maxwell spacetime is a setting in which one lacks the resources to speak of
the absolute acceleration of bodies, there are naturally constraints on how one may
take derivatives of timelike vector fields. Observe, however, that we may define

push-forward for standards of rotation: given a diffeomorphism φ ∶M →M and a smooth vector
field ξa, φ∗(↻)

aξb = φ∗(↻
a φ∗(ξb)). By adapting the proof of proposition 1 from Weatherall

(2018), together with facts about φ∗, one may show that φ∗(↻) is indeed a standard of rotation
(i.e. it satisfies conditions (i), (ii), and (v)). Note, however, that it is not compatible with
the original metrics ta and hab, but is compatible instead with their push-forwards, φ∗(ta) and
φ∗(h

ab) (i.e. it satisfies conditions (iii) and (iv) only with respect to these new metrics). In this
way, it is natural to think of the triple (↻, ta, h

ab) as together constituting a geometric object,
rather than a standard of rotation by itself.

11Note that proposition 1.4 of Weatherall (2018) gives the condition that two derivative oper-
ators ∇ and ∇′ (compatible with the same metrics) will determine the same standard of rotation
↻ just in case ∇′ = (∇, σatbtc) for some spacelike vector field σa. If, further, ↻ admits of any
non-rotating unit timelike vector fields, this condition holds just in case ∇ and ∇′ are rotationally
equivalent.

12For the sake of completeness, the rate of change of a spacelike vector field σa in the direction
of a timelike vector ξ at some point p is given by equation 1 of Weatherall (2018): ξn △n σ

a =

£ξσ
a + σn↻

n ξa − 1
2
σn£ξh

an, where £ξ is the Lie derivative with respect to ξn.
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a restricted temporal derivative operator ◻ taking pairs (a, ξb) to smooth tensors
◻aξb by:

◻aξ
b = han ◻

n ξb = han(↻
n ξb −

1

2
£ξh

nb),

where ξb is a smooth timelike vector field and £ξ is the Lie derivative with respect
to ξb.13 When contracted with a spacelike vector field σa, this has the natural
interpretation of the rate of change of a timelike vector field in a spacelike direction.

Importantly, one has that σa◻aξb = σa∇aξb for any spacelike vector field σa and
any derivative operator ∇ compatible with L whose standard of rotation agrees
with ↻.14 That is, if two covariant derivatives agree on a standard of rotation,
they must also agree on the rate of change of timelike vector fields in spacelike
directions.15 In this way, Maxwell spacetime proves to have enough structure for
arbitrary derivatives of both scalar and spacelike vector fields to be taken, as well
as derivatives of timelike vector fields if restricted to spacelike directions.

I may now present an intrinsic characterization of Maxwell gravitation. A
model of Maxwell gravitation—denoted by a triple (L,↻, T ab)—consists of a
Maxwell space-time (L,↻) and a tensor field T ab satisfying the following three
equations wherever ρ ≠ 0:

0 = ρ ◻n ξ
n + ξndnρ (1*)

−4πρ =Da(ρ
−1Dnσ

na) + ξndn(◻aξ
a) + (◻aξ

n)(◻nξ
a) (2*)

0 =↻c (ρ−1Dnσ
na) + 2(◻[cξ ∣n∣)(◻nξa]) + (◻nξ[a)(◻nξc]) + £ξ(↻

c ξa), (3*)

where ξa = ρ−1T ab tb and σab = T ab − ρξaξb.16 Although obscured by this manner
of presentation, proposition 2 will demonstrate that these three conditions are

13Note that while hab is not the inverse of a metric, its action is invertible just in case it
is contracted with a tensor field that is spacelike in the relevant indices. When ξa is a unit
timelike vector field, this will be the case for both indices of (↻a ξb − 1

2
£ξh

ab), and for just
a otherwise. Accordingly, the divergence of a unit timelike vector field ξa may be defined as
◻nξ

n = hna(↻
a ξn − 1

2
£ξh

an).
14The second part of proposition 1 of Weatherall (2018) guarantees that there exists at least

one derivative operator with these properties.
15That this does not depend on one’s choice of derivative operator may be shown quickly:

σa∇′aξ
b = σa∇aξ

b − σa(ξzC
b
za) = σ

a∇aξ
b − σa(ξzηbtzta) = σ

a∇aξ
b, where ηa (whose existence is

given by proposition 4 of Dewar (2018)) is the spacelike vector field satisfying ∇′ = (∇, ηatbtc).
16Observe that ξa is a unit timelike vector: taξ

a = ta(ρ
−1T abtb) =

Tabtatb
Tmntmtn

= 1.
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equivalent to those imposed on models of Maxwell gravitation*. As such, they
may be interpreted in just the same way as their more transparent counterparts.

We will say that a Maxwell spacetime (L,↻) corresponds to a Maxwell space-
time* (L, [∇]), and vice versa, just in case they determine the same standard of
rotation.17

Proposition 1. If (L,↻) is a Maxwell spacetime, then there exists a unique
corresponding Maxwell spacetime* (L, [∇]).18

For ease of reading, proofs of propositions appear in an appendix.

Proposition 2. Let (L,↻) be a Maxwell spacetime and (L, [∇]) its correspond-
ing Maxwell spacetime*. Given some T ab, (L,↻, T ab) is a model of Maxwell
gravitation if and only if (L, [∇], T ab) is a model of Maxwell gravitation*.

We thus see that there is a one-to-one correspondence between models of
Maxwell gravitation* and models of Maxwell gravitation. As the latter makes
no reference to covariant derivative operators, one finds that the use of an equiv-
alence class of such operators is, in fact, inessential, and so the earlier criticism of
mathematical impropriety is met.

4 Equivalence and the Vacuum

There remain worries, however, about the relationship between models of Maxwell
gravitation and Newton-Cartan theory. In what follows, I restrict attention to
Dewar’s equivalence result. This is in part for the ease of comparison owing to our
shared formalism, and will be rewarded by a straightforward extension of his equiv-
alence result. Of equal interest, however, is his accompanying claim concerning the
existence of purely gravitational degrees of freedom that allegedly underdetermine
geometrizations of Maxwell gravitation.19 This particular claim is explored in this
section by way of extending the equivalence, while the more general question of
the space of possible geometrizations will be taken up in the final section of the

17We restrict attention to standards of rotation ↻ for which there exist some unit timelike
vector field ηa such that (i)↻n ηa = 0 and (ii) £ηh

ab. This is to ensure that there is always at
least one flat covariant derivative operator compatible with our metrics and agreeing with our
standard of rotation.

18Note that the converse of proposition follows from Proposition 1.1 of Weatherall (2018).
19Beyond the specific questions considered here, this discussion is hopefully of more general

interest, particularly for projects considering analogs of the Weyl tensor and gravitational wave
phenomena in classical spacetimes. See, for instance, Wallace (2017), Dewar and Weatherall
(2018), Hansen et al. (2019), and Linnemann and Read (2021).
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paper.
Dewar (2018) claims that there is a sense in which Maxwell gravitation and

Newton-Cartan theory are equivalent: for each model of Maxwell gravitation there
corresponds a unique model of Newton-Cartan theory provided ρ is everywhere
nonvanishing.20 But this qualification is rather strong. If the idea is that Maxwell
spacetime is the weakest structure on which a theory of Newtonian gravity may
be expressed, can this be sustained if it is only true for worlds in which matter
fills all of space?

To understand why the equivalence is not general, Dewar considers two triples:
(L,∇, T na) and (L, (∇, (∇aϕ)tbtc), T na), where ∇ ∈ [∇] and ϕ = exey sin(

√
2z) for

a coordinate system (t, x, y, z) adapted to L. One can show in the special case
where T na = 0 that each structure qualifies as a distinct model of Newton-Cartan
theory, and yet they both correspond to the same model of Maxwell gravitation.

Dewar gathers from this that one has uniqueness only when there is “sufficient
material structure to everywhere ‘probe’ the spatiotemporal structure” (Dewar,
23). Accordingly, when ρ vanishes in some but not all regions, Dewar claims that
there exist “distinct but ‘materially identical’ ” models of Newton-Cartan theory
corresponding to a given model of Maxwell gravitation. Matter would be present
in some parts of spacetime—and so its spatiotemporal structure could there be
probed—but the structure of empty regions would be left underdetermined. The
thought then is that there would be many models of Newton-Cartan theory pos-
sessing the spatiotemporal structure prescribed by the behavior of matter, which,
nonetheless, would differ through purely gravitational degrees of freedom. Such
models would be “materially identical,” in the sense of agreeing on all the motions
of actual matter, and yet could be distinguished in principle by the motions of test
particles in empty parts of spacetime.

With this, Dewar takes the more general equivalence of the theories to turn on
whether these “unactualised dispositions may properly be considered as empirically
respectable properties” (Dewar, 24). But as we will see, this is to misunderstand
the nature of curvature in classical spacetimes: a model of Maxwell gravitation will
continue to have a unique geometrization as long as ρ is not everywhere vanishing.

Let us begin by considering how candidate geometrizations of a model of
Maxwell gravitation must be related. By proposition 4 of Dewar (2018), any
two models of Newton-Cartan theory are compatible with a particular model of
Maxwell gravitation—i.e. set over the same Leibnizian spacetime and agreeing on
a standard of rotation—just in case their connections ∇̃ and ∇̃′ are related by

∇̃′ = (∇̃, η atbtc), (4)

20Or, alternatively, that every Maxwell spacetime is uniquely associated with a model of
Newton-Cartan theory when one is given a set of dynamically allowable trajectories (Weatherall,
2016).
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for some spacelike vector field η a such that ∇̃[aη b] = 0. But more may be said:21

Proposition 3. Let (L, ∇̃, T ab) and (L, ∇̃′, T ab) be two rotationally-equivalent
models of Newton-Cartan theory where ∇̃′ = (∇̃, η a tbtc). Then there exists a field
η such that η a = ∇̃aη and ∇̃a∇̃

aη = 0.

We thus find that restricting attention to models of Newton-Cartan theory
agreeing on a standard of rotation determines the curved derivative operator up to
a spacelike field that is both twist- and divergence-free. In this way, one specifies
the absolute acceleration of bodies everywhere on a spacelike hypersurface up to a
multiple of −∇̃aη, where this quantity is the gradient of some potential satisfying
Laplace’s equation. While in general there are many such potentials, one may
reduce the class of qualifying solutions. Of special interest is the following:

Proposition 4. Let (L, ∇̃, T ab) and (L, ∇̃′, T ab) be two rotationally-equivalent
models of Newton-Cartan theory. Then, if ∇̃ and ∇̃′ agree with respect to any
open set O, they must agree everywhere.

While a standard of acceleration is not explicitly defined for a model of Maxwell
gravitation, proposition 4 shows that the curvature of candidate geometrizations
is not thereby free to vary arbitrarily if ρ is anywhere nonvanishing: one cannot
require two Newton-Cartan derivative operators to agree with respect to some re-
gion while allowing them to differ elsewhere. In particular, two geometrizations
cannot make the same determinations regarding matter-inhabited regions and yet
disagree when it comes to regions of vanishing mass density, i.e. there can be
no “distinct but materially identical” models of Newton-Cartan theory. In this
sense, we see that specifying the curvature of a geometrization in any one part is
sufficient, in fact, to determine the curvature of the entire manifold.

Settling the question concerning materially-identical models, proposition 4 thus
enables us to extend Dewar’s uniqueness result to all but the vacuum case:

Corollary 4.1. Let (L,↻, T ab) be a model of Maxwell gravitation such that
ρ is smooth and somewhere nonvanishing. Then there is a unique Newton-Cartan
connection ∇̃ such that (L, ∇̃, T ab) is a compatible model of Newton-Cartan theory.

As it happens, this correspondence is a consequence of how we have defined
models of Newton-Cartan theory: for all such models, (i) T ab must be divergence-

21Note that the enunciation of the proposition specifies that ∇̃′ = (∇̃, η a tbtc) merely for the
sake of convenience. It holds by a direct application of the aforementioned proposition by Dewar
since two rotationally-equivalent models of Newton-Cartan theory are trivially compatible with
the same model of Maxwell gravitation.
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free and (ii) the Ricci curvature R̃ bc must be related to the mass density ρ by the
geometrized Poisson equation. The former suffices to uniquely determine a curved
derivative operator for an open set in which ρ ≠ 0, while the latter extends this
determination to the whole manifold.

To see this more perspicuously, consider how ∇̃nT na = 0 implies

ρξn∇̃ξa = −∇̃nσ
na.

By requiring one’s curved derivative operator to determine that T na be divergence-
free, one is, in fact, purchasing an equation of motion. It is essential to note, how-
ever, that this is an equation specifying not acceleration simpliciter, but the quan-
tity ρξn∇̃ξa, which as Dewar rightly cautions, vanishes trivially in empty regions
of spacetime. It is for this reason that geometrizations of models of Maxwell grav-
itation fail to be unique when ρ vanishes everywhere. It does, however, uniquely
determine the absolute acceleration of bodies in regions where ρ is positive since
all rotationally-equivalent covariant derivative operators will agree with respect
to the divergence of σna, being a tensor field spacelike in both indices. We thus
find that models of Newton-Cartan theory have been defined such that a standard
of acceleration is determined globally by fixing a local standard for some region
inhabited by matter.

5 Geometrizing Maxwell Gravitation

Adopting for the moment the success condition of establishing the equivalence of
the two theories, one might declare a partial result, like ours, which fails in the
vacuum case, as still unsatisfactory and grounds for abandoning Maxwell spacetime
altogether. But this would not be in keeping with the spirit of the project: Maxwell
spacetime could never hope to be the equal of Newton-Cartan theory on the merits
of its “fundamental” spatiotemporal structure alone—the former is defined so as
to have strictly less structure of this kind than the latter. What a successful
formulation of Maxwell gravitation would seem to show is that one need not begin
with a standard of acceleration, for one may be constructed by appropriately taking
into account the material structure of one’s spacetime.22

22If one is willing to entertain any emergent structure at all, it becomes natural to ask if
one may make do with a setting even weaker than Maxwell spacetime. With Barbour-Bertotti
spacetime, for instance, even a standard of rotation is omitted from one’s inventory of spacetime
structure; instead, one restricts attention to models in which the total angular momentum of the
universe vanishes (Barbour, 1982). Even more radically, one might turn to Leibniz gravitation,
in which the only spacetime structure is metrical but one begins with the collection of all allow-
able trajectories for a given matter distribution (Dewar, 28). Each loss of spacetime structure,
however, comes with a price that must be paid elsewhere in the theory. For Barbour-Bertotti
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It is not without precedent for structure to emerge dynamically in this way,
but there is something peculiar about the conditions under which this occurs in
Maxwell gravitation. It was observed in the preceding section that the existence
of a unique curved derivative operator compatible with a model of Maxwell grav-
itation is contingent upon the satisfaction of two conditions: (i) T ab must be
divergence-free and (ii) the Ricci curvature R̃ bc must be related to the mass den-
sity ρ by the geometrized Poisson equation. The second of these conditions is
unproblematic—again, equation (2*) encodes this relation independently of one’s
choice of covariant derivative operator—but the first should give one pause. Con-
sider, for instance, how Dewar interprets this condition physically in the context
of his equivalence result: “the standard of acceleration is defined as that according
to which the net gravitational acceleration of the matter encoded by T ab is zero”
(Dewar, 20). In other words, requiring the divergence-freedom of T ab is a way of
constraining the total acceleration experienced by matter in one’s spacetime, which
is precisely the sort of physical judgment we had sought to refrain from making.
Put most strongly, the ordinary approach to geometrized Newtonian gravity would
seem to be incompatible with corollary 6.

Now just as with standard Newtonian gravity where one can respond by moving
to Maxwell spacetime, so too one might respect corollary 6 by entertaining a
wider class of geometrizations in which T ab need not be divergence-free. To get
a better sense of the space of possible geometrizations, consider how a Galilean
spacetime comes to be uniquely associated with a model of Newton-Cartan theory.
Traditionally, the Geometrization Lemma includes the following stipulation:

ξn∇̃nξ
a = 0 ⇐⇒ ξn∇nξ

a = −∇aϕ,

i.e. the new curved derivative operator ∇̃ must determine a timelike curve ξa to be
a geodesic just in case an equation of motion is satisfied with respect to the original
flat derivative operator ∇ and gravitational potential ϕ. The Trautman recovery
theorem reveals, furthermore, that there is a whole equivalence class [(∇, ϕ)] of
paired flat derivative operators and gravitational potentials that satisfy the above
requirement for a given curved Newton-Cartan connection. Indeed, if (∇, ϕ) is one
such pair, then any other pair (∇′, ϕ′), where ∇′ = (∇, tbtc∇̃a(ϕ′−ϕ)) and ∇̃a∇̃b(ϕ′−
ϕ) = 0, will as well. Physically speaking, each model of Galilean gravitation
(L,∇, ϕ, ρ), with (∇, ϕ) selected from this equivalence class, will possess the same

spacetime, this comes in the form of an assumption about what is physically possible, and in
some formulations, a reshuffling of structure to phase space (as discussed in Belot (2000)). With
Leibniz gravitation, one loses the ability to pick out models of the theory by a set of equations
defined in terms of only intrinsic structures (Dewar, 28). Maxwell gravitation seems to me to
strike a nice balance of having just enough spacetime structure to make do without such hefty
physical assumptions.
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inertial structure modulo any universal forces represented by the differences in
their respective gravitational potentials.

It is this last qualification that is of principal interest for our purposes. When
we prefer a curved derivative operator satisfying the biconditional above, we treat
as physically significant only that curvature which arises due to mutual gravita-
tional interactions and disregard contributions from possible universal forces. But
this is not the only way of proceeding: one may equally well choose a geometriza-
tion according to which bodies are accelerated under a universal force. For take
any scalar field ψ such that ∇̃a∇̃bψ = 0 and any pair (∇, ϕ) ∈ [(∇, ϕ)]. By the
same reasoning as in the proof of the Geometrization Lemma, there corresponds
to each ψ a unique curved derivative operator ∇̃′ = (∇,−tbtc∇a(ϕ − ψ)) such that

ξn∇̃′nξ
a = −∇̃′aψ ⇐⇒ ξn∇nξ

a = −∇aϕ,

and the tuple (L, ∇̃′, T ab) meets all the requirements of a model of Newton-Cartan
theory save that T ab be divergence-free. A similarly altered proof of the Trautman
recovery theorem shows, moreover, that any such pseudo-model will correspond
to the very same equivalence class [(∇, ϕ)] as ∇̃. In direct analogy with Maxwell
spacetime, we find that there exists a whole family of pseudo-Newton-Cartan con-
nections [∇̃] agreeing on the relative motions of particles, but which disagree on
their absolute acceleration by some universal force ψ.

Interestingly, however, these differences in acceleration are not reflected as
differences in the curvature of these pseudo-models. For consider any ∇̃, ∇̃′ ∈ [∇̃]
and let ψ be the scalar field relating them.23 By equation 1.8.2. of Malament
(2012), we have that

R̃′abcd = R̃a
bcd + 2∇̃[c∇̃aψtd]tb + 2ψntbt[cψatd]tn,

where R̃a
bcd and R̃′abcd are the Riemann curvature tensors associated, respectively,

with ∇̃ and ∇̃′. But both the second and third right-hand terms of this expression
must vanish. For the second term, observe that since ∇̃a∇̃bψ = 0, one has

t[d∇̃c]∇̃aψ = t[dtc]ξn∇̃n∇̃
aψ = 0;

while the third must vanish because ψn is always spacelike.24 The Riemann cur-
vature, therefore, must be the same across all members of [∇̃].

Moreover, since the space of vectors at a point is spanned by the timelike vec-
tors—and rotationally-equivalent Newton-Cartan derivative operators must agree

23If we follow the construction procedure above for the equivalence class [∇̃], any two members
will satisfy ∇̃′ = (∇̃, tbtc∇

aψ) for some scalar field ψ.
24Recall that since ∇̃ and ∇̃ are rotationally equivalent, both proposition 4 of Dewar (2018)

and our proposition 3 apply.
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on how timelike vectors change in spacelike directions—there is a canonical bijec-
tion between standards of acceleration and Newton-Cartan derivative operators
(relative to each standard of rotation). So there cannot exist some other collection
[∇̄] whose members assign acceleration to bodies in the way described and yet
are associated with distinct Riemann tensors. Even after broadening attention
to pseudo-Newton-Cartan connections, there is no way of expressing these dis-
agreements on the acceleration of bodies as variations in the associated curvature
tensors—such disagreements may only be expressed by the addition of potentials
corresponding to their respective universal forces.

We thus find that the usual approach to geometrized Newtonian gravity does
indeed respect corollary 6, constraints on the divergence of T ab notwithstanding.
The curvature of spacetime is not altered by the introduction of these universal
forces. So even if the relative motions of bodies are preserved after the addition of
some uniform linear acceleration, there remains an important difference between
this kind of acceleration and that produced by the mutual gravitational attraction
of bodies. In fact, the foregoing sheds some light on how it is that Newton-Cartan
theory and Maxwell gravitation could ever be equivalent in the first place. If one
requires of a successful geometrization that all gravitational interactions be en-
coded purely as spacetime curvature, then there is always a privileged model of
pseudo-Newton-Cartan theory at hand. For any model with non-vanishing univer-
sal forces has either not fully incorporated the gravitational interactions of matter
or is entertaining the existence of some additional, but non-gravitational, force.
In this sense, one is not making some further choice in adopting the usual model
of Newton-Cartan theory—this simply comes with the business of geometrizing
Newtonian gravity. The apparent structural gap between Maxwell spacetime and
Newton-Cartan theory may then be bridged because the “additional” structure of
the latter comes for free.

This reflection is of special interest for the question of the conventionality of
geometry in Newtonian gravitation theory. Weatherall and Manchak (2014), for
instance, have shown that given a classical spacetime (L,∇) and an arbitrary
derivative operator ∇̃ (compatible with L), there exists a unique antisymmetric
field Gab such that ξn∇nξa = 0 just in case ξn∇̃ξa = Ga

nξ
n. They interpret this

result as follows:

This proposition means that one is free to choose any derivative op-
erator one likes (compatible with the fixed classical metrics) and, by
postulating a universal force field, one can recover all of the allowed
trajectories of either a model of standard Newtonian gravitation or a
model of geometrized Newtonian gravitation. Thus, since the deriva-
tive operator determines both the collection of geodesics—i.e. non-
accelerating curves—and the curvature of spacetime, there is a sense
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in which both acceleration and curvature are conventional in classical
spacetimes. (Weatherall and Manchak, 10)

This claim is true with respect to the acceleration of bodies in classical space-
times.25 There is more to say, however, with respect to the conventionality of cur-
vature in this setting. Weatherall and Manchak, naturally, point to the derivative
operators of the standard models of ordinary Newtonian gravitation theory—in
which universal forces are absent—and Newton-Cartan theory as convenient but
non-canonical choices. Little is said, however, about the curvature of other mod-
els—only that their curvature will be determined by the choice of derivative oper-
ator, since changes in the latter will induce corresponding changes in the former.

In the same spirit as the pseudo-models of Newton-Cartan theory considered
above, one can show that there exist intermediate models in which one’s grav-
itational potential is only absorbed as spacetime curvature to a certain degree,
such that a residual potential remains over a partially-geometrized spacetime.
Consider an arbitrary model of Galilean gravitation (L,∇, ϕ, ρ). There exists a
one-parameter family of curved derivative operators [∇̃] where each member ∇̃
is related to the original model by ∇̃ = (∇,−tbtc∇a(αϕ)) with 0 ≤ α ≤ 1. One
may easily verify that the structure (L, ∇̃, ϕ, ρ,α), for any ∇̃ ∈ [∇̃], will satisfy
the usual requirements of models of Newton-Cartan theory, save that now the
“geodesic” equation becomes

ξn∇̃nξ
a = (α − 1)∇̃aϕ ⇐⇒ ξn∇nξ

a = −∇aϕ

and the associated Ricci curvature is given by R̃bc = α 4πρ tbtc. In this way, one has
an explicit procedure for smoothly geometrizing a flat classical spacetime through
intermediate models up to the standard model of Newton-Cartan theory.

This brings out Weatherall and Manchak’s insight concretely: given a classical
spacetime, one may equally well describe the allowed trajectories with any member
of an equivalence class of derivative operators, each of which determines a distinct
curvature tensor. In this sense, curvature is surely a matter of convention. But the
discussion of pseudo-models of Newton-Cartan theory above teaches us that we
ought to be careful when interpreting the scope of this conventionality. One may
always introduce universal forces to translate between derivative operators, yet
only some of these universal forces will be of the appropriate form to be represented
as the curvature of a classical spacetime: those of the above or a similar form
will represent the difference between intermediate degrees of geometrization of a
gravitational potential, while those universal forces relating families of Trautman

25One sees this, if to a lesser degree, even with the existence of non-singleton equivalence
classes of Trautman recoveries, which grounds a sense in which gravitational force is a gauge
quantity in Newtonian gravitation theory (Malament, 2014, 278). Teh (2018) develops this
gauge interpretation of the theory at greater length.
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recoveries—which have vanishing spatial gradients—are only expressible as further
potentials themselves. So while there is no fact of the matter about the absolute
degree of curvature of a classical spacetime—or even whether the spacetime is
curved at all—there is nonetheless a canonical distinction between that part of the
gravitational potential of any given model that is interpretable as curvature and
that which is not.26

6 Conclusion

Following the strategy of Dewar (2018), I have expressed a version of his “Maxwell
gravitation” in a way that refrains from using any covariant derivative opera-
tors—or equivalence classes thereof. The definition is equivalent to Dewar’s and
yet makes use of only the structure intrinsic to Maxwell spacetime, thereby secur-
ing the theory against claims of mathematical impropriety and providing a more
direct characterization of the theory.

Furthermore, I have shown that there is a unique correspondence between mod-
els of Maxwell gravitation and Newton-Cartan theory so long as one’s mass dis-
tribution be somewhere nonvanishing. There cannot exist “distinct but materially
identical” models of Newton-Cartan theory that vary through purely gravitational
degrees of freedom—fixing the curvature of even a single region suffices for it to be
determined across the entire manifold. The structural gap between the two theo-
ries may thus be bridged with the modest assumption that there simply be some
matter in one’s spacetime with which to probe its emergent dynamical structure.

In discussing the divergence-freedom of T ab vis-à-vis corollary 6, moreover, we
found that the Riemann curvature of a model of Newton-Cartan theory is un-
affected by the introduction of universal forces like those relating its Trautman
recoveries. This lends a certain naturalness to a conception of Maxwell gravita-
tion that countenances both its fundamental structure and the emergent standard
of acceleration given by its uniquely associated Newton-Cartan connection, and
shows, additionally, a sense in which spacetime curvature is not entirely a matter
of convention in classical spacetimes.

26It is, of course, possible to entertain more exotic geometrizations of classical spacetimes in
which such terms are incorporated, but only by means of a corresponding expansion of Poisson’s
equation. For instance, one may introduce a “cosmological constant” term to be reflected as
a curvature term of possible geometrizations. Malament (2012, 269), in demonstrating how
the geometrized Poisson equation is a special case of Einstein’s equation, considers the simple
addition ∇a∇

aϕ + Λ = 4πρ, which yields R̃bc = 4πρtbtc − Λtbtc as the Ricci curvature of the
standard model of Newton-Cartan theory. But note that this addition only carries through to
the Ricci curvature because it is made to the Laplacian of the gravitational potential (or the
matter distribution), and not the potential itself. For more on the relationship between the
cosmological constant and the classical limit of general relativity, see Malament (1986).
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Appendix: Proofs of Propositions

Proposition 1. If (L,↻) is a Maxwell spacetime, then there exists a unique
corresponding Maxwell spacetime* (L, [∇]).

Proof. Let A = (L,↻) be a Maxwell spacetime, where L = (M, ta, hab) is some
Leibnizian spacetime and ↻ is a standard of rotation compatible with L. Let
[∇] be the set of all flat covariant derivative operators agreeing with ↻ that are
compatible with ta and hab. Part 2 of proposition 1 of Weatherall (2018) guarantees
that there exists at least one such derivative operator (which may be chosen to be
flat by part 3 of the same proposition), and so [∇] is nonempty; and trivially, [∇]
is unique.

Consider the structure A∗ = (L, [∇]), where L and [∇] are as above. By
construction, A∗ is a Maxwell spacetime* corresponding to A since all the members
of [∇] agree with ↻ (and so are rotationally equivalent to one another) and are
compatible with both of L’s metrics. But since [∇] is unique (and maximal), A∗

is the only Maxwell spacetime* with this property.

Proposition 2. Let (L,↻) be a Maxwell spacetime and (L, [∇]) its correspond-
ing Maxwell spacetime*. Given some T ab, (L,↻, T ab) is a model of Maxwell
gravitation if and only if (L, [∇], T ab) is a model of Maxwell gravitation*.

Proof. Let (L,↻, T ab) be a model of Maxwell gravitation. Since it has been
assumed that [∇] and ↻ determine the same standard of rotation, it suffices
to show that equations (1)–(3) are satisfied for an arbitrary derivative operator
∇ ∈ [∇] to establish that (L, [∇], T ab) is a model of Maxwell gravitation*.

We begin by demonstrating that equation (1) holds. Consider the first right-
hand term of (1*):

ρ ◻n ξ
n = ρ hnz ◻

z ξn

= ρ (hnz(↻
z ξn −

1

2
£ξh

zn))

= ρ (haz(∇
[zξa] +∇(zξa)))

= ρ ∇aξ
a,

where the last two lines follow by proposition 1.7.4 of Malament (2012), the com-
patibility of hna with ∇, and the fact that ∇zξa is spacelike in both indices as ξa

is a unit timelike vector. Since ξndnρ = ξn∇nρ and the quantity ta∇nξa + ta∇nσna

vanishes—recall, ta is also compatible with ∇ while σna is spacelike in both indices
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by construction—equation (1*) becomes

0 = ρ∇nξ
n + ξn∇nρ

= (taξ
a)ρ∇nξ

n + (taξ
a)ξn∇nρ + taρξ

n∇nξ
a + ta∇nσ

na

= ta∇n(ρξ
nξa + σna)

= ta∇nT
na,

which is equation (1).
We turn next to the case of equation (2). Let ηa be a smooth vector field

everywhere satisfying ηata = 1, and let ĥab be the spatial projector relative to ηa

(i.e. the unique field satisfying ĥabηb = 0 and ĥabhbc = δca − taη
c). One may then

express the first right-hand term of (2*) as

Da(ρ
−1Dnσ

na) = haz∇
z(ρ−1hnmĥnxĥay∇mσxy)

= ∇a(ρ
−1∇nσ

na).

Moreover, by the same reasoning as in the case of hnz ◻z ξn, one has for the
remaining right-hand terms of (2*)

ξndn(◻aξ
a) = ξn∇n(∇aξ

a) = ξn∇a∇nξ
a

and

(◻aξ
n)(◻nξ

a) = (∇aξ
n)(∇nξ

a),

as ∇ is flat and ∇aξa a scalar field. These expressions, together with the observation
that ρ−1ξa(ρ∇nξn + ξn∇nρ) = 0, allow one to re-write equation (2*) as

−4πρ = ∇a(ρ
−1∇nσ

na) + ξn∇a∇nξ
a + (∇aξ

n)(∇nξ
a)

= ∇a(ρ
−1∇nσ

na + ρ−1ρξn∇nξ
a + ρ−1ρξa∇nξ

n + ρ−1ξaξn∇nρ)

= ∇a(ρ
−1∇n(σ

na + ρξnξa))

= ∇a(ρ
−1∇nT

na),

i.e. equation (2).
It remains to establish that equation (3) is satisfied. We begin by observing

that the first right-hand term of (3*) is

↻c (ρ−1Dnσ
na) =

1

2
[∇c(ρ−1∇nσ

na) −∇a(ρ−1∇nσ
nc)],

while, by application of proposition 1.7.4 of Malament (2012), one has

£ξ(↻
c ξa) =

1

2
[ξn∇n(∇

cξa) − (∇nξa)(∇nξ
c) − (∇cξn)(∇nξ

a)]

−
1

2
[ξn∇n(∇

aξc) − (∇nξc)(∇nξ
a) − (∇aξn)(∇nξ

c)]
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for the last term of (3*). The remaining right-hand terms, finally, are spacelike in
all their indices, and so are just

2(◻[cξ ∣n∣)(◻nξa]) + (◻nξ[a)(◻nξc])

= (∇cξn)(∇nξ
a) − (∇aξn)(∇nξ

c) +
1

2
(∇nξa)(∇nξ

c) −
1

2
(∇nξc)(∇nξ

a).

A straightforward calculation then verifies, by taking the sum of the right-hand
sides of the three expressions above, that

0 = ∇[c(ρ−1∇nT
∣n∣a]),

and so equation (3) is satisfied.
This gives us the implication from left to right. The converse may be shown

similarly.27

Proposition 3. Let (L, ∇̃, T ab) and (L, ∇̃′, T ab) be two rotationally-equivalent
models of Newton-Cartan theory where ∇̃′ = (∇̃, η a tbtc). Then there exists a field
η such that η a = ∇̃aη and ∇̃a∇̃

aη = 0.

Proof. The existence of at least one field η such that ∇̃aη = η a is guaranteed by
proposition 4.1.6 of Malament (2012) (which holds globally for spacetimes whose
spacelike slices are connected and simply connected) as η a is twist-free by propo-
sition 4 of Dewar (2018).

Since (L, ∇̃, T ab) and (L, ∇̃′, T ab) are both models of Newton-Cartan theory,
they each satisfy Poisson’s equation: R̃bc = 4πρ tbtc = R̃′bc. Further, by equation
1.8.2 of Malament (2012), one has that

R̃′abcd = R̃a
bcd + 2∇̃[cη atd]tb + 2 η ntbt[cη atd]tn,

which, through (d→ a) index substitution, is

R̃′abca = R̃a
bca + 2∇̃[cη ata]tb + 2 η ntbt[cη ata]tn.

But, by Poisson’s equation, the compatibility of ta, and the fact that η a is spacelike,
this simplifies to

0 = ∇̃aη
a = ∇̃a∇̃

aη,

i.e. η must be a solution to Laplace’s equation.

27Note that, when proceeding in the other direction, equations (1)-(3) would be expressed in
terms of an arbitrary member of [∇] (flat by construction). Part 1 of proposition 1 of Weatherall
(2018) then guarantees there will be a unique standard of rotation↻ corresponding to ∇ regard-
less of our choice of derivative operator (they are all rotationally equivalent). The argument will
then proceed by reversing the steps of the proof for the direction shown with minor alterations.
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Proposition 4. Let (L, ∇̃, T ab) and (L, ∇̃′, T ab) be two rotationally-equivalent
models of Newton-Cartan theory. Then, if ∇̃ and ∇̃′ agree with respect to any
open set O, they must agree everywhere.

Proof. For suppose not. Then there exist at least two rotationally-equivalent mod-
els of Newton-Cartan theory (L, ∇̃, T ab) and (L, ∇̃′, T ab) such that ∇̃ = ∇̃′ at all
points p ∈ O, but disagree at some point y.

Proposition 4 of Dewar (2018) shows that ∇̃′ = (∇̃, η a tbtc) for some spacelike
vector field η a such that ∇̃[aη b] = 0, while by the same reasoning as above, there
exists some field η such that ∇̃aη = η a. Any such η, however, must satisfy Laplace’s
equation by proposition 3.

Consider, next, the values η must assume. By supposition, ∇̃ and ∇̃′ agree
everywhere within O, but disagree at some point y. This is to say, η must be
equal to some constant s within O and yet be changing in some neighborhood of
y along the direction of η a. But by theorems 1.2728 and 1.28 of Axler, Bourdon,
and Ramey (2001), if η is constant in O, then η must be constant everywhere.

Corollary 4.1. Let (L,↻, T ab) be a model of Maxwell gravitation such that ρ
is smooth and somewhere nonvanishing. Then there is a unique Newton-Cartan
connection ∇̃ such that (L, ∇̃, T ab) is a compatible model of Newton-Cartan theory.

Proof. The existence of at least one such Newton-Cartan connection ∇̃ is given by
the proof of proposition 6 of Dewar (2018).

Now, ∇̃ must be unique. For suppose not—then there exists another Newton-
Cartan connection ∇̃′ agreeing with↻ such that (L, ∇̃′, T ab) is a model of Newton-
Cartan theory. Since ∇̃ and ∇̃′ are both Newton-Cartan connections, one has that

∇̃nT
na = 0 = ∇̃′nT

na

and, by the proof of proposition 6 of Dewar (2018),

∇̃′nT
na = ∇̃nT

na − ρη a,

where ηa is the vector field satisfying ∇̃′ = (∇̃, tbtcη a). Thus, the quantity ρη a

must vanish everywhere.
Since ρ is somewhere nonvanishing by supposition, there is some open set in

which the vector field η a vanishes, i.e. ∇̃ = ∇̃′. By proposition 4, however, ∇̃ and
∇̃′ must then agree everywhere.

28The reasoning in the proof of this theorem applies just as well for functions equal to a
non-zero constant.
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