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A B S T R A C T
Problems with uniform probabilities on an infinite support show up in contemporary cosmology. This
paper focuses on the context of inflation theory, where it complicates the assignment of a probability
measure over pocket universes. The measure problem in cosmology, whereby it seems impossible
to pick out a uniquely well-motivated measure, is associated with a paradox that occurs in standard
probability theory and crucially involves uniformity on an infinite sample space. This problem has
been discussed by physicists, albeit without reference to earlier work on this topic. The aim of this
article is both to introduce philosophers of probability to these recent discussions in cosmology and
to familiarize physicists and philosophers working on cosmology with relevant foundational work
by Kolmogorov, de Finetti, Jaynes, and other probabilists. As such, the main goal is not to solve the
measure problem, but to clarify the exact origin of some of the current obstacles. The analysis of the
assumptions going into the paradox indicates that there exist multiple ways of dealing consistently with
uniform probabilities on infinite sample spaces. Taking a pluralist stance towards the mathematical
methods used in cosmology shows there is some room for progress with assigning probabilities in
cosmological theories.

“Infinite set paradoxing has become a morbid infection
that is today spreading in a way that threatens the very
life of probability theory, and requires immediate sur-
gical removal.”—Jaynes (2003, p. xxii)

The ‘infinite fair lottery paradox’ refers to a formal
incompatibility between the notion of a uniform probability
measure on a countably infinite sample space (such as the
set of natural numbers, which we take to be the positive
integers) and the axioms of standard probability theory
(due to Kolmogorov, 1933, p. 15). One’s reaction to this
problem depends on the status one assigns to Kolmogorov’s
theory or the arguments that support it. If this theory—or an
alternative that agrees on the two cases at hand—is taken
to be a constraint for all our thinking about probabilistic
scenarios—i.e., as the sole normative standard for reasoning
about lotteries—then it seems to follow that the notion
of a fair lottery on a countably infinite sample space is
intrinsically paradoxical—that the very idea is mistaken or
meaningless. This is the verdict reached by Jaynes (2003),
Guth (2018), and Norton (2021).

However, if one starts with a different theory as the
normative standard for reasoning about lotteries or if one
takes a pluralistic stance, allowing multiple formalisms for
representing uncertainty (each with their own virtues and
vices, and each with a certain range of applicability), then
it may yet be possible to make sense of the notion of a
fair lottery on a countably infinite sample space. In fact,
the problems that arise from combining the notion of a
fair lottery on the set of natural numbers with the axioms
of Kolmogorov’s theory has been a source of motivation
for developing alternative probability theories, in particular,
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by de Finetti (1974) and Benci, Horsten and Wenmackers
(2013, 2018).

Recently, the problem has resurfaced in the context in
cosmology, albeit with little connection to their treatment
in the earlier literature on the foundations of probability.
The issue is related to the ‘measure problem’ in cosmology,
which refers to ambiguities in the assignment of probabilities
to events in an infinite sample space. Although the measure
problem is a more general issue, which remains even if the
aforementioned paradox can be circumvented, a specific case
of assigning uniform probability measures on infinite phase
spaces has popped up in models of eternal inflation.

The problem occurs in the context of inflation theory,
which posits that our universe underwent a rapid expansion
relatively shortly after the Big Bang. Inflation theory has
been very influential in cosmology in the past decades, lead-
ing many authors to comment on this issue. In physics, for in-
stance, by Guth (2000) and Linde and Noorbala (2010), and
in philosophy of science, for instance, by Smeenk (2014),
Curiel (2015), and Norton (2021). Some physicists take it
to be a serious problem for the theory (Ijjas, Steinhardt and
Loeb, 2013).

The main goal of this paper is to make the connection
between the debate in cosmology and the older discussion on
uniform measures in the foundations of probability explicit.
Section 1 reviews the axioms and some further definitions
and key theorems of standard probability theory. A paradox
arises when this theory is combined with the notion of a fair
lottery on the set of natural numbers. Section 2 discusses four
alternative formalisms that do not lead to inconsistencies
when they are combined with the notion of a fair lottery on
a countably infinite set. Section 3 introduces the debate on
eternal inflation and discusses which role the paradox plays
there. Whereas we could take the notion of a fair lottery on
the set of natural numbers for granted as the (theoretical)
target system in the previous sections, here a crucial issue

S. Wenmackers: Preprint accepted by Studies in History and Philosophy of Science (August 2023) Page 1 of 16

https://www.sylviawenmackers.be/


Uniform probability in cosmology

is whether or to which degree this is a relevant toy model to
study probabilistic aspects of the (physical) target systems in
cosmology. Section 4 formulates conclusions.

1. A paradox in Kolmogorov’s probability
theory
Kolmogorov (1933) solved the first half of Hilbert’s

sixth problem: developing an axiomatic theory for the
mathematics of probability. Moreover, building on earlier
measure theoretic treatments of probability (by authors
such as Émile Borel, Maurice Fréchet, Paul Lévy, Con-
stantin Carathéodory, Johann Radon and Otto Nikodym),
Kolmogorov managed to integrate probability theory into
measure theory—a crucial strength that enabled his theory
to become the standard mathematical theory for probability.
This section first reviews Kolmogorov’s axiomatic system,
as well as some further definitions and theorems of the
theory. Then, a paradox is considered that arise when
Kolmogorov’s theory is applied to a fair lottery on the set
of natural numbers.
1.1. Kolmogorov’s probability theory

Kolmogorov (1933)’s probability theory assumes stan-
dard set theory (Zermelo–Fraenkel set theory with the Ax-
iom of Choice) as the background theory. The axioms of
probability theory are equivalent to the following. Let Ω
be a non-empty set called the sample space, of which the
elements represent elementary possible outcomes (atomic
events). (In examples from physics, the sample space is often
the relevant phase space or some subset thereof.) Let 𝔄 be
a sigma-algebra over Ω,1 of which the elements represent
arbitrary events. Let 𝑃 be a function 𝑃 ∶ 𝔄 → ℝ for which
the following axioms hold, called a probability function.
(K1) 𝑃 is non-negative: 𝑃 (𝐴) ≥ 0 for all events 𝐴 in 𝔄.
(K2) 𝑃 is normalized: 𝑃 (Ω) = 1.
(K3) 𝑃 is finitely additive: 𝑃 (𝐴1 ∪𝐴2) = 𝑃 (𝐴1) + 𝑃 (𝐴2),for all mutually disjoint events 𝐴1, 𝐴2 in 𝔄 (i.e., 𝐴1 ∩

𝐴2 = ∅).
(K4) 𝑃 is countably additive: 𝑃 (

lim𝑛→∞ ∪𝑖∈{1,…,𝑛}𝐴𝑖
)

=
lim𝑛→∞

∑

𝑖∈{1,…,𝑛} 𝑃 (𝐴𝑖), for all countable families
of mutually disjoint events {𝐴𝑖}, with all 𝐴𝑖 in 𝔄 (i.e.,
𝐴𝑖 ∩ 𝐴𝑗 = ∅ whenever 𝑖 ≠ 𝑗).

If the above axioms hold, the triple ⟨Ω,𝔄, 𝑃 ⟩ is called a
Kolmogorovian probability space. Axiom K3 is redundant
since it is implied by K4. Nevertheless, it is mentioned
explicitly for two reasons. First, the first three axioms are
sufficient when Ω is finite (where K4 holds trivially) and
second, an alternative theory below that drops K4 entirely
will be considered.

Starting from a standard probability space ⟨Ω,𝔄, 𝑃 ⟩,
conditional probability can be defined by the following

1This means that 𝔄 is a collection of subsets of Ω that includes Ω and
is closed under complement (so it includes ∅) as well as countable unions.

ratio formula (for non-null conditioning events, i.e., events
which don’t have probability zero):
𝑃 (𝐴1 ∣ 𝐴2) =def 𝑃 (𝐴1 ∩ 𝐴2)∕𝑃 (𝐴2), for all events 𝐴1 and

𝐴2 in 𝔄 where 𝑃 (𝐴2) ≠ 0.
A consequence of countable additivity (K4) and the ratio

formula for non-null conditioning events is the law of total
probability:

If {𝐴1, 𝐴2,…} is a countable partition of Ω whose
members are in 𝔄, with 𝑃 (𝐴𝑖) ≠ 0 for all 𝑖 in ℕ, then
𝑃 (𝐴) = lim𝑛→∞

∑

𝑖∈{1,…,𝑛} 𝑃 (𝐴 ∣ 𝐴𝑖)𝑃 (𝐴𝑖), for all 𝐴 in
𝔄.

In many cases where Ω is infinite, atomic events are null
events. (Consider, e.g., a uniform distribution on a closed
real interval.) To cover such cases, Kolmogorov provided a
more general definition of conditional probability. Standard
probabilities conditional upon atomic null events are not
defined as such: they are only defined relative to a sigma-
algebra (and even then, non-uniquely). To this end, consider
a sigma-algebra  ⊆ 𝔄. Then, for any 𝐴 ∈ 𝔄, we can define
𝑃 (𝐴 ∣ ⋅) ∶ Ω → ℝ as any function such that:
𝑃 (𝐴 ∣ ⋅) is -measurable and
𝑃 (𝐴 ∣ ⋅) is such that 𝑃 (𝐴 ∩ 𝑆) = ∫𝑆∈ 𝑃 (𝐴 ∣ 𝜔)𝑑𝑃 (𝜔),

for all 𝑆 in  .
The previous equality is called the integral formula,

which generalizes the law of total probability. Unlike the law
of total probability, the integral formula is not a theorem in
Kolmogorov’s theory, but a defining property of conditional
probabilities, which is also applicable for all atomic and/or
null conditioning events.

Let us briefly comment on this from the perspective
of Jaynes (2003, p. xxii), who thought that probabilities
on infinite sets can only be well-defined when the relevant
sets “arise as well-defined and well-behaved limits of finite
sets”.2 Probabilities in Kolmogorov’s theory indeed depend
on limiting processes, in two ways.

The first way is directly apparent from the countable
additivity axiom (K4). It was equally apparent in the original
statement of the final axiom by Kolmogorov (1933, p. 14):
(K4’) 𝑃 is continuous: if a decreasing sequence of events

𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ … with all 𝐴𝑖 in 𝔄 such that
lim𝑛→∞ ∩𝑖∈{1,…,𝑛}𝐴𝑖 = ∅, then lim𝑛→∞ 𝑃 (𝐴𝑛) = 0.

K4 and K4’ are equivalent in the presence of axioms K1–
K3. Yet another form of axiom K4 that is equivalent in the
same sense (as proven in Benci et al., 2013) invokes the limit
via a supremum:

2Jaynes took his cue from Gauss’s view on infinity: “a figure of speech,
the true meaning being a limit”, as quoted by Jaynes (2003, p. 451).
According to Jaynes (2003, p. 485), “as long as we look only at the limit,
and not the limiting process, the source of the error is concealed from
view”. Similarly, Jaynes (2003, p. 487) wrote: “at least in probability theory,
an infinite set should be thought of only as the limit of a specific (i.e.,
unambiguously specified) sequence of finite sets”.
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(K4”) 𝑃 is continuous: 𝑃 (𝐴) = sup𝑛∈ℕ 𝑃 (𝐴𝑛), where 𝐴 =
lim𝑛→∞ ∪𝑖∈{1,…,𝑛}𝐴𝑖 with all 𝐴𝑖 in 𝔄 and 𝐴𝑖 ⊆ 𝐴𝑖+1for all natural numbers 𝑖.

In the standard theory, also the following theorem holds
(for a proof, see Benci et al., 2013): Conditional Probability
Principle (CPP):

Let Ω𝑖 be a family of events such that Ω𝑖 ⊆ Ω𝑖+1 and
Ω = lim𝑛→∞ ∪𝑖∈{1,…,𝑛}Ω𝑖; then, eventually 𝑃 (Ω𝑖) > 0 and,
for any event 𝐴 in 𝔄, we have that 𝑃 (𝐴) = lim𝑛→∞ 𝑃 (𝐴 ∣
Ω𝑖).So, the limit of conditional probabilities of an event
relative to a suitable family of sets equals the unconditional
probability of the event. This shows how standard probabil-
ities depend on limiting processes, as Jaynes required.3

Second, in Kolmogorov’s theory, “conditioning upon a
null event is underdetermined. Even if we fix all uncondi-
tional probabilities, and even if we specify the null event
upon which we wish to condition, we do not yet fix unique
conditional probabilities” (Rescorla, 2015, p. 745). Indeed,
the general definition of conditional probabilities (including
those conditional on null-events) involves further choices:
a sub-sigma-algebra and a specific conditional probability
function, where the latter choice is constrained but non-
uniquely determined by the integral formula. 4

1.2. Infinite fair lottery paradox
Assume that ⟨Ω,𝔄, 𝑃 ⟩ is a Kolmogorovian probability

space, so 𝑃 is a non-negative, normalized and countably
additive function. Further assume (ex absurdo) that 𝑃 de-
scribes a fair lottery on the set of natural numbers, which is
taken to mean at least three things:

• the sample space Ω is ℕ;
• the sigma-algebra 𝔄 at least contains the singleton

outcomes {𝑛} for all natural numbers 𝑛;
3Curiously, Jaynes thought it is not necessary to add countable additiv-

ity as an axiom. To develop his objective Bayesianism, Jaynes started from
the derivation of probabilistic principles by fellow physicist Cox (1946).
Cox developed his principles to be relations of ‘reasonable credibility’ that
follow from a Boolean algebra on propositions and common sense. Jaynes
(2003, pp. 651–653) showed that when these principles are applied to sets,
they conform with Kolmogorov’s preamble as well as the first three axioms,
(K1), (K2), and (K3). On the absence of a principle equivalent to axiom K4,
Jaynes (2003, p. 464) commented: “As 𝑛 → ∞ it seems rather innocuous to
suppose that the sum rule [equivalent to (K2)] goes in the limit into a sum
over a countable number of terms, forming a convergent series; whereupon
our probabilities would be called countably additive. Indeed (although we
do not see how it could happen in a real problem), if this should ever fail to
yield a convergent series we would conclude that the infinite limit does not
make sense, and we would refuse to pass to the limit at all.” In addition,
Jaynes (2003, p. 653): “We do not know how Kolmogorov was able to
see the need for his axiom (4) of continuity at zero; but our approach,
in effect, derives it from a simple requirement of consistency.” Moreover,
although Kolmogorov (1933, p. 15) clearly stated that his continuity axiom
was independent of the initial axioms (at least on infinite domains), Jaynes
(2003, p. 653) doubted this: “Kolmogorov’s axioms (3) and (4) appear to be
closely related; it is not obvious whether they are logically independent.”

4See, e.g., Rescorla (2015, §4) for more details and discussion in
relation to the Borel–Kolmogorov paradox; Jaynes (2003, §15.7) discussed
this paradox, too.

• all singleton probabilities are equal: i.e., 𝑃 ({𝑛}) =
𝑃 ({𝑚}) for all natural numbers 𝑛 and 𝑚.

The above assumptions are jointly inconsistent, which can
be seen as follows:

• If we assign an equal but non-zero probability to all
singleton outcomes (necessarily positive by K1), then
the countably infinite sum over all singleton proba-
bilities diverges. By the axiom of countable additiv-
ity (K4), this should equal 𝑃 (Ω), which is 1 by the
normalization axiom (K2). So, this option leads to an
inconsistency.

• If we assign probability zero to all singleton outcomes,
then the infinite sum over all singleton probabilities is
zero. By the axiom of countable additivity (K4), this
should equal 𝑃 (Ω), which is 1 by the normalization
axiom (K2). So, this option also leads to an inconsis-
tency.

• There are no other options to assign to the singleton
outcomes. (In particular, the assumption of a real-
valued 𝑃 function in the preamble rules out assigning
an infinitesimal probability to the singletons.)

We conclude that the notion of a fair lottery on the set of
natural numbers (or any countably infinite set, for that mat-
ter),5 where fairness is understood as singleton uniformity,
is inconsistent with Kolmogorovian probability theory.

This paradox was famously discussed by de Finetti
(1974). In his work on personalist probability, he took this as
an important argument against adopting countable additivity
as a postulate; see also Kadane and O’Hagan (1995). (We
return to this in section 2.1.) Hence, the paradox has also
been called the “de Finetti lottery” (Bartha, 2004), as well
as “God’s lottery” (McCall and Armstrong, 1989). The issue
has also been discussed in terms of drawing a random integer
(Kadane and O’Hagan, 1995), so we might also call it the
“random integer paradox”.
1.3. Infinite-set paradoxing and natural density

“Not only in probability theory, but in all mathemat-
ics, it is the careless use of infinite sets, and of infi-
nite and infinitesimal quantities, that generates most
paradoxes.”—Jaynes (2003, p. 451)

The paradox belongs to a wider category of problems
associated with probabilities on infinite sets, such as the
Borel–Kolmogorov paradox. The latter is not a formal incon-
sistency within the standard theory, but a vivid illustration
of the dependence of conditional probabilities on limiting
processes. What both problems share is the need for well-
defined infinite limits.

5There is not necessarily a problem with an uncountable sample spaces:
e.g., a uniform probability distribution on [0, 1] (or any finite interval) is
unproblematic, though positing uniform probability on ℝ (which can be
thought of as [0, 1[×ℤ) is equally paradoxical as on ℕ.
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Section 1.1 already discussed Jaynes’s warning that
probabilities of infinite sets can only be well-defined when
they are defined in terms of unequivocally defined limits on
finite sets. In this context, he also mentioned the lottery on ℕ
(Jaynes, 2003, p. xxii): “For example, the question: ‘What is
the probability that an integer is even?’ can have any answer
we please in (0, 1), depending on what limiting process is
to define the ‘set of all integers’ (just as a conditionally
convergent series can be made to converge to any number
we please, depending on the order in which we arrange the
terms).”6 Indeed, the question about the probability of a
‘random integer being even’ is related to Galileo’s paradox of
infinity. 7 Yet, it has a generally accepted answer in number
theory.

Number theorists do study certain properties of the nat-
ural numbers with probabilistic methods (see, e.g., Tenen-
baum, 2015). They use the natural labelling on the natural
numbers (the identity function) and the probabilities they use
are uniform. This amounts to studying the natural density of
subsets of the natural numbers within the entire set.

The natural density or asymptotic density on the natural
numbers, 𝑑, is defined for those subsets 𝐴 of ℕ for which the
limit exists:

𝑑(𝐴) = lim
𝑛←∞

#(𝐴 ∩ {1, 2,… , 𝑛})∕𝑛,

where # is the counting measure (finite cardinality). For
example, for the subset of even numbers, the natural density
is 1∕2; for finite sets it is 0 and for co-finite sets it is 1. This
measure is real-valued, non-negative, and finitely additive.
It is also normalized by construction. Yet, it fails to be a
ready-made standard probability measure for a fair lottery on
the natural numbers. There are two reasons for this failure:
first, the subsets of ℕ for which the measure is defined do not
form a sigma-algebra;8 second, the measure is not countably
additive (Kadane and O’Hagan, 1995).

The main take-away of this section is twofold. On the one
hand, all applications of probability to infinite sample spaces
require an explicit choice of a limit process (also called a
method of regularization). The choice involves establishing

6He elaborated on this in Jaynes (2003, pp. 671–672).
7In his Dialogues Concerning Two New Sciences, Galileo discussed

whether there are equally many or fewer perfect squares compared to all
integers; from two inconsistent assignments, he concluded that comparing
infinite quantities is meaningless. See Mancosu (2009) for a discussion.
Jaynes (2003, p. 672) also connected the probabilistic version of the
problem to Galileo’s paradox.

8The measure takes subsets of ℕ as an input but it is not defined for all
subsets. In particular, the limit can fail to exist for infinite sets that are not
co-finite. Moreover, the sets on which this measure is defined do not form
an algebra. The natural density measure can be extended to the full powerset
of the set of natural numbers, albeit not uniquely, using the Banach limit.
We can consider a set of extended probability measures, which gives us
ranges of probability values for the sets that were unmeasurable on the first
approach. The width of the interval can be regarded as a measure of how
pathological a set is: it can be maximal (i.e., equal to 1), but it can also be
much lower. So, mathematicians do gain something by investigating this
option. At the same time, it seems unlikely that pathological sets will be
of much interest to physicists, since it goes beyond what they can measure.
Alternatively, a unique measure can be extended to a larger domain, for
instance by what Kerkvliet and Meester (2016b) called “weak thinnability”,
but this still fails to be a sigma-algebra.

an order for the elements and a sequence of cut-offs (or
truncation). Since the natural numbers form an ordered set,
(ℕ,≤), a natural choice is to order the elements by this native
linear order and to place the cut-offs by the same order,
which leads to an inclusive order on the family of initial
segments. Indeed, this is the choice on which the natural
density is based: it studies the limit of a sequence of finite
fair lotteries on sample spaces of the form {0,… , 𝑛}. It may
be uniquely well-motivated by its naturalness and simplicity,
but it is still a choice. Relative to another choice, the relevant
limits will come out differently, especially for infinite sets
that are not co-finite (such as the subsets of even numbers) as
Jaynes pointed out. Bartha (2004, §5) illustrated this vividly
in terms of his “re-labelling paradox”.

On the other hand, the paradox that we have seen above is
not fully resolved by specifying such a limiting process. So,
something more is at stake in the specific case of a uniform
probability measure on a countably infinite sample space.
The paradox shows that asking for a real-valued, normalized,
countably additive measure that is singleton-uniform over a
countably infinite sample space is simply asking too much:
there are no such measures; the conjunction of requirements
is inconsistent.

This leaves open the possibility of a measure that is
singleton-uniform over a countably infinite sample space
by dropping one or more of the other constraints, although
it is up for debate whether the resulting measure can still
be interpreted as a probability. (Moreover, we will have
to remain mindful of Jaynes’s warning about the label-
dependence of limits.) Four such proposals are reviewed
in section 2. Of course, it is also possible to stick to the
standard formalism and drop the uniformity requirement,
thereby changing the target system. This is the line taken in
cosmology by Guth, in his joint work presented in 2018. Yet,
it would be incorrect to claim that an infinite lottery cannot
be modelled probabilistically at all (as also acknowledged
by Guth and Vanchurin, 2011). It merely cannot be done
within the constraints of Kolmogorov’s theory: that is the
main conclusion from the paradox.

2. Alternative formalisms
There are many proposals for representing uncertainty

that can capture the notion of a fair lottery on a countably
infinite set. I do not cover them exhaustively but focus on
those four that are most relevant for our present purposes.9

The first two alternatives have been motivated, at least
in part, precisely by the inability of the Kolmogorovian
theory to represent a uniform probability distribution on the
natural numbers. The first such alternative is de Finetti’s

9This is not a principled choice but merely sets some boundaries
on the current exploration. Alternatively, we could opt for a theory that
is purely qualitative (a comparative ordering, rather than a quantitative
measure, which is not a total order and which is non-Archimedean in the
case of a countably infinite and uniform lottery) or one that only assigns
values to conditional probabilities, or at least takes those as basic (such as
Popper functions). Or we can use lexicographical theory or one that is both
qualitative and conditional. Or a decision theory, that also includes utilities.
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merely finitely additive probability (FAP) theory (de Finetti,
1974); the second one is Benci et al.’s non-Archimedean
probability (NAP) theory (Benci et al., 2013). In the context
of the measure problem associated with eternal inflation,
Vanchurin (2015) concluded that the axiom of countable
additivity is the root of the problem. He agreed that “the
possible modifications of the classical probabilities deserve
to be explored further”, mentioning FAP theory explicitly
and NAP theory in a footnote, although he did not follow
up these suggestions. Two further approaches that are rel-
evant for this paper are Norton’s infinite lottery logic (ILL)
(Norton, 2021) and a pragmatic approach (rather than a well-
developed formalism) by physicists to drop the requirement
for normalizability (Goldstein, Tumulka and Zanghì, 2016).
2.1. FAP: de Finetti’s merely finitely additive

probability theory
De Finetti (1974) developed probability theory in a per-

sonalist context: as rational constraints on individual prob-
ability assignments (called coherence), while the numerical
values are not uniquely determined and may differ between
coherent individuals. De Finetti insisted that probability
measures should be defined on all subsets of the sample
space.10

His merely finitely additive probability (FAP) theory is
identical to Kolmogorov’s except that it drops the countable
additivity axiom (K4) and requires that the sigma-algebra
𝔄 equals (Ω). Without the latter, it is a strictly weaker
(i.e., more permissible) theory, which allows Kolmogoro-
vian probability spaces as a special case.

Assume that the triple ⟨Ω,𝔄, 𝑃 ⟩ obeys the three axioms
of FAP, which I call a FAP space. It is now consistent to
assume that 𝑃 describes a fair lottery on ℕ, with fairness
again understood as uniformity over singleton outcomes.
It suffices to take the natural density (from section 1.3)
and extend it to all of (ℕ) via a Banach-limit to find an
example of such a FAP function. In this case, we find that
𝑃 ({𝑛}) = 0 for all natural numbers n. This implies, by the
finite additivity axiom (K3) that 𝑃 (𝐹 ) = 0 for all finite
subsets 𝐹 of ℕ and 𝑃 (𝐶𝐹 ) = 1 for all co-finite subsets 𝐶𝐹
of ℕ. Intermediate probability assignments occur for infinite
subsets ofℕ that are not co-finite sets. For instance, the prob-
ability of the subset of even numbers is 1∕2. The probability
of many other such sets is not uniquely determined (which
was unproblematic in de Finetti’s personalist context).

Perhaps a certain paradoxical ‘feel’ remains. For in-
stance, the connection between 𝑃 (lim𝑛→∞ ∪𝑖∈{1,…,𝑛}{𝑖}) =
𝑃 (ℕ) and lim𝑛→∞

∑

𝑖∈{1,…,𝑛} 𝑃 ({𝑖}) has been severed (the
former being 1 and the latter being 0). This is a direct
consequence of the failure of countable additivity. The re-
sult may appear to be counterintuitive to those who have
always worked within Kolmogorovian probability theory (or
measure theory more generally). Jaynes (2003, p. 465): “We
are trying to make a probability density that is everywhere
zero, but which integrates to unity. But there is no such

10See Bingham (2010) for more on the history, including the role of L. J.
Savage.

thing [. . . ]”. Although there is no formal inconsistency in
FAP theory, Jaynes (2003, p. 466) thought the failure of
countable additivity was paradoxical in its own right: “The
real issue here is: do we admit such things as uniform prob-
ability distributions on infinite sets into probability theory
as legitimate mathematical objects? Do we believe that an
infinite number of zeroes can add up to one? In the strange
language in which these things are discussed, to advocate
‘finite additivity’, as de Finetti and his followers do, is a
devious way of answering ‘yes’ without seeming to do so.”

Some authors find dropping countable additivity accept-
able, since it was not well-motivated in the first place.11
Others have tried to give positive arguments for FAP theory.
De Finetti (1972; 1974) argued that if we have an intuition
about infinite additivity at all, it would lead us to expect
perfect additivity (i.e., including uncountable additivity),
which we cannot have. On his view, demanding countable
additivity is an arbitrary stopping point. Another important
argument he gave was motivated by the fair infinite lottery
case itself: he saw no principled reason why individuals
shouldn’t be allowed to assign probability uniformly over
a countably infinite set of mutually exclusive possibilities
(de Finetti, 1972, 1974). In addition to de Finetti, FAP
theory was embraced by other personalists (in particular
Savage, 1972), as well as objective Bayesians (Cox, 1946).
In his review of de Finetti’s arguments for FAP theory, How-
son (2014) called the arguments “compelling” and his case
against countable additivity “unanswerable”. FAP theory
has also been defended, for instance, by Seidenfeld (2001)
in the context of Bayesian statistics; one of his motivations
was the infinite fair lottery analysis by Kadane and O’Hagan
(1995). Kelly (1996, pp. 323–324) agreed that we may
have to reject countable additivity, because if we stick to
Kolmogorov’s countably additive probabilities, we can only
describe nonuniform distributions on the natural numbers
(favouring initial segments), which has the consequence
that we should expect to see a counterexample to a false
universal hypothesis sooner rather than later. In the context
of subjective probability, Easwaran (2014, p. 17) proposed
to use a FAP functions together with the order structure of
the algebra of events to allow for more fine-grained decisions
involving equiprobable events.

Many commentors, however, are less enthusiastic about
dropping countable additivity, because standard measure
theory assumes it (where it allows the use of series expan-
sions, etc.)12 and it is essential for the derivation of the strong
law of large numbers.13 Bartha (2004) agreed with dropping
countable additivity for the infinite fair lottery, though he did
not conclude in favour of FAP theory in other cases.

According to Jaynes (2003, p. xxi), de Finetti’s FAP the-
ory opened up “a Pandora’s box of useless and unnecessary

11Kolmogorov (1933, p. 15): “We limit ourselves, arbitrarily, to only
those models which satisfy Axiom [(K4)]. This limitation has been found
expedient in researches of the most diverse sort.”

12Although finitely additive measure theory was developed, too: see,
e.g., Rao and Rao (1983).

13It is not feasible to be exhaustive here, but some examples are Doob
(1953), Dudley (1989, §3.1), and Edwards (1995, p. 213).
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paradoxes,” of which finite additivity itself is an example.
For Jaynes (2003, p. 466), “‘finite additivity’ is a euphemism
for ‘reversing the proper order of approaching limits, and
thereby getting into trouble with non-normalizable prob-
ability distributions’.” Moreover, he wrote (Jaynes, 2003,
p. 656): “Like Kolmogorov, de Finetti is occupied mostly
with probabilities defined directly on arbitrary uncountable
sets; but he views additivity differently, and is led to such
anomalies as an unlimited sequence of layers, like an onion,
of different orders of zero probabilities that add up to one,
etc.”

If we take formal consistency as our standard, however,
FAP theory suffices to illustrate that the notion of a fair
lottery on a countably infinite sample space is not intrinsi-
cally paradoxical, but merely jointly inconsistent with the
Kolmogorovian theory. Moreover, the fact that the standard
theory is formally inconsistent with this notion may be an
argument against its axiom of countable additivity, which
was not sufficiently motivated in the first place, as de Finetti
and others have argued. The other three alternatives allow us
to model such lotteries, too.
2.2. NAP: Benci et al.’s non-Archimedean

probability (NAP) theory
De Finetti (1974, Vol. 1: p. 118) claimed that countable

additivity was not uniquely well-motivated: if anything, one
would expect arbitrary additivity, including uncountable ad-
ditivity. He took this to be unobtainable and settled for finite
additivity as a result. However, it turns out to be possible
to impose a different kind of infinite additivity, that is not
limited to a particular cardinality (sometimes called ‘perfect
additivity’). This approach has been developed, for instance,
in the non-Archimedean probability (NAP) theory of Benci
et al. (2013, 2018), who were also motivated by the infinite
fair lottery paradox.

Although his writing predates an axiomatic NAP theory,
Skyrms (1983) already pointed to the hyperreals as a possi-
ble way to imbue probability values with a memory. He was
thinking of keeping a trace of past updates in the posterior,
but for infinite lotteries hyperreal values fulfil a memory
function already at the level of priors: if seen as the result
of some limit process on real-valued functions, hyperreals
tell us the standard value of that limit (the real part) as well
as the rate of convergence (the infinitesimal part, which can
represent linear convergence, quadratic convergence, loga-
rithmic convergence etc.; this replaces de Finetti’s “different
orders of zero”14). Let us explain why this may be exactly
what is needed to remove the lingering sense of paradox in
the FAP solution to the infinite fair lottery problem.

As Jaynes (2003, p. 452) stressed: “passage to a limit
should always be the last operation, not the first.” Likewise,
Jaynes (2003, p. 466) wrote: “trying to pass to the limit at the
beginning of a calculation can generate nonsense because
crucial information is lost before we have a chance to use
it.” Yet, this is exactly what seems to happen in FAP theory:

14Cf. Lewis (1980): “I think these people are making a rounding error:
they fail to distinguish zero chance from infinitesimal chance.”

to construct a probability function on the powerset of ℕ, one
first takes the infinite limit of 𝑛 over functions on the power-
set of initial segments {1,… , 𝑛}. If one later takes the count-
ably infinite sum of singleton probabilities, which are all 0,
one finds lim𝑛→∞

∑

𝑖∈{1,…,𝑛} 0 = 0. If one were somehow
able to ‘delay’ taking the limit on singleton probabilities,
one would obtain lim𝑛→∞

∑

𝑖∈{1,…,𝑛} 1∕𝑛 = lim𝑛→∞ 1 =
1, which makes intuitive sense (since the singleton proba-
bilities decrease in proportion to and simultaneously with
the increase of tickets) and agrees with 𝑃 (ℕ) = 1. The
requirement of constructing a probability function blocks the
option of delaying taking this limit first. Here, NAP theory
offers a possible way out: it takes the (non-Archimedean)
limit which ‘remembers’ the convergence behaviour of the
sequence of functions on the initial segments (with linearly
decaying singleton probability). This “crucial information”
is used when taking the (non-Archimedean) limit sum, such
that the agreement with 𝑃 (ℕ) = 1 is regained.15

To achieve this, NAP theory requires a departure from
the Kolmogorovian theory that is more severe than for FAP
theory. So far, we have assumed that probability functions
take values on the set of real numbers, which are Archime-
dean. Archimedean means that any strictly positive prob-
ability value 𝑝 is such that there exists a natural number
𝑛 such that 𝑝 > 1∕𝑛. Unlike the standard real numbers,
non-standard models of the real numbers (called hyperreal
numbers, which are available in a non-standard model of
real closed fields) are not Archimedean. This means that
they include infinitesimals, i.e., numbers with an absolute
value between 0 and 1∕𝑛 for all natural numbers, 𝑛. So, the
first difference occurs in the preamble, where NAP theory
stipulates a different domain for its probability functions: the
set of real numbers is extended to a non-Archimedean set.
Like in FAP theory, the relevant sigma-algebra of a NAP
function is always the powerset of the sample space.

NAP theory is defined in terms of four axioms, which
have been designed to mimic the Kolmogorovian axioms.
NAP theory is stricter in the first axiom, by requiring the
(prior) probabilities assigned to non-empty events to be
positive rather than merely non-negative; this requirement
is known as strict coherence or regularity.

The main departure occurs in the fourth axiom, because
countably infinite sums are not necessarily well-defined for
non-Archimedean numbers. Instead of countable additivity,
NAP theory stipulates a different infinite additivity axiom.
This axiom includes a definition of a non-Archimedean limit,
written as lim𝑛↑𝛼 for a real-valued series or function in 𝑛.
This limit depends on a fine ideal (equivalent to a specific
type of free ultrafilter, the existence of which depends on
the Axiom of Choice) and is not uniquely defined (which is
unsurprising in light of the non-uniqueness of real-valued
FAP functions). In NAP theory, fixing such a limit requires
choosing a directed set: a collection of the finite subsets on

15It seems that de Finetti (1974, p. 347) would agree with this approach:
“It has been said that to assume that 0 + 0 + 0 +…+ 0 +… = 1 is absurd,
whereas, if at all, this would be true if ‘actual infinitesimal’ were substituted
in place of zero.”

S. Wenmackers: Preprint accepted by Studies in History and Philosophy of Science (August 2023) Page 6 of 16



Uniform probability in cosmology

Ω, such that the union of two sets in the collection is included
in a third and the union of which covers all ofΩ. The directed
set encodes which limiting processes determine the value
of certain conditional probabilities (see Benci et al., 2013,
§4 for details). In doing so, NAP theory heeds Jaynes’s
2003 warning on how to avoid paradoxes due to infinite
sets. Although any finite sum of infinitesimal probabilities
is necessarily infinitesimal, the non-Archimedean limit sum
of infinitesimal probabilities may be zero, infinitesimal, or
finite and non-infinitesimal (though at most 1)—depending
on the specific values.

NAP theory is closely related to numerosity theory, a
non-Archimedean theory for assigning sizes to sets (Benci
and Di Nasso, 2003). For example, 𝑛𝑢𝑚(ℕ) = 𝛼 is an
infinite hypernatural number that represents the numerosity
(i.e., ‘size’, in a particular sense, different from cardinality
or ordinality) of the set ℕ (as well as linear divergence).
This numerosity, 𝛼, also appears in the notation of the non-
Archimedean limit in alpha-theory (Benci and Di Nasso,
2019) and NAP theory. For example, the case of a fair lottery
on ℕ can be described by numerosities multiplied by the
normalization constant, 1∕𝑛𝑢𝑚(ℕ) = lim𝑛↑𝛼 1∕𝑛 = 1∕𝛼,
which is a particular infinitesimal hyperreal number that
encodes linear convergence to zero.

The description of a fair lottery on ℕ within the con-
text of NAP theory has been covered explicitly in Benci
et al. (2013, §5.2). Rather than assigning zero probabilities
to all singleton outcomes, as is the case in FAP theory,
the NAP function assigns a particular infinitesimal to this
possibility. Since the numerosity of a finite set equals its
finite cardinality, we have that 𝑛𝑢𝑚({𝑛}) = 1 for every
natural number n, and the singleton probability is 𝑃 ({𝑛}) =
1∕𝛼. By finite additivity, the probability of finite sets equals
their finite cardinality times 1∕𝛼. The non-Archimedean
limit sum of all singleton probabilities equals unity (since
lim𝑛↑𝛼

∑

𝑖∈{1,…,𝑛} 𝑃 ({𝑖}) = lim𝑛↑𝛼 𝑛∕𝛼 = 𝛼∕𝛼 = 1), which
is the probability of ℕ. It seems, then, that no trace of the
first paradox remains.

Let us briefly comment on the close connection between
NAP theory and FAP theory. Like FAP functions, NAP
functions are not uniquely determined: finite differences
occur for the same sets, and infinitesimal differences are even
more ubiquitous. For instance, according to NAP theory, the
probability of the subset of even numbers is either 1∕2 or
1∕2 − 1∕(2𝛼).16 If we round off the infinitesimal part of the
assignments (on operation called ‘taking the standard part’),
both assignments return ½, which is the same value as the
FAP function (which is uniquely determined for this partic-
ular set). This holds in general and taking the standard part
of a NAP function results in a FAP function. The stronger
additivity property of the former is lost in the process.

The expected outcome of the fair lottery on ℕ can be
computed as the non-Archimedean limit of the arithmetic

16The former is the non-Archimedean limit of the family of finite fair
lotteries with an even number of tickets, the latter of those with an odd
number of tickets. It is possible to fix one or the other by selecting an
appropriate directed set.

mean, i.e., lim𝑛↑𝛼
∑

𝑖∈{1,…,𝑛} 𝑃 (𝑖)𝑖, where each 𝑃 (𝑖) = 1∕𝛼
and∑𝑖𝑛∈{1,…,𝑛} 𝑖 = (𝑛+1)𝑛∕2. Hence, the expected outcome
is (𝛼 + 1)∕2, which is infinite. This is consistent with the
observation that any finite number is too small as an estimate
for the expected value, so the latter diverges.

Vanchurin (2015) suggested that it may be worthwhile
to investigate NAP theory for applications in cosmology. At
the same time, while NAP theory is connected to many other
approaches,17 there is still debate in the literature on the
foundations of probability about its acceptability, regarding
non-uniqueness (but see Benci et al., 2018, for some replies),
the theory’s incompatibility with certain invariances (Pruss,
2021).
2.3. ILL: Norton’s infinite lottery logic

Another response to the infinite lottery paradox is Nor-
ton’s (2021) infinite lottery logic (ILL). Unlike the previous
two, ILL is not an axiomatic formalism, but a reasoned
approach for comparing events related to the specific case
at hand. Moreover, ILL is not intended to be a quantitative
theory of probability. Its purpose is instead to capture some
constraints for cases where probabilities cease to apply.

In earlier work on the use of infinite systems in physics,
Norton (2011) pointed out that the limit properties of a
sequence of systems need not correspond with the properties
of a limit system. Although he did not apply this analysis to
the case at hand, it is relevant here: the limit of a sequence
of fair lotteries on the initial segments of ℕ (say, the natural
density) need not agree with a fair lottery on ℕ—if the latter
idealization exists at all.

Like cosmologist Guth (2000), philosopher of science
Norton (2021) concluded from the infinite fair lottery para-
dox that there is no probabilistic description of it tout court.
Considering our conclusion at the end of section 1.3, this
response seems too strong, but it is a consequence of their
stronger interpretation of ‘fair’ as equivalent to full label-
invariance (rather than merely singleton uniformity). As
we will see in section 3.1, Norton—like Guth—applied his
ideas about uniform countably infinite lotteries to questions
about inflationary cosmology, so this alternative approach is
certainly relevant to include here.

Norton’s ILL applies to some unspecified countably
infinite set, which can be labelled, arbitrarily by the set
of natural numbers. ILL posits a chance function 𝐶ℎ that
assigns values to all subsets of the initial set by referring
to arbitrary subsets of the labels (the natural numbers) and
takes values on the ordered set

𝑉 = {𝑉0, 𝑉1, 𝑉2, 𝑉3,… , 𝑉∞,… , 𝑉−3, 𝑉−2, 𝑉−1, 𝑉−0},

such that:
• 𝐶ℎ(𝐹𝑛) = 𝑉𝑛 for any finite subset, 𝐹𝑛, of the natural

numbers with cardinality 𝑛;
17See Wenmackers (2019) for a review of the notion of infinitesimal

probabilities, Brickhill and Horsten (2018) for a representation theorem
that connects NAP theory to Popper functions and to lexicographical
probabilities, and Chen and Rubio (2018) for a related proposal in terms
of surreal numbers (with utilities, which are not relevant here).
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• 𝐶ℎ(𝐼𝑛) = 𝑉∞ for any infinite subset, 𝐼𝑛, of the natural
numbers that is not co-finite;

• 𝐶ℎ(𝐶𝐹𝑛) = 𝑉−𝑛 for any co-finite subset, 𝐶𝐹𝑛, of
the natural numbers of which the complement has
cardinality 𝑛.

The ordering on the value-set 𝑉 is taken to be some
antisymmetric, transitive, and irreflexive order relation, <,
such that: 𝑉0 < 𝑉1 < 𝑉2 < 𝑉3 < … < 𝑉∞ < … < 𝑉−3 <
𝑉−2 < 𝑉−1 < 𝑉−0. There is also an informal interpretation
given to the values: 𝑉0 is “certain not to happen”, 𝑉𝑛 with
𝑛 > 0 is “unlikely”, 𝑉𝑖𝑛𝑓𝑡𝑦 is “as likely as not”, 𝑉−𝑛 with
𝑛 > 0 is “likely”, and 𝑉−0 is “certain to happen”.

Let us first show that ILL is not really fit for purpose to
deal with the infinite fair lottery paradox (as defined in sec-
tion 1.2), before explaining what its merits are, which may
make it relevant for applications in inflationary cosmology
after all.

If we compare this proposal with FAP theory, on the
one hand, we see that ILL can represent differences between
finite sets as well as between co-finite sets, whereas FAP
functions collapse both (on probability 0 and 1, respec-
tively). On the other hand, ILL is unable to represent any
differences among infinite sets that are not co-finite, even
for those of which the natural density is uniquely determined
(i.e., all FAP functions agree). This is a direct consequence
of requiring full label-invariance and certainly intentional.
Still, this approach seems to be conceding too much (but see
section 3.4).

A comparison with NAP theory may be instructive, too.
All NAP functions respect the partial order of set inclusion:
opting for a total order requires throwing away some order
information (as ILL does for all infinite sets that are not co-
finite) or adding information (individual NAP functions).
Neither seems adequate; see for instance Easwaran (2014)
who criticized the addition of arbitrary probability assign-
ments (to infinite sets that are not co-finite) in hyperreal
credences—an objection that applies to NAP theory. There
are alternatives: qualitative non-Archimedean theory (Di-
Bella, 2018), a FAP function together with the algebra of
events for additional order information (Easwaran, 2014,
p. 17), or an entire family of NAP functions (Benci et al.,
2018).

Standard probabilities on infinite sample spaces are not
fully label-invariant and require an additional choice of limit
processes on finite sets to come out as well-defined (recall
section 1.3), even outside of the specific case of an infinite
fair lottery. Requiring this strong sense of uniformity, as
Norton (2021) did, precludes any treatment with probability
measures or even the usual qualitative frameworks from the
outset. So, ILL is no potential replacement or alternative for
standard probability theory (nor was it intended to be).

Let us be clear on what Norton’s ILL does achieve.
Norton’s (2021) non-probabilistic ILL for countably infinite
lotteries applies to a very underspecified problem: there
is a countably infinite lottery that is uniform on singleton
outcomes. It is not specified whether the sample space is ℕ,

ℕ⧵{1}, 2ℕ,ℤ,ℕ×ℕ,ℚ or any other countable set. Of course,
we may label the elements of the target set by ℕ in any case,
but now the argument that the identity function on ℕ and
thus the family of initial segments (i.e., subsets of the form
{1,… , 𝑛}) are uniquely well-motivated as a starting point
for defining the relevant limits (a strategy used in both FAP
and NAP theory) fails, since the labelling by ℕ was arbitrary
to begin with.

Observe that the analogous question is already under-
specified in the analogous finite case: if all that is given is
that there is a fair finite lottery, you cannot define a unique
probability function for it, because you haven’t been told the
number of tickets. This is not a reason to give up on using
probability theory, since there may be more information to
be gathered. It would be a natural approach to make an
estimate of the size of the lottery and to build a higher-order
model: a family of admissible probability functions, possibly
with a probability measure over them. Norton (2021) is
right to warn us that this higher-order model should not be
accepted as the answer without additional empirical ground,
but if this is taken as a toy example of a scientific problem
and science is seen as dynamic, it makes sense to start
building models even if they require more input than we
currently have. After all, this may guide further empirical
searches.

In any case, it seems misguided to regard ILL as a
proper response to the infinite lottery paradox as specified in
section 1.2: with the (ordered) set of natural numbers as the
sample space and with singleton uniformity as the constraint.
Moreover, we should avoid conflating the general issue of
label-dependence of probabilities on infinite sets (discussed
in section 1.3) with the specific issue of uniform measures
on countably infinite sets. Yet, there is some evidence of
confusion between those issues in the literature.

For instance, Guth (2000, p. 568) claimed that a prob-
ability measure on an infinite sample space requires us to
take the ratio of infinities, which he claimed to be ill-defined;
likewise for Norton (2021, §2). In standard probability the-
ory, the first claim is not true: it requires taking the limit of
finite ratios (as made explicit by the Conditional Probability
Principle in section 1.1). In FAP theory, the natural density
measure (extended to the powerset) is of this kind.18 In NAP
theory, it is straightforward to define the ratio of infinite
numbers (since the hyperreals form a field). In both cases,
there are rules on how (not) to define the limit.

Another piece of evidence for confusion is that both Guth
(2000, 2007) and Norton (2021) pointed out that different
‘regulators’ (which both regulate the labelling order and the
truncation of finite initial parts of sequences) can produce
different limiting ratios: this is certainly correct (again, recall
section 1.3). They do not consider, however, that not all
regulators are adequate for defining a probability measure.19

18See also Dorr and Arntzenius (2017, §20.4), who reply in the context
of subjective probability (credence): “this assumes that claims about pro-
portions provide the only possible basis for favouring some credences over
others”.

19Although Guth (2007, §4) did not state explicitly that there is a
canonical choice of the regularization method for the infinite fair lottery
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Section 3 returns to this, where we will be in a better posi-
tion to understand Guth’s claim and to appreciate Norton’s
proposal.
2.4. Non-normalizable quasi-probability

Finally, I discuss a pragmatic approach to issues related
with the internal inconsistency in a “real-valued, normal-
ized, countably additive measure that is singleton-uniform
over a countably infinite sample space”. This approach is
found, for instance, in Goldstein et al. (2016). Like FAP the-
ory, it only drops one of the assumptions of Kolmogorov’s
theory, in this case the requirement for normalization. By al-
lowing non-negative yet non-normalizable (i.e., unbounded)
measures and sticking to the other Kolmogorovian axioms,
this proposal stays firmly inside the realm of standard mea-
sure theory. Admittedly, it is unusual to interpret a non-
normalizable function as a probability: it is more common
to simply call it a measure, but I employ the term “quasi-
probability” here as well, to investigate how fruitful such an
approach is. I will use the symbol 𝜇 rather than 𝑃 for such
measures. For nearly all events 𝐴 it holds that 𝜇(𝐴) = ∞,
so defining its probability as 𝑃 (𝐴) = 𝜇(𝐴)∕𝜇(Ω) does not
work.

To make this proposal work, all assignments should
be limited to a specific sample space and an associated
sigma-algebra, just like in standard probability theory. Like
FAP and NAP measures, non-negative, non-normalizable
quasi-probability functions can always be extended to the
full powerset of the sample space. The quasi-probability
function takes non-negative values on the extended reals.
Instead of normalization, any infinite sample space is as-
signed measure +∞. One should not expect to be able to
compare quasi-probabilities across different sample spaces
(a situation which is not unlike that in NAP theory).

For a fair lottery on ℕ, the measure of a singleton is
arbitrary, so we might take it to be 1 for simplicity. Then,
the uniform measure on any finite set is equal to the finite
cardinality of that set. The measure is countably additive,
and indeed, the countable sum over all singleton quasi-
probabilities diverges, as does the measure of ℕ. Therefore,
it seems that the infinite fair lottery paradox leaves no
aftertaste here.

In fact, on this measure, all infinite sets have measure
+∞. So, in terms of representing differences among infinite
sets, this approach does worse than ILL. Whereas a FAP
function discerns differences in measure between infinite
sets that are not co-finite by assigning the same measure to all
finite sets, a non-normalizable function discerns differences
in measure between finite sets by assigning the same mea-
sure to all infinite sets. Only NAP functions can represent
differences in both ranges at the same time. Section 3.2 will
return to the severe limitations of this approach.
problem (based on the native ordering of ℕ), perhaps he admitted this
implicitly, for he did go on to consider a preferred regularization method
for the more vexing issue of an order of the pocket universes.

Giving up on normalization is not a common response
in the probability literature,20 but a pragmatic approach by
some physicists. It is plausible that their choice is influenced
by their curriculum: for many students of Physics, this
proceeds from calculus and measure theory to probability
theory. So, normalization is added last, and may therefore
seem to be the easiest constraint to lift. We could call this
the “last in, first out” heuristic.

In the hands of a different group, however, the same
heuristic may lead to a different preferred solution. Those
who start out by studying Kolmogorov’s axiomatization
(1933), in which normalization is the second axiom and
countable additivity the last one, may be more willing to let
go of the latter. This may apply to the probabilists that we
saw defending FAP theory in section 2.1.21

In any case, the “last in, first out” heuristic is not suf-
ficient for a principled choice. The aim of this section was
to open the discussion to show four available options, which
show some of the alternatives to formalize the notion of a fair
lottery on a countably infinite set. Let us now turn to the role
our central paradox plays in contemporary cosmology and
how the alternatives that avoid these inconsistencies may be
applied there.

3. The infinite fair lottery paradox in the
context of eternal inflation
Although probability theory is a branch of pure math-

ematics, its real power lies in its connection to statistics,
which has applications in nearly all branches of science.
Most probabilists assumed that infinite sample spaces are
merely a matter of idealization, since the relevant properties
of the actual target system, the actual number of repetitions,
etc. are all finite. For instance, Kolmogorov (1933, p. 15)
wrote: “Infinite fields of probability occur only as idealized
models of real random processes.” This view leaves open
the possibility to retreat to a finite model in cases where
paradoxes arise, such as the ones discussed in the previous
sections.

An important exception to the general assumption of
‘finiteness in reality’ is the domain of cosmology: in this
context, there are various physical dimensions and quantities
that are candidates for potentially being unbounded, not
merely in theoretical models but in reality; these include
time, space, or the number of pocket universes. This blocks
the evasive retreat to finite models and requires dealing with
the paradoxes head-on, especially if there are reasons to
suppose a uniform probability measure over the full range

20A notable exception is Rényi (1955), who developed an axiomatic
theory that did not require normality. Instead, he relied on conditional
probability functions to obtain results in the unit interval. The pragmatic
approach by the physicists can be made rigorous by applying this theory.

21Admittedly, pointing to the Physics curriculum cannot be a full
explanation of the state of the debate, since Cox and Jaynes were physi-
cists who defended FAP theory, and Guth is a physicist who sticks to
Kolmogorov’s theory by denying the admissibility of a uniform measure
on countably infinite sets. Moreover, we will see in section 3.1, that while
many cosmologists take a non-normalizable measure for granted, they do
demand more for probabilistic predictions.
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of at least one of those candidate parameters. As such, the
problems from the foundations of probability theory may
spill over to cosmology.22

Various probabilistic paradoxes in cosmology have been
discussed by cosmologists and philosophers. Here, I limit
myself to the two paradoxes introduced in section 1, which
crucially involve a uniform measure on countably infinite
sample spaces.
3.1. The measure problem in cosmological models

of inflation
Inflation theory (originally proposed by Guth, 1981)

is an addition to the standard Big Bang scenario, which
postulates a brief period of accelerated expansion in the
early universe, to account for—among other things—the
uniformity of the observed microwave background radia-
tion, while the current focus is on explaining specific small
inhomogeneities in these data. (See, e.g., Gorbunov and
Rubakov, 2011, for details.) It was soon discovered that
inflation theories generically lead to so-called eternal infla-
tion: which means that the exponential growth of regions
with false vacuum is faster than the exponential decay from
false vacuum to stability (Guth, 2000). In other words:
whereas locally inflation has stopped, it keeps going in other
parts of the multiverse. Eternal inflation predicts an infinite
multiverse of such regions, with possibly very different
local properties. The regions in such a multiverse are called
‘pocket universes’, ‘bubbles’, or ‘island universes’. Due to
the exponential nature of inflation, there is always room for
more pocket universes. The second ingredient, superstring
theory or M-theory is consistent with a huge number of false
vacua and associated constants (including the vacuum en-
ergy that may be interpreted as the cosmological constant).
Bousso and Polchinski (2000) suggested that the theories for
eternal inflation and M-theory are compatible, such that the
possible false vacua from M-theory are realized in different
pocket universes of the eternally inflating multiverse.

Meanwhile, inflation theory has become an important
ingredient of standard Big Bang cosmology. However, since
it became clear that eternal inflation leads to a multiverse,
there is an ongoing debate on whether such a theory can ever
be testable and if so, to what degree. Rather than engaging
with this bigger issue directly, our aim here is more modest:
to examine two instances of the lottery paradox that occurs
in the context of inflation theory.

Smeenk (2014, p. 126) characterized the measure prob-
lem in cosmology as a combination of two problems: first,

22Jaynes (2003, p. 673) warned that: “In our view, this plague [of
paradoxes in infinite-set theory] is far more serious than mere obscure
language; it infects the substantive content of pure mathematics. [. . . ] For
now, it is the responsibility of those who specialize in infinite-set theory to
put their own house in order before trying to export their product to other
fields. Until this is accomplished, those of us who work in probability theory
or any other area of applied mathematics have a right to demand that this
disease, for which we are not responsible, be quarantined and kept out of
our field.” Jaynes (2003, p. 674) also quoted (Kline quoting) “Gibbs on this
subject: ‘The pure mathematician can do what he pleases, but the applied
mathematician must be at least partially sane.’ ”

the sample space has to be defined together with a physi-
cally motivated measure, 𝜇. Often, 𝜇 is not unique and not
normalizable. Non-normalizability leads to the second prob-
lem: “defining a probability distribution over the physical
properties of pocket universes.” Moreover, Smeenk (2014,
p. 126) pointed out that there are at least two instances of
the measure problem in inflationary cosmology. The first
instance pertains to “[a]ttempts to estimate the ‘probability
of inflation’ ”, where “the ensemble consists of a set of
solutions to EFE [Einstein’s Field Equation] and the measure
in question is the canonical phase space measure” (Smeenk,
2014, p. 126). The second instance pertains to probability
of physical properties (such as the value of the cosmological
constant,Λ, and other properties) within an inflationary mul-
tiverse. In this case, “the ensemble consists of a collection of
observers (or some other type of object) occupying a single,
connected multiverse” (Smeenk, 2014, p. 126).
3.2. Probability of inflationary spacetime

The first instance was discussed by Smeenk (2014,
p. 126) as well as Curiel (2015, §4.2), who related it to the
probability of a natural number being even. The goal here
is to determine the probability of inflation over solutions of
Einstein’s field equation.

The first step is to determine the sample space, in
other words: to choose a suitable subset of solutions to
Einstein’s field equations. The usual choice consists of finite-
dimensional truncations, an approximation to the infinite-
dimensional phase space of Einstein’s field theory, called the
minisuperspaceΓ: it contains Friedman–Lemaître–Robertson–
Walker universes, which are homogeneous and isotropic
solutions to the Einstein’s field equations minimally coupled
to a single homogeneous scalar field, Φ. So, the event space
is some algebra of subsets of this Γ.

The second step is to choose a suitable measure on Γ, to
serve as a (proto-)probability measure on the event space.
In statistical mechanics, it is customary to base typicality
judgments on the uniform Lebesgue volume measure of
the underlying Hamiltonian phase space. This choice is
motivated by Liouville’s theorem, which guarantees that
this is a stationary measure, i.e., the Lebesgue measure is
invariant under the dynamics as described by the Hamilto-
nian (though there may be other measures with this prop-
erty). The Liouville measure on Γ is the Lebesgue volume
measure known as the Gibbons–Hawking–Stewart measure
(Gibbons, Hawking and Stewart, 1987). While this measure
is uniform by construction, it is not normalizable.

When the Gibbons–Hawking–Stewart measure of some
event (represented by an element of the algebra on Γ) is
finite, one may think of it as having zero probability in the
sense of a FAP theory and as having an infinitesimal or zero
probability in the sense of NAP theory. When the Gibbons–
Hawking–Stewart measure of the event is infinite, but the
measure of its complement is finite, one may think of it as
having unit probability in the sense of a FAP theory and
as having unit minus an infinitesimal or unit probability in
the sense of NAP theory. So far, so good. However, when
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both the event and its complement have an infinite Gibbons–
Hawking–Stewart measure, the result is indeterminate.

It might seem, then, that I arrive here at a proposal
for accepting the Gibbons–Hawking–Stewart measure as a
non-normalizable quasi-probability function, or perhaps a
case to accept a proposal akin to Norton’s ILL. However,
both Smeenk and Curiel point out that we need more for
probabilistic predictions, since many events have infinite
measure, while their complement has infinite measure, too.
(Recall that FAP and NAP functions do assign values in
such cases.) To get a well-defined probability, based on the
notion of an asymptotic density, this requires introducing a
“regularization procedure”.

Section 1.3 discussed the importance of fixing a specific
limit process (in particular, choosing a nested family of finite
subsets of the sample space). We have also seen that there ex-
ists a canonical choice for this in the case of the natural num-
bers: the identity function on the natural numbers leads to
the family of initial segments, {1,… , 𝑛} as the “regulator”.
Given the identity labelling and associated family of finite
subsets, the limits of relative frequencies are well-defined
and unique for a large collection of subsets of the sample
space (though not on the full powerset). Number theorists
use this in their definition of the natural density (section 1.3)
and it underlies both FAP measures (section 2.1)23 and NAP
measures (section 2.2). This canonical choice leads to a
probability of 1∕2 for an even number.

Smeenk (2014, p. 123 & 126) introduced the analogy
to the fair lottery on the positive integers to stress the
importance of choosing extra structure on the sample space:
a nested family of finite subsets that regulates the limiting
behaviour of the resulting probability function. Rather than
a solution to the measure problem, this is the measure prob-
lem. In other words, the real issue of the measure problem in
cosmology does not lie in the infinite fair lottery paradox,
but in the correspondence between an infinite label set
and the ensemble of physically relevant possible outcomes,
which may not have any additional physically meaningful
structure to allow for a canonical—or at least a uniquely
well-motivated—choice.

Gibbons and Turok (2008) and Carroll and Tam (2010)
both accepted the motivation behind the Gibbons–Hawking–
Stewart measure, yet still ended up with different probabilis-
tic predictions, because they introduced different ways to
remove the divergence. Gibbons and Turok (2008) proposed
to equate Friedman–Lemaître–Robertson–Walker universes
that are so flat (i.e., with curvature below a certain cut-
off) that they cannot be observationally distinguished from

23Sahlén (2017) has suggested that FAP theory (based on Cox’s ap-
proach) may be preferable for applications in quantum cosmology over
Kolmogorov’s theory. In particular, Sahlén (2017, p. 436) pointed to
“unaccounted-for correlations in the structure of global properties” to
motivate dropping countable additivity, since “in principle the measure
evaluated on the full sample space need not equal the sum of the measures of
all disjoint subsets of the sample space. This can be understood to mean that
integrated regions under such a measure do not represent probabilities of
mutually exclusive states.” However, it seems that this line of reasoning does
not support FAP theory after all, since “problematic negative probabilities
and non-unitarity could also occur in this case.”

a perfectly flat universe (with exactly zero curvature). They
showed that the resulting probability of inflation assigned
to simple scalar field models is exponentially small and that
this result is robust (i.e., it does not heavily depend on the
chosen cut-off value).

Carroll and Tam (2010) agreed with the diagnosis of
Gibbons and Turok (2008) that the non-normalizability of
the measure stems from flat universes. However, they dis-
agreed about the appropriate response: Carroll and Tam
(2010) regarded flat and nearly flat universes as physically
meaningful solutions and did not accept empirical indis-
tinguishability as a valid reason for removing almost all
solutions. In fact, they took the fact that almost all Friedman–
Lemaître–Robertson–Walker universes are flat (where ‘al-
most all’ is measured by the Gibbons–Hawking–Stewart
measure) as an important result, showing that the classical
cosmological theory has no flatness problem.24 As Car-
roll (2023, §4.3) explained, the flatness problem occurs by
implicitly assuming a uniform measure on the curvature.
However, what should be established is whether the physics
is such that generic trajectories have initial conditions with
very small curvatures or not. Since the Gibbons–Hawking–
Stewart measure is uniquely well-motivated by the dynamics
and it is proportional to a power of −5∕2 of the curvature, it
diverges at curvature zero. From this, Carroll and co-authors
have concluded that nearly flat universes are generic rather
than exceptional—a radically different conclusion from that
of Gibbons and Turok (2008).

Since spacetimes tend to get flatter over time due to
inflation, the discrepancy between the two approaches—the
sleight of hand that introduces additional structure—can also
be viewed as due to sampling universes at earlier or later
times (see also: Smeenk (2014, p. 126) and Curiel (2015,
§4.2).

Admittedly, the conclusion of Carroll et al. can still
be contested by contesting the Gibbons–Hawking–Stewart
measure as authoritative. Although it has become customary
in the literature to use Liouville-based measures to motivate
typicality judgments, a worry for this approach is that the
‘choice’ of the initial conditions need not depend on the
dynamics at all. That they can come apart is clear from lab
settings, where initial conditions are determined by a process
external to the system under study. Of course, the situation
in cosmology is different since it aims to model the physical
world at the largest scale, such that there is nothing external
to it. Yet, in general it is not the case that dynamical laws
determine their own auxiliary conditions (see, e.g., Thyssen
and Wenmackers, 2021, §4.3).

Recall, however, that also Gibbons and Turok (2008)
accepted the Gibbons–Hawking–Stewart measure as their
starting point. Yet, building on the work of Schiffrin and
Wald (2012), Curiel (2015, §4.2) came to the pessimistic

24Although the regularization method presented by Carroll and Tam
(2010) was later found to be faulty and replaced by the work of Remmen and
Carroll (2013, 2014) who derived a measure (again by applying Liouville’s
theorem; this time on the space of flat universes), these conclusions still
hold; an overview can be found in Carroll (2023, §4.3).
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conclusion that there is no physical justification for accept-
ing it in cosmology. And even if the measure would be
equally well-motivated in cosmology as it is in statistical
mechanics, in the latter context it is commonly used only to
arrive at typicality judgements, not probability assignments
as such.

It should be clear, however, that the latter problem has
little to do with the infinite fair lottery paradox: the situation
here is more akin to not knowing either what the sample
space is, or whether the distribution is uniform. Therefore,
the partial conclusion for this first instance of the measure
problem is that the infinite fair lottery paradox is of limited
value since the cosmological problem runs deeper. Let us
now turn to the other instance.
3.3. Probabilities of pocket universes in an

inflationary multiverse
The second instance of a cosmological measure problem

discussed by Smeenk (2014, p. 126) is no less problematic.
In this case, the goal is to start from a model of eternal
inflation and to assign probabilities to properties (such as
values of the cosmological constant, Λ) of the pocket uni-
verses. Guth (2007) wrote that in such models “anything
that can happen does happen, and it will happen an infinite
number of times”. For some, this quote succinctly captures
what Vanchurin, Vilenkin and Winitzki (2000) called the
“predictability crisis” of inflation theory (e.g., Ijjas et al.,
2013). For others, including Guth, it points to what is needed
to overcome it: comparing the probability density of various
types of events in pocket universes requires finding a well-
motivated method for regularizing the infinities.

For three decades, physicists have been trying to find a
suitable probability measure for models of eternal inflation.
This has resulted in a long list of candidate measures, each
with their virtues and vices.25 The fact that these measures
yield different results may be interpreted in at least three
ways. Firstly, it may be an illustration that searching for
a measure is intrinsically futile because of the nature of
the problem at hand. For instance, Ijjas et al. (2013) in-
deed feared that the failure to find a well-defined measure
implies that inflation theory makes no empirically testable
predictions whatsoever. They considered this “multiverse-
unpredictability problem” to be so severe as to motivate
the search for alternatives to inflation theories. Secondly,
it may merely show that the current cosmological models
are insufficient to identify the relevant order, which leaves
hope for future developments. E.g., Guth and Vanchurin
(2011) seemed to be optimistic. Thirdly, there may not be
a real problem here at all: different conditional probabilities

25See, e.g., Linde and Noorbala (2010) for a partial overview. To give
a rough indication of the debate: some measures are based on choosing a
global cut-off of some variable, such as the proper time (which leads to
a youngness bias) or the scale factor (which requires special tuning of a
variable to avoid oldness and youngness problems), and considering the
infinite limit of that cut-off. Other measures compare the pocket universes
relative to a comparable time in their respective evolutions (called the sta-
tionary measure). Still other measures start from finite spacetime volumes at
‘intermediate times’ inside pocket universes (known as the causal-diamond
measure).

(associated with different regulators) may suggest different
unconditional probabilities, which may merely appear to be
incompatible, without leading to an outright inconsistency.
After all, non-normalizable measures are only finitely con-
glomerable, which means that two infinite partitions may
yield two disjoint ranges of probabilities conditional on all
members of those partitions (see, e.g., de Finetti, 1974,
§4.19). Countable conglomerability is a theorem of standard
probability theory, but the proof crucially relies on the axiom
of normality. Since we need to drop that axiom and use an
alternative theory to represent a non-normalizable measure,
disjoint conditional probabilities do not pose an additional
formal problem.

Some aspects of this second measure problem in infla-
tionary cosmology are also closely related to the infinite
fair lottery paradox. Indeed, in his treatment of a model
for eternal inflation, according to which infinitely many
pocket universes are created, Guth (2000, §6) (as well as
Guth, 2007, §4) used an infinite fair lottery on the (positive)
integers as a model system. Since there are infinitely many
pocket universes, Guth (2000, p. 568) wrote that “[t]he
fraction of universes with any particular property is therefore
equal to infinity divided by infinity—a meaningless ratio.
To obtain a well-defined answer, one needs to invoke some
method of regularization.” (Elsewhere in the paper, he also
used the term “truncation” for this.)

Similar to the previous section, we see here again that
Guth’s emphasis was not on the fact that there exists no real-
valued, normalizable, and countably additive measure that
is singleton-uniform on a countably infinite sample space.
Instead, he pointed to the more general issue that infinite lim-
its are order-dependent, which leads to label dependence of
probability measures (not just on countably infinite sample
spaces). This is related to the observation that applying the
principle of indifference across different parametrizations
may lead to inconsistent results.

At this point, it seems that the introduction of an infinite
fair lottery as a model system in inflationary cosmology is
a red herring: the real issue at hand in both instances of the
measure problem is not internal to the notion of an infinite
lottery on the positive integers. Our main message here
is that the random integer paradox does not automatically
lead to an unsurmountable predictability problem for doing
science in an infinite universe or multiverse. As a result, it
is not futile for cosmologists to attempt to solve the measure
problem in eternal inflation. The real pickle is in the external
usage of the integers as labels (for spacetimes or pocket
universes, respectively). In section 2.3, I flagged a potential
confusion in Guth (2000) and Norton (2021); we are now in
a better position to appreciate their comments, not as claims
about the infinite fair lottery paradox itself but about the lack
of a canonical choice for the family of finite subsets on the
sample spaces relevant in cosmology.

Guth (2000, §6) acknowledged this much for the second
instance and indicated that the actual problem is that pocket
universes do not come with a preferred order: any observed
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order will be observer dependent. The core of the problem
is identified by Guth (2000, p. 569):

“In the case of eternally inflating spacetimes, the natural
choice of truncation might be to order the pocket universes
in the sequence in which they form. However, we must
remember that each pocket universe fills its own future
light cone, so no pocket universe forms in the future light
cone of another. Any two pocket universes are space-like
separated from each other, so some observers will see one
as forming first, while other observers will see the opposite.
One can arbitrarily choose equal-time surfaces that foliate
the spacetime, and then truncate at some value of t, but this
recipe is not unique. In practice, different ways of choosing
equal-time surfaces give different results.”

The fact that the foliation into spacelike hypersurfaces
is observer dependent, since the pocket universes are in the
absolute elsewhere of each other, need not be fatal to the
project: one could consider the infinite family of all such
measures and consider the interval of values that they allow
collectively.26 By analogy to the Copernican principle, one
could even assume that the limiting densities of physically
relevant properties agree for almost all observers. This is
the probabilistic equivalent of a typicality approach, and
the latter is commonly used in statistical mechanics and
cosmology. However, this does not solve the question of
whether the measure should be defined in terms of the cut-off
of t in the first place.

Moreover, even if we agreed that the fair lottery on the
natural numbers was intrinsically problematic, we might
take a step back and wonder why we even considered that
as a relevant model system for eternal inflation in the first
place. Cosmologists commonly assume that the set of pocket
universes of the inflationary multiverse is countably infinite,
but relatively little motivation is given for this stance. In
an early paper, Aryal and Vilenkin (1987) concluded that
“inflating regions [. . . ] form a self-similar fractal of dimen-
sion slightly less than 3”. For a more complicated inflation-
ary model of a ‘recycling universe’, Garriga and Vilenkin
(1998, §V.C) reported a limiting fractal dimension of 3 for
inflating regions and a fractal dimension of less than 3 for
regions of true vacuum, corresponding to pocket universes.
As Garriga and Vilenkin, p. 2239 also noted, “The fractal
structure of realistic models is of course more complicated.”
In any case, a non-zero but finite Hausdorff dimension is
compatible with countable as well as uncountable infinity.
(In fact, this is independent of standard set theory: it is
uncountable if the continuum hypothesis holds.) So, it seems
that we should take equally seriously the possibility that

26Approaches with families of (standard) probability functions have
recently been explored under the term ‘imprecise probabilities’. Bradley
(2019) gave an overview of fields that applied imprecise probabilities,
including references to quantum physics (Suppes and Zanotti, 1991; Hart-
mann and Suppes, 2010) and nonlinear models by structural model errors
(Frigg, Bradley, Du and Smith, 2014). In addition, imprecise probabilities in
the context of anthropic predictions in cosmology (Benétreau-Dupin, 2015,
§3.3), the upshot being that the familiar Bayesian approach doesn’t need to
be left completely. The suggestion to consider imprecise non-Archimedean
probabilities has first been made by Benci et al. (2018) but has not been
applied to physics or cosmology yet.

the collection of pocket universes in a fractal multiverse is
uncountably infinite. On the other hand, Harlow, Shenker,
Stanford and Susskind (2012) developed an infinite binary
(or, in general, p-adic) tree model, which merely contains
a countable infinity of nodes. Building on this model, how-
ever, Vanchurin (2015) concluded that the trajectories form
an uncountable set that can be mapped to the real-valued
[0, 1]-interval and thus measured by the Lebesgue measure,
thus escaping the formal inconsistency between countable
additivity, normality, uniformity, and a countably infinite
sample space.
3.4. Another look at Norton’s ILL

While Norton’s ILL (2021) perhaps seemed strange in
response to the fair lottery paradox, as discussed in sec-
tion 2.3, it may fare better when viewed as response to the
measure problem in inflationary cosmology. As we have
seen, Norton (2021, §6) argued that label invariance is
mandatory.27 A model for such a property indeed precludes
any probabilistic measures when the outcome space is infi-
nite, but it requires a separate argument to establish whether
no natural labelling (or class of labellings) is available in
cosmology. For instance, the time at which pocket universes
are spawned may offer such a label, but this is just one
suggestion among many and there may be a serious problem
here, as we just saw.

Steinhardt (2011, p. 42) gave an analogy for inflationary
pocket universes with or without a property of interest: a
hypothetical sack of coins containing two countably infi-
nite collections of pennies and quarters. Whereas random
sampling is informative for finite collections, Steinhardt
suggested this ceases to be the case for infinite collections.
Since the cardinality of both collections is equal, we could
sort them in many ways: e.g., one-to-one or such that each
pile of ten pennies is matched to one quarter. Norton (2021,
§3) agreed with Steinhardt (2011) that neither of the methods
of labelling coins is right. I agree, too, but this does not imply
that no correct method exists.

Observe that all methods that are easy to describe require
‘peeking’: one must observe whether the coin is a quarter
or a penny before it can be labelled. For the resulting
limiting relative frequency to be admissible as a probability
measure, however, the regulator should not be of this type:
which type of coin receives label 𝑛 should only depend on
the types of coins that received labels 1 to 𝑛 − 1, not 𝑛
itself.28 In addition, the situation may come with a native

27He does this by defining the principle of mediocrity (by which we
should expect to find ourselves in an arbitrary pocket universe) in a very
strong way: not merely as equiprobability of singleton outcomes, but also
requiring invariance under all relabellings.

28This criterion is closely related to the work of von Mises on collectives
(random sequences). The core idea was that for a sequence to be random,
sub-sequences that are selected without ‘peeking’ should result in a ran-
dom sequence, too. Church (1940) gave the criterion for admissible place
selection rules: it can be any recursive rule that uses the 𝑛−1 first elements
of the sequence to decide, whether or not the 𝑛th should be selected. So,
admissible selections may only depend on the previous outcomes and the
number of trials so far (not current or future outcomes). Although the
question answered by von Mises and Churchpresupposes a labelling, it
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labelling, such as temporal order. In the toy examples of
the pennies and quarters, producing a sequence by blindly
drawing without replacement would suffice. The situation in
inflationary cosmology is certainly more complicated, due
to the lack of experimental access and in addition there are
different ways of taking limits. I do not want to dismiss these
problems; rather, my aim is to disentangle the different issues
and to point out that at least one of them—the issue of a
uniform probability on a countably infinite sample space—
is not as insurmountable as Guth (2000), Steinhardt (2011),
and Norton (2021) take it to be.

In response to these issues, Norton (2021, §6) asked
rhetorically: “Why demand that uncertainties be represented
probabilistically when the background conditions speak
against it?” Thereby, he suggested that cosmologists should
accept their failures of finding a unique probability measure
(so far) as evidence that their model is one of the non-
probabilistic kind, which admits fewer or weaker predictions
than a probabilistic model. Norton (2021) showed how his
ILL is relevant for cosmological models that have count-
ably infinitely many pocket universes and suggested that
cosmologists should accept that this is the strongest form
of predictions their models have to offer.

Whether the expectation of further empirical ground is
realistic in the case of an inflationary multiverse theory is
a matter outside of the foundations of probability theory
itself, which I leave to cosmologists to decide. Observe,
however, that the background information could be such that
even Norton’s inductive logic is too strong. One example
would occur when all we knew is that the creation of each
pocket universe can be modelled as an infinite lottery on
a countably infinite set: if we cannot assume that they are
produced by one and the same such lottery, then even the
ordering of the finite events is jeopardized. Another example
would occur when we did not know which properties of the
pocket universes are variable across different realizations.
To be clear, these are merely possibilities; to the best of our
knowledge, there are no such models in current cosmology.

Another problem that Norton has repeatedly flagged in
earlier work and that appeared again in his (2021, §2) is that
being equally uncertain or indifferent is not always captured
best by a uniform probability function. A different context
in which this worry arises is in forensics, where it has been
argued that it may be better to opt for Dempster–Shafer
conditioning and belief functions, rather than probability
functions (Kerkvliet and Meester, 2016a). At the same time,
such approaches are formally connected to families of prob-
ability functions (cf. footnote 26 on imprecise probabilities),
so it may be interesting to examine whether this approach is
applicable to the measure problem in cosmology as well.
can be applied to rule out inadmissible (re-)labellings, too. Reshuffling
a sequence of pocket universes taking into account their properties (i.e.,
‘peeking’) does not in general leave the probabilities of their properties
invariant.

4. Conclusions
“A paradox is simply an error out of control; i.e. one
that has trapped so many unwary minds that it has gone
public, become institutionalized in our literature, and
taught as truth.”—Jaynes (2003, p. 451)

Section 1 reviewed that a singleton-uniform, real-valued,
and countably infinite probability distribution on an infinite
support cannot be described by standard probability theory.
There have been different responses to the associated para-
doxes. Guth (2018) and Norton (2021) concluded that the
notion of a uniform probability distribution on an infinite
support is internally inconsistent, but we are not forced to
draw this conclusion. From a logical viewpoint, we merely
conclude that the assumptions are jointly inconsistent. Tra-
ditionally, probabilists have debated the issue as a problem
of additivity, whereas the focus in the measure problem of
cosmology was on non-normalizability.

Section 2 reviewed four ways of representing a fair
lottery on the natural numbers, to wit: (1) FAP theory, (2)
NAP theory, (3) Norton’s ILL, and (4) non-normalizable
quasi-probability theory. Physicists can help themselves to
one or more of these approaches if the need arises.

As we have seen in section 3, this need indeed presents
itself in cosmology: the measure problem crucially depends
on the interplay between infinite measures (and the limit
processes involved) and probabilities. Moreover, there are
at least two different ways in which uniform distributions
take centre stage in cosmology. First, when a stationary
measure is obtained via Liouville’s theorem, it results in
a uniform Lebesgue volume measure on the phase space.
This measure is non-normalizable when the phase space
is not compact. Second, a uniform measure over possible
observers has been suggested in the cosmology literature,
which again fails to be normalizable when there are infinitely
many observers in the model of the universe or multiverse.
In the probability literature, symmetry considerations are
sometimes used to support uniform probability distributions
(e.g., via Poincaré’s method of arbitrary functions or de
Finetti’s representation theorem), but to the best of our
knowledge these have not been applied yet in the cosmology
literature.

Given that densities can be established for infinite lotter-
ies, it seems at least possible that we might figure out how to
model densities pertaining to inflationary pocket universes,
covered in section 3.1, too. Still, there is a crucial difference
between the two cases. Whereas the natural numbers have a
canonical order, that allows for a canonical choice for limit
processes to obtain well-defined (alternative) probabilities,
an important open question in inflationary cosmology is
what the relevant structure is on the phase space to allow for
an equally well-defined notion of probability in this context.
In addition, it is not clear that a countably infinite lottery
is a good model system to begin with, since fractal-like
growth of pocket universes may result in an uncountable
phase space.
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Our review of various ways to model a fair lottery
on the natural number does not directly help to answer a
number of additional questions that arise in the context of the
cosmological measure problem and that need to be analysed
step by step, such as: how to factor in observer selection
effects (which already occur in the finite case), how to apply
typicality reasoning (in the sense of Hartle and Srednicki
(2007) and Garriga and Vilenkin (2008); or whether this is
useful in the first place), and how to confirm a theory of this
type given that we use data from our only observable uni-
verse both for theory building and for confirmation (double-
counting, in the sense of Friederich, 2017). Offering such a
full analysis goes well beyond the scope of this contribution.

As a final remark, observe that our analysis of the infinite
fair lottery paradox illustrates an approach for analysing
paradoxes more generally—at least paradoxes that pose for-
mal inconsistencies. The method relies on taking multiple
combinations of assumptions (which may be axioms, prop-
erties, equations etc.) that are jointly consistent and putting
the conclusions of these different fragments of the original
problem together, to get a better sense of why combining all
the assumptions was inconsistent, as well as the structure
of a collection of neighbouring systems. The latter could
be developed in Gärdenfors’s (2004) theory of conceptual
spaces: it assumes a measure of similarity along various
quality dimensions (defined by the nature of the assumptions
at hand), which gives rise to a distance measure and thus the
notion of a neighbourhood.

The situation is analogous to specifying equations for
three mutually non-parallel lines in a plane expecting them
to intersect in one point but finding that they intersect two-
by-two in three points. Perhaps, ideally, there would be a
common intersection point, but due to some practical errors
in fact they do not—as happens, for instance, in imperfect
constructions for linear perspective drawing. By investigat-
ing the location of these three ‘partial’ intersections, one gets
a sense of the region in which the three-way intersection
could have been. Likewise, our analysis allowed us to inves-
tigate various sets of jointly consistent assumptions, each of
which can be analysed without resulting in a paradox, which
together suggest a way forward for the measure problems in
cosmology.

It is worth repeating that this paper did not even cover all
possible approaches: for instance, it did not explore qualita-
tive probability theories (such as DiBella, 2018), Dempster–
Shafer theory, or the option to represent the sample space by
a hyperfinite set (Nelson, 1987). Since “probability is about
modeling real world systems in order to understand and
make predictions about that system” (Pfannkuch, Budgett,
Fewster, Fitch, Pattenwise, Wild and Ziedins, 2016, p. 12),
it seems wise to take a pluralist approach when dealing with
various instances of the measure problem in cosmology:
by studying the same questions in the context of different
mathematical formalisms for probability, one can disentan-
gle limitations of a particular framework from properties of
the modelled system itself.

Funding
This project was was supported by the Research Foun-

dation Flanders (FWO Grant No. G066918N).

Acknowledgements
The results presented here were part of the essay that won

the 2019 Philosophy of Cosmology Essay Contest organized
by the New Directions in Philosophy of Cosmology project;
I am grateful to project directors Chris Smeenk and James
Owen Weatherall and all involved for the encouragement. I
also thank three anonymous reviewers of this journal, whose
reports helped me to improve this paper.

References
Aryal, M., Vilenkin, A., 1987. The fractal dimension of the inflationary

universe. Physics Letters B 199, 351–357.
Bartha, P., 2004. Countable additivity and the de Finetti lottery. British

Journal for the Philosophy of Science 55, 301–321.
Benci, V., Di Nasso, M., 2003. Numerosities of labelled sets: a new way of

counting. Advances in Mathematics 173, 50–67.
Benci, V., Di Nasso, M., 2019. Alpha-Theory: Mathematics with Infinite

and Infinitesimal Numbers. World Scientific, Singapore.
Benci, V., Horsten, L., Wenmackers, S., 2013. Non-Archimedean probabil-

ity. Milan Journal of Mathematics 81, 121–151.
Benci, V., Horsten, L., Wenmackers, S., 2018. Infinitesimal probabilities.

British Journal for the Philosophy of Science 69, 509–552.
Benétreau-Dupin, Y., 2015. Blurring out cosmic puzzles. Philosophy of

Science 82, 879–891.
Bingham, N.H., 2010. Finite additivity versus countable additivity: De

Finetti and Savage. Electronic Journal for History of Probability and
Statistics 6. http://www.jehps.net/juin2010/Bingham.pdf.

Bousso, R., Polchinski, J., 2000. Quantization of four-form fluxes and
dynamical neutralization of the cosmological constant. Journal of High
Energy Physics 006.

Bradley, S., 2019. Imprecise probabilities, in: Zalta, E.N. (Ed.), The
Stanford Encyclopedia of Philosophy. Spring 2019 ed.. Metaphysics
Research Lab, Stanford University. URL: https://plato.stanford.edu/
archives/spr2019/entries/imprecise-probabilities/.

Brickhill, H., Horsten, L., 2018. Triangulating non-Archimedean probabil-
ity. The Review of Symbolic Logic 11, 519–546.

Carroll, S.M., 2023. In what sense is the early universe fine-tuned?, in:
Loewer, B., Weslake, B., Winsberg, E. (Eds.), The Probability Map
of the Universe: Essays on David Albert’s Time and Chance. Harvard
University Press, Cambridge, MA.

Carroll, S.M., Tam, H., 2010. Unitary evolution and cosmological fine-
tuning. ArXiv preprint arXiv:1007.1417.

Chen, E., Rubio, D., 2018. Surreal decisions. Philosophy and Phenomeno-
logical Research 100, 54–74. doi:10.1111/phpr.12510.

Church, A., 1940. On the concept of a random sequence. Bulletin of the
American Mathematical Society 46, 130–135.

Cox, R.T., 1946. Probability, frequency and reasonable expectation. Amer-
ican Journal of Physics 14, 1–13.

Curiel, E., 2015. Measure, topology and probabilistic reasoning in cosmol-
ogy. ArXiv preprint arXiv:1509.01878.

DiBella, N., 2018. The qualitative paradox of non-conglomerability.
Synthese 195, 1181–1210.

Doob, J.L., 1953. Stochastic Processes. Wiley, New York, NY.
Dorr, C., Arntzenius, F., 2017. Self-locating priors and cosmological mea-

sures, in: Chamcham, K., Silk, J., Barrow, J.D. (Eds.), The Philosophy of
Cosmology. Cambridge University Press, Cambridge, UK, pp. 396–428.

Dudley, R.M., 1989. Real Analysis and Probability. Wadsworth, Pacific
Grove, CA.

Easwaran, K., 2014. Regularity and hyperreal credences. Philosophical
Review 123, 1–41.

S. Wenmackers: Preprint accepted by Studies in History and Philosophy of Science (August 2023) Page 15 of 16

http://www.jehps.net/juin2010/Bingham.pdf
https://plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities/
https://plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities/
http://dx.doi.org/10.1111/phpr.12510


Uniform probability in cosmology

Edwards, R.E., 1995. Functional Analysis: Theory and Applications.
Dover, New York, NY.

de Finetti, B., 1972. Probability, Induction and Statistics; The Art of
Guessing. Wiley, London, UK.

de Finetti, B., 1974. Theory of Probability. Wiley, London, UK. Translated
by: A. Machí and A. Smith.

Friederich, S., 2017. Fine-tuning as old evidence, double counting, and
the multiverse. International Studies in the Philosophy of Science 31,
363–377.

Frigg, R., Bradley, S., Du, H., Smith, L.A., 2014. Laplace’s demon and the
adventures of his apprentices. Philosophy of Science 81, 31–59.

Gärdenfors, P., 2004. Conceptual Spaces: The Geometry of Thought. MIT
Press, Cambridge, MA. Second edition.

Garriga, J., Vilenkin, A., 1998. Recycling universe. Physical Review D 57,
2230–2244.

Garriga, J., Vilenkin, A., 2008. Prediction and explanation in the multiverse.
Physical Review D 77, 043526.

Gibbons, G.W., Hawking, S.W., Stewart, J.M., 1987. A natural measure on
the set of all universes. Nuclear Physics B 281, 736–751.

Gibbons, G.W., Turok, N., 2008. Measure problem in cosmology. Physical
Review D 77, 063516.

Goldstein, S., Tumulka, R., Zanghì, N., 2016. Is the hypothesis about a low
entropy initial state of the universe necessary for explaining the arrow
of time? Physical Review D 94, 023520.

Gorbunov, D.S., Rubakov, V.A., 2011. Introduction to the Theory of the
Early Universe: Cosmological Perturbations and Inflationary Theory.
World Scientific.

Guth, A.H., 1981. Inflationary universe: A possible solution to the horizon
and flatness problems. Physical Review D 23, 347–356.

Guth, A.H., 2000. Inflation and eternal inflation. Physics Reports 333–334,
555–574.

Guth, A.H., 2007. Eternal inflation and its implications. Journal of Physics
A 40, 6811.

Guth, A.H., 2018. Infinite phase space and the two-headed arrow of time.
Presentation of joint work with Carroll, S. M. and Tseng, C.-Y., Jan. 31
2018, ICTP—Salam Distinguished Lecture Series 2018, URL (slides):
http://indico.ictp.it/event/8289/material/6/2.pdf.

Guth, A.H., Vanchurin, V., 2011. Eternal inflation, global time cutoff
measures, and a probability paradox. ArXiv preprint arXiv:1108.0665.

Harlow, D., Shenker, S.H., Stanford, D., Susskind, L., 2012. Tree-like
structure of eternal inflation: A solvable model. Physical Review D 85,
063516.

Hartle, J.B., Srednicki, M., 2007. Are we typical? Physical Review D 75,
123523.

Hartmann, S., Suppes, P., 2010. Entanglement, upper probabilities and de-
coherence in quantum mechanics, in: M. Suárez, M.D., Rédei, M. (Eds.),
EPSA Philosophical Issues in the Sciences: Launch of the European
Philosophy of Science Association. Springer, pp. 93–103.

Howson, C., 2014. Finite additivity, another lottery paradox and condition-
alisation. Synthese 191, 989–1012.

Ijjas, A., Steinhardt, P.J., Loeb, A., 2013. Inflationary paradigm in trouble
after Planck2013. Physics Letters B 723, 261–266.

Jaynes, E.T., 2003. Probability Theory: The Logic of Science. Cambridge
University Press, New York, NY. Edited by G. L. Bretthorst.

Kadane, J.B., O’Hagan, A., 1995. Using finitely additive probability:
Uniform distributions on the natural numbers. Journal of the American
Statistical Association 90, 626–631.

Kelly, K.T., 1996. The Logic of Reliable Inquiry. Oxford University Press,
Oxford, UK.

Kerkvliet, T., Meester, R., 2016a. Assessing forensic evidence by comput-
ing belief functions. Law, Probability and Risk 15, 127–153.

Kerkvliet, T., Meester, R., 2016b. Uniquely determined uniform probability
on the natural numbers. Journal of Theoretical Probability 29, 797–825.

Kolmogorov, A.N., 1933. Grundbegriffe der Wahrscheinlichkeitrechnung.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin,
Germany. Translated by N. Morrison, Foundations of Probability.
Chelsea Publishing Company, 1956 (2nd ed.).

Lewis, D.K., 1980. A subjectivist’s guide to objective chance, in: Jeffrey,
R.C. (Ed.), Studies in Inductive Logic and Probability. University of
California Press, Berkeley, CA. volume 2, pp. 263–293.

Linde, A., Noorbala, M., 2010. Measure problem for eternal and non-eternal
inflation. Journal of Cosmology and Astroparticle Physics 09, 008.

Mancosu, P., 2009. Measuring the size of infinite collections of natural
numbers: Was Cantor’s theory of infinite number inevitable? The
Review of Symbolic Logic 2, 612–646.

McCall, S., Armstrong, D.M., 1989. God’s lottery. Analysis 49, 223–224.
Nelson, E., 1987. Radically Elementary Probability Theory. Princeton

University Press, Princeton, NJ.
Norton, J.D., 2011. Approximation and idealization: Why the difference

matters. Philosophy of Science 79, 207–232.
Norton, J.D., 2021. Eternal inflation: when probabilities fail. Synthese 198,

3853–3875.
Pfannkuch, M., Budgett, S., Fewster, R., Fitch, M., Pattenwise, S., Wild, C.,

Ziedins, I., 2016. Probability modeling and thinking: What can we learn
from practice? Statistics Education Research Journal 15, 11–37.

Pruss, A.R., 2021. Non-classical probabilities invariant under symmetries.
Synthese 199, 8507–8532.

Rao, K.P.S.B., Rao, M.B., 1983. Theory of Charges: A Study of Finitely
Additive Measures. Academic Press, London, UK.

Remmen, G.N., Carroll, S.M., 2013. Attractor solutions in scalar-field
cosmology. Physical Review D 88, 083518.

Remmen, G.N., Carroll, S.M., 2014. How many e-folds should we expect
from high-scale inflation? ArXiv preprint arXiv:1405.5538.

Rényi, A., 1955. On a new axiomatic theory of probability. Acta
Mathematica Hungarica 6, 285–335.

Rescorla, M., 2015. Some epistemological ramifications of the Borel–
Kolmogorov paradox. Synthese 192, 735–767.

Sahlén, M., 2017. On probability and cosmology: Inference beyond data?,
in: Chamcham, K., Silk, J., Barrow, J.D., Saunders, S. (Eds.), The
Philosophy of Cosmology. Cambridge University Press, pp. 429–446.

Savage, L.J., 1972. The Foundations of Statistics. Dover, New York, NY.
2nd revised edition.

Schiffrin, J.S., Wald, R.M., 2012. Measure and probability in cosmology.
Physical Review D 86, 023521.

Seidenfeld, T., 2001. Remarks on the theory of conditional probability:
Some issues of finite versus countable additivity, in: Hendricks, V.F.,
Pederson, S.A., Jørgensen, K.F. (Eds.), Probability Theory: Philosophy,
Recent History and Relations to Science. Springer, Dordrecht, The
Netherlands. volume 297 of Synthese Library, pp. 167–178.

Skyrms, B., 1983. Three ways to give a probability assignment a mem-
ory, in: Earman, J. (Ed.), Testing Scientific Theories. University of
Minnesota Press, Minneapolis. volume X of Minnesota Studies in the
Philosophy of Science, pp. 157–161.

Smeenk, C., 2014. Predictability crisis in early universe cosmology. Studies
in History and Philosophy of Modern Physics 46, 122–133.

Steinhardt, P.J., 2011. The inflation debate. Scientific American April,
36–43.

Suppes, P., Zanotti, M., 1991. Existence of hidden variables having only
upper probability. Foundations of Physics 21, 1479–14995.

Tenenbaum, G., 2015. Introduction to Analytic and Probabilistic Number
Theory. volume 163 of Graduate Studies in Mathematics. American
Mathematical Society.

Thyssen, P., Wenmackers, S., 2021. Degrees of freedom. Synthese 198,
10207–10235.

Vanchurin, V., 2015. Continuum of discrete trajectories in eternal inflation.
Physical Review D 91, 023511.

Vanchurin, V., Vilenkin, A., Winitzki, S., 2000. Predictability crisis in
inflationary cosmology and its resolution. Physical Review D 61,
083507.

Wenmackers, S., 2019. Infinitesimal probabilities, in: Weisberg, J., Pet-
tigrew, R. (Eds.), Open Handbook of Formal Epistemology. PhilPapers
Foundation, pp. 199–265. URL: https://philpapers.org/archive/WENIP.

S. Wenmackers: Preprint accepted by Studies in History and Philosophy of Science (August 2023) Page 16 of 16

http://indico.ictp.it/event/8289/material/6/2.pdf
https://philpapers.org/archive/WENIP

