
1 
 

Causal Concepts Guiding Model Specification in Systems Biology 

Dana Matthiessen 

 

Abstract: In this paper I analyze the process by which modelers in systems biology arrive at an adequate 

representation of the biological structures thought to underlie data gathered from high-throughput 

experiments. Contrary to claims that causal claims and explanations are rare in systems biology, I argue 

that in many studies of gene regulatory networks modelers aim at a representation of causal structure. In 

addressing modeling challenges, they draw on assumptions informed by theory and pragmatic 

considerations in a manner that is guided by an interventionist conception of causal structure. While 

doubts have been raised about the applicability of this notion of causality to complex biological systems, 

it is here seen to be an adequate guide to inquiry. 

 

1 Introduction 

Over the last fifteen years, theories and techniques of data-driven modeling, including causal modeling 

(Cf. Spirtes et al. 1993, Pearl 2000), have become integrated into the study of complex biological 

systems. The growth of high-throughput data collection has made it necessary to develop sophisticated 

computational and statistical methods to illuminate patterns and underlying structures in a newfound 

wealth of information. In particular, researchers have developed algorithmic processes to infer networks 

of interaction among the components of a biological system. This approach to modeling biological 

networks has been characterized as a “top-down” approach, being opposed to a “bottom-up” approach 

that builds up a functional understanding of cells from a study of the interactions of constituent molecules 

(Westerhoff and Kell 2007).1 

Some authors have responded to the proliferation of mathematical modeling in systems biology 

by arguing that much of the field is rooted in a general, non-causal and non-mechanistic form of 

 
1 This distinction cross-cuts with another useful distinction: that between molecular systems biology and systems 
theoretic systems biology (Cf. De Backer et al. 2010). 
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understanding (Wouters 2007; Braillard 2010), but there are reasons to doubt the generality of such 

claims. For one, much of the study of cellular networks—a significant research program in systems 

biology—can be broadly understood within the framework of mechanistic science, as I have argued 

elsewhere (Matthiessen 2015). Second, the investigation of network structures is very often motivated and 

guided by a specific conception of their causal structure that accords with mechanistic inquiry (as 

described, for example, in Woodward 2013). 

In what follows, I aim to analyze the strategies by which systems biology researchers refine and 

specify models in a highly data-driven context so as to extract informational structures designed to 

produce reliable predictions with respect to some phenomenon. I do not intend to show that all modeling 

efforts found under the wide-ranging banner of systems biology are fully compatible with the goals of 

causal and mechanistic explanations,2 but instead to describe how methods and assumptions routinely 

employed in these data-driven contexts demonstrate a clear concern with capturing causal structure. 

Researchers explicitly interpret these models as bearing information about the causal structure of their 

target systems, and it is evident that a specific conception of causality is built into these interpretations—

one that roughly corresponds to interventionist notions, which themselves might be thought to dovetail 

nicely with mechanistic inquiry (Cf. Craver 2007; Woodward 2010). These assumptions in pursuit of 

specific causal information play an integral role in model specification, that is, the process by which 

researchers arrive at a model of a particular phenomenon or its underlying structure that includes a 

satisfactory amount of detail to aid in the explanation and prediction of experimental data.3,4  

In section 2, I describe the aims of modeling in systems biology and present a basic sequence of 

stages of modeling specification through which these aims are realized. In section 3, I show how 

assumptions and complications arise in ways that are specific to each stage. In section 4, I describe the 

use of causal concepts in this process. Accounting for the stages of model specification is a fruitful way to 

 
2 For a recent challenge to this claim that is highly attentive to the modeling practices of systems biologists, see 
MacLeod and Nersessian 2015. 
3 What counts as satisfactory is of course determined in some respects by modelers’ purposes. 
4 This notion of model specification is partially inspired by the progressive concretization of modeling constructs 
described by McMullin (1985: Section 4). 



3 
 

examine the various modeling decisions and accompanying instances of inductive risk balancing5 

encountered by systems biologists along with the concepts that provide pragmatic footholds for such 

decisions, and I believe a comparable process can be observed in other scientific fields as well—in the 

investigation of the electronic structures of molecules and materials, for instance. With this in mind, I will 

conclude with some remarks on aspects of these strategies that serve to characterize the general 

epistemology of modeling, at least as it figures in data-driven contexts. 

 

2 The aims and stages of modeling in ‘top-down’ systems biology 

There are many things that may count as a biological network. For the purposes of this paper, I will focus 

on models of what are called regulatory or signaling networks in individual cells. These are complex 

networks of interactions between various forms of macromolecules—primarily genes, proteins, 

transcribed RNA, and metabolites—that maintain the stability of a cell in response to its internal and 

external environment. In order to understand how cell networks function, researchers must first generate 

data. In one common technique, mRNA samples, often from of a single-cell organism like E. coli or S. 

cerevisiae, are extracted from cells exposed to experimental conditions and combined with a luminous 

protein. These are placed onto microarrays—glass, plastic, or silicon chips that contain thousands of 

probes designed to detect specific mRNA sequences. Each site in the microarray contains a DNA 

sequence corresponding to a specific gene of the organism.6 These are molecular complements to the 

distinct mRNA in the sample, which thus accumulate at the site of the gene from which they are 

transcribed. Robotics measure the luminosity of the mRNA at each site on a microarray, thereby 

obtaining a measure of the activity of their corresponding genes. Multiple parallel experiments may be 

carried out at once, yielding large quantities of data. In fact, so much data is produced that curated 

databases are used to store the results, but it is important to note that difficulties in accuracy attend to this 

process. Most databases are not designed to account for context-sensitive gene activity; high-throughput 

 
5 Cf. Douglas 2000. 
6 In the case of E. coli and S. cerevisiae, the entire genome of the organism is known and so a complete 
measurement of gene expression is available by including all genes on the microarray. 
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analyses often fail to detect rare events or unstable interactions; and the data available for model 

organisms usually address a small number of cell processes and experimental conditions (De Backer et al. 

2010). There is a sense, then, in which systems biology is both data rich and data poor. The challenge for 

researchers is finding an appropriate way to infer an adequate network of interactions from data drawn 

from experiments, mined from databases, or sourced from extant publications. 

 Data generation, such as that described above, may be viewed as the first of a sequence of stages 

by which systems biologists arrive at a reliable representation of the phenomenon of interest. Figure 1 

gives a highly schematic illustration of this sequence: 

 

Figure 1: The stages of model specification in systems biology 

Each of these stages involves the incorporation of different assumptions drawn from theory or modeling 

practices, which aid in the eventual determination of a single representation of the network responsible for 
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the data. Theoretical assumptions7 tend to provide general guidelines and restrictions on the modeling 

practice, for instance by providing grounds for drawing inferences about a feature of a model from 

particular features of the data, or by supplying reasons for rejecting certain model types or tokens deemed 

to be biologically impossible. Modeling assumptions pertain more closely to the specific type of 

representation chosen, frequently reflecting pragmatic decisions made in the face of computational 

obstacles. As much of the recent literature on modeling and simulations has noted, modeling assumptions 

do not always acquire their warrant from theoretical commitments, but may instead be sanctioned on the 

basis of data-fitting calibrations and interventions, exploratory aims, or, as I mentioned, pragmatic 

decisions made in the face of limitations such as computational intractability (Cf. Cartwright et al. 1995, 

Morgan and Morrison 1999, Winsberg 2010). Note, finally, that the progression through stages depicted 

here may not be passed through in a perfectly linear order: for instance, the models generated on the basis 

of a particular model choice may conflict so much with background knowledge or with model diagnostics 

that they force a return to a prior stage. 

A substantial portion of the modeling strategies in systems biology and beyond consist of trade-

offs between the computational opportunities afforded by particular assumptions or techniques and the 

inductive risks that accompany them.8 For instance, one very broad assumption is built into the data 

generating technique described above: it is assumed that the presence of transcription factors such as 

mRNA bear a functional relationship to gene expression, and so measurements of mRNA are indirect 

measurements of gene activity. In a review of network modeling techniques, He et al. (2009) state that 

questions remain regarding the overall trustworthiness of this assumption. Thus the practice of modeling 

networks is carried out in the face of a number of uncertainties about its ultimate validity. Whether it 

ultimately stands or falls will depend on the extent to which its modeling assumptions are justified by 

 
7 I’m not using ‘assumptions’ here in the sense of propositions that are entirely lacking in empirical or theoretical 
support. I only meant to indicate the way that they arise in the modeling context, that is, as constraints that are 
built into the model and so are assumed in its results. 
8 For a classic account of modeling trade-offs, see Levins 1966. 
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background knowledge and mechanistic understanding of the biological underpinnings of cellular 

networks. 

 

3 Stage-specific assumptions and trade-offs 

3.1 Choice of model type 

Having generated their data, researchers are first tasked with choosing a model type, that is, a general 

means of processing the data and representing the complex of biological mechanisms that give rise to it. 

In the case of gene expression profiling, a number of core methods available for this task involve building 

point-and-line graphs in which the nodes represent genes and the edges represent some form of 

dependency relation (derived algorithmically from the data) between these genes. Available dependency 

relations include differential equations describing relationships between gene expression rates, or 

statistical methods such as measurements of the correlation coefficient between two genes, measurements 

of their mutual information, or measurements of the “similarity” (defined in one of numerous ways) 

between their expression patterns.  

Any choice incorporates different biological assumptions that may limit the informativeness of 

the resulting graphical model. For instance, simple graphs called co-expression networks are built using 

the statistical correlation coefficient, which can measure the degree to which variable quantities change 

with one another, but is insensitive to non-linear dependencies. If the expression rate of one gene is 

actually a non-linear function of another, then this relationship will be missed by algorithms that build 

edges by means of correlation. In cellular networks with many interacting components, non-linear 

feedback relations are often encountered that render simple correlation-based models potentially 

unreliable. On the other hand, the use of Gaussian probability distributions to represent the state of a 

node—which is the main source of insensitivity to non-linearities—allows for the representation of 

expression levels as continuous values. Abandoning them for the sake of higher representational fidelity 

with respect to one network feature therefore requires coarse-graining another feature. 
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In an early proposal to move beyond co-expression networks, Friedman et al. write, ‘Such 

analysis has proven to be useful in discovering genes that are co-regulated and/or have similar function. A 

more ambitious goal for analysis is to reveal the structure of the transcriptional regulation process’ (2000: 

p. 602). Part of the motivation for finding alternatives to co-expression networks is due to the fact that 

they are underdetermined with respect to representations of regulatory interactions between genes, as 

exemplified by Figure 2: 

 

Figure 2: Correlational underdetermination of regulatory interactions 

The use of directed edges in Figure 2 is to show a direct regulatory effect of one gene on another. The 

figure illustrates that there are multiple possible regulatory relations explaining each co-expression 

measurement. With the undirected correlation graph on the left, one cannot distinguish between several 

possible regulatory networks that may have given rise to it; similarities could arise from chaining, from 

one gene regulating multiple others, or from a common 'hidden' regulator. Thus a single co-expression 

network will give rise to a number of hypothetical regulatory structures that grows exponentially with the 

number of nodes.  

Determining the actual regulatory network from expression data is highly non-trivial. In one of the 

most favored approaches, Bayesian network algorithms are used to encode further network structure and 

overcome some basic forms of model underdetermination.9 Since only direct regulatory relationships are 

 
9 I will give special focus to Bayesian networks in the following sections. Here nodes Xi and Xj are only connected by 

an edge if their genes' activity is correlated and, knowing the behavior of all other genes and subsets of genes in 



8 
 

assumed to result, this technique allows for the construction of graphs with directed edges (i.e., arrows) 

showing determinate pathways of regulatory influence. The use of Bayesian networks is motivated in part 

by background knowledge of the structure of complex biological systems. For example, Sachs et al. 

(2005) write,  

There are several attractive properties of Bayesian networks for the inference of signaling pathways from 

biological data sets. Bayesian networks can represent complex stochastic nonlinear relationships among 

multiple interacting molecules, and their probabilistic nature can accommodate noise that is inherent to 

biologically derived data. They can describe direct molecular interactions as well as indirect influences that 

proceed through additional unobserved components, a property crucial for discovering previously unknown 

effects and unknown components. Therefore, very complex relationships that likely exist in signaling 

pathway architectures can be modeled and discovered (p. 523-4).  
 

Having a higher-resolution model of the regulatory interactions within a gene network clearly provides a 

more reliable tool for the prediction and discovery of further dependency relations within a cell. As the 

authors note, Bayesian networks are capable of representing this information in a way that accommodates 

additional understanding of the noisiness of biological measurements, the incompleteness of current 

knowledge of network components, and so on. The choice of model type is thus intertwined with the 

predictive aims of researchers and their established understanding of their subject matter drawn from 

related and overlapping research programs. 

 

3.2 Model generation 

Directed graph models of the entire network are generated by means of computational procedures 

designed to score them in terms of how likely they are to fit the data. A typical way of scoring the 

likelihood of a model G compares (i) the probability that one would observe the data set under 

consideration given the network topology10 of G to (ii) the probability of seeing this data averaged over 

all possible models. For even the simplest metrics, the global problem of finding the best-fitting graph is 

 
the system, the behavior of Xi still yields additional information about Xj. That is, the condition for drawing an edge 
between nodes representing genes Xi and Xj is that they are correlated and: 

~(Xi ⊥ Xj) | XS for all S  V\{i, j} 
where V is the complete set of nodes, S is a subset of nodes, and XS is the collective activity of this subset. 
10 A network topology describes the general spatial characteristics of a graph—the average number of edges 
connected to a given node, whether it is fully connected or if there are disconnected sub-networks, etc. 
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NP-hard (Chickering 1996; with Heckerman and Meek 2004). Instead, researchers must employ search-

and-score heuristics. Perhaps the simplest heuristic is a greedy search: starting from a prior graph 

representing minimal biological knowledge, different graphs that are ‘nearby in search space’ are tested 

by adding or removing single edges at different locations in the graph.11 Each of these graphs is scored, 

the highest-scoring of them is selected as the new prior, and the process repeats. Each heuristic involves 

different trade-offs in false positives and false negatives, and their accuracy can be measured and 

compared by simulating data through an artificial network and seeing how well each heuristic reproduces 

it (as in Yu et al. 2004). Finally, heuristics are also subjected to robustness analysis, where parameters 

such as quantity of data and data discretization are varied. In one such study, Bayesian network inference 

and scoring algorithms were found to perform best when the quantity of data greatly exceeds the number 

of genes being modeled, whereas information theoretic approaches perform better with fewer 

experiments, but are more prone to false positives in other cases (Bansal et al. 2007). Choice of model 

type will therefore depend not only on the type of information researchers seek to represent, but also 

likelihood of generating reliable models based on constraints such as the amount of available data. When 

resources do not permit a large number of experiments, Bayesian network algorithms may not provide the 

best results.  

 

3.3 Model selection 

Despite the high resolution of Bayesian networks and these scoring procedures, a vast number of data-

accommodating networks can still be generated. For the majority of cases, the choice between high-

scoring models is computationally underdetermined; for a given data set, available algorithms will not be 

able to decide between multiple regulatory structures. One reason for this is the aforementioned 

requirement of large amounts of data. In most cases, the number of genes is usually several orders of 

magnitude higher than the number of measurements taken to sample the data. This problem is commonly 

 
11 More complex concepts of neighborhood in search space can be employed instead, but difference by a single 
edge is perhaps the simplest and most intuitive option. 
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approached by drawing on further assumptions or pre-established knowledge of regulatory systems in 

order to compare models and narrow down the solution space; models may be ‘filtered by making 

plausible assumptions on the objectives of the underlying system, such as economy of regulation 

(reflected by having the fewest edges that satisfy the conditions) or maximal biomass production’ (Albert 

2007: p. 3332). Over-fitting the data with an excessively powerful model is avoided by search algorithms 

that invoke a statistical form of Occam's razor. These favor less complex models that effectively predict 

limited ranges of data as opposed to highly complicated models that predict a wider range of data, but 

with lower accuracy (MacKay 1992). Such a process is supported by incorporating the belief that 

biological networks possess sparseness, meaning target genes can only be regulated by a limited number 

of transcription factors. By accounting for this and other properties such as scale-freeness, ‘even an 

underdetermined system can be transformed into an over-determined one’ (He et al. 2009: p. 200). 

 Authors attempt to give an even more accurate rendering of the actual network by integrating 

additional data about cell structures, such as analyses of gene location. These determine the DNA binding 

sites of proteins, providing physical evidence for regulatory relations between a gene that produces a 

given protein and those genes bound by the protein. Such information can be incorporated into model 

selection by selecting particular structure priors, or by giving no weight to models that fail to include 

edges required by location data. ‘By fusing expression data with location data, the constrained search is 

able to consider statistical dependencies in the expression data that are consistent with the physical 

relationships already identified in the location data’ (Hartemink 2002: p. 448).12 

 As with the choice of model type, the decisions encountered by researchers in the model 

generation and selection stages are sensitive to the general research context—the purposes of the 

researcher, the background knowledge available—and particular stage of model specification in which 

they arise. In generating candidate models, limitations in both computing power and the availability of 

experimental data require different choices to be made with regard to the search-and-score heuristics 

employed and their attendant modeling assumptions. In the selection stage, the space of possible models 

 
12 Here we see a merging of top-down and bottom-up approaches. 
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is narrowed down by drawing on theoretical assumptions informed, once again, by background 

knowledge of constituent mechanisms and processes established by ‘nearby’ fields such as cell biology, 

molecular biology, and biophysics. 

 This multi-stage process shares an important feature with other cases in which inductive risk 

balancing figures heavily: due to the sorts of limitations that accompany the data and model generating 

process, different purposes may cause researchers to make decisions that result in different end models. 

Between two researchers who begin with the same data, one who is highly cautious about false positives 

(say, because she is trying to figure out the functional role of a specific gene) will likely end up with a 

different graph than someone who is only interested in locating clustered ‘modules’ of genes that heavily 

regulate each other and interact much less with ‘out-cluster’ genes. Of course this does not entail that two 

graphs that disagree on whether some set of nodes are connected are both correct; there is little reason to 

assume that actual regulatory relations fluctuate as much as researchers’ intentions. However, this serves 

to highlight the manner in which the data-heavy modeling of complex systems is accompanied by 

significant uncertainty: the definitive network structure, whatever it is, is buried beneath a compounding 

series of modeling assumptions, many of which enable researchers to gain traction in seeking reliable 

answers to certain questions while obscuring the answers to others. Often the most robust method for 

determining network structure as a whole involves finding effective ways to combine the results of 

multiple analyses—correlational, information theoretic, Bayesian probabilistic, and those based in 

differential equations (Le Novére 2015). 

 

4 The use of causal concepts 

4.1 Deriving causal structure from a Bayesian network 

It is standard practice for modelers of biological networks to interpret directed graph edges as causal 

relations, where a given parent node (at the tail of a directed edge) has a direct causal influence on its 

connected children. This is seen in publications with titles that mention ‘Bayesian inference for 

generating causal networks from observational biological data’ (Yu et al. 2004) and direct claims like 
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‘The subgraph consisting of all directed edges constitutes the inferred causal network’ (Opgen-Rhein and 

Strimmer 2007). Indeed, one of the main features that Friedman et al. cite as an advantage of Bayesian 

networks over correlational graphs is the idea that ‘Bayesian networks provide models of causal 

influence’ (2000: p. 602). 

Bayesian networks are primarily used for the purpose of modeling causal relations. This is in part 

because they incorporate assumptions that reflect certain intuitions about causality. The principle of d-

separation is a prime example. A set of nodes Z is said to d-separate X from Y if and only if Z blocks 

every path from a node in X to a node in Y (Pearl 2000: p. 17). For example, if we take the chain graph in 

Figure 2 to describe a causal network, then Y ‘screens off’ the causal relation between X and Z; any 

change in X that affects Z must flow through Y, and so learning about the value of Y renders X irrelevant 

to the value of Z. Y appears to be a more direct influence on Z, which mediates the influence of X. To use 

a concrete example, if your air conditioning turns on when the thermostat is high, and it makes the room 

become cool, then finding out that the thermostat is high tells you nothing more about the room becoming 

cooling if you already know that the A/C is running. The air conditioning mediates the causal influence of 

the thermostat. In this way the interlinked conditional dependencies between the states of entities in our 

environment can be thought to reflect a structure of causal relations between them. 

This relation between causal structure and conditional dependencies is most clearly captured in an 

assumption called the Causal Markov condition or CMC (Spirtes et al. 1993). A concise definition of this 

assumption is given by Woodward (2003): 

(CMC)  For all Y distinct from X, if X does not cause Y, then P(X | Parents(X)) = P(X | Parents(X) · Y) 

In other words, the conditional independence relation in which the parents of a node d-separate it from all 

other predecessors is taken to be entailed by an underlying causal relation or lack thereof. Whether or not 

it is stated explicitly, researchers that understand the results of Bayesian network inference in causal terms 

must be taking this assumption on board. Here Friedman et al. (2000) are unambiguous: 
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To learn about causality, we need to make several assumptions. The first assumption is a modeling 

assumption: we assume that the (unknown) causal structure of the domain satisfies the Causal Markov 

Assumption. Thus we assume that causal networks can provide a reasonable model of the domain [...] The 

second assumption is that there are no latent or hidden variables that affect several of the observable 

variables (p. 606). 

Bayesian probabilities are typically understood in terms of an ideal epistemic agent's degrees of 

belief in some state of affairs. The joint probability distribution represented by a Bayesian network can 

thus be thought of as a model for how an ideal agents' beliefs about the states of components of a 

biological system should be interrelated. It is not clear that these networks license us to think that the 

system's behavior is inherently probabilistic; they do not clearly warrant the further step of a realistic 

interpretation of probabilities. When paired with the CMC, however, researchers can construe the 

properties of the network to correspond to some structural features of the biological system; that is, the 

CMC implies that there is some overlap between the structure of the joint probability distribution, and the 

structure of the actual system, taken to be causal and capable of generating probabilistic relationships in 

the data. 

It may not be necessary for modelers to interpret causality in terms of a full-blown metaphysical 

realism, but the notion that target systems bear a causal structure that network modeling aims to identify 

at least serves as a kind of representational ideal for the practice. In this way, the modeling techniques 

seen in network inference may be understood as employing what Michael Weisberg calls minimalist 

idealization, a practice with a representational ideal that ‘instructs the theorist to include in the model only 

the core or primary causal factors that give rise to the phenomenon of interest’ (Weisberg 2013: p. 107). 

Levy and Bechtel (2013) likewise identify this ideal in network modeling, noting that abstract graph 

theoretic diagrams often help in determining the contributions of causal organization to system-level 

behaviors. They write, ‘abstract models, such as models of connectivity [...] highlight the features of that 

specific system that make a difference in it—namely, its pattern of internal causal connections’ (p. 259). 

The notion that cellular networks consist of an underlying structure of difference-making causes 

is seen to play a direct guiding role at one crucial stage of model selection for Bayesian networks. 

Regardless of the supplementary edge-pruning assumptions borrowed from background knowledge, 
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Bayesian network selection suffers from an insurmountable form of underdetermination known as 

Markov equivalence. Markov equivalent networks share the same underlying graph, but the direction of 

their edges may differ (Figure 3). 

 

Figure 3: A set of Markov equivalent graphs 

Equipped only with observational data and Bayesian network inference, there is no principled reason on 

the basis of statistics to choose one of these graphs over the other. To a Bayesian algorithm, Markov 

equivalent networks are indistinguishable, which means the task of Bayesian network inference is best 

framed as a ‘search for an equivalence class of networks that best matches [data] D’ (Friedman et al. 

2000: p. 604). Note, for example, that in all four graphs pictured, conditioning on X renders Z and W 

independent, but the precise reasons for this, taking causal relations into account, differ in each case. No 

matter what search heuristic is used, they will be unable to find a unique causal model; this 

underdetermination is strictly mathematico-computational in the sense that it is built into the algorithm of 

Bayesian network inference. Markowetz and Spang account for this as follows:  

Markov equivalence poses a theoretical limit on structure learning from data: even with infinitely many 

samples, we cannot resolve the structures in an equivalence class. In biological terms this means: even if 

we find two genes to be related it may not be clear which one is the regulator and which one is the 

regulatee. Without perturbation experiments this situation cannot be further resolved (2007). 

 

In other words, obtaining a better representation of the causal structure of the system requires active 

intervention on the system. 



15 
 

 There is a crucial connection between the CMC and the idea of intervention as a means of 

working around Markov equivalence. Friedman et al. (2000) comment:  

A causal network models not only the distribution of the observations, but also the effects of 

interventions. If X causes Y, then manipulating the value of X affects the value of Y. On the other 

hand, if Y is a cause of X, then manipulating X will not affect Y. Thus, although X → Y and Y → 

X are equivalent Bayesian networks, they are not equivalent causal networks (p. 606). 

 

In effect, it is the interpretation of Bayesian networks as representations of underlying causal structure 

licensed by the CMC that enables researchers to view statistically equivalent graphs as causally distinct; 

the directed edges of the network are taken to implicitly encode counterfactual information about the 

consequences of interventions on the system. Take, for instance, the graphs shown in Figure 3: if we 

interpret the directed edges to encode such information, then an intervention that only changes the value 

of Z will allow one to discern whether the bottom-right graph is the causal structure underlying the data, 

in which case we expect the value of X to change as well. So suppose the value of Z is altered, and that 

this results in no change in the value of X. Then the bottom-right graph is eliminated as a candidate for 

the underlying causal structure, whereas the remaining three must be narrowed down through 

interventions on other sites. 

Markowetz and Spang (2007) cite studies showing that such ‘interventions are critical for 

effective inference, particularly to establish directionality of the connections’ in biological systems. An 

example of such an intervention in the context of regulatory networks is the use of gene knockout 

experiments. In one instance, Sachs et al. (2005) used small interfering RNA (siRNA) to target and 

silence the expression of a specific gene designated Erk in their regulatory network model. As indicated 

by the edges in Figure 4, their model predicted that this intervention would alter the expression of Akt but 

not PKA, and the result was seen to confirm these expectations, thereby validating the directionality of 

the edges inferred on the basis of prior data. 
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Figure 4: Intervention on a gene regulatory network 

Bayesian networks are interpreted as bearing interventional information on the basis of the CMC. 

Researchers employ interventions as a means of eliminating a subset of a group of equivalent graphs 

through the comparison of the results of interventions with those predicted by different causal structures. 

They can thus be seen to adopt a specific conception of causality, one that corresponds to the concept 

defended by Woodward (2010): 

(M)  X causes Y iff there are background circumstances B such that if some (single) intervention 

that changes the value of X (and no other variable) were to occur in B, then Y or the probability 

distribution of Y would change (p. 290). 

The meaning of ‘cause’ as it occurs in the antecedent of the CMC (see beginning of this section) is here 

elaborated in terms of shifts in the values of variables resulting from interventions on the system. 

Researchers use interventional relations between the expression levels of genes as a central indicator of 

causal relations between them. This definition does not give a reduction of the concept of cause to 

interventional relations because the notion of intervention is not clearly shorn of causal implications. 

However, the definition captures a basic operational interpretation of causality that can be productively 

employed in order to specify the structure of a given cell network, as demonstrated by authors who view 

graph models arrived at through interventional techniques as implicitly containing ‘causal propositions 
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that can be used to predict what is not yet known and that can be tested by experiment’ (Peter and 

Davidson 2015: p. 265). 

 It’s worth dwelling on the extent to which models of gene regulatory networks conform to a 

Woodward-style causal interpretation. Take, for instance, the description given by Isabelle Peter and Eric 

Davidson (2015), who describe network graphs as 

literal representations of causal interactions among the regulatory genes in a network. These maps 

consist of the relevant regulatory genes (nodes or vertices), and they show explicitly the regulatory 

function these genes execute, i.e. they show for each gene how its outputs serve as inputs into 

other genes (linkages among genes, or “edges”) (p. 267). 

 

The use of ‘literal’ should not be taken to imply that edges in regulatory network graphs simply refer to 

the presence of a continuous physical process connecting two genes. Rather, they indicate the fact that 

alterations in the expression behavior of one gene make a difference in that of another. Regarding these 

edges, Peter and Davidson note that ‘direct causal evidence is required to demonstrate the existence of a 

functional GRN [gene regulatory network] linkage’ (2015: p. 45), where causal evidence is primarily 

arrived at through experimental perturbations to a system. Possible perturbations include targeted gene 

mutations, knockouts, or expression silencing (as in the siRNA technique described above) that remove a 

transcription factor by which one regulatory gene affects another downstream. If the removal of a factor 

silences or otherwise alters the expression of a downstream gene, this constitutes ‘direct causal evidence’ 

of a relation between the two. Follow-up analyses, such as observing whether the factor in question is 

required at the site of the target gene in order for successful transcription to take place, can then be used 

to establish whether the causal relation between the relevant genes is direct (in which case a direct link 

between graph nodes is warranted) or indirect. Once again, interventions such as perturbations are held to 

be crucial in establishing the causal relations representing by the edges in a gene regulatory network 

model. 

But researchers’ confidence in the use of perturbative interventions for these purposes also 

reveals a deeper commitment to a conception of causality that accords with Woodward (2003). There, 

causal relations are subject to the further requirements of stability and modularity. Stability requires that 
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the dependencies between nodes in a graph are invariant under some range of changes in background 

conditions. Modularity, on the other hand, requires that the disruption or alteration of the causal relation 

between a pair of nodes in the graph does not result in a reorganization of the causal relations between 

other nodes. Confidence in the results of a perturbation analysis assumes both; if a given perturbation 

were believed to alter background conditions in such a way that the causal relations between genes were 

significantly altered, either by changing their functional relationship (say, from exciting to repressing) or 

by triggering a reorganization of network components, then there would be no reason to think that 

perturbation experiments could yield information about the normal functioning of the network. Without 

stability and modularity, each perturbation would potentially give rise to a completely different 

organization among regulatory genes, and the goal of inferring how genes interact in the absence of such 

perturbations would be rendered nearly impossible for large networks. 

 

4.2 Worries for those employing the interventionist framework 

While the assumptions required to carry out causal modeling for cell networks are informed by biological 

background knowledge, they still carry the risk of glossing over important features of these systems. 

Perhaps more worrisome is the possibility that they simply fail to adequately describe what causal 

structure is. In short, a number of theoretical and practical challenges confront this modeling paradigm, 

some of which have received significant attention within the philosophy of causality and philosophy of 

science. Although an attempt to fully respond to each issue is beyond the scope of this article, there are 

reasons to think that biologists are not misguided in their use of the above techniques and assumptions. 

 On the theoretical end, causal modelers are faced with stances critical of probabilistic causal 

theories as a whole. A number of philosophers, most notably Nancy Cartwright (1993, 2002, 2007, and 

more) have denied that the Causal Markov Condition is necessary for inferring causal relations. 

Cartwright has presented two main cases that violate the CMC: one involving the probabilistic decay of 

one particle into a particle pair, another involving the probabilistic production of by-products alongside 

the products of a chemical plant. Conditioning on the state of the particle or plant does not render the 
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relation between the particle pair or chemical by-products statistically independent, despite the prior 

state’s role as their apparent common cause. In the quantum case, this may be grounds for accepting that 

common notions of causal relations simply do not apply at the level of fundamental physics. This does 

not mean that such concepts are inapplicable or invalid at other scales such as those relevant to biological 

systems, just that they describe patterns that are not ‘fundamental’ or are not always found in certain 

lower-scale domains like quantum physics. The case of the chemical plant can then be considered 

independently. Without going into great detail, the argumentative success of this case can be seen to 

depend on the assumption that a finer-grained account of the production process would not be capable of 

locating a component that successfully screens off the correlation between the products. This assumption 

is at the very least questionable, and the reader is referred to the exchange between Cartwright and 

Hausman and Woodward (1999, 2004) for further details. For our current purposes, the important 

question is not whether the CMC is necessary to discover any and all causal relations, but whether it 

makes sense for modelers of gene regulatory networks to assume it, and this depends on whether it allows 

researchers to reliably make predictions about and explain the behavior of the interaction systems under 

scrutiny. A definitive judgment on this matter is premature, but the continued use of Bayesian networks 

among systems biologists suggests that the CMC continues to bear fruit, and so there is reason to believe 

it holds in the systems under study. 

Even if the CMC is a necessary criterion for the discovery of causal relations, it may fail to 

realistically apply as an assumption about the structure of cellular networks. In fact, there is a reason to 

think it is ill-applied. The CMC gives an interpretation of the directed acyclic graphs arrived at through 

Bayesian modeling algorithms, but cyclical interactions between components are incredibly common in 

regulatory networks; many include numerous network motifs such as feedback loops that help maintain 

the system in a steady state against external or internal perturbations (Alon 2006). It is possible, however, 

to work around this issue. One way that the problem of cyclical interactions can be addressed is through 

the use of temporal data, which provides measures of the expression rates of genes over time (He et al. 

2009). These data can be used to construct dynamic Bayesian networks, where each node stands for an 
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expression rate at a specified time. Cyclical interactions between genes will then be represented by a 

reversal of directed arrows between their corresponding nodes, where these nodes bear successive time 

stamps. In this way, cyclical interactions in the data can be ‘unfolded’ into acyclical graphs in a way that 

allows for the retention of the CMC and may even provide more detailed information such as the rates at 

which different processes feed back.  

Another challenge for modelers working under this framework are possible violations of 

modularity. Sandra Mitchell (2008) has raised questions regarding the applicability of the modularity 

condition to biological networks, noting that they may be organized in such a way that, when the activity 

of a given component C is disabled, alternate components are able to compensate for its absence and 

produce the same effect E that was originally attributed to the absent component. Such a network would 

appear to violate the interventionist’s difference-making criterion for the claim that C causes E. Likewise, 

Markowetz and Spang (2007) cite compensatory network activity and uncertainty about the exact size of 

perturbation effects as obstacles to Pearl's notion of single-variable manipulation—a notion that closely 

resembles Woodward-style intervention. But again, these problems are not strictly insurmountable: 

Markowetz and Spang also note various techniques being developed to overcome such difficulties, 

including what they call ‘soft interventions,’ analyses of gene knock-out data, and the reverse engineering 

of regulatory pathway structure through the observation of nesting patterns in the results of interventions. 

Where interventions on single genes are unreliable or result in the sort of reorganization that 

Mitchell warns of, they may still be accurately approximated by adopting coarser-grained notions of 

modularity, that is, by shifting the level of description at which stable causal relations are found and 

allowing for perturbations that may affect multiple genes. Researchers can detect particular sub-networks 

that are strongly connected, allowing for a distinction between in-cluster (nodes that can influence the 

sub-network without being influenced by it) and out-cluster (the converse). ‘Nodes of each of these 

subsets tend to have a shared task; for example, in signal transduction networks, the nodes of the in-

cluster tend to be involved in ligand-receptor binding; the nodes of the strongly connected cluster form a 

central signaling subnetwork; and the nodes of the out-cluster are responsible for the transcription of 
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target genes and for phenotypic changes’ (Albert 2007: p. 3332). Building on this approach, Bansal et al. 

(2007) claim that Bayesian network inference is useful for ‘identifying functional modules, that is, 

identifying the subset of genes that regulate each other with multiple (indirect) interactions, but have few 

regulations to other genes outside the subset’ and for ‘predicting the behavior of the system following 

perturbations [say, through gene knock-outs or altering expression levels], that is, gene network models 

can be used to predict the response of a network to an external perturbation and to identify the genes 

directly “hit” by the perturbation’ (p. 1). A greater degree of invariance to intervention is therefore likely 

to be found in the relations between functional modules, permitting more robust predictions of 

perturbation effects. In this way, there is a close connection between talk of functional modules among 

gene network scientists and a system’s possessing modularity in Woodward’s sense. 

Just as with the CMC, Cartwright has argued against interventionist claims that the concept of 

causal relations requires modularity (see her 2007, Ch. 7). For our purposes, the matter is once again not 

whether modularity applies in all cases of causal inquiry, but whether its assumption yields reliable 

information about the relevant target systems. In practice, researchers appear comfortable with the risks of 

assuming a substantial degree of modularity. For some, such as Peter and Davidson (2015), modularity is 

even a basic feature of gene regulatory network structure. According to them, the expression of individual 

genes is controlled by sequences residing on the same DNA molecule. These ‘cis-regulatory modules’ 

interact with transcription factors to define the conditions under which a given gene is expressed. They do 

so by acting, for example, as cofactors that determine where in the developmental plan the transcription of 

a gene is initiated, or by isolating it from other regulatory domains and preventing it from being 

transcribed when certain other genes are active. The specificity of transcriptional control due to cis-

regulatory modules serves to insulate genes from influence by factors other than those that commonly 

affect them, lending gene regulatory networks a higher degree of modularity than would be expected 

otherwise. The authors then specify a further level of modularity in these networks due to the presence of 

‘subcircuits’. These, like the ‘network motifs’ and ‘functional modules’ referenced earlier, are highly 

recurrent patterns of connections between regulatory genes, such as feed-back loops, which serve to 
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coordinate the joint expression of several genes in a way that carries out a distinct function. Peter and 

Davidson elaborate: ‘A given developmental GRN will include several separate subcircuits joined by 

encoded regulatory linkages. Thus, considered from the perspective of the structural elements that 

perform its overall control functions, the developmental GRN has a modular character’ (2015: p. 44). 

 

5 Multi-Stage Model Specification in Systems Biology and Beyond 

I hope to have shown that the practice of modeling cellular networks using Bayesian inference techniques 

is guided by a notion of underlying causal structure that corresponds to a Woodward-style interventionist 

conception of causality. How, then, should we characterize the role causal concepts have played in this 

process of model specification? Recall that model specification is a procedure by which researchers arrive 

at a satisfactory amount of detail in their representation of some phenomenon of interest or its underlying 

structure. In the case of cellular networks, we have seen how certain levels of detail may be obscured on 

the basis of model underdetermination; for example, if a given strategy is unable to specify whether 

arrows between nodes are directed one way or another, then the most accurate representation available 

will have to leave this feature undetermined. Figure 5 shows a schematic depiction of the role of causal 

concepts in model specification, which involves overcoming the stages of underdetermination discussed 

above. Here model specification is achieved through the incorporation of compounding background 

theoretical assumptions, which aid in the elaboration of a particular notion of underlying causal structure. 
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Figure 5: Causal concepts in network model specification 

This graphic helps show how it is the notion of underlying causal structure that helps guide the process. 

Otherwise it becomes hard to make sense of the idea that a model is underdetermined. That is, we can 

always ask ‘underdetermined with respect to what?’ Co-expression networks account for the data as well 

as other networks, in the sense that they are constructed through the direct incorporation of the available 

measurements. It is only because researchers, motivated by their understanding of the relevant biological 

systems, posit a more fine-grained structure, one resembling a network of Woodward-style causal 

relations, that such correlation networks are viewed as insufficient. A supposition of causal regulatory 

structure thus guides the development of strategies to represent ‘deeper’ structures in the same data, 

supplemented with further assumptions and, eventually, interventional results. 

In this way the modeling practice of researchers of cellular networks in systems biology can be 

seen to involve the multi-stage specification of an adequate representation of its subject matter. Model 

specification is achieved through a compounding series of theoretical and modeling assumptions, which 

serve to elaborate and refine an informational structure designed to produce reliable predictions with 

respect to some phenomenon of interest. In reviewing the features of this practice, I seek to describe them 

with enough generality that they may be recognized in other areas of science, as I believe they can be. 
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 Researchers begin with the most widely adopted modeling assumption to aid in simplifying 

impending computational tasks (e.g., measurements of transcription factors have a functional relationship 

to gene expression; co-expression is a reliable indicator of possible regulatory interactions between 

genes). This is followed by the choice of specific mathematical objects (e.g., graphs of conditionally 

dependent data points), which pick out, from the available ways of inquiring into the system under study, 

a specific informational structure that is relevant to researchers’ aims (e.g., such graphs better predict 

downstream results of gene knock-outs). More detailed features of these mathematical objects and their 

sub-components are then specified, again with reference to the aims of research, with trade-offs being 

made by researchers based on the particular problem-solving context in which the modeling effort takes 

place (e.g., a binomial form for probability distributions is more computationally efficient than 

multinomial distributions, but may fail to reliably represent regulatory feedback loops; a search heuristic 

that penalizes high-scoring graphs for complexity or for over-fitting of data risks rejecting accurate 

models of highly involved networks).13 

 These stages are accompanied by a form of computational opportunism, in which concerns about 

finding ‘one true representation’ may be overshadowed by an interest in selecting from a menagerie of 

tweaks and variations on model sub-components suited to serve different purposes. Such strategies are 

also seen to be rooted in a local domain of inquiry embedded within a collection of ongoing peripheral 

research programs. This embedding in a local domain provides crucial contextual features that orient 

scientific problem-solving in the form of established empirical facts that justify basic modeling 

assumptions. It also provides peripheral research programs and sources of background theory for 

modelers to draw on and refine their results (e.g., incorporating gene location data into search heuristics).  

Finally, the use of concepts relevant to the formulation and execution of strategies is seen to be 

highly purpose-driven, and is in many ways a function of the modeling context. The interventionist notion 

of causation proves to be a highly useful means to further specifying regulatory network structures, as it 

 
13 For another account of multi-stage model construction, instead from the perspective of ‘bottom-up’ systems 
biologists, see MacLeod and Nersessian 2013. 
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gives researchers a way to differentiate statistically indistinguishable graphs. This notion of causation also 

plays something of a guiding role for modelers: without it, it is hard to make sense of the idea that a 

model is underdetermined. That is, it is because researchers posit a more fine-grained structure—one that 

may be approximated by a system of Woodward-style causal relations—and because they seek the kind of 

inferential reliability that such a structure brings, that representations such as co-expression networks are 

viewed as insufficient depictions of the sources of experimental data. 

By paying attention to these features of the model specification process—the stages of decision-

making, the research context, the driving concepts—we gain a better understanding of scientific modeling 

practices. In addition, it allows us to see how the inductive risks that accompany various assumptions can 

be localized and at times individually examined, rather than attributed wholesale, say, to the finished 

product or to the very act of inductive inference. 
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