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Abstract
I show that, in acyclic causal models, post-intervention probabilities are

imaging probabilities and both are conditional probabilities.

1 Acyclic causal models
Let us consider an acyclic causal model M of the sort that is central to causal
modeling (Spirtes et al. 1993/2000, Pearl 2000/2009, Halpern 2016, Hitchcock
2018). Readers familiar with them can skip this section.
M = ⟨S,F ⟩ is a causal model if, and only if, S is a signature and F =

{F1, . . . ,Fn} represents a set of n structural equations, for a finite natural number
n. S = ⟨U,V,R⟩ is a signature if, and only if, U is a finite set of exogenous
variables, V = {V1, . . . ,Vn} is a set of n endogenous variables that is disjoint
fromU, and R :U ∪V → R assigns to each exogenous or endogenous variable
X inU ∪V its range (not co-domain) R (X) ⊆ R. F = {F1, . . . ,Fn} represents a
set of n structural equations if, and only if, for each natural number i, 1 ≤ i ≤ n:
Fi is a function from the Cartesian productWi = ×X∈U∪V\{Vi}R (X) of the ranges
of all exogenous and endogenous variables other than Vi into the range R (Vi)
of the endogenous variable Vi. The set of possible worlds of the causal model
M is defined as the Cartesian product W = ×X∈U∪VR (X) of the ranges of all
exogenous and endogenous variables.

A causal modelM is acyclic if, and only if, it is not the case that there are m
endogenous variables Vi1, . . . ,Vim inV, for some natural number m, 2 ≤ m ≤ n,
such that the value of Fi( j+1) depends on R

(
Vi j

)
for j = 1, . . . ,m−1, and the value

of Fi1 depends on R (Vim). Importantly, dependence is just ordinary functional
dependence: Fi depends on R

(
V j

)
if, and only if, there are arguments w⃗i and w⃗i

′

in the domain Wi = ×X∈U∪V\{Vi}R (X) of Fi that differ only in the value from
R
(
V j

)
such that their values under Fi differ, Fi

(
w⃗i
)
, Fi

(
w⃗i
′
)
.
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Let Pa (Vi) be the set of variables X inU ∪V such that Fi depends on R (X).
The elements of Pa (Vi) are the parents of the endogenous variable Vi, that is,
the set of variables that are directly causally relevant to Vi. Let An (Vi) be the
ancestral, or transitive closure, of Pa (Vi), which is defined recursively as follows:
Pa (Vi) ⊆ An (Vi); if V ∈ An (Vi), then Pa (V) ⊆ An (Vi); and, nothing else is
in An (Vi). The elements of An (Vi) are the ancestors of the endogenous variable
Vi. A variable Y is a non-descendant of a variable X if, and only if, X and Y are
different and X is not an ancestor of Y.

A context is a specification of the values of all exogenous variables. It can
be represented by a vector u⃗ in the Cartesian product R (U) = ×U∈UR (U) of the
ranges of all exogenous variables. A basic fact about causal models is that every
acyclic causal model has a unique solution wu⃗ for any context u⃗. LetW0 be the
set of these “legal” possible worlds (Glymour et al. 2010). An acyclic causal
model determines a unique directed acyclic graph whose nodes are the exogenous
and endogenous variables inU∪V and whose arrows point into each endogenous
variable Vi from all of the latter’s parents in Pa (Vi).

Acyclic causal models provide a semantics for some counterfactuals. The
language includes atomic sentences of the form V = v which say that endogenous
variable V takes on a specific value v from its range R (V), as well as the Boolean
combinations that can be formed from these atomic sentences by finitely many
applications of negation ¬, conjunction ∧, and disjunction ∨. The variables must
be endogenous. Sentences of the form V ∈ S, for a subset S of R (V) with more
(or less) than one element are not allowed. The antecedent of a counterfactual
must by a finite conjunction X1 = x1 ∧ . . . ∧ Xk = xk of one or more atomic
sentences with distinct endogenous variables. The consequent must a Boolean
combination ϕ of atomic sentences. Among others, this means that we cannot
consider counterfactuals with a counterfactual in the antecedent or consequent.

An atomic sentence V = v is true in M in u⃗ if, and only if, all solutions
to the structural equations represented by F assign value v to the endogenous
variable V if the exogenous variables in U⃗ are set to u⃗. Since we are restricting
the discussion to extended acyclic causal models which have a unique solution in
any given context, this means that V = v is true in M in u⃗ if, and only if, v is
the value of V in the unique solution wu⃗ to all equations in M in u⃗. The truth
conditions for negations, conjunctions, and disjunctions are given in the usual
way. The counterfactual X1 = x1 ∧ . . . ∧ Xk = xk � ϕ, or simply X⃗ = x⃗� ϕ,
is true in M = ⟨S,F ⟩ in u⃗, M, u⃗ |= X⃗ = x⃗ � ϕ if, and only if, ϕ is true in
MX⃗=x⃗ = ⟨SX⃗,F

X⃗=x⃗
⟩ in u⃗.
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The latter causal model results from M by removing the structural equation
for Xi and by freezing the value of Xi at xi, for each i = 1, . . . , k. Formally,
this means that S is reduced to SX⃗ = ⟨U,V \ {X1, . . . ,Xk} ,R ↾U∪V\{X1,...,Xk}

⟩, where R ↾U∪V\{X1,...,Xk} is R with its domain restricted from U ∪ V to U ∪
V \ {X1, . . . ,Xk}; as well as that F is reduced to F X⃗=x⃗ which results from F by
deleting, for each i = 1, . . . , k, the function FXi representing the structural equation
for Xi and by changing the remaining functions FY inF \

{
FX1 , . . . ,FXk

}
as follows:

restrict the domain of each FY from ×X∈U∪V\{Y}R (X) to ×X∈U∪V\{Y,X1,...,Xk}R (X);
and, replace FY by FX⃗=x⃗

Y which results from FY by setting X1, . . . ,Xk to x1, . . . , xk,
respectively.

2 Probability
Next let us consider a regular probability measure Pr on the power-set ofW. This
means that every non-empty proposition overW receives a positive probability,
including the singletons containing a possible world which I will identify with
each other. The conditional probability Pr (· | W0) is the probability measure
conditional on the assumption that M is true and no intervention takes place.
Note that

Pr (wu⃗ | W0) = Pr
(
⟦U⃗ = u⃗⟧W

)
,

where ⟦U⃗ = u⃗⟧W is the proposition over W that is expressed by the sentence
U⃗ = u⃗. This means that Pr (· | W0) allocates the entire probability mass of context
u⃗ onto the single possible world wu⃗; every other possible world that agrees with
wu⃗ on the values of the exogenous variablesU receives probability zero.

If the set of exogenous variables U is probabilistically independent in the
sense of Pr (· | W0), Pearl (2000/2009: 30)’s causal Markov condition theorem
applies: Pr (· | W0) satisfies the causal Markov condition for the directed acyclic
graph determined byM (each variable inU∪V is probabilistically independent
of its non-descendants given its parents). In this case the pair ⟨M,Pr (· | W0)⟩
is Markovian; it is semi-Markovian, if the set of exogenous variables U is not
probabilistically independent in the sense of Pr (· | W0). The significance of this
theorem lies in connecting acyclic causal models to probability.

It is here that I am departing slightly from the approach usually taken. Usually
(e.g., Pearl 2000/2009: ch. 3), one starts with a regular probability measure PrU
over the power-set of R (U) and then extends PrU to a unique regular probability
measure PrM over the power-set ofW0. While
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PrU
(
⟦U⃗ = u⃗⟧R(U)

)
= PrM

(
⟦U⃗ = u⃗⟧W0

)
=

= Pr
(
⟦U⃗ = u⃗⟧W | W0

)
= Pr

(
⟦U⃗ = u⃗⟧W

)
for every context u⃗, as well as, for every possible world wu⃗ that is legal inM,

PrM (wu⃗) = Pr (wu⃗ | W0) ,

the sentence U⃗ = u⃗ picks out different propositions over R (U), W0, and W.
In addition, the probability measures PrU and PrM do not assign any probability
to propositions comprised by possible worlds that are illegal in M, while these
propositions receive probability zero from Pr (· | W0) and positive probability
from Pr. It is this slight departure that enables me to prove my claims.

The post-intervention probability Pr (· | W0)do(X⃗=x⃗) after intervening on the

endogenous variables X⃗ and setting their values to x⃗ is usually defined to be the
unique regular probability measure PrMX⃗=x⃗

over the power-set of the set of legal

possible worlds WX⃗=x⃗
0 of the acyclic causal model MX⃗=x⃗ that extends PrU (in

the same manner as PrM extends PrU to a unique probability measure over the
power-set ofW0). It can also be calculated from the pre-intervention probability
Pr (· | W0) as follows (see Spirtes et al. 1993/2000: 51’s manipulation theorem):
for any possible world w inW,

Pr (w | W0)do(X⃗=x⃗) = Pr ∗
(
⟦X⃗ = ⃗X (w)⟧W

)
×

×

∏
Y∈U∪V\{X1,...,Xk}

Pr
(
⟦Y = Y (w)⟧W | ⟦ ⃗Pa (Y) = ⃗Pa (Y) (w)⟧W ∩W0

)
,

where X⃗ (w) are the values of the variables X⃗ in w and the intervention-function
Pr∗ takes on value 1 for X⃗ (w) = x⃗ and value 0 for X⃗ (w) , x⃗. The post-
intervention probability Pr (· | W0)do(X⃗=x⃗) satisfies the causal Markov condition
for the directed acyclic graph determined by the acyclic causal modelMX⃗=x⃗.

To establish my claims, let me amend a concept of Lewis (1973: 133)’: the
interventionist theory of X⃗ = x⃗ in context u⃗, IT

(
X⃗ = x⃗, u⃗

)
, is the set of sentences

that would be true inM in u⃗ if X⃗ = x⃗ were made true inM in u⃗ by an intervention
that sets the values of X⃗ to x⃗,{

ϕ :M, u⃗ |= X⃗ = x⃗� ϕ
}
.

4



IT
(
X⃗ = x⃗, u⃗

)
is a set of Boolean combinations of atomic sentences. Unlike the

counterfactuals in section 1, atomic sentences and Boolean combinations thereof
are assigned truth values inM not just relative to contexts u⃗, but relative also to
possible worlds w. In fact, I presupposed this when considering the propositions
expressed by U⃗ = u⃗ over various sets of possible worlds (an atomic sentence
V = v is true in M in w if, and only if, v is the value of V in w; the truth
conditions for negations, conjunctions, and disjunctions continue are given in the
usual way). Therefore, we can say that IT

(
X⃗ = x⃗, u⃗

)
is true in M in precisely

one possible world, viz. the unique solution wX⃗=x⃗
u⃗

to all equations in MX⃗=x⃗ in
u⃗. In the framework of Stalnaker (1968), whose central ingredient is a selection
function f , the corresponding set of sentences picks out the unique possible world
f
(
X⃗ = x⃗,wu⃗

)
that is selected by f in the possible world wu⃗ for the antecedent

X⃗ = x⃗ as the unique possible world among all possible worlds in which X⃗ = x⃗ is
true that is closest or most similar to wu⃗. In the slightly less demanding framework
of Lewis (1973) the corresponding set of sentences may pick out the empty set if
one does not make Lewis (1973: 19)’s “limit assumption” (Herzberger 1979).

When one brings about X⃗ = x⃗ by an intervention that sets the values of X⃗ to
x⃗ and one assumes thatM is true, the information one receives is the proposition
expressed by the disjunction or intersection of all sets IT

(
X⃗ = x⃗, u⃗

)
, for every

context u⃗, i.e.,

IT
(
X⃗ = x⃗

)
=
⋂

u⃗∈R(U)

{
ϕ :M, u⃗ |= X⃗ = x⃗� ϕ

}
.

IT
(
X⃗ = x⃗

)
is true in all and only the possible worlds inWX⃗=x⃗

0 , which is the set

of legal possible worlds of the acyclic causal modelMX⃗=x⃗. IT
(
X⃗ = x⃗

)
says that,

assuming thatM is true, what would be the case if X⃗ = x⃗ were made true by an
intervention that sets the values of X⃗ to x⃗ is the case. IT

(
X⃗ = x⃗

)
implies X⃗ = x⃗

(but, in general, is not implied by it). This is so also in the frameworks of Stalnaker
(1968) and Lewis (1973), as well as any other that validates X⃗ = x⃗ � X⃗ = x⃗
(such as Huber 2021’s typicality framework).

Note that, for every context u⃗,

Pr
(
wX⃗=x⃗

u⃗ | W0

)
do(X⃗=x⃗) = Pr

(
⟦U⃗ = u⃗⟧W | W0

)
do(X⃗=x⃗) ,
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as well as

Pr
(
⟦U⃗ = u⃗⟧W | W0

)
do(X⃗=x⃗) = Pr

(
⟦U⃗ = u⃗⟧W | W0

)
do(Y⃗=y⃗) = Pr

(
⟦U⃗ = u⃗⟧W

)
for any two interventions on endogenous variables X⃗ and Y⃗. This means that the
post-intervention probability Pr (· | W0)do(X⃗=x⃗) re-allocates the probability mass

Pr
(
⟦U⃗ = u⃗⟧W

)
away from the possible world wu⃗ that is legal inM to the possible

world wX⃗=x⃗
u⃗

that is legal in MX⃗=x⃗. This in turn means that the post-intervention
probability Pr (· | W0)do(X⃗=x⃗) is what Lewis (1976: 310) calls the image of the

pre-intervention probability Pr (· | W0) (not Pr) on ⟦X⃗ = x⃗⟧W (modulo the fact
that Lewis 1976 works with sentences rather than propositions). This imaging
probability is the pre-intervention probability of counterfactuals which validate
conditional excluded middle (as does the counterfactual one from section 1, as
well as Stalnaker 1968’s) with antecedent X⃗ = x⃗,

Pr
(
⟦X⃗ = x⃗� ·⟧W | W0

)
.1

My claims follow by noting that both of them are identical to the conditional
probability Pr

(
· | ⟦IT

(
X⃗ = x⃗

)
⟧W
)
, i.e., Pr

(
· | W

X⃗=x⃗
0

)
.

These results remain true if the intervention on the endogenous variables X⃗
does not set their values to x⃗ but imposes a probability distribution on them so
that the intervention-function Pr∗

(
⟦X⃗ = X⃗ (w)⟧W

)
takes on not just the values 1

and 0, but values between 1 and 0 that sum to 1. In this case we are conditioning
in a generalized way (Jeffrey 1965/1983: ch. 11):

Pr (· | W0)do(X⃗=x⃗) =
∑

x⃗∈R(X⃗)
Pr
(
· | ⟦IT

(
X⃗ = x⃗

)
⟧W
)
× Pr ∗

(
⟦X⃗ = x⃗⟧W

)
.

1Pearl (2017) also notes the close relationship between intervening and imaging, though arrives
at this result in a different way – and without relating either to conditioning. Pearl (2017)’s aim
is to enrich the set of sentences for which the do-operator is defined. In the present context,
this amounts to enriching the antecedents of counterfactuals from simple sentences of the form
X1 = x1 ∧ . . . ∧ Xk = xk to more complex sentences. Specifically, Pearl (2017) wants to allow for
interventions on disjunctions (to calculate the expected utilities of disjunctive actions, among other
things). This is exactly what causality models (Huber ms) allow for, which comprise the structure
of acyclic causal models, but go beyond this structure. Pearl (2017)’s assessment that interventions
on disjunctions require more structure than is present in acyclic causal models is water on the mills
of the proponent of acyclic causality models. I thank Sander Beckers for pointing me to Pearl
(2017).
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In acyclic causal models, intervening is imaging is conditioning.
It is worth pointing out the role played by the distinction between exogenous

and endogenous variables, as well as the causal assumptions contained therein, in
arriving at these results. Given an ayclic causal modelM, there is no uncertainty
about what is the case, as well as what would be the case if one were to intervene
on some endogenous variables, once the value of every exogenous variable is
fixed. In other words, givenM, the exogenous variables are causally sufficient for
the endogenous variables. All uncertainty is restricted to the exogenous variables.
Hence, the sets of possible worlds that are legal in M or any of its sub-models
MX⃗=x⃗ are proper subsets of the set of all possible worlds (as long as there is at
least one endogenous variable that has more than one value). This is why X⃗ = x⃗
is, in general, less informative than IT

(
X⃗ = x⃗

)
. However, the difference between

observing X⃗ = x⃗ and bringing it about that X⃗ = x⃗ – or rather: between receiving
the information that X⃗ = x⃗ is true and that X⃗ = x⃗ is made true – vanishes if no
causal assumptions are made.

To see this, let → be an arbitrary conditional that is defined for at least the
same antecedents and consequents as� from section 1, at least as weak as an
object-language counterpart of logical implication ⇒, and at least as strong as
the material conditional ⊃. This includes� as defined in section 1, but also as
defined in the frameworks of Stalnaker (1968) and Lewis (1973) and many others.
In addition, assume that→- conditionals X⃗ = x⃗→ ϕ have truth values relative to
all possible worlds w inW, not merely all contexts u⃗ in R (U).

For any possible world w inW, call

T→
(
X⃗ = x⃗,w

)
=
{
ϕ : w |= X⃗ = x⃗→ ϕ

}
the→-conditional theory of X⃗ = x⃗ in w. For fixed X⃗ = x⃗ and w, T→

(
X⃗ = x⃗,w

)
is the stronger, the weaker the conditional→.

By assumption, for every antecedent X⃗ = x⃗ and possible world w,

T⇒
(
X⃗ = x⃗,w

)
⊆ T→

(
X⃗ = x⃗,w

)
⊆ T⊃

(
X⃗ = x⃗,w

)
.

Hence, for every antecedent X⃗ = x⃗,

T⇒
(
X⃗ = x⃗

)
⊆ T→

(
X⃗ = x⃗

)
⊆ T⊃

(
X⃗ = x⃗

)
,

where we define as follows:

T→
(
X⃗ = x⃗

)
=
⋂

w∈W

T→
(
X⃗ = x⃗,w

)
.
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Note that we are now quantifying over all possible worlds w rather than merely
all contexts u⃗, as we did in the definition of IT

(
X⃗ = x⃗

)
. Because of this it follows

that
T⇒
(
X⃗ = x⃗

)
= T⊃

(
X⃗ = x⃗

)
.

Consequently, for every antecedent X⃗ = x⃗ and conditional→,

⟦T→
(
X⃗ = x⃗

)
⟧W = ⟦X⃗ = x⃗⟧W.

Without any causal assumptions, the distinction between being true and making
true vanishes.

Recall how we can calculate the post-intervention probability Pr (· | W0)do(X⃗=x⃗)
from the pre-intervention probability Pr (· | W0), if the set of exogenous variables
U is independent in the sense of Pr (· | W0) (which is the case if, and only if, this

is so in the sense of Pr or any of the conditional probabilities Pr
(
· | W

Y⃗=y⃗
0

)
): for

any possible world w inW,

Pr (w | W0)do(X⃗=x⃗) = Pr ∗
(
⟦X⃗ = ⃗X (w)⟧W

)
×

×

∏
Y∈U∪V\{X1,...,Xk}

Pr
(
⟦Y = Y (w)⟧W | ⟦ ⃗Pa (Y) = ⃗Pa (Y) (w)⟧W ∩W0

)
.

This equation is well-defined if all conditions in the conditional probabilities in
the product have positive probability. This is not always the case, as ⟦ ⃗Pa (Y) =
⃗Pa (Y) (w)⟧W ∩W0 may be empty – say, when we intervene on ⃗Pa (Y) and set

them to values that they do not take on in any legal possible world. I assume that
whichever precautions are taken to side-step this issue also apply to the following
calculations. (In the present context, one can always consult the acyclic causal
model, but the issue is more pressing when one considers pairs of directed acyclic
graphs D and probability measures Pr such that Pr satisfies the causal Markov
condition for D.)

Note that the conditional probabilities in the product take on only the extreme
values 1 and 0 for endogenous variables Y; non-extreme conditional probabilities
strictly between 0 and 1 are reserved for exogenous variables Y. Note also that
we can rewrite this equation in the following way that I have not seen elsewhere
(perhaps because it holds for acyclic causal models, but, unlike the manipulation
theorem, not also for pairs of directed acyclic graphs D and probability measures
Pr such that Pr satisfies the causal Markov condition for D). For any possible
world w inW,

8



Pr (w | W0)do(X⃗=x⃗) = Pr ∗
(
⟦X⃗ = ⃗X (w)⟧W

)
× Pr

(
⟦U⃗ = ⃗U (w)⟧W

)
×

×

∏
Y∈V\{X1,...,Xk}

Pr
(
⟦Y = Y (w)⟧W | ⟦U⃗+ = ⃗U+ (w)⟧W ∩W0

)
,

whereU+ = U ∪ {X1, . . . ,Xk}. This holds even if the set of exogenous variables

fails to be independent in the sense of Pr (· | W0) (and Pr and all Pr
(
· | W

Y⃗=y⃗
0

)
)

and can be simplified as follows: for any possible world w inW,

Pr (w | W0)do(X⃗=x⃗) = Pr
(
⟦U⃗ = ⃗U (w)⟧W

)
×

×

∏
Y∈V

Pr
(
⟦Y = Y (w)⟧W | ⟦U⃗ = ⃗U (w)⟧W ∩ ⟦X⃗ = x⃗⟧W ∩W0

)
.

The conditional probabilities in the product still take on only the extreme values 1
and 0 for endogenous variables Y, including X1, . . . ,Xk; non-extreme conditional
probabilities strictly between 0 and 1 are still reserved for exogenous variables Y.
This brings to the fore that, in acyclic causal models, the exogenous variables are
causally sufficient for the endogenous variables in the sense that a specification of
the former – plus the endogenous variables intervened upon, if any – determines
a specification of the latter.

Among others, this highlights that, in acyclic causal models, any genuinely
probabilistic feature of causation among endogenous variables (that is not due
to probabilistic features of the intervention) derives from probabilistic features
among exogenous variables (see Papineau 2022, ms). It also highlights that, in
acyclic causal models, both pre- and post-intervention probabilities satisfy the
following determination condition, even if the set of exogenous variables is not
independent in the sense of any of these probabilities or Pr: each variable Y in
U ∪V is conditionally independent of its non-descendants given the exogenous
variables U (with or without Y) plus the endogenous variables X⃗ intervened on,
if any.

The determination condition has a consequence for causal inference. Consider
exogenous variables U1, . . . ,Um and endogenous variables V1, . . . ,Vn and assume
that they are governed by some acylic causal model or other. Now consider what
in statistics is called the marginal distribution: Pr (U1, . . . ,Um,V1, . . . ,Vn). If we
“observe” X⃗ = x⃗, i.e., if we receive the information that X⃗ = x⃗ is true (and no
further information), we condition on X⃗ = x⃗ to obtain the following new marginal
distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk) .
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By contrast, if we intervene on the endogenous variables X⃗ and set their values to
x⃗, i.e., if we receive the information that X⃗ = x⃗ has been made true (and no further
information), we condition on X⃗ = x⃗ and that we are still in the same context,
whichever one it is, to obtain the following new conditional distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk,U1, . . . ,Um) .

This distribution always has the same conditions U1, . . . ,Um, no matter which
acyclic causal model happens to be true. If we focused on the causal Markov
instead of the determination condition, we would obtain the following conditional
distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk,Pa (X1, . . . ,Xk)) .

The latter conditional distribution has different conditions Pa (X1, . . . ,Xk) (even
though X1, . . . ,Xk are fixed), depending on which acyclic causal model happens
to be true.

That is, assuming an acylic causal model, as well as a probabilistic setting2, the
information that X⃗ = x⃗ is true allows one to estimate marginal distributions, while
the information that X⃗ = x⃗ has been made true allows one to estimate conditional
distributions with specified conditions.

3 Conclusion
The mathematics establishing them is entirely trivial, but that does not mean that
my claims are trivial also philosophically. They show that, for an important class
of conditionals, probabilities of conditionals are conditional probabilities. They
show that, on at least one version of it (Meek & Glymour 1994), causal decision
theory is a species of evidential decision theory (Jeffrey 1965/1983) – specifically,
one that respects Carnap (1947)’s “principal of total evidence”: expected utility is
calculated with respect to the probability conditional on not just the evidence that
an act is taken, but the decision maker’s total evidence. Often, this includes the
information that the decision maker herself brings about this act all by herself, i.e.,
by a hard intervention. And they reinforce a message that is at least implicit in the
interventionist approach to causation (Spirtes et al. 1993/2000, Pearl 2000/2009,
Woodward 2003): causal inference is statistical inference from correlations not
between what is true and what is true, but between what is made true and what is
true.3

2The situation is parallel in a non-probabilistic setting (Huber 2015, ms).
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