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The quest for a ‘unified field theory,’ which aimed to integrate gravitational and electromagnetic fields into a single field
structure, spanned most of Einstein’s professional life from 1919 until his death in 1955. It is seldom noted that Hans
Reichenbach was possibly the only philosopher who could navigate the technical intricacies of the various unification
attempts. By analyzing published writings and private correspondences, this paper aims to provide an overview of the
Einstein-Reichenbach relationship from the point of view of their evolving attitudes toward the program of unifying electricity
and gravitation. The paper concludes that the Einstein-Reichenbach relationship is more complex than usually portrayed.
Reichenbach was not only the indefatigable ‘defender’ of relativity theory but also the caustic ‘attacker’ of Einstein’s and
others’ attempts at unified field theory. Over the years, Reichenbach managed to provide the first, and possibly only, overall
philosophical reflection on the unified field theory program. Therefore, Reichenbach was responsible for bringing to the
debate, often for the first time, some of the central issues of the philosophy of space-time physics: (a) the relation between a
theory’s abstract geometrical structures (metric, affine connection) and the behavior of physical probes (rods and clocks, free
particles, and so on); (b) the question of whether such association should be regarded as a geometrization of physics or a
physicalization of geometry; (c) the interplay between geometrization and unification in the context of a field theory.
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Introduction

Most of Einstein’s published work from 1919 (Einstein, 1919b) until his death in 1955 (Einstein and
Kaufman, 1955)1 is dominated by the search for a unified field theory, which aimed to unify the gravitational
and electromagnetic fields into a single mathematical structure while integrating the field with its sources
(Tonnelat, 1966). The history of Einstein’s engagement with such a program has been rightly described as
a rapid succession of hopes and disappointments (Vizgin, 1994, 183ff.). Einstein was aware that, without
an analog of the equivalence principle, the choice of the basic field structure to represent the combined
electromagnetic/gravitational field could not be empirically motivated from the outset, as in the case of
the metric in his theory of gravitation. Thus, in the last resort, Einstein had to rely on the criterion of
mathematical simplicity, which was arbitrary to a large degree.

Despite his renown for foundational work in relativity theory (Reichenbach, 1920b, 1924, 1928a), it is
often overlooked that Hans Reichenbach possessed a unique combination of philosophical and technical
skills that enabled him to make sense of the diverse unification efforts. Indeed, Reichenbach followed the
historical development of the unified field theory-project firsthand in a way that is inextricably entangled
with his personal and intellectual relationship with Einstein. In the late 1910s, Reichenbach witnessed the
rise of the program when he attended the Berlin lectures and was confronted with Einstein’s skeptical
reaction to Hermann Weyl’s (1918b) early attempt. In the mid-1920s, he was exposed to Einstein’s sudden
change of attitude towards the unification program (Vizgin, 1994, 188). When he returned to Berlin as a
professor by the end of the decade (see Hecht and Hoffmann, 1982), Reichenbach was directly involved

1For the history of the unified field theory-project, I draw freely from the standard historical literature on the subject
Vizgin, 1994, Goenner, 2004, Goldstein and Ritter, 2003. For an overview of Einstein’s work on the unified field theory,
see Sauer (2014); for the philosophical background of Einstein’s search for a unified field theory, see Dongen (2010); on
Einstein’s philosophy of science, see Ryckman (2017)..
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in the journalistic craze surrounding Einstein’s latest theory (Sauer, 2006). Thereby, Reichenbach not
only closely trailed the technical meanders of the field-theoretical approach to unification, but he was a
privileged witness of the progressive transformation of Einstein’s philosophical outlook, from his early
empiricist leanings to his later extreme rationalism.

This paper aims to revisit the Einstein-Reichenbach relationship from the point of view of their evolving
attitude toward the program of unifying electricity and gravitation. In particular, it considers Reichenbach
not in his capacity of a staunch defender of relativity theory (Hentschel, 1982, Reichenbach, 2006), but
in his less-known role of indefatigable attacker of the unified field theory-project. Although most of
Reichenbach’s critical remarks on the program appear in published writings, his private correspondence
offers a more nuanced understanding of the philosophical motivations behind his mistrust towards this
project. To provide a comprehensive overview of his views, this paper focuses on three correspondences
that address three different conceptual issues:

Coordination: The Reichenbach-Weyl correspondence (1920-1922). In his 1920 habilitation, Reichen-
bach, although in passing remarks, accused Weyl of attempting to deduce physics from geometry
by reducing physical reality to ‘geometrical necessity’ (Reichenbach, 1920b, 73). On the contrary,
Reichenbach considered the greatest achievement of general relativity was to have shifted the question
of the truth of geometry from mathematics to physics (Reichenbach, 1920b, 73). Reichenbach insisted
on what he thought was the core message of Einstein’s epistemology: spacetime geometry is in itself
neither true nor false, it acquires a physical meaning only when it is coordinated with the behavior
of physical probes, like rods and clocks. After a correspondence with Weyl, Reichenbach (1922a,
367–368), Reichenbach accepted Weyl’s (1921d)’s defense that he did not mean to derive physics from
mathematics. However, Weyl further argued that abstract spacetime geometry had nothing to do with
the behavior of physical measuring devices. Reichenbach countered that, in this way, Weyl’s theory
became overly formal and lost its persuasive power (Reichenbach, 1922a, 367).

Geometrization: Reichenbach-Einstein correspondence (1926-1927). Reichenbach became convinced
that, despite the initial failure of Weyl’s approach, Weyl’s style of doing physics was prevailing.
Physicists were convinced that after the geometrization of the gravitational field, further physical
insight could be obtained by geometrizing the electromagnetic field. By the end of 1922, Einstein
himself started to pursue the unification program more aggressively, adopting Eddington’s approach
(Einstein, 1923a). In March 1926, after making some critical remarks on Einstein’s newly published
metric-affine theory (Einstein, 1925a), Reichenbach sent Einstein a 10-page ‘note’ (Reichenbach, 1926b).
In it, he constructed a toy unification of the gravitational and electricity in a single geometrical
framework, thereby showing that the ‘geometrization’ of a physical field was a mathematical trickery
rather than a physical achievement. After a back and forth, Einstein seemed to agree (Lehmkuhl,
2014). The note was later included as section §49 in a lengthy technical Appendix to the Philosophie
der Raum-Zeit-Lehre (Reichenbach, 1928a, ß46-50) in which general relativity was presented as a
‘physicalization of geometry’ rather than a ‘geometrizaton of gravitation’ (Giovanelli, 2021).

Unification: Reichenbach-Einstein correspondence (1928-1929). A few months after the publication of
the Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928a), Einstein (1928d, 1928b) launched yet
another attempt at a unified field theory, the so-called Fernparallelismus-field theory. Reichenbach,
now back in Berlin sent him once again a manuscript with some comments (Reichenbach, 1928c) and
discussed the new theory in person with Einstein. This exchange of letters marked the cooling of their
personal friendship but also the end of their philosophical kinship. In the late 1920s, Reichenbach
(1929d, 1929a, 1929b) came to realize that, in Einstein’s mind, the actual goal of the unified field
theory-project was not the geometrization, but the unification of two different fields. For this purpose,
Einstein was willing to embrace a speculative approach to physics (Dongen, 2010). The heuristic of
mathematical simplicity gradually gained prominence in Einstein’s scientific practice, overshadowing the
separation of mathematics and physics that formed the basis of the Einstein-Reichenbach philosophical
alliance.

The aim of this paper is not to provide new documentary material. The importance of the first episode
has been recognized in Reichenbach scholarship over the past few decades (Ryckman, 1995, 1996). The
other two correspondences have only recently been published and analyzed in detail (Giovanelli, 2016,
2022). However, this paper attempts to weave a coherent narrative out of these previously separate
episodes, thereby shedding new light on each of them.

On the one hand, this paper places the Reichenbach-Weyl debate in the broader context of Reichenbach’s
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negative attitude towards the unification program. On the other hand, it demonstrates how Reichenbach
used the same line of argument against Einstein that he had previously used against Weyl. According
to Reichenbach, the primary achievement of general relativity was the separation of mathematics and
physics. Mathematics can only teach what is physically permissible but never what is physically true.
Reichenbach was disappointed that some relativists had started to believe that mathematics alone could
provide insights into physical reality. Thus, Reichenbach’s role as both a ‘defender’ of relativity and
a ‘critic’ of further unification attempts are two sides of the same coin. Reichenbach’s disapproval of
the unified field theory-project, including Einstein’s contributions to it, was also a vindication of the
philosophical achievements of Einstein’s theory of gravitation: “The general theory of relativity by no
means turns physics into mathematics. Quite the opposite: it brings about the recognition of a physical
problem of geometry” (Reichenbach, 1929c, 11).

In this manner, somewhat unwittingly, Reichenbach formulated a sort of ‘theory of spacetime-theories’
(Lehmkuhl, 2017). He attempted to unravel the key to Einstein’s success in formulating a field theory
of gravitation by examining the reasons for the failure of subsequent unification attempts. In doing so,
Reichenbach brought to the debate, often for the first time, some of the central issues of the philosophy of
space-time physics, including: (a) the relation between a theory’s abstract geometrical structures (metric,
affine connection) and the behavior of physical probes (rods and clocks, free particles, etc.); (b) the
question whether such an association should be regarded as a geometrization of physics or a physicalization
of geometry; and (c) the interplay between geometrization and unification in the context of a field theory.

1 Coordination. The Weyl-Reichenbach Correspondence (1920–1921)

After serving in World War I, from 1917 until 1920, Reichenbach worked in Berlin as an engineer specializing
in radio technology to support himself after the death of his father. Nevertheless, in his spare time, he
managed to attend Einstein’s lectures on special and general relativity in winter term 1917–1918 and
in summer term 1919. We possess three sets of Reichenbach’s undated student notes (HR, 028-01-04,
028-01-03, 028-01-01). One set of notes (HR, 028-01-01) appears to be very similar to Einstein’s own
lecture notes from 1919 (Einstein, 1919a). Einstein’s lectures on General Relativity were organized in a
manner that closely followed the structure of his previously published presentations of relativity theory
(Einstein, 1916, 1914). The mathematical apparatus of Riemannian geometry is introduced by starting
from the metric gµν as the fundamental concept, that is, from the formula to calculate the squared distance
ds2 = gµνdxµdxν between any two neighboring points xν and xν + dxν independently of the coordinate

system. From the gµν , one can calculate the so-called Christoffel symbols
{
µν
τ

}
, which enters the geodesic

equation, and the Riemann tensor Rτµνσ which generalized the Gaussian notion of curvature.
However, both Reichenbach’s (see fig. 1) and Einstein’s notes show that in the lectures of May-June

1919, Einstein used for the first time the interpretation of the curvature in terms of the parallel displacement
of vectors, which was introduced by Tullio Levi-Civita (1916) and applied to relativity theory by Hermann
Weyl (1918b). Both names are mentioned explicitly (HR, 028-01-03, 33). Instead of using the metric as a
fundamental concept, it is more convenient to introduce a coordinate-independent criterion of parallelism
of vectors at neighboring points xν and xν + dxν , that is, dAµ = ΓτµνAνxν (HR, 028-01-03, 33).2 The Γτµν ,
which is supposed to be symmetrical in the lower indexes (Γτµν =Γτµν), is the so-called affine connection or
displacement.3 The metric could be introduced at a later stage by defining the scalar product of vectors
in a way that’s independent of the coordinate system. The squared length of a vector is defined as the
scalar product of the vector with itself: l2 = gµνA

µAν . By imposing the condition that the length of
vectors remains constant under parallel transport, the coefficients of Γτµν are found to have the same

numerical values as the Christoffel symbols, Γτµν = −
{
µν
τ

}
(up to a sign). In this way, the structure of

Einstein-Riemann geometry can be recovered without any reference to the metric gµν . It differs from the
Euclidean structure in that, when a vector is transported along a closed curve, it acquires a rotation whose
magnitude is determined by the Riemann tensor Rτµνσ(g). Only when the latter vanishes can vectors be

2Throughout the paper, the notation used by Reichenbach (1928a) which, in turn is based on Eddington (1923, 1925) is
used.

3The affine geometry is the study of parallel lines, Weyl (1918c) hence the expression ‘affine connection’ (affiner
Zusammenhang). The term ‘connection’ refers to the possibility of comparison of vectors at close points. However, it is
the notion of ‘sameness’ rather than parallelism that holds significance. Thus, some authors, such as Reichenbach (1928b),
prefer to use the term ‘displacement’ (Verschiebung), which emphasizes the small coordinate difference dxν along which
the vector is transferred. Note that ‘displacement’ also refers to the vector dxν . To avoid confusion, the term ‘transfer’
Übertragung has also been used, for example, by Schouten (1922).
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Figure 1: Reichenbach’s student notes. Einstein introduces the notion of parallel transport of vectors

considered parallel at a distance.
Weyl’s technical innovation in differential geometry played a fundamental role, not only in successive

presentations of general relativity (see Einstein et al., 1922, 45ff.), but more prominently in the development
of the unified field theory-project. If one takes a symmetric gµν as the fundamental variable, the Christoffel
symbols are the only possible outcome. However, defining the displacement Γτµν independently of the

metric gµν , the Riemannian connection Γτµν = −
{
µν
τ

}
appears only as a special case that has been

achieved by introducing a series of contingent conditions. Dropping some of these conditions results in
additional mathematical degrees of freedom that could be used to accommodate the electromagnetic field
alongside the gravitational field in a unified ‘geometrical’ description.

As is well known, Weyl (1918c, 1918a, 1919a) was bothered by a conceptual asymmetry characterizing
Riemannian geometry. The comparison of direction of vectors is path-dependent, whereas the comparison
of their lengths remains distant-geometrical. To compensate for this ‘mathematical injustice’ (Afriat, 2009),
Weyl introduced a more general affine connection that depends not only on the gravitational tensor gµν
but also on the four-vector ϕν , which could be identified with the electromagnetic four-potential. However,
since there was no analog of the equivalence principle, this identification was merely formal. However,
in the absence of an analogon of the equivalence principle, the justification of such identification was
merely formal.4 Nevertheless, Weyl came to the conclusion that his theory offered a unified geometrization
of both gravitational and electromagnetic phenomena, similar to how general relativity represented a
geometrization of gravitational phenomena. Weyl did not hesitate to declare that “Descartes’ dream of a
purely geometrical physics” had been finally fulfilled (Weyl, 1919b, 263).

Einstein had repeatedly criticized Weyl’s attempt.5 Nevertheless, after corresponding with Theodore
Kaluza in the spring of 1919(Wünsch, 2005),6 he had started to show increasing interest in the unification

4In Weyl’s (1918a) theory the vector field ϕν determines the change of length of vectors; the curl of ϕν is the length-
curvature tensor Fµν , which satisfy satisfy an identity which looks a lot like Maxwell-Minkowski equations in empty space.
Thus, it was very suggestive to interpret ϕν as the electromagnetic four-potential and its curl Fµν as the electromagnetic
tensor.

5Einstein raised at least four objections against Weyl’s theory: (1) the so-called ‘measuring rod objection’ (Maßstab-
Einwand) (Einstein, 1918) is most famous. Weyl’s theory predicts that the clocks’ ticking rate should depend on the clocks’
prehistory. However, the spectral lines of atoms used as clocks are well-defined; (2) the geodesic equation in Weyl’s theory
contains terms proportional to the vector potential ϕν . Thus, the electromagnetic four-vector potential affects the motion
of uncharged particles; (3) the representation of the Lagrangian is the mere sum of electromagnetic and gravitational
components, thus Weyl’s theory does not achieve a proper unification; (4) The field equations derived from this Lagrangian
were of the fourth-order in the gµν which, even in the absence of an electromagnetic field, did not reduce to the generally
relativistic equations of gravitation, violating the correspondence principle.

6Einstein to Kaluza, Apr. 21, 1919; CPAE, Vol. 9, Doc. 26; Einstein to Kaluza, Apr. 28, 1919; CPAE, Vol. 9, Doc. 30;
Einstein to Kaluza, May 5, 1919; CPAE, Vol. 9, Doc. 35; Einstein to Kaluza, May 14, 1919; CPAE, Vol. 9, Doc. 40; Einstein
to Kaluza, May 29, 1919; CPAE, Vol. 9, Doc. 48).
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program (Einstein, 1919b). The question fell into the background after the success of the eclipse expedition
was announced in November 1919 (Dyson, Eddington, and Davidson, 1920). By the end of the year,
Einstein was turned into an international celebrity, leaving him little time to work (Einstein to Fokker, Dec.
1, 1919; CPAE, Vol. 9, Doc. 187, Einstein to Hopf, Feb. 2, 1920; CPAE, Vol. 9, Doc. 295). As a trained
physicist with a doctorate in philosophy (Reichenbach, 1916), Reichenbach was uniquely positioned to
engage with the philosophical implications of the theory. Through his attendance at Einstein’s lectures,
he had acquired a detailed technical knowledge of the new theory, surpassing that of most philosophers of
his time. In February or March 1920, shortly after his move to Stuttgart, Reichenbach decided to make
this topic the subject of his habilitation. According to his later recollections,7 in the preceding months, he
had further worked on the theory “also according to Weyl” (HR, 044-06-23)—that is, probably studying
Weyl’s textbook Raum–Zeit–Materie (Weyl, 1918b). The Kapp-Pusch coup in March of 1920 rovided
Reichenbach with a few days off from his job at the Huth radio industry (HR, 044-06-23). This gave him
the opportunity to work uninterrupted, and in just ten days, he completed an early draft of his habilitation.
The manuscript was then typed and shown to Einstein and others. Thanks to the intervention of Arnold
Berliner, the influential editor of Naturwisseschaften, Reichenbach secured a publishing agreement with
Springer (HR, 044-06-23).

1.1 Reichenbach’s Habilitation and his Critique of Weyl Theory
For the still Kantian Reichenbach, one of the main philosophical merits of the theory of relativity was the
revelation of the physical character of geometry.8 The possibility of non-Euclidean geometries had already
suggested that the Euclidean character of physical space could no longer be taken for granted (Reichenbach,
1920b, 3; tr. 1969 3). According to Reichenbach, “the theory of relativity embodies an entirely new idea”
(Reichenbach, 1920b, 3; tr. 1969 4). Relativity theory claims that the theorems of Euclidean geometry
do not apply to the physical space, that Euclidean geometry is simply false (Reichenbach, 1920b, 3; tr.
1969 4). As a result, the development of relativity theory has made it necessary to differentiate between
pure geometry as a formal system with no interpretation and applied geometry as an empirical theory of
physical space (Reichenbach, 1920b, 73; tr. 1969 76). The propositions of pure geometry are neither true
nor false in themselves. The question of the truth of physical geometry pertains to physics alone. In order
to emphasize the importance of this philosophical achievement, almost incidentally, Reichenbach indicated
Weyl’s recent theory as a glaring example of how easy it was to slip into old habits. Weyl once again
believed to have found a particular geometry that, for its intrinsic mathematical appeal, must have been
‘true’ for physical reality: “In this way, the old mistake is repeated” (Reichenbach, 1920b, 73; tr. 1969 76).

Reichenbach’s brief outline of Weyl’s theory is sufficient to grasp the gist of his argument. As
Reichenbach’s put it, “Weyl’s generalization of the theory of relativity [. . .] abandons altogether the
concept of a definite length for an infinitesimal measuring rod” (Reichenbach, 1920b, 73; tr. 1969 76). In
Euclidean geometry, a vector can be shifted parallel to itself along a closed curve so that, when brought
back to the point of departure, it has the same direction and the same length. In the Einstein-Riemann
geometry, it has the same length, but not the same direction. In Weyl’s theory, it does not even retain
the same length. As we have seen, in this way, in addition to the ‘metric tensor’ gµν , a ‘metric vector’ ϕν
is introduced that formally behave like the electromagnetic four-potential. Reichenbach conceded that
Weyl’s theory represented a possible generalization of Einstein’s conception of spacetime that, “although
not yet confirmed physically, is by no means impossible” (Reichenbach, 1920b, 76; tr. 1969 79).

Reichenbach seemed to have been aware of Einstein’s main objection to Weyl’s proposal (see Einstein,
1918). In general relativity, the length ds of the time-like vector dxν is measured by a physical clock, e.g.,
by the crests of waves of radiation were emitted by an atom. If we maintain this interpretation, then
Weyl’s theory implies that “the frequency of a clock is dependent upon its prehistory” (Reichenbach, 1920b,
77; tr. 1969 80). It particular, it is affected by the electromagnetic potentials ϕν it has encountered. Thus,
two atomic clocks, at one place, will, in general, not tick at the same rate when they are separated brought

7These autobiographical notes HR, 044-06-23 were written in 1927.
8Reichenbach’s habilitation has recently attracted renewed attention (Friedman, 2001). Reichenbach borrowed from

Schlick (1918) the idea that physical knowledge is, ultimately (Zuordnung), the process of relating an axiomatically defined
mathematical structure to concrete empirical reality (Padovani, 2009). However, Reichenbach attempted to give this insight
a ‘Kantian’ twist. According to Reichenbach, in a physical theory, besides the ‘axioms of connections’ (Verknüpfungsaxiome)
encoding the mathematical structure of a theory, one needs a special class of physical principles, the ‘axioms of coordination’
(Zuordnungsaxiome), to ensure the univocal coordination of that structure to reality. For the young Reichenbach, the latter
axioms are a priori because they are ‘constitutive’ of the object of a physical theory. However, they are not apodeictic or
valid for all time. As is well known, Reichenbach would soon abandon the project of a constitutive but relativized a priori.
However, he would firmly maintain the separation between the mathematical framework of a theory (the ‘defined side’) and
the way it relates to empirical reality (the ‘undefined side’) as an essential feature of his philosophy (Reichenbach, 1920b, 40;
tr. 1969 42) as an essential feature of his philosophy.
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back together. This result appears to contradict a vast amount of spectroscopic data that shows that all
atoms of the same type have the same systems of stripes in their characteristic spectra independently of
their past history. Reichenbach conceded to Weyl that these effects might “compensate each other on the
average” (Reichenbach, 1920b, 77; tr. 1969 80). Thus, the fact that “the frequency of a spectral line under
otherwise equal conditions is the same on all celestial bodies” could be interpreted as an approximation,
rather than a consequence of the Riemannian nature of space-time (Reichenbach, 1920b, 77; tr. 1969
81). According to Reichenbach, Weyl seems to imply that his non-Riemannian geometry must be true
physically because it is mathematically superior to Riemannian geometry.

As we have seen, in Weyl geometry, a vector moving around a closed loop would have the same length
but a different direction, whereas in Riemannian geometry it would have different length and direction.
Thus, Weyl geometry eliminated the last distant-geometrical treatment of Riemannian geometry. In
this sense, Weyl geometry seems to be the most ‘general geometry,’ a purely infinitesimal geometry. As
a consequence, there is no reason to assume that a more special geometry applies to reality from the
outset. However, Reichenbach had already surmised that this generalization could be continued. In
Weyl geometry, lengths can be compared at the same point in different directions but not at distant
points. “The next step in the generalization would be to assume that the vector changes its length upon
turning around itself” (Reichenbach, 1920b, 76; tr. 1969 85). Probably, more complicated generalizations
could be thought of. “Nothing may prevent our grandchildren from someday being confronted with a
physics that has made the transition to a line element of the fourth degree” (Reichenbach, 1920b, 76;
tr. 1969 79).9 Thus, there is no “‘most general’ geometry” that in and of itself must be physically true
(Reichenbach, 1920b, 76; tr. 1969 80). No matter how far one pushes the level of mathematical abstraction,
the “difference between physics and mathematics” (Reichenbach, 1920b, 76; tr. 1969 80) cannot be erased;
geometry alone can never be sufficient to establish the reality of physical space (Reichenbach, 1920b, 76;
tr. 1969 80).

Reichenbach accused Weyl of neglecting the main philosophical lesson of general relativity: the
unbridgeable difference between physics and mathematics. According to Reichenbach, a mathematical
axiom system is indifferent to the applicability of geometry, and it “never leads to principles of an empirical
theory” (Reichenbach, 1920b, 73; tr. 1969 76). On the other hand, only a physical theory can answer the
question of the validity of a particular geometry for physical space (Reichenbach, 1920b, 73; tr. 1969 76).

[Thus] it is incorrect to conclude, like Weyl10 and Haas,11 that mathematics and physics are but one discipline.
The question concerning the validity of the axioms for the physical world must be distinguished from that
concerning possible axiomatic systems. It is the merit of the theory of relativity that it has removed the
question of the truth of geometry from mathematics and relegated it to physics. If now, from a general geometry,
theorems are derived and asserted to be a necessary foundation of physics, the old mistake is repeated. This
objection must be made to Weyl’s generalization of the theory of relativity [. . .] Such a generalization is
possible, but whether it is compatible with reality does not depend on its significance for a general local
geometry. Therefore, Weyl’s generalization must be investigated from the viewpoint of a physical theory, and
only experience can be used for a critical analysis. Physics is not a ‘geometrical necessity’; whoever asserts this
returns to the pre-Kantian point of view where it was a necessity given by reason. (Reichenbach, 1920b, 73; tr.
1969 76)

To a certain extent, this objection contains the backbone of Reichenbach’s criticism of the unified field
theory-project in the following decade. Weyl seems to have misunderstood the fundamental lesson of
Einstein’s theory. The question of the “validity of axioms for the physical world” must be distinguished
from that concerning “possible the axiomatic systems” (Reichenbach, 1920b, 73; tr. 1969 76).

It is true that it is “a characteristic of modern physics to represent all processes in terms of mathematical
equations”, and, one might add, progressively more abstract mathematics. Still, “the close connection
between the two sciences must not blur their essential difference” (Reichenbach, 1920b, 33; tr. 1969 34).
The truth of mathematical propositions depends upon internal relations among their terms, whereas
the truth of physical propositions depends on the coordination (Zuordnung) to something external, on a
connection with experience. “This distinction is due to the difference in the objects of knowledge of the
two sciences” (Reichenbach, 1920b, 33; tr. 1969 34). The mathematical object of knowledge is uniquely
determined by the axioms and definitions. These definitions have been called “implicit definitions” by
Schlick (1918). They define one concept always through another concept without referring to external

9ds4 = gµνστdxµdxνdxσdxτ instead of ds2 = gµνdxµdxν as in Riemannian geometry.
10In the 1919 edition of the Raum–Zeit–Materie, Weyl included a presentation of his unified field theory. Thus, the

‘Conclusion’ of the book was characterized by even more inspired rhetoric: “physics and geometry coincide with each other”
(Weyl, 1919b, 263). The tendency of physicalizing geometry that prevailed among the leading protagonists of the 19th
century from Gauss to Helmholtz seemed to be superseded by the project of geometrizing physics that ran from Clifford to
Einstein: “geometry has not been physics but physics has become geometry” (Weyl, 1919b, 263).

11Haas, 1920.

6



content (Reichenbach, 1920b, 33; tr. 1969 36). For this reason, mathematics is absolutely certain and
necessary. On the contrary, “the physical object cannot be determined by axioms and definitions. It is a
thing of the real world, not an object of the logical world of mathematics” (Reichenbach, 1920b, 34; tr.
1969 37). For this reason, physical knowledge always implies a certain degree of approximation.

As is well-known, Reichenbach abandoned the Kantian framework in which the initial uncoupling of
mathematics and physics was presented. However, he never abandoned the idea that a clear-cut division of
labor between mathematical necessity and physical reality was of paramount epistemological importance.
This separation was the irreversible conceptual shift that relativity theory had forced upon philosophy.
On June 24, 1920, Einstein praised Reichenbach’s Habilitationschrift in a letter to Schlick (Einstein to
Schlick, Apr. 19, 1920; CPAE, Vol. 9, Doc. 378). A few days later, Reichenbach asked Einstein to dedicate
the book to him, insisting on the philosophical significance of relativity theory: “very few among tenured
philosophers have the faintest idea that your theory performed philosophical act and that your physical
conceptions contain more philosophy than all the multivolume works by the epigones of the great Kant”
(Reichenbach to Einstein, Jun. 13, 1920; CPAE, Vol. 10, Doc. 57). Einstein conceded that the theory
might have had philosophical relevance: “The value of the th. of rel. for philosophy seems to me to be
that it exposed the dubiousness of certain concepts that even in philosophy were recognized as small
change [Scheidemünzen]” (Einstein to Reichenbach, Jun. 30, 1920; CPAE, Vol. 10, Doc. 66). Alleged
a priori principles are like those parvenus that are ashamed of their humble origin and try to deny it:
“[c]oncepts are simply empty when they stop being firmly linked to experience” (Einstein to Reichenbach,
Jun. 30, 1920; CPAE, Vol. 10, Doc. 66). Einstein’s remark, which Reichenbach would later quote in his
published writing (Reichenbach, 1922b, 354), sealed a sort of philosophical alliance between them. Against
Weyl’s speculative style of doing physics, which reduced physical reality to geometrical necessity, Einstein
defended a clear-cut separation between geometrical necessity and physical reality. However, as we shall
see, this philosophical covenant would be broken less than a decade later.

1.2 The Reichenbach-Weyl Correspondence
Reichenbach’s book was published in a timely manner a few months later in September 1920, on the
occasion of the 86th Versammlung der Gesellschaft Deutscher Naturforscher und Ärzte in Bad Nauheim.
This meeting was of fundamental importance in the history of relativity theory, not least because of
the famous debate between Einstein and Philipp Lenard on general relativity (Dongen, 2007). At this
meeting, Reichenbach met Weyl for the first time, who gave a talk on his unified theory (Weyl, 1920a).
Reichenbach may have attended the debate that followed Weyl’s talk, in which Einstein rehearsed his
objections against Weyl’s theory and at the same time defended the possibility of a field theory of matter
against Pauli’s attacks. Einstein’s famous lecture on ‘geometry and experience’ at the end of January
of 1921 Geometrie und Erfahrung was probably meant to address the epistemological issues that had
emerged at Bad Nauheim (Giovanelli, 2014).

Reichenbach sent around copies of his Relativitätstheorie und Erkenntnis apriori (Reichenbach, 1920b).
Schlick, who did not attend Bad Nauheim, received the book in those days. Writing to Einstein, he praised
it but complained about his critique of conventionalism (Schlick to Einstein, Sep. 23, 1920). The five
letters that Reichenbach exchanged with Schlick between October and November 192012 turned out to be
of fundamental importance in his intellectual biography, inducing him to abandon his early Kantianism
in favor of a form conventionalism with empiricist traits.13 Despite the rather severe criticisms he had
expressed in the book (Rynasiewicz, 2005), Reichenbach must have sent a copy to Weyl as well. Weyl
replied with some delay on February of 1921. He did not appear to be upset by Reichenbach’s objections
and responded amicably to some issues that he felt “concerned less the philosophical than the physical”
(Weyl to Reichenbach, Feb. 2, 1921; HR, 015-68-04). In particular, Weyl denied ever claiming that physics
had been absorbed into mathematics:

It is certainly not true, as you say on p. 73, that, for me, mathematics (!!, e.g. theory of the ζ-function?)
and physics are growing together into a single discipline. I have claimed only that the concepts in geometry

12Schlick to Reichenbach, Sep. 25, 1920; HR, 015-63-23 Schlick to Reichenbach, Nov. 26, 1920; HR, 015-63-22; Schlick to
Reichenbach, Dec. 11, 1920; HR, 015-63-19; Reichenbach to Schlick, Nov. 29, 1920; Reichenbach to Schlick, Sep. 10, 1920.

13Reichenbach was confronted with Schlick’s objection that his ‘axioms of coordination’ were nothing but ‘conventions.’
Reichenbach initially opposed some resistance. If the coordinating principles are fully arbitrary, he feared, geometry would
be empirically meaningless. In Poincaré’s conventionalism, Reichenbach missed a constraint in “the arbitrariness of the
principles [. . .], if the principles are combined” Reichenbach to Schlick, Nov. 26, 1920; HR, 015-63-22. Einstein’s famous
lecture on ‘geometry and experience’ of the end January of 1921, which was published a few months lter (Einstein, 1921a),
seemed to have tipped the scale in Schlick’s favor. Reichenbach (1922b) turned Einstein’s G+ P formula into his G+ F
formula, where F is a ‘metric’ or universal force affecting all bodies in the same way. By setting F = 0, geometry becomes
empirically testable. Thus, Reichenbach could embrace conventionalism without accepting that the propositions of geometry
are empirical meaningless.
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and field physics have come to coincide [. . .] As for my extended theory of relativity, I cannot admit that the
epistemological situation is in any way different from that of Einstein. [. . .] Experience is in no way anticipated
by the assumption of that general metric; that the laws of nature, to which the propagation of action in the
ether is bound, can be of such a nature that they do not allow any curvature. [. . .] What I stand for is simply
this: The integrability of length transfer (if it exists, but I don’t think so, because I don’t see the slightest
dubious reason for it) does not lie in the nature of the metric medium, but can only be based on a special
law of action.14 If the historical development had been different, it seems that no one would have thought of
considering the Riemannian case from the outset. As far as the notorious ‘dependence on the previous history’
is concerned, I probably expressed my opinion clearly enough in Nauheim. (Weyl to Reichenbach, Feb. 2, 1921;
HR, 015-68-04)

In Bad Nauheim, Weyl presented a now well-known speculative explanation for the discrepancy between
the behavior of ‘ideal’ and ‘real’ rods. Essentially, Weyl suggested that the atoms used as clocks might not
retain their size when transported, but rather adjust it every time to some constant field quantity, which
he identified with the constant radius of the spherical curvature of every three-dimensional slice of the
world (Weyl, 1920b). As a result of this adjustment mechanism, the geometry read off from the behavior
of material bodies would appear different from the actual geometry of spacetime, due to the ‘distortion’
caused by the adjustment. In 1921, the ‘pivotal year’ for unified field theories (Vizgin, 1994, ch. 4), Weyl
(followed to some extent by Eddington, 1921a, 1921b) expanded his strategy of ‘doubling of the geometry,’
including the real ‘aether geometry’ and the ‘body geometry’ distorted by the adjustment mechanism,15
in three papers intended for different audiences, published in February (Weyl, 1921f), May (Weyl, 1921c)
and July (Weyl, 1921e). In the July paper, Weyl also addressed Reichenbach’s criticism publicly:

“From different sides,16 it has been argued against my theory that it would attempt to demonstrate in
a purely speculative way something a priori about matters on which only experience can actually decide.
This is a misunderstanding. Of course from the epistemological principle [aus dem erkenntnistheoretischen
Prinzip] of the relativity of magnitude does not follow that the ‘tract’ displacement [Streckenübertragung]
through ‘congruent displacement’ [durch kongruente Verpflanzung] is not integrable; from that principle
that no fact can be derived. The principle only teaches that the integrability per se must not be retained,
but, if it is realized, it must be understood as the outflow [Ausfluß] of a law of nature” (Weyl, 1921b, 475;
last emphasis mine) As Weyl explains in this passage, he never claimed that his geometry entails in its
mathematical structure alone the a priori justification of its physical truth. On the contrary, he questioned
the supposed a priori status of the assumption that the comparison of lengths is path-independent. For
this reason, Weyl did not deny the well-established empirical fact that the spectral lines of two atoms
of the same chemical substance, placed identically in the same conditions, remain unaffected by their
prehistory. However, he mantains that, in principle, the physical behavior of atoms does not have anything
to do with the abstract notion of parallel transport of vectors.17 Einstein assumed as an empirical fact
that the ratio of the wave lengths of two spectral lines is a physical constant that can be used to normalize
the ds. Weyl, on the contrary, claims that the wave lengths of two spectral lines are always a multiple of
a certain field quantity of dimension of a length that can be used to normalize the ds.

1.3 The Weyl-Reichenbach Appeasement
Weyl’s paper referencing Reichenbach appeared at the beginning of September (Weyl, 1921e). A few
weeks later, Reichenbach and Weyl met again in Jena on the occasion of the first Deutsche Physiker-
und Mathematikertag, the first national scientific meeting held independently from the meetings of
the Gesellschaft Deutscher Naturforscher und Ärzte. Weyl gave a talk in which he tried to provide
a mathematical justification for the quadratic or Pythagorean nature of the metric (Weyl, 1921a).
Reichenbach presented a report of his work on the axiomatization of relativity (Reichenbach, 1921). This
report is the first written testimony of the development of Reichenbach’s philosophy after the Schlick

14That is on the field equations of the theory which, in turn, can be derived from an ‘action principle’.
15A different variation of this strategy of ‘doubling the geometry’ was suggested by Eddington (1921a) at about the same

time. He considered non-Riemannian geometries as mere ‘graphical representations’ that might serve to organize different
theories into a common mathematical framework. The “natural geometry” remains exactly Riemannian (Eddington, 1921a).

16The reference is to Reichenbach, 1920b and Freundlich, 1920 who, however, refers to Haas, 1920.
17In September 1921, Pauli’s (1921) encyclopedia article on relativity theory was published as part of the fifth volume of

the Enzyklopädie der Mathematischen Wissenschaften. In the chapter dedicated to Weyl’s theory, Pauli suggested that
Weyl provided two different versions of the theory. In its first version, Weyl’s theory sought to make predictions on the
behavior of rods and clocks, just like Einstein’s theory. From this point of view, the theory is empirically meanigful, but
inadequate because of the existence of atoms with sharp spectral lines. Later, Weyl renounced this interpretation. The
ideal process of the congruent displacement vectors has nothing to do with the real behavior of rods and clocks (Pauli, 1921,
763; tr. 1958, 196). However, in this way, the theory furnishes only “formal, and not physical evidence for a connection
between [the] world metric and electricity” (Pauli, 1921, 763; tr. 1958, 196). In this form, Pauli argues, the theory loses its
“convincing power [Überzeugungskraft]” (Pauli, 1921, 763; tr. 1958, 196).
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correspondence. Reichenbach suggested that, in a physical theory, one should distinguish the axioms as
an empirical proposition about light rays, rods and clocks , etc. and the definitions that establish the
conceptual framework of the theory (Reichenbach to Einstein, Dec. 5, 1921; CPAE, Vol. 12, Doc. 266).
After the paper came out by the end of the year (Reichenbach, 1921), Reichenbach must have sent a
copy to Weyl in a missing letter of January 8, 1922. He might have included a personal retraction of
his criticisms. However, the letter, which is no longer extant, reached Weyl only months later (Weyl to
Reichenbach, Mar. 3, 1922; HR, 015-68-03), since he was in Barcelona, where he was giving his Catalonian
Lectures (Weyl, 1923).

However, Reichenbach soon issued a public retraction. During that time, he was working on a
lengthy review article about philosophical interpretations of relativity that he finished in the Spring
of 1922. In March, Erwin Freundlich sent the proofs of the paper to Einstein (Freundlich to Einstein,
Mar. 24, 1922; CPAE, Vol. 13, Doc. 109), who generally concurred with Reichenbach’s analysis (Einstein
to Reichenbach, Mar. 27, 1922; CPAE, Vol. 13, Doc. 119). The paper reviewed the most significant
philosophical interpretations of relativity. However, it also included a last section on Weyl’s unified field
theory: “One cannot conclude an exposition of relativistic philosophy without considering the important
extension that Weyl bestowed on the problem of space three years ago”Man darf eine Darstellung der
relativistischen Philosophie nicht abschließen, ohne der wichtigen Erweiterung zu gedenken, die vor 3
Jahren Weyl dem Raumproblem zuteil werden ließ (Reichenbach, 1922b, 365), Reichenbach commented.

Reichenbach now appears to be fully committed to conventionalism. The choice between Euclidean
and non-Euclidean geometries is based on a convention about which rods should be considered rigid
(Reichenbach, 1922b, 366). This convention is arbitrary but can be fixed by postulating that metrical
forces should be eliminated (Reichenbach, 1922c). However, both Euclidean and non-Euclidean geometries
implicitly assume the validity of an axiom based on an empirical fact: rods of equal length in one place can
be obtained in another place, regardless of the prehistory of each rod. If this were not the case, a different
definition of the unit of length would have to be given for every point in space. Reichenbach referred to
this tacit assumption as the “axiom of the Riemann class” (Reichenbach, 1922b, 366). Weyl’s merit is to
have demonstrated that this axiom, although quite natural, is not necessary and can be challenged.

From this point of view, what Weyl achieved is a purely mathematical result: “Weyl’s great discovery
is that he uncovered a more general type of manifold, of which Riemann’s space is only a special case”
(Reichenbach, 1922b, 365). The fact that he tried to follow this path, regardless of its empirical correctness,
was a “genial advance [genialer Vorstoß]” in the philosophical foundation of the relations between geometry
and physics (Reichenbach, 1922a, 367f.). Concerning the application of this mathematical apparatus to
reality, Reichenbach embraces what might be called the two-theory interpretation18:

W-I In Weyl geometry, as in Riemannian geometry, the length of vectors l2 = gµνA
νAµ can be compared

at the same point in different directions. Weyl dropped the assumption that l remains unchanged
under parallel transport at a distant point. If a vector of length l is displaced from xν to xν + dxν ,
it will, in general, have a new length l + dl, so that dl/l = ϕνdxν . “The change in scale is measured
by 4 quantities ϕµ forming a vector field”. As Reichenbach pointed out, “this procedure is a purely
mathematical discovery” (Reichenbach, 1922b, 366), and as such is neither true nor false. It acquires
a physical meaning if one coordinates the length l as readings of some physical measuring instruments.
In general relativity, the length ds of the time-like vector dxν is measured by a clock, e.g., the
spectral lines of an atomic clock. Weyl considered natural to maintain this interpretation, so that it
is “still possible to measure also in this case” (Reichenbach, 1922b, 366). However, the existence of
atoms with the same spectral lines shows that clocks, even in the presence of the electromagnetic
field, behave differently than predicted by Weyl’s theory. Thus, it turned out that this axiom “is
quite well fulfilled in reality, so the first way of generalization seems unsuitable. The latter was
therefore rejected by Weyl” (Reichenbach, 1922b, 366).

W-II Weyl adopted a different strategy. He “defines an ideal process of scale transfer, which, however,
has nothing to do with the behavior of real scales” (Reichenbach, 1922b, 367). He needs this
“transplantation process” only because, he “he wants to identify the vector field ϕν with the
electromagnetic potential”, like in general relativity the gµν were identified with the gravitational
potentials (Reichenbach, 1922b, 367). Once one has individuated the basic geometrical field-
quantities, the next step is to find the field equations “then obvious forms for the most general
physical equations arise” via “the ‘action principle’ [Wirkungsprinzip]” (Reichenbach, 1922b, 367)—a
variational principle applied to the invariant integral

∫
Wdx for a specific Lagrangian W. According

to Reichenbach, however, in this way the “theory loses its convincing character [überzeugenden
18Reichenbach might have been inspired by Pauli (1921). However, his name is not mentioned.
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Charakter] and comes dangerously close to a mathematical formalism”19 (Reichenbach, 1922b, 367).
For this reason, according to Reichenbach, “Weyl’s theory is viewed very cautiously by physicists
(especially by Einstein)” (Reichenbach, 1922b, 367).

Ultimately, Reichenbach seems to imply that both strategies led to a dead end. From the point of view
of W-I, Weyl’s infinitesimal geometry is physically inadequate; from the point of view of W-II, it is
physically empty. Nevertheless, Reichenbach conceded that his objection against Weyl’s theory in his
1920 booklet missed the point. Neither W-I nor W-II can be considered attempts to prove a priori that
Weyl’s non-Riemannian geometry must be true for reality because it is mathematically preferable as a
truly infinitesimal geometry:

However, I have to retract my earlier objection [Reichenbach, 1920a, 73] that Weyl wants to deduce physics
from reason, after Weyl has cleared up this misunderstanding [Weyl, 1921b, 475]. Weyl takes issue with the
fact that Einstein simply accepts the unequivocal transferability of the standards. He does not wish to dispute
the Riemann-class axiom for natural standards, but only to demand that the validity of this axiom, since it
is not logically necessary, should be understood as ‘a consequence of a law of nature.’ I can only agree with
Weyl’s demand; it is the importance of mathematics that they are. I can only agree with Weyl’s demand; it
is the importance of mathematics that, in uncovering more general possibilities, it marks the special facts
of experience as special and thus preserves physics from naivity [Simplizität]. Admittedly, Weyl succeeds in
explaining the unambiguous transferability of natural standards only very imperfectly. But the fact that Weyl
tried to go this way, regardless of the empirical correctness of his theory, remains an ingenious advance towards
the philosophical foundation of physics. (Reichenbach, 1922b, 367f.)

Weyl’s point was not that the axiom of the Riemann class is necessarily false for a priori reasons, but on
the contrary, that it is not a priori true as previously assumed. The fact that two measuring rods placed
next to each other are of the same length regardless of their location cannot be a coincidence; it demands
an explanation. Weyl’s explanation of the apparent Riemannian behavior of “through the adaptation to
the radius of ‘curvature of the world’Krümmungsradius der Welt” (Reichenbach, 1922b, 368; fn. 1) only
poses a problem rather than providing an answer. The problem would only be solved by developing a
proper theory of matter. However, even if this theory could be provided, Reichenbach, like Einstein, found
the idea of deducing the Riemannian behavior of real clocks from a theory based on the non-Riemannian
behavior of geometrical lengths awkward. In this way, the “congruent transplantation [. . .] remains
physically empty” (Reichenbach, 1922b, 368; fn. 1). If the non-Riemannian congruent transplantation of
vectors must be, Reichenbach argues, then the real rods should behave better in a non-Riemannian way.

Thus, Reichenbach concluded that the main achievement of Weyl was mathematical and not physical.
As has often happened in the past, mathematics enlarges the range of possibilities from which physicists
can choose. However, this process is far from concluded with Weyl’s rather special affine connection:

The philosophical significance of Weyl’s discovery is that it proved that the problem of space could not be
considered concluded even with Riemann’s concept of space. If contemporary epistemology attempted to update
Kant’s transcendental aesthetics by asserting that the geometry of experience must, in any case, possess a
Riemannian structure, it would be refuted by Weyl’s theory. That Weyl geometry is at least possible for reality
cannot be denied. Furthermore, it should not be assumed that Weyl’s theory has reached the highest level of
generality. As Einstein (1921b) has demonstrated, Weyl’s requirement of the relativity of magnitude can also
be satisfied without using Weyl’s measurement method. In addition, Eddington (1921a) developed a further
generalization of which Weyl’s space [Raumklasse] is merely a special case. Eddington’s space [Raumklasse] is
again included as a special case in a more general one discovered by Einstein (1921b). The merit of Schouten’s
theory is that it provides the conditions under which a space [Raumklasse] can be considered the most general;
these are very general conditions, such as differentiability and the like. Nevertheless, it must be acknowledged
that there is no absolutely most general space. The history of the mathematical problem of space should
instruct epistemology never to make such sweeping claims. There are no most general concepts. (Reichenbach,
1922b, 368; fn. 1)

This passage essentially repeats Reichenbach’s argument in his habilitation: there is nothing special in
Weyl geometry. However, it also shows that, in the meantime, Reichenbach had closely followed the
development of the unified field theory-project. He was familiar with Einstein’s (1921b) ‘conformal’ theory,
in which distances can be compared only at a single point with light rays, but the comparison at distant
points with transportable rods was not defined. Reichenbach was also familiar with Eddington’s (1921a)
purely affine approach in which lengths go vectors cannot be compared even not at the same place in
different directions. Moreover, it is quite impressive that he was even acquainted with Schouten’s (1922)
recent systematic classification of connections. Thus, Reichenbach was already aware that, in principle,
also the natural assumption of the symmetry of the Γτµν could be dropped. In general, relaxing the
constraints on the symmetry of the connection and the relationship between the connection and the metric

19This choice of words is similar to that of Pauli, who claimed that Weyl’s theory in the second form lost his Uberzeugung-
gkraft (Pauli, 1921, 763; tr. 1958, 196).
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could open up many possibilities for incorporating the electromagnetic field into the geometrical structure
of spacetime.

In Reichenbach’s view, physicists should be completely free to choose among all these mathematical
possibilities. However, mathematics alone cannot provide a criterion for choosing which possibility is
realized in nature. Mathematics is the science of possibility, while physics is the science of reality. Once
a choice has been made, it is essential to coordinate the chosen structure with the behavior of various
idealized physical entities used as probes. Only in this way can the choice of the geometrical structure
of spacetime be tested experimentally. E.g., in general relativity, the claim that in the presence of real
gravitational fields, the spacetime geometry is non-flat can be confirmed or disconfirmed by rods-and-
clocks measurements. Weyl initially followed the same epistemological model W-I. In the presence of the
electromagnetic field, rods and clocks should behave in a non-Riemannian way. However, this prediction
turned out to be empirically inadequate. As a response, Weyl embraced W-II. He embraced a sort of
conspiratorial distortion of all measuring instruments. However, in doing so, he deprived the geometrical
setting of any empirical content.

Weyl disagreed with Reichenbach’s historical reconstruction, but for reasons that reveal a completely
different frame of mind. In a letter to Reichenbach, written when the latter’s review article was already in
press, Weyl confessed that he actually never abandoned W-I in favor of W-II. As a matter of fact, he
never adopted W-I in the first place. As he wrote to Reichenbach: “I never gave up the plan to identify
rigid rods with my transplantation, because I’ve never had that plan”; on the contrary, “I was surprised
when I said that physicists had interpreted that into my words” (Weyl to Reichenbach, May 20, 1922;
HR, 015-68-02). The atoms that we use as clocks are physical systems like any other and do not have in
principle any privileged relation with the abstract mathematical behavior of vectors. It is the theory that
decides whether we should use them as reliable clocks or not. Generally, the physical interpretation of
the theory’s mathematical structure in terms of the behavior of idealized physical entities, like rods and
clocks, can only be provisional. Ultimately, one has to find the field equations governing that structure
and require that solutions to these equations exist exhibiting the postulated behavior of rods and clocks.
This reasoning applies to Einstein and Weyl’s theory: “Einstein has to show that from the dynamics of
the rigid body, it follows that the rod always has the same length, measured in his ds. Similarly, I have to
show that the rod has always had the same length normalized ds normalized by R = const” (Weyl to
Reichenbach, May 20, 1922; HR, 015-68-02). In both cases, the behavior of rods and clocks comes out as
a byproduct of the theory.20 However, in Weyl’s theory, the Riemannian behavior of rods and clocks that
came out at the end contradicts the non-Riemannian length connection on which the theory was based
(see, e.g., Du Pasquier to Einstein, Dec. 13, 1921; CPAE, Vol. 12, Doc. 379).

2 Geometrization: The Reichenbach-Einstein Correspondence (1926–1927)

Up to this point, Reichenbach had good reasons to believe that his criticisms of Weyl’s approach broadly
agreed with Einstein’s point of view. Thus, Einstein continued to express skepticism towards Weyl’s
‘Hegelian’ approach to physics (Einstein to Zangger, Jan. 1, 1921; CPAE, Vol. 12, Doc. 5). He lamented a
lack of “physical clues” for these attempts at unification (Einstein to Lorentz, Jun. 30, 1921; CPAE, Vol.
12, Doc. 163) that were therefore still too speculative (Einstein to Weyl, Jun. 6, 1922; CPAE, Vol. 13, Doc.
219; Einstein to Zangger, Jun. 18, 22; CPAE, Vol. 13, Doc. 241). However, the situation changed by the
end of 1922, when Einstein, during a trip to Japan, realized that Eddington’s theory had potentialities
that had not been fully exploited.

On board the ship, he jotted down a five-page manuscript dated January 1923 from Singapore (CPAE,
Vol. 13, Doc. 417). Curiously, the third, fourth, and fifth pages were written on the reverse side of
Reichenbach’s Jena talk typescript (Reichenbach, 1922a). Eddington (1921a) had extended Weyl’s
approach by using only the coefficients of an affine connection Γτµν , rather than metrical quantities gµν
and ϕν , as fundamental variables. In this context, vectors’ lengths are not even comparable at the same
place; thus, in Einstein’s view, the theory avoided Weyl’s inconsistency of having geometrical lengths
behaving differently from real numbers. On February of 1923, Planck presented Einstein’s attempt to
derive a set of field equations to the Prussian Academy of Sciences (Einstein, 1923b). After returning to
Berlin, Einstein published two further papers on the same approach in May Einstein, 1923b, 1923c.

In May of 1923, Reichenbach requested a copy of Einstein’s paper “on Eddington’s extension [Erwei-
20In such a theory, the unit of length would be defined as certain number of spacing between the atoms of a cubic crystal

system; each of atom, in turn, consists of electrons and protons arranged according to a specific law. A specific solution to
the field equations must provide information about all the details of this arrangement. Something similar can be said for the
unit of time that correspond to the vibrations of an atom.
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terung]” (Einstein, 1923b) (Reichenbach to Einstein, May 2, 1923; EA, 20 080). He did not comment
on Einstein’s unification attempt at this point.21 In his correspondence with Einstein, Reichenbach
was concerned with the more mundane matter of finding a publisher for his work on the axiomatiza-
tion of special relativity that he had just finished (Reichenbach to Einstein, Apr. 19, 1923; EA, 20
079, Reichenbach to Einstein, May 2, 1923; EA, 20 080, Einstein to Reichenbach, Jun. 9, 1923; EA,
20 081, Reichenbach to Einstein, Jul. 10, 1923; EA, 20 082). Due to a lack of funding, Reichenbach
managed to publish the book only a year later, in March 1924. With the Axiomatik der relativistischen
Raum-Zeit-Lehre Reichenbach (1924), Reichenbach’s philosophy started to assume a more recognizable
contour. In particular, Reichenbach introduced, for the first time, his celebrated distinction between
“conceptual definitions” used in mathematics and “coordinate definitions” used in physics, which relate
the concept of a theory to a “piece [Ding] of reality” (Reichenbach, 1924, 5; tr. 1969, 8). There is little
doubt that Reichenbach believed this epistemological model was Einsteinian in spirit. However, at about
that time, Einstein explicitly confessed that he had changed his mind on the topic (Einstein, 1924, 1692,
see Giovanelli, 2014). In particular, he denied that every individual concept of a theory should receive
a measurement-operational justification (Einstein, 1924, 1691). Ultimately, only geometry and physics
together could be compared with experience (Einstein, 1926, 19), a claim that seems to have a different
meaning than Reichenbach had initially surmised.

The Axiomatik der relativistischen Raum-Zeit-Lehre (Reichenbach, 1924) received a lukewarm reception
from philosophers, who probably found the book overly technical. However, it was Weyl’s (1924) negative
review that dealt a hard blow to Reichenbach and ended their previously amicable relationship. Reichenbach
felt that Weyl had used his authority as a mathematician to attack his ‘empiricist’ reading of relativity
(Reichenbach, 1925). What was worse, Reichenbach must have sensed that Weyl’s ‘geometrical’ reading
of relativity had taken over relativistic research. Einstein’s latest works seemed to reveal that he had
also fallen under its spell.22 Unsurprisingly, Reichenbach might have felt it necessary to make a case
for a different interpretation of relativity theory in a more accessible form. At about the same time, he
started work on a two-volume book with the ambitious title Philosophie der exakten Naturerkenntnis.
Only the first volume on space and time will be published. He wrote the first chapters in March 1925
(HR, 044-06-25).

During those same months, despite Max Planck’s support, Reichenbach struggled to obtain his
Umhabilitation23 from Stuttgart to Berlin to be appointed to a newly created chair of natural philosophy
(Hecht and Hoffmann, 1982). Reichenbach had been attacked for his pacifist positions during the war,
but after the situation seemed to have turned for the better, he started working more consistently on
his book project in October 1925. He interrupted the drafting of the manuscript to follow the emerging
quantum revolution at the turn of 1926 and must have started again a few months later: “March-April
1926 Weyl’s theory was worked on, and the peculiar solution of §49 was found. The entire Appendix was
also written at that time. (Correspondence with Einstein)” (HR, 044-06-25). The correspondence with
Einstein mentioned in this passage has been preserved. It reveals Reichenbach’s concerns with Einstein’s
style of doing physics becoming progressively more speculative, forsaking the solid empirical foundation of
his old theory of gravitation.

2.1 Reichenbach’s Geometrization of the Electromagnetic Field
During a trip to South America in 1925, Einstein became interested in the rationalistic and realistic
reading of relativity proposed by Émile La déduction relativiste (Meyerson, 1925) CPAE, Vol. 14, Doc.
455, 6; March 12 who could provide a more adequate philosophical support for the search of a unified
field theory than Schlick’s or Reichenbach’s ‘positivism’ Giovanelli, 2018. However, he also realized that

21As one might infer from Reichenbach’s later writings, his point of view might have been similar to that of Pauli. In a
long letter to Eddington in September 1923, Pauli insisted that a good theory should start with “the definition of the field
quantities used, and how these quantities can be measured” (Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45). One of
the great achievements of relativity theory was that the coefficients gµν could be measured with rods and clocks. Pauli
explained that Weyl attempted to pursue this strategy again but then abandoned this approach (Pauli to Eddington, Sep.
23, 1923; WPWB, Doc. 45). In this way, he produced what Eddington had rightly called a ‘graphical representation’ of the
two fields in unified formalism, but not a ‘natural geometry’ found experimentally as in general relativity (see Eddington,
1923, 197). Similarly, in Einstein-Eddington new theory “[t]he quantities [Γτµν ] cannot be measured directly” (Pauli to
Eddington, Sep. 23, 1923; WPWB, Doc. 45). The measurable quantities gµν and Fµν can be calculated from the Γτµν only
through complicated calculations. Thus, not only we do not have a “‘natural geometry’ but also not a ‘natural theory’ ”
(Pauli to Eddington, Sep. 23, 1923; WPWB, Doc. 45).

22As Weyl himself ironically remarked, Einstein undertook “the same purely speculative paths which [he was] earlier
always protesting against” (Weyl to Einstein, May 18, 23; CPAE, Vol. 13, Doc. 30; cf. Weyl to Seelig, May 19, 1952, cit. in
Seelig, 1960, 274f.).

23The process of obtaining the venia legendi at another university.
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the Weyl-Eddington-Schouten line had dried up (CPAE, Vol. 14, Doc. 455, 9; March 17). Returning
from South America, he embraced what he considered a new approach. He introduced non-symmetric
Γτµν and the gµν to be treated as independent fields in the variation. The antisymmetric part of the gµν
was the natural candidate for representing the electromagnetic field, at least for infinitely small fields.
The physical test depended, as usual, on the construction of exact regular solutions corresponding to
elementary particles. The paper was published in September of 1925 with the ambitious title Einheitliche
Feldtheorie von Gravitation und Elektrizität (Einstein, 1925a). However, by that time, Einstein seemed to
have already lost his confidence in that approach and moved on.

At the turn of the year, after working on the new quantum mechanics, Reichenbach must have read
Einstein’s new paper. On March 16, 1926, Reichenbach sent a letter to Einstein in which, after discussing
his academic misfortunes, he made some critical remarks (Einstein, 1925a). Reichenbach was quite
skeptical of the viability of Einstein’s current style of doing physics:

I have read your last work on the extended Rel. Th.24 more closely, but I still can’t get rid of a sense of
artificiality that characterizes all these attempts since Weyl. The idea, in itself very deep, to ground the affine
connection independently of the metric on the Γτµν alone, serves only as a calculation crutch here in order to
obtain differential equations for the gµν and the ϕν and the modifications of the Maxwell equations which allow
the electron as a solution. If it worked, it would, of course, be a great success; have you achieved something
along these lines with Grommer? However, the whole thing does not have the beautiful convincing power
[Ueberzeugungskraft] of the connection between gravitation and the metric based on the equivalence principle
of the previous theory. (Reichenbach to Einstein, Mar. 16, 1926; CPAE, Vol. 15, Doc. 224)

Reichenbach’s objections are quite sensible and not dissimilar to those of professional physicists.25 In
general relativity, the choice of the gµν as fundamental variables is anchored in the principle of equivalence.
The latter justified the double meaning of the gµν , as determining the behavior of rods and clocks, as
well as the gravitational field. On the contrary, Einstein’s new theory introduces the non-symmetric
affine connection Γτµν independently of the metric gµν without giving to these field variables any physical
motivation. The separate variation of the metric and connection was nothing more than a ‘calculation
device’ to find the desired field equations. Only in hindsight, for formal reasons, the symmetric part of
the gµν was identified with the gravitational field and antisymmetric with the electromagnetic field. In
this form, the theory has little he ‘convincing power’ (Überzeugungskraft)—-the same expression that
Reichenbach (1922a, 367) had used for characterizing Weyl’s theory in his second form. Reichenbach
would have been ready to retract his criticism, if Einstein’s theory delivered the ‘electron.’ This concession,
however, barely hides his skepticism that a field theory of matter was a credible possibility.

Einstein replied on March 20 that he agreed with Reichenbach’s ‘Γ-Kritik’: “I have absolutely lost hope
of going any further using these formal ways”; “without some real new thought” he continued, “it simply
does not work” (Einstein to Reichenbach, Mar. 20, 26; CPAE, Vol. 15, Doc. 230). Einstein’s reaction
reflects his disillusion with the attempts with an approach based on the generalization of Riemannian
geometry by weakening the relations by gµν and Γτµν . He would have probably been less ready to embrace
the implications of Reichenbach’s Γ-critique, the requirement that the operation of parallel displacement
of vectors should receive a ‘coordinative definition’ from the outset. At any rate, Reichenbach took the
opportunity of Einstein’s positive reaction, and on March 31, 1926 sent him a note (Reichenbach, 1926b),
in which he developed the Γ-critique in detail (Reichenbach to Einstein, Mar. 24, 1926; CPAE, Vol. 15,
Doc. 235).

A point-by-point commentary of Reichenbach’s note has been provided elsewhere (Giovanelli, 2016).
Reichenbach introduced a non-symmetric Γτµν to define an operation of displacement expressing the effect
of both the gravitational and electromagnetic fields. In Riemannian geometry, the straightest lines are the
shortest between two points. If the connection is non-symmetric, the straightest lines generally do not
coincide with the shortest (or, more precisely, the lines of extremal length). Charged mass points of unit
mass move (or their velocity four-vector is parallel-transported) along the straightest lines, and uncharged
particles move on the straightest lines that are at the same time the shortest ones (or rather, the line of
extremal length) (Reichenbach, 1926b).

Einstein was not impressed (Einstein to Reichenbach, Mar. 31, 1926; CPAE, Vol. 15, Doc. 239).
Thus, Reichenbach rushed to point out that Einstein had misunderstood the spirit of the typescript. As

24Einstein, 1925a.
25In a review of the German translation (Eddington, 1925) of Eddington’s relativity textbook (Eddington, 1923) that came

out a few weeks later, Pauli (1926) expressed similar concerns. Without the equivalence principle, the entire geometrization
program appeared to Pauli unjustified: “An attempt at an analogous geometrical interpretation of the electromagnetic
field faces the difficulty that there is no empirical fact corresponding to the equality of heavy and inert mass, which would
make such an interpretation appear ‘natural’ ” (Pauli, 1926). The solution was to avoid any connection between geometry
and the behavior of rods and clocks. However, in this way, one could at most produce what Eddington called a ‘graphical
representation.’ According to Pauli, similar objections could be raised against Einstein’s last work (Einstein, 1925b).
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Figure 2: Reichenbach’s note on the geometrization of the electromagnetic field

Reichenbach explained, he was working on a book on the philosophy of space and time, and thereby he
“wondered what the geometrical presentation of electricity actually means” (Reichenbach to Einstein, Apr.
4, 1926; CPAE, Vol. 15, Doc. 244). Reichenbach wanted to challenge the idea that geometrizing a field
is per se a useful heuristic strategy: “If one succeeds in establishing unified field equations that admit
the electron as a solution, this would be something new.” (Reichenbach to Einstein, Apr. 4, 1926; CPAE,
Vol. 15, Doc. 244). To this purpose, however, the Maxwell and Einstein field equations needed to be
modified: “This is the problem on which you are working and of course also what Weyl and Eddington
meant” (Reichenbach to Einstein, Apr. 4, 1926; CPAE, Vol. 15, Doc. 244). However, the geometrical
representation of electricity in itself does not lead to this goal. “It can at most be an aid [Hilfsmittel]
to guessing the right equations”; it might be that “what looks most simple from the standpoint of Weyl
geometry also happens to be correct. But this would be only a coincidence” (Reichenbach to Einstein,
Apr. 4, 1926; CPAE, Vol. 15, Doc. 244).

With his theory, Reichenbach “wanted to turn against the notion that something had already been
gained with the geometrical presentation of electricity” (Reichenbach to Einstein, Apr. 4, 1926; CPAE,
Vol. 15, Doc. 244). In comparison with Eddington or Einstein’s last proposals, Reichenbach insisted, his
approach had even the advantage “that the operation of displacement possesses a physical realization
[Realisierung]” (Reichenbach to Einstein, Apr. 4, 1926; CPAE, Vol. 15, Doc. 244), namely, the velocity-
vector of charged mass particles. In this way, the notion of the straightest and shortest lines is physically
meaningful. For this reason, in Reichenbach’s view, his geometrization was comparable to that provided
by general relativity. Nevertheless, differently from Einstein’s theory of gravitation, Reichenbach’s theory
did not lead to any new physical prediction. Thus, Reichenbach concluded, a successful geometrization
does not necessarily lead to a successful physical theory.

Although Einstein probably continued to find the technical details of Reichenbach’s attempt question-
able, his philosophical point clearly resonated with Einstein:

“You are completely right. It is incorrect to believe that ‘geometrization’ means something essential.
It is instead a mnemonic device [Eselsbrücke] to find numerical laws. If one combines geometrical
representations [Vorstellungen] with a theory, it is an inessential, private issue. What is essential in Weyl
is that he subjected the formulas, beyond the invariance with respect to [coordinate] transformation, to
a new condition (‘gauge invariance’).26 However, this advantage is neutralized again, since one has to

26That is, invariance by the substitution of gik with λgik where λ is an arbitrary smooth function of position (cf. Weyl,
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go to equations of the 4. order,27which means a significant increase of arbitrariness” (Reichenbach to
Einstein, Apr. 8, 1926; CPAE, Vol. 15, Doc. 249) Einstein seems to endorse Reichenbach’s claim that a
‘geometrization’ is not an essential achievement of general relativity. However, it is worth noticing that
Einstein goes beyond Reichenbach and claims that the very notion of ‘geometry’ is meaningless (Lehmkuhl,
2014). The gµν , Γτµν , etc. are ultimately multi-components mathematical objects characterized by
their transformation properties under change of coordinates. There is nothing ‘geometrical’ about those
quantities. Thus, Einstein’s point is only superficially similar to that of Reichenbach. Einstein declared
that the difference between geometry and the rest of mathematics was inessential. On the contrary, as we
shall see, Reichenbach intended to show that the difference between geometry and physics was essential.
Einstein’s argument was meant to provide support to the unified field theory-project. Against those that
believed that the geometrization program could not be extended beyond the gravitational field, he could
argue that geometrization has never been the issue in the first place.28 Reichenbach’s argument, on the
other hand, was an attack on the belief that geometrization by itself would lead to physical results.

2.2 The Appendix to the Philosophie der Raum-Zeit-Lehre
Strengthened by Einstein’s endorsement, Reichenbach presented the note in Stuttgart at the regional
meeting of the German Physical Society on May (Reichenbach, 1926a). In the following months, he must
have further work on the manuscript of his book and by the end of the year, he could write to Schlick that
“[t]he first volume that deals with space and time [was] finished” (Reichenbach to Schlick, Dec. 6, 1926; SN).
Reichenbach hoped to publish the book in the forthcoming Springer series ‘Schriften zur wissenschaftlichen
Weltauffassung’ directed by Schlick and Philipp Frank. However, Springer rejected the book as being too
long. By July, Reichenbach could announce to Schlick that he had reached a publication arrangement
with de Gruyter (Reichenbach to Schlick, Jul. 2, 1927; SN). The publisher agreed to publish only the first
volume under the title Philosophie der Raum-Zeit-Lehre. According to Reichenbach’s recollections, the
manuscript was not changed significantly after February 1927 (HR, 044-06-25). The drafts were finished
in September, and the preface was dated October 1927. The note that Einstein had sent to Einstein in
the Spring of 1926 became, with few changes, the §49 of an extended Appendix dedicated to the modern
development of differential geometry and the problem of the geometrical interpretation of electricity. If
read with the inclusion of the Appendix,29 the Philosophie der Raum-Zeit-Lehre appears as a much more
complex book. It was not only as a defense of a ‘conventionalist’ reading of the foundations of geometry,
as it is usually claimed; it was at the same time an attack on the widespread interpretation of general
relativity as a ‘geometrization’ of the gravitational field Reichenbach, 1928a, 294; tr. 1958, 256.

The Appendix to the Philosophie der Raum-Zeit-Lehre was simply a continuation of the line of argument
that was only partially developed in the last chapter of the book. “The geometrical interpretation of
gravitation”, Reichenbach wrote using an effective analogy, “is merely the visual cloak in which the
factual assertion” encoded by the equivalence principles “is dressed” (Reichenbach, 1928a, 354; tr. [493]).
The cloak might be conceived as an inextensible network of rods and clocks tailored to the body of
the gravitational field. However, “[i]t would be a mistake to confuse the cloak with the body which it
covers; rather, we may infer the shape of the body from the shape of the cloak which it wears. After all,
only the body is the object of interest in physics” (Reichenbach, 1928a, 354; tr. [493]). The fact that a
Euclidean cloak, so to speak, does not fit the body of a real gravitational field allows knowing something
new about the shape of the body, that is, to make the new predictions about the behavior of free-falling
mass particles, light rays, clocks, etc. Unfortunately, according to Reichenbach, recent relativistic research
seemed to have confused the cloak for the body itself. “The great success, which Einstein had attained
with his geometrical interpretation of gravitation” led many “to believe that similar success might be
obtained from a geometrical interpretation of electricity” (Reichenbach, 1928a, 352; tr. [491]).

After the physics community accepted general relativity as a theory of gravitation, the search for
a suitable geometrical cloak that could cover the naked body of the electromagnetic field began. The
separation of the ‘operation of displacement of vectors’ Γτµν from the operation of comparison of length at a
distance gµν gave physicists new mathematical degrees of freedoms that could be exploited to accommodate
the electromagnetic field alongside the gravitational field. “However, the fundamental fact which would
correspond to the principle of equivalence is lacking” (Reichenbach, 1928a, 354; tr. [493]). Thus, physicists
needed to proceed through trial and error in the search for suitable geometrical-field variables. Initially,

1918b, 468). Weyl introduced the expression ‘gauge invariance’ (Eichinvarianz) in Weyl, 1919a, 114.
27Cf. Weyl, 1918b, 477. Einstein regarded this as one of the major shortcomings of Weyl’s theory; see Einstein to Besso,

Aug. 20, 1918; CPAE, Vol. 8b, Doc. 604, Einstein to Hilbert, Jun. 9, 1919; CPAE, Vol. 9, Doc. 58.
28Pauli’s (1926) review of the German translation of Eddington (1925) is a typical example of this type of criticism.
29The Appendix was not included in the English translation Reichenbach, 1958.
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attempts were made to identify these geometrical structures with the ‘true’ the geometry of spacetime.
The latter was supposed to be endowed with a more general affine structure. To give this claim empirical
content, Weyl initially provided a “realization of the process of displacement” Γτµν in terms of the behavior
of rods and clocks. Weyl’s project failed because rods and clocks did not behave as predicted by the
theory in the presence of an electromagnetic field. Weyl found “a cloak” in which he could dress the new
theory, but did not have “the body that this new cloak would fit” (Reichenbach, 1928a, 353; tr. [493]).

Despite the failure of Weyl’s project, physicists did not abandon the geometrization program. Instead,
they came to the conclusion that “such ‘tangible’ [handgreifliche] realizations does not lead to the desired
field equations” (Reichenbach, 1928a, 371; tr. [517]). Thus, theories were proposed by “Weyl, Eddington
and Einstein” that “renounced such a realization of the process of displacement” (Reichenbach, 1928a,
371; tr. [517]). The geometrical structures chosen, such as the Γτµν , ϕν , the Γτµν , and gµν , did not have
any physical meaning from the outset, i.e., the values of the coefficients of those ‘structures’ were not the
results of measurements. Einstein himself “has devised several new formulations in which the geometrical
interpretation is reduced to the role of a mathematical tool [Rechenhilfsmittels]” (Reichenbach, 1928a, 369;
tr. [516]). The key was to identify appropriate dynamical variables that could be used to construct the
correct action and obtain the desired equations. However, since the fundamental variables did not have
any physical meaning, the resulting field equations could not be directly compared with experience, as in
the case of general relativity.

The field equations could be confronted with reality only by integrating them in the hope that they
yield a solution for the ‘electron.’ On the one hand, in Maxwell’s electrodynamics the cohesion of the
electron’s charge has always been attributed to a ‘foreign force’; namely, the force of cohesion that keeps
the Coulomb forces from exploding. Einstein’s theory of gravitation, on the other hand, does not imply
any effect of gravitation on charge and cannot, therefore, yield the cohesive force. To find a solution
to the problem of matter, Maxwell’s and Einstein’s field equations should be valid to “a high degree of
approximation” to recover the success of previous theories in the case of weak fields; yet they should
be “changed, because, otherwise, they would never give us the electron as a solution” (Reichenbach,
1928a, 370; tr. [517]). Physicists have to guess what kind of change has to be put forward. Without
an analogon of the equivalence principle, they have become convinced that, “[i]n this ‘guessing,’ the
geometrical interpretation of electricity is supposed to be the guide” (Reichenbach, 1928a, 371; tr. [517]).
The point of departure in this approach was “the (unwritten) assumption that whatever looks simple
and natural from the viewpoint of the geometrical interpretation will lead to the desired changes in the
equations of the field” (Reichenbach, 1928a, 370; tr. [517]).

“The many ruins along this road”, Reichenbach pointed out, should have suggested physicists “that
solutions should be sought in an entirely different direction” (Reichenbach, 1928a, 370; tr. [517]). Why
did they persist? Reichenbach quite perceptively grasped their psychological motivation: “It is not the
geometrical interpretation of electricity” but a deeper assumption which lies at the basis of all these
attempts; namely, “the assumption that the road to a simple conception, in the sense of a geometrical
interpretation, is also the road to true relationships in nature” (Reichenbach, 1928a, 370; tr. [517]).
The geometrical interpretation provided by general relativity was based on a physical hypothesis, the
equivalence principle, which, in turn, was based on an empirical fact, the identity of gravitational and
inertial mass. The unified field theory-project is based on a different physical hypothesis of a more
speculative nature, the hypothesis that the world is geometrically simple. Indeed, by reading papers
on the unified field theory, one is struck by the fact that they are full of expressions like ‘most natural
assumption,’ ‘simplest invariant’ , etc. (Reichenbach, 1928a, 370; tr. [517]).

Needless to say, Reichenbach considered the idea that the ‘simplicity’ of a geometrical setting could
have a bearing on its physical truth to be the consequence of a severe conceptual mistake (Reichenbach,
1928a, 372; tr. [519]). He conceded that the final decision on whether the unified field theory-project
is worth pursuing “must be left to the physicist, whose physical instinct provides the sole illumination”
(Reichenbach, 1928a, 372; tr. [519]). Ultimately, the scientists’ “physical instinct”, their deep conviction
that the world is mathematically simple, pertains to the realm of the logic of discovery and thus lies
outside the competence of epistemology. However, Reichenbach made no secret of the fact that he hoped
to protect scientists from “the sirens’ enchantment [Sirenenzauber] of a unified field theory” by denouncing,
once again, physicists’ never-ending temptation to blur mathematics and physics (Reichenbach, 1928a,
373).
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3 Unification: Reichenbach-Einstein Correspondence (1929–1930)

In October 1927, Reichenbach moved back to Berlin, where he took the position of an “unofficial associate
professor” (Hecht and Hoffmann, 1982). At about the same time, Einstein read the manuscript of the
Philosophie der Raum-Zeit-Lehre (Einstein to Elsa Einstein, Oct. 23, 1927; CPAE, Vol. 16, Doc. 34).
Soon after that, he wrote a short book review. Einstein was quite perceptive noting the two themes that
Reichenbach had treated in the Appendix: (1) “In the Appendix, the foundation of the Weyl-Eddington
theory is treated in a clear way and in particular the delicate question of the coordination of these theories
to reality” (Einstein, 1928c, 20; m.e.). As we have seen, Reichenbach had insisted that, as in any other
theory, also in unified field theory based on the affine connection is a fundamental variable, one should
give physical meaning to the operation of displacement from the outset. Einstein did not comment further
on this issue since he realized that this requirement was too strict. However, Einstein seemed to fully
agree with the second point made by Reichenbach: (2) In the Appendix, “in my opinion quite rightly—it
is argued that the claim that general relativity is an attempt to reduce physics to geometry is unfounded”
(Einstein, 1928c, 20; m.e.). As we have seen, Reichenbach and Einstein had already discussed this topic in
a private correspondence less than two years earlier (section 2).

At about the same time, Einstein published a more extensive review of Meyerson’s La déduction
relativiste (Meyerson, 1925) in the Revue philosophique de la France et de l’étranger. The review reveals
how Einstein’s perspective had become quite different from that of Reichenbach on both issues. Einstein
embraced Meyerson’s rationalist philosophy, insisting on the deductive-speculative nature of physics’
enterprise, implicitly disavowing the operational-empirical rhetoric that seemed to have dominated his
early philosophical pronouncements. However, Einstein strongly disagreed with Meyerson’s insistence that
Weyl’s and Eddington’s theories were the crowning moment of a long process of geometrization of physics.
He insisted again that geometry in this context is “devoid of meaning” (Einstein, 1928a, 165; m.e.). He
clarified, however, that the essential point of the theories of Weyl and Eddington was not to geometrize
the electromagnetic field, but to “represent gravitation and electromagnetic under a unified point of view,
whereas beforehand these fields entered the theory as logically independent structures” (Einstein, 1928a,
165; m.e.). Einstein’s further attempts at unified field theory in the immediately following months reveal
more clearly the reasons behind his philosophical turnabout Giovanelli, 2018

During a period of illness in the spring of 1928, Einstein came up with a new proposal for a unified
field theory. On June 7, 1928 Planck presented to the Prussian Academy a note on a ‘Riemannian
Geometry, Maintaining the Concept of Distant Parallelism’ (Einstein, 1928d)—a flat space-time that is
nonetheless non-Euclidean since the connection Γτµν is non-symmetrical. He introduced a new formalism
based on the concept of n-Bein (or n-legs), n unit orthogonal vectors representing a local coordinate
system attached to a point of an n dimensional continuum. Vectors at distant points are considered as
equal and parallel if they have the same local coordinates with respect to their n-bein. The vierbein-field
hνa defines both the metric tensor gµν and the electromagnetic four-potential ϕµ. Its sixteen components
can be considered as the fundamental dynamical variables of the theory. The question arises as to the
field equations that determine the vierbein-field. In his second paper, submitted on June 14, Einstein
derived the field equations for the vierbein-field using a variational principle (Einstein, 1928b).

A few months later, after the paper had been published, Reichenbach was able to prepare a typewritten
note (Reichenbach, 1928b) containing some comments which he sent to Einstein for feedback:

Dear Herr Einstein,
I did some serious thinking on your work on the field theory and I found that the geometrical construction can
be presented better in a different form. I send you the ms. enclosed. Concerning the physical application of
your work, frankly speaking, it did not convince me much. If geometrical interpretation must be, then I found
my approach simply more beautiful, in which the straightest line at least means something. Or do you have
further expectations for your new work?. Reichenbach to Einstein, Oct. 17, 1928

[20-92; m.e.][EA] "n this passage, Reichenbach makes two unrelated points, which, however, appear to form
a single two-pronged argument. In the note he sent to Einstein. Reichenbach (1928c) demonstrated that—if
one lets aside from the n-bein formalism—Einstein’s new geometrical settings could be easily inserted into
the Weyl–Eddington–Schouten lineage, as a special case of metric space in which the connection is flat,
but non-symmetric.30 If so, Reichenbach could raise the same objection he had raised against Einstein’s
previous theories.

30Starting from a general non-symmetric affine connection Γτµν and imposing the condition that the length of vectors
does not change under parallel transport, one can obtain Einstein and Riemann spaces through the “exchangeability of the
specializations” (Reichenbach, 1928b, 5). By imposing that the Riemann tensor vanishes, one obtains Einstein space, while
imposing that the connection is symmetric yields Riemannian space.
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Figure 3: First page of Reichenbach’s manuscript (Reichenbach, 1928c)
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According to Reichenbach, a “real physical achievement is obtained only if, moreover, the operation
of displacement is filled with physical content” (Reichenbach, 1928c, 7). Einstein’s geometry, being flat,
implies the existence of a straight line, a line of which all elements are parallel to each other, which is
nevertheless not identical with a geodesic (Einstein, 1928b, 224). However, as Reichenbach reported,
the latter has no physical meaning in Einstein’s theory. As a ‘geometrical interpretation,’ Reichenbach
concluded, then his §49-theory was preferable since the straightest lines and shortest line correspond to
the motion of charged and uncharged test particles under the influence of the combined gravitational-
electromagnetic field. Once again, Einstein’s goal was to use this geometrical apparatus as a starting point
to find the right ‘action,’ from which a set of field equations could be derived. However, Reichenbach
commented, nothing new came out of it: “[T]he derivation of the Maxwellian and gravitational equation
from a variational principle was already achieved by other approaches” (Reichenbach, 1928c, 6), like, say,
Einstein–Eddington purely affine theory.

In the subsequent letter, Einstein defended his classification of geometries but did not comment on
Reichenbach’s objection. However, he invited Reichenbach and his first wife, Elisabeth, for a cup of tea on
November 5, 1928. During this meeting, Einstein might have informed Reichenbach about abandoning the
variational strategy to find the field equations (Sauer, 2006). It is also probable that Einstein explained
to Reichenbach that his goal was not to provide a geometrization of the electromagnetic field, but to
provide their unification of both fields. Therefore, Einstein’s choice of field structure was not motivated
by geometrical considerations, nor did it have a geometrical meaning. The goal was to recover a set of
field equations that yielded the classical equations of gravitation and electromagnetism only to the first
order. In other words, the theory should predict new effects in the case of strong fields. To obtain this
result, Einstein was ready to adopt a whatever-it-takes strategy. He was not only willing to forgo any
physical interpretation of the fundamental variables of the theory, but he was also ready to abandon the
variational approach as he was doing in the paper he was working on.

It is hard to imagine that the divergence of their philosophical views did not emerge during those
discussions. In a semi-popular paper Einstein had submitted a few weeks later (Einstein, 1929c, 131).
Einstein insisted on the speculative nature of the new theory. One starts from this mathematical structure
and then searches for the simplest and most natural field equations that the vierbein-field can satisfy
(Einstein, 1929c, 131). The physical soundness of the field equations can be confirmed only by integrating
them, finding particle solutions, and the laws governing their motions in the field. However, this was a
challenging task. Einstein warned his readers of the dangers of proceeding “along this speculative road”
(Einstein, 1929c, 127). “Meyerson’s comparison with Hegel’s program [Zielsetzung]” Einstein put it in a
footnote, “illuminates clearly the danger that one here has to fear” (Einstein, 1929c, 127).

3.1 Reichenbach’s Articles on Fernparallelismus field theory
In the late 1920s, Reichenbach was a regular contributor to the Vossische Zeitung, at that time Germany’s
most prestigious newspaper; not surprisingly, he was asked for a comment on Einstein’s theory, which
had started attracting irrational attention in the daily press (see Pais, 1982, 346). With the advantage of
having personally discussed the topic with Einstein a few weeks earlier, Reichenbach published a brief
didactic paper on Einstein’s theory on January 25, 1929 (Reichenbach, 1929b). Reichenbach profited from
the conversation with Einstein. In particular, it is revealing that Reichenbach did not present Einstein
Fernparallelismus—as it would be more natural in popular writing—as an attempt to geometrize the
electromagnetic field on par with the previous geometrization gravitational field achieved by general
relativity. On the contrary, he decided to present Fernparallelismus as an attempt to unify the two
separate fields on par with similar unifications operated by special and general relativity.

Although the article was fairly innocuous, Einstein was distraught by Reichenbach’s decision to leak a
private conversation to the press (Einstein to Vossische Zeitung, Jan. 25, 1929; EA, 73-229). The exchange
of the letters that ensued (Reichenbach to Einstein, Jan. 27, 1929; CPAE, Vol. 16, Doc. 384, Einstein to
Reichenbach, Jan. 30, 1929; CPAE, Vol. 16, Doc. 390, Reichenbach to Einstein, Jan. 31, 1929; CPAE, Vol.
16, Doc. 391) put a serious strain in their personal relationships. The disagreement over a seemingly trivial
issue appeared to have been accompanied by a feeling of greater intellectual estrangement. Reichenbach’s
personal correspondence expressed his disappointment with Einstein’s breach of their friendship, while his
published works reflected his disappointment with Einstein’s deviation from their shared philosophical
principles. By the time of the article’s publication for the Vossische Zeitung, Reichenbach had already
written two papers on the Fernparallelismus that are both dated January 22, 1929 that were published in
the following months (Reichenbach, 1929a, 1929d). These articles are Reichenbach’s last contribution
to issues related to relativity theory and spacetime theories. On the one hand, Reichenbach applied to
Einstein’s new theory his ideas about the unified field theory-project as the were presented in the Appendix
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to the Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928a, §46). On the other hand, he introduced
novel insights by explicitly distinguishing between the ‘geometrization program’ and the ‘unification
program’

In the first paper for the Zeitschrift für Angewandte Chemie, Reichenbach introduced the history of
the unified field theory in an entirely different manner than he had done before. In the Appendix to the
Philosophie der Raum-Zeit-Lehre, the history of the unified field theory program was ultimately presented
as a linear evolution of the geometrization program that had progressively become more abstract. Now
Reichenbach—probably following the discussion he had with Einstein in November—describes the history
of the unified field theory as the progressive decline of the geometrization program and the concurrent
ascent of the unification one. After the failure of Weyl’s first attempts, most physicists, including Einstein
(February 1923, May 31, 1925), considered it preferable to sacrifice the geometrical interpretation—i.e.,
to relinquish the coordination of geometrical notion of parallel transport of vectors with the behavior
rods and clocks—and then to use the geometrical variables (Γτµν , ϕν and so on) as ‘calculation device’ for
the greater good of finding the field equations. Reichenbach had come to understand that, in Einstein’s
view, the aim of the unified field theory-project was not the geometrization of the electromagnetic field
alongside the gravitational field; it was the unification of the electromagnetic and gravitational fields.

Thus, Reichenbach’s concern became to explain what ‘unification’ means in this context. The
problem was addressed in detail in the more technical paper, which grew out of the manuscript that
Reichenbach had sent to Einstein (Reichenbach, 1929d). In this setting, his §49-theory came in handy.
Reichenbach’s theory uses a similar geometrical setting as Einstein’s theory. Both use a non-symmetric
affine connection. In Einstein’s approach, the further conditions that the geometry is flat are imposed,
allowing for distant parallelism. According to Reichenbach, his §49-theory was able to provide a proper
geometrical interpretation of the combined gravitational/electromagnetic field. However, the theory could
achieve only a formal unification because no new testable predictions were made:

The author [Reichenbach] has shown that the first way can be realized in the sense of a combination of
gravitation and electricity to one field, which determines the geometry of an extended Riemannian space; it
is remarkable that thereby the operation of displacement receives an immediate geometrical interpretation,
via the law of motion of electrically charged mass-points. The straightest line is identified with the path of
electrically charged mass points, whereas the shortest line remains those of uncharged mass points. In this way,
one achieves a certain parallelism to Einstein’s equivalence principle. By the way, [the theory introduces] a
space cognate to the one used by Einstein, i.e., a metric space with non-symmetrical Γτµν . The aim was to show
that the geometrical interpretation of electricity does not mean a physical value of knowledge per se. 688; m.e.

[Reichenbach1929a] Suppose one wants to give a geometrical interpretation of a combined gravita-
tional/electromagnetic field using the affine connection Γτµν as a fundamental variable. In that case, one
should provide a coordinate definition of the operation of parallel displacement of vectors before starting
to search for the field equations. Otherwise, it is hard to understand how one could test whether the
latter made correct predictions. Reichenbach’s theory was meant to show that a successful geometrical
interpretation of this kind can always be achieved with some mathematical trickery. However, more than
a successful geometrization is required to achieve a substantive unification. For Reichenbach, this should
have been a warning that the very hope that the geometrical interpretation of a physical field was the key
to new physical insights was misplaced.

Einstein Fernparallelismus-field theory is an instance of a second approach, which claims to achieve
an inductive unification, by forgoing the geometrical interpretation, that is, without providing a physical
meaning of the Γτµν in terms of the motion of test particles:

On the contrary, Einstein’s approach of course uses the second way, since it is a matter of increasing physical
knowledge; it is the goal of Einstein’s new theory to find such a concatenation of gravitation and electricity,
that only in first approximation it is split in the different equations of the present theory, while is in higher
approximation reveals a reciprocal influence of both fields, which could possibly lead to the understanding of
unsolved questions, like the quantum puzzle. However, it seems that this goal can be achieved only if one
dispenses with an immediate interpretation of the displacement, and even of the field quantities themselves.
From a geometrical point of view this approach looks very unsatisfying. Its justification lies only on the fact
that the above mentioned concatenation implies more physical facts that those that were needed to establish it
. 688; m.e.

[Reichenbach1929a] In Reichenbach’s view, Fernparallelismus appeared not only as a formally satisfying
unification but also as a genuine advance over the available theories. It entails some coupling between
the electromagnetic and gravitational fields that was not present in the given individual field theories.
However, Reichenbach argues that Einstein could only achieve this result at the expense of a physical
interpretation of the fundamental geometrical variables. As we have seen, Einstein’s flat affine connection
Γτµν defines a set of straight lines as privileged paths; however, these lines are not interpreted as paths of
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particles (Einstein, 1930e, 23). Before integrating the field equations, the laws governing the latter are
unknown (Einstein to Cartan, Jan. 7, 1930; Debever, 1979, A-XVI). Consequently, the theory cannot be
confirmed or disproved experimentally by observing the behavior of suitable indicators.

In Reichenbach’s diagnoses, the stagnation of the unified field theory-project depended on the presence
of a sort of trade-off between geometrization and unification of which physicists were only partially aware.
General relativity was the only theory that was able to combine both virtues: (1) the theory provided a
proper geometrical interpretation of the gravitational field because it introduced a coordinative definition
of the field variables gµν , in terms of the behavior of those that were traditionally considered geometrical
measuring instruments, such as rods and clocks, light rays, free-falling particles (2) the theory provided
a proper unification by predicting that the gravitational field had specific effects on such measuring
instruments that were not implied by previous theories of gravitation—such as gravitational time dilation
(Reichenbach, 1928a, 350). Successive attempts to include the electromagnetic field in the framework of
general relativistic field theory failed to uphold this standard.

According to Reichenbach, the reason for this failure was ultimately not hard to pinpoint. The effective
interplay between geometrization and unification did not seem reproducible without a proper analogon of
equivalence principle. Without the equivalence principle, a further geometrization of electromagnetic fields
was not worth pursuing since it had no physical justification.31 Einstein could counter these objections by
claiming that geometrization had never been the goal. The achievement general relativity was to have
combined inertial and gravitational just like special relativity has combined magnetic and electric field as
components of a unified field structure. However, without an analogon of the equivalence principle, there
seems to be also no physical justification for searching for further unification of the electromagnetic and
gravitational field. Nevertheless, Einstein considered the separation between the two fields as theoretically
unbearable (Einstein, 1930e, 24). However, he did not have any physical clue as to what the more
comprehensive mathematical structure may be, in which the electromagnetic and gravitational fields
will appear as two sides of the same field. Hence, Einstein had no choice but to turn to the criterion of
mathematical simplicity, which was challenging to define with precision.

To Reichenbach’s dismay, Einstein had abandoned the physical heuristic32 that leads him to general
relativity in the name of a mathematical heuristic that was not different from Weyl’s speculative approach
that he had dismissed a decade earlier. As we have seen, as early as in his habilitation, he considered
the great achievement of relativity theory the separation of mathematical necessity and physical reality.
Reichenbach had always perceived this separation as nothing more than a philosophical distillation of
Einstein’s scientific practice. However, in the search for a unified field theory, Einstein had come implicitly
to question this distinction, coming close to a plea for a reduction of physical reality to mathematical
necessity. Einstein put it candidly in his Stodola-Festschrift’s contribution—that he sent for publication
toward the end of January (Einstein to Honegger, Jan. 30, 1929; CPAE, abs. 864). The ultimate goal of
understanding reality is achieved when one could prove that “even God could not have established these
connections otherwise than they actually are, just as little as it would have been in his power to make the
number 4 a prime number” (Einstein, 1929c, 127).

4 Conclusion

After the publication of the new derivation of the Fernparallelismus-field equations in January 1929
(Einstein, 1929d), Einstein wrote a popular account of the theory for the New York Times and The Times
of London (Einstein, 1929a, 1929b, also published as Einstein, 1930d). In this article, Einstein emphasized
the highly speculative nature of unified field theory-project, without hesitating to endorse Meyerson’s
somewhat outrageous comparison with Hegel. It is difficult to deny the symbolic significance of Einstein’s
decision to mention Meyerson rather than Reichenbach as a philosophical interlocutor in an article with
such a vast readership. After a decade of personal friendship and intellectual collaboration, Einstein
appears to have questioned the very core of his early philosophical alliance with Reichenbach. While
Reichenbach considered the separation between mathematics and physics the great achievement of the
relativity theory, Einstein regarded mathematics itself as the key to accessing the structure of the ‘total
field.’

Although Einstein’s Fernparallelismus attracted the attention of mathematicians, Reichenbach’s
skepticism was shared by the physics community.33 Einstein was well aware of the marginality of his

31see section 1.2.
32For Einstein’s earlier ‘logic of discovery,’ see Giovanelli, 2020.
33Weyl, whom Einstein had always scolded for his speculative style of doing physics, could relaunch the accusation in a

paper (Weyl, 1929) in which he had uncovered the gauge symmetry of the Dirac theory of the electron (Dirac, 1928a, 1928b).
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position, but throughout 1929, he continued to express his confidence in the Fernparallelismus-program.
He defended the theory in public talks (Einstein, 1930c, 1930b, 1930a) as well as in private correspondence
(Pauli to Einstein, Dec. 19, 1929; WPWB, Doc. 239; Einstein to Pauli, Dec. 19, 1929; WPWB, Doc. 140).
However, only a few months later, Einstein and Walther Mayer presented a new approach (Einstein and
Mayer, 1931), which generalized the n-bein formalism to five dimensions. The optimism faded quickly
again, as the theory was unable to solve the matter problem. In a popular talk given in Vienna around
mid-October 1931, Einstein resigned himself to describing his field-theoretical work since general relativity
as a “cemetery of buried hopes” (Einstein, 1932, 441).34

However, Einstein’s philosophical motivation for continuing on this path has not changed. Many of
his former philosophical allies considered this attitude hard to fathom (Frank, 1947, 215f.). However,
Einstein’s 1933 Oxford lecture address leaves no room for doubt. Einstein’s quest for unification, he
insisted, was motivated by the deep-seated conviction that “nature is the realization of the most simple
mathematical ideas” (Einstein, 1933a). Einstein conceded that experience remains the sole criterion of
the physical adequateness of a mathematical construction. However, he insisted that the true creative
role belongs to mathematics: “I hold it to be true that pure thought is competent to comprehend the
real, as the ancients dreamed” (Einstein, 1933a, 167). After all, he now claims, the search for field
theories has always followed the same heuristic pattern: “the theorist’s hope of grasping the real in all
its depth” lies “in the limited number of the mathematically existent simple field types, and the simple
equations possible between them” (Einstein, 1933a, 168). Maxwell’s equations are the simplest laws for
an antisymmetric tensor field derived from a vector; Einstein’s equations are the simplest equations for
the metric tensor, etc. This strategy applies to Einstein’s last attempt at a unified field theory on a
theory based on semi-vectors (Einstein and Mayer, 1932, 1933a, 1934, 1933b). After ordinary vectors,
the latter are the simplest mathematical fields that are possible in four dimensions and seem to describe
certain elementary particles’ properties (Dongen, 2004). One has to search for the simplest laws these
semi-vectors satisfy (Einstein, 1933a, 168).

In September 1933, three months after the Oxford lecture, Einstein left Europe for Princeton. Reichen-
bach started to teach at the University of Istanbul in the Fall of the same year. He tried to obtain a position
at Princeton a few years later (Verhaegh, 2020). However, Reichenbach was concerned about Weyl’s
possible opposition: “He is my adversary since a long time,” he wrote to Charles W. Morris: a supporter
of a form a “mathematical mysticism” that was “very much opposed to my empiricist interpretation of
relativity” (Reichenbach to Morris, Apr. 12, 1936; HR, 013-50-78). Thus, in April 1936, Reichenbach
turned to Einstein to ask for his support. “More than 10 years ago”, he explained, “Herr Weyl spoke out
very negatively about my work on the theory of relativity”. Reichenbach feared that “Weyl’s opposition
persists to these days” (Reichenbach to Einstein, Apr. 12, 1936; EA, 20-107). Reichenbach might have
had good reasons for turning to Einstein’s help against Weyl in academic matters. However, it is worth
noticing that, by that time, Reichenbach might have been closer to Weyl than to Einstein in scientific
matters. A decade later, the roles were reversed. In the late 1930s, Weyl, like Reichenbach, had utterly
lost confidence in the “geometrical leap [Luftsprünge]” of the early 1920s,35 and felt the need to “return to
the solid ground of physical facts” (Weyl, 1931, 343), to the vast amount of experimental data provided
by spectroscopy. On the contrary, gravitational research had turned Einstein into a ‘believing rationalist’
(Ryckman, 2014), convinced that physical truth lies in mathematical simplicity (Einstein to Lanczos, Jan.
24, 1938; EA, 15-268).

In 1938, Reichenbach finally managed to move to the United States (Verhaegh, 2020). Soon after, he
and Einstein resumed their epistolary contact to support Bertrand Russell, who had been dismissed from
the City College of New York due to his anti-religious stance (Reichenbach to Einstein, Aug. 14, 1940;
EA, 20-127; Einstein to Reichenbach, Aug. 22, 1940; EA, 20-110). Later, both Reichenbach and Einstein
contributed to a volume honoring Russell for the series Library of Living Philosophers, edited by Paul

“The hour of your revenge has come”, Pauli wrote to Weyl in August: “Einstein has dropped the ball of distant parallelism,
which is also pure mathematics and has nothing to do with physics and you can scold him” (Pauli to Weyl, Aug. 26, 1929;
WPWB, Doc. 235). As Pauli complained, writing to Einstein’s close friend Paul Ehrenfest, “God seems to have left Einstein
entirely!” (Pauli to Ehrenfest, Sep. 29, 1929; WPWB, Doc. 237).

34It is interesting to notice that one of the reasons that induced Einstein to abandon the theory was not dissimilar to
Reichenbach’s criticism: “The main reason for the uselessness of the distant parallelism construction lies, I feel, in that
one can attribute absolutely no physical meaning to the ‘straight lines’ of the theory, while the physically meaningful
(macroscopic) equations of motion cannot be obtained from it 3. In other words, the hsv give rise to no useful representation
of the electromagnetic field” (Einstein to Cartan, May 21, 1932; Debever, 1979, A XXXV). Thus, for Einstein, it was
legitimate to abandon the physical interpretation of straight lines from the outset if the theory provided a way to derive the
laws of motion of the electrons.

35In a way not dissimilar to Reichenbach, Weyl considered early unified field theories as “merely geometrical dressings
(geometrische Einkleidungen) rather than as proper geometrical theories of electricity”. (Weyl, 1931, 343).
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Schilpp (1944). Reichenbach was also asked to contribute to a similar volume in honor of Einstein a few
years later (Schilpp, 1949). In some unpublished notes about Reichenbach’s (1949) contribution, Einstein
(1949b) praised him his rare ability for combing breath of knowledge with clarity (Einstein, 1949b).
However, Einstein ultimately disagreed with many of Reichenbach’s philosophical tenets. In particular,
Reichenbach’s claim that “‘the meaning of a statement is reducible to its verifiability’36” appeared to
Einstein problematic; he found “dubious whether this conception of ‘meaning’37 can be applied to the
single statement 38” (Einstein, 1949b).

As is well known, in the so-called ‘Reply to criticisms’ (Einstein, 1949a) included in the Schilpp-
volume, Einstein reformulated this line of argument by staging a dialogue between Reichenbach-Helmholtz,
Poincaré, and an anonymous non-positivists, who claims that geometry and physics can be compared with
experience only as a whole (Einstein, 1949a, 676f.). The question at stake, as Einstein put it jokingly,
was nothing but Pilates’s famous question ‘What is truth?’ (John 18:38, quoted in Einstein, 1949a, 676).
Although this dialogue has become enormously famous, its meaning has been ultimately misunderstood.
Einstein was not engaging in a philosophical digression about the 19th-century debate on the foundation
of geometry. The question what it means for a theory to be ‘true’ was ultimately motivated by his tireless
pursuit of the theory of the ‘total field.’

At that time, Einstein had returned to his 1925 metric-affine approach introducing non-symmetric gµν
and Γτµν as fundamental variables (Einstein, 1945, Einstein and Straus, 1945). In private correspondence,
Einstein’s long-life friend Michele Besso raised against Einstein objections similar to those that Reichenbach
had advanced over twenty years earlier against the same theory. The symmetric part of the gµν and the
corresponding Γτµν , Besso claimed, should define the straightest line, which is also the shortest. Do these
lines represent the trajectories of test particles? What is their physical meaning? (Besso to Einstein, Apr.
11, 1950; Speziali, 1972, Doc. 171). Einstein’s reply reveals his fundamental philosophical conundrum:

Your questions are entirely legitimate, but it is not answerable for the time being [. . .]. This is because there
is no real definition of the field in a consistent field theory. This puts you in a Don Quixotic situation, in
that you have absolutely no guarantee whether it is ever possible to know if the theory is ‘true.’ A priori
there is no bridge to empiricism. For example, there isn’t a ‘particle’ in the strict sense of the word because
the existence of particles doesn’t fit the program of representing reality by everywhere continuous [. . .]. For
example, the theory introduces a symmetric gµν [. . .] and then a geodesic line. However, from the outset, one
has no clue that these lines have any physical meaning, not even approximately [. . .] It boils down to the fact
that a comparison with what is empirically known can only be expected from the fact that strict solutions of
the system of equations can be expected found, that reproduce the behavior of empirically ‘known’ structures
and their interactions. Since this is extremely difficult, contemporary physicists’ skeptical attitude is probably
entirely understandable. In order to really grasp this conviction of mine, you must read my answer in the
anthology [Sammelband]39 again and again. (Einstein to Besso, Apr. 15, 1950; Speziali, 1972, Doc. 172)

This passage summarizes many of the issues that Reichenbach and Einstein had discussed over the years.
It explains Reichenbach’s legitimate concern that geometrical concepts of the theory, like that of the
straightest lines, should receive a physical interpretation from the outset in terms of the motion of test
particles. However, it also explains why Einstein did not find this approach viable in pursuing a theory in
which there are stricto sensu no particles. Usually, a field is defined in the first place by the forces that it
exerts on test particles. However, discovering this force law requires the integration of the field equations.
It is in this context that question of the ‘truth’ of a theory of this kind could not be avoided. It was
ultimately this question that Reichenbach and Einstein had discussed for over 30 years. Whereas Einstein
was ready to change his conception of ‘truth’ for the search of the unified field theory, Reichenbach urged
Einstein to abandon this search in the name of a once shared conception of the ‘truth’ of a physical theory.

Abbreviations
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