
The Stochastic-Quantum Correspondence

Jacob A. Barandes1, ∗

1Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138

(Dated: September 3, 2023)

This paper introduces an exact correspondence between a general class of stochastic sys-

tems and quantum theory. This correspondence provides a new framework for using Hilbert-

space methods to formulate highly generic, non-Markovian types of stochastic dynamics, with

potential applications throughout the sciences. This paper also uses the correspondence in

the other direction to reconstruct quantum theory from physical models that consist of trajec-

tories in configuration spaces undergoing stochastic dynamics. The correspondence thereby

yields a new formulation of quantum theory, alongside the Hilbert-space, path-integral for-

mulations, and quasiprobability formulations. In addition, this reconstruction approach

opens up new ways of understanding quantum phenomena like interference, decoherence,

entanglement, noncommutative observables, and wave-function collapse.

I. INTRODUCTION

The theory of stochastic processes describes the phenomenological behavior of systems with

definite configurations that evolve probabilistically in time. Quantum theory is a comprehen-

sive mathematical apparatus for making measurement predictions when taking into account the

microscopic constituents of various kinds of physical systems, from subatomic particles to super-

conductors. At an empirical level, both theories involve probabilities, and at the level of formalism,

both employ vectors and matrices.

There have been a number of previous attempts in the research literature to identify a fun-

damental relationship connecting stochastic-process theory and quantum theory [1–7]. The most

well-known of these approaches are due to Bopp [8–10], Fényes [11], and Nelson [12, 13]. Alto-

gether different are stochastic-collapse models [14, 15], in which a quantum system’s wave function

or density matrix is assumed to experience stochastic fluctuations through time.

The present paper, which is not continuous with those earlier developments, introduces an

exact correspondence between a highly general class of stochastic systems and quantum theory.

This stochastic-quantum correspondence takes the form of a simple ‘dictionary’ expressing any

time-dependent stochastic matrix in terms of a suitable combination of Hilbert-space ingredients.

From a practical standpoint, the stochastic-quantum correspondence provides a systematic

framework for constructing highly generic forms of stochastic dynamics, much as the Lagrangian

or Hamiltonian formulations of classical mechanics provide systematic frameworks for constructing

deterministic dynamics. Potential applications range from turbulence to finance, to name just two
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examples. Importantly, the stochastic-quantum correspondence does not require assuming that

the stochastic dynamics in question can be modeled as a Markov chain, nor does it require making

a number of other frequently invoked approximations.

Taking a more foundational perspective, this paper also uses the stochastic-quantum correspon-

dence to show that physical models based on configuration spaces combined with stochastic dynam-

ics can replicate all the empirical predictions of textbook quantum theory—including interference,

decoherence, entanglement, noncommutative observables, and wave-function collapse—without re-

lying on the austere and metaphysically opaque Dirac-von Neumann axioms [16, 17]. In this

alternative approach, a given system moves stochastically along a physical trajectory in a classical-

looking configuration space, and the mathematical objects of the Hilbert-space formulation play a

functional role akin to gauge-dependent variables.

At the very least, this approach therefore yields a new formulation of quantum theory, one

that is based on a picture of stochastic systems evolving in configuration spaces. This new for-

mulation therefore joins a list of ways to formulate quantum systems that include the traditional

Hilbert-space formulation [16, 17], the path-integral formulation [18–20], and the quasi-probability

formulation [21, 22]. As noted in [20], “there is a pleasure in recognizing old things from a new

point of view,” and “there is always the hope that the new point of view will inspire an idea for

the modification of present theories, a modification necessary to encompass present experiments.”

In addition to establishing these new results, this paper identifies several forms of gauge invari-

ance that have not been described in the research literature thus far, analyzes the measurement

process in detail, and describes the implications of the stochastic-quantum correspondence for dy-

namical symmetries and for formal enlargements or dilations of a system’s Hilbert space. Taking

advantage of having a concrete model of stochastic physical variables in hand, this paper also re-

visits and clarifies a number of important questions related to the status of nonlocality in quantum

theory.

Considering the mathematical simplicity of this stochastic-quantum correspondence, it is sur-

prising that it has apparently not shown up in the research literature before. To the author’s

knowledge, the only previous example that bears a suggestive resemblance to the approach taken

in this paper, at least at the level of some of its equations, is the unpublished draft [23].1 Although

that reference argues that some stochastic processes can be modeled using a formalism similar to

that of quantum theory, it does not establish that the resulting Hilbert-space representation is fully

general. Nor does it attempt to show that the correspondence is bidirectional, so that quantum

systems can be modeled by stochastic processes in configuration spaces.

Section II will start with the definition of a generalized stochastic system, and then introduce the

key distinction between divisible and indivisible dynamics. Section III will construct the Hilbert-

space representation for a given generalized stochastic system, formulate the dictionary that will

ultimately connect generalized stochastic systems with quantum systems, and identify an impor-

tant new class of gauge transformations that have not yet been described in the research literature.

Section IV will establish the stochastic-quantum correspondence, which will involve reviewing the

1 The author thanks Logan McCarty for finding this reference.
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definition of unistochastic matrices, introducing the concept of a division event, and showing how

some of the most characteristic features of any quantum system—like interference, entanglement,

and decoherence—can be understood from the perspective of the underlying generalized stochas-

tic system. Section V will provide a detailed treatment of the measurement process, which will

entail introducing the notion of an emergeable, and then turn to a larger discussion of the mea-

surement problem and the uncertainty principle. Section VI will describe further implications of

the stochastic-quantum correspondence for quantum theory, focusing on symmetries, Hilbert-space

dilations, and nonlocality. Section VII will conclude the paper with a brief discussion, as well as

with several open questions to be addressed in future work.

II. STOCHASTIC PROCESSES

A. Generalized Stochastic Systems

The most general kind of stochastic process requires only a sample space, an initial probability

distribution, and a time-dependent random variable. (For pedagogical treatments of the theory

of stochastic processes, see [24–27].) Stochastic processes defined in this way lack an ingredient

that plays the role of a dynamical law. This paper will be concerned with a slightly more narrowly

defined construction that includes the notion of a dynamical law, and that can still describe a wide

variety of physical systems.

A generalized stochastic system will be defined to consist of a configuration space C together with
a dynamical law in the form of a stochastic map Γ(t) that acts linearly on probability distributions

over C at an initial time 0 to yield corresponding probability distributions over C at other times

t ̸= 0. For the purposes of this paper, the set of allowed times will be assumed to be isomorphic to

a subset of the real line R containing 0, up to a choice of measurement units.

The formalism for a generalized stochastic system is easiest to express in the case in which C
has a finite number N of configurations labeled by positive integers 1, . . . , N :

C ≡ {1, . . . , N}. (1)

In that case, the system’s standalone probabilities at the initial time 0 can be denoted by

pj(0) [for j = 1, . . . , N ], (2)

the system’s standalone probabilities at t ̸= 0 can be denoted by

pi(t) [for i = 1, . . . , N ], (3)

and the stochastic map consists of conditional probabilities

Γij(t) ≡ p(i, t|j, 0) [for i, j = 1, . . . , N ], (4)
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where p(i, t|j, 0) denotes the conditional probability for the system to be in its ith configuration

at the time t, given that the system is in its jth configuration at the initial time 0. (Note that

no assumption is made here about whether t > 0 or t < 0.) Being probabilities, these quantities

satisfy the usual non-negativity and normalization conditions

pj(0), pi(t) ≥ 0,
N∑
j=1

pj(0) =
N∑
i=1

pi(t) = 1, (5)

and

Γij(t) ≥ 0,
N∑
i=1

Γij(t) = 1. (6)

Then from Bayesian marginalization, one has the linear relationship

pi(t) =

N∑
j=1

Γij(t)pj(0), (7)

where the initial standalone probabilities pj(0) are assumed to be arbitrary and can therefore be

freely adjusted without altering the conditional probabilities Γij(t).

Letting p(0) denote an N×1 probability vector whose entries are given by the standalone proba-

bilities pj(0), letting p(t) denote the analogous N ×1 probability vector with entries given by pi(t),

and letting Γ(t) denote the N ×N time-dependent transition matrix consisting of the conditional

probabilities Γij(t), one can naturally recast the linear Bayesian marginalization relationship (7)

in matrix form as

p(t) = Γ(t)p(0). (8)

The conditions (6) on the transition matrix Γ(t) identify it, mathematically speaking, as a (column)

stochastic matrix. On physical grounds, Γ(t) will be assumed to satisfy the continuity condition

that in the limit t → 0, it approaches its initial value Γ(0), which will be taken to be the N ×N

identity matrix 1:

lim
t→0

Γ(t) = Γ(0) ≡ 1 ≡ diag(1, . . . , 1). (9)

Next, consider a random variable A(t) with (not necessarily distinct) real-valued magnitudes

a1(t), . . . , aN (t) determined by the system’s configuration i = 1, . . . , N , and possibly also depending

explicitly on the time t. Then the expectation value ⟨A(t)⟩ is defined as the statistical average or

mean of the magnitudes of A(t) over the system’s standalone probability distribution at t:

⟨A(t)⟩ ≡
N∑
i=1

ai(t)pi(t) =
N∑
i=1

N∑
j=1

ai(t)Γij(t)pj(0). (10)



5

One can go on to define the standard deviation and various statistical moments of A(t) by appro-

priate generalizations of this basic definition.

All these formulas can be extended to systems with continuous configuration spaces. For a

system with a continuous configuration space C, one uses standalone probability densities p(y, 0)

at the initial time 0 and p(x, t) at t ̸= 0, where x and y each symbolically denotes a set of real-valued

coordinates. The Bayesian marginalization relationship (7) then becomes

p(x, t) =

∫
C
dµ(y) Γ(x, y, t)p(y, 0), (11)

where dµ(y) is a suitable integral measure over C and where the conditional probability density

Γ(x, y, t) naturally serves as an integral kernel. A random variable A(t) then has magnitudes a(x, t)

labeled by x and t, and its expectation value (10) becomes

⟨A(t)⟩ ≡
∫
C
dµ(x) a(x, t)p(x, t)

=

∫
C
dµ(x)

∫
C
dµ(y) a(x, t)Γ(x, y, t)p(y, 0).

 (12)

For ease of exposition, the discrete case will be assumed going forward.

Equations like (7), (9), and (11) may appear to single out the initial time 0 as a special time.

Subsection IVF, however, will show that for systems in sufficiently strong contact with a repeatedly

eavesdropping environment, the initial time 0 need not actually be a unique time, but will typically

be only one of many times that play a similar role.

B. Traditional Approximations

In textbook treatments of stochastic processes, one often introduces various approximations or

simplifications in defining a system’s time-dependent transition matrix Γ(t) to make it easier to

construct and describe. A typical such approximation is to assume that the system is a discrete-

time Markov chain, meaning that for some small but finite time scale δt, one can express the

time-dependent transition matrix Γ(n δt) at any integer number n ≥ 1 of steps of duration δt as n

powers of a constant stochastic matrix Γ:

Γ(n δt) = Γn. (13)

Somewhat more generally, a convenient simplification is to assume that for any two times t and

t′ satisfying t > t′ > 0, one has the composition law

Γ(t) = Γ
(
t← t′

)
Γ
(
t′
)
. (14)

This simplification is known as divisibility [28], a term that seems to have first appeared in the

research literature in a 2008 paper [29] by Wolf and Cirac in the context of quantum channels.2

2 Note that this notion of divisibility is unrelated to the much older concept of infinite divisibility, which refers to
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Here Γ(t← t′) is likewise required to satisfy the mathematical requirements of being a stochastic

matrix, in the sense that its entries are all non-negative and its columns each sum to 1, as in (6).

An even more special simplification is to take the transition matrix Γ(t) to be a time-dependent

permutation matrix, meaning a matrix whose columns are a permutation of the columns of the

N × N identity matrix 1. In that case, Γ(t) contains only 1s and 0s, so it does not contain

nontrivial probabilities at all, and the system transitions deterministically from one configuration

to another in its configuration space C. In a suitable continuum limit N →∞, the time evolution

reduces to smooth, deterministic dynamics.

Absent these sorts of approximations or simplifications, one is confronted with the task of

constructing an N × N time-dependent, generically non-Markovian, indivisible transition matrix

Γ(t) for a given configuration space C, ideally in a systematic way. For small configuration spaces,

it is easy to devise smoothly time-dependent, non-Markovian, indivisible examples, like the 2 × 2

transition matrix

Γ(t) ≡

(
e−t2/τ2 1− e−t2/τ2

1− e−t2/τ2 e−t2/τ2

)
, (15)

where τ is a constant with units of time, or

Γ(t) ≡

(
cos2 ωt sin2 ωt

sin2 ωt cos2 ωt

)
, (16)

where ω is a constant with units of inverse-time. However, it may not seem obvious how to construct

smoothly time-dependent transition matrices Γ(t) systematically beyond the 2× 2 case, especially

in the case of large (N ≫ 1) configuration spaces.

A sufficiently general approach for accomplishing this task could have numerous practical ap-

plications in many scientific and technical fields. This paper will develop one such approach,

and use it to provide a self-contained theoretical justification for why the Markov and divisibility

approximations work so well in many real-world cases.

III. THE HILBERT-SPACE FORMULATION

A. The Schur-Hadamard Factorization

One of the goals of this paper will be to introduce a new and highly general framework for formu-

lating time-dependent transition matrices Γ(t), conceptually akin to the Lagrangian or Hamiltonian

frameworks for formulating deterministic dynamics for mechanical systems.

The starting place will be to ‘solve’ the non-negativity condition Γij(t) ≥ 0 on the individual

entries of the transition matrix Γ(t) by expressing them in the following way:

Γij(t) = |Θij(t)|2. (17)

a probability distribution that can be expressed as the probability distribution of a sum of any integer number of
independent and identically distributed random variables.
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This equation is not a postulate—it is a mathematical identity.

The N × N matrix Θ(t) introduced in (17) is guaranteed to exist, although it is not unique.

Its entries Θij(t) could be taken to be the real square roots of the corresponding quantities Γij(t),

but they could also include complex numbers, quaternions, or even the elements of a more general

normed algebra (although associativity is a very helpful property to require). To keep things simple,

and with the eventual goal of reproducing the usual formalism of quantum theory, this paper will

choose Θij(t) to involve only at most the complex numbers.

On account of the normalization condition on the transition matrix Γ(t) specified in (6), note

that the matrix Θ(t) must satisfy the summation condition

N∑
i=1

|Θij(t)|2 = 1. (18)

For now, no further conditions, such as unitarity, will be imposed on Θ(t), whose significance will

soon become more clear.

There are several helpful ways to re-express the identity (17). To begin, one can introduce the

Schur-Hadamard product ⊙, which is defined for arbitrary N ×N matrices X and Y as entry-wise

multiplication [30–32]:

(X ⊙ Y )ij ≡ XijYij . (19)

One can then regard (17) as expressing the transition matrix Γ(t) as a Schur-Hadamard factoriza-

tion of the complex-conjugated matrix Θ(t) with Θ(t) itself:

Γ(t) = Θ(t)⊙Θ(t). (20)

Schur-Hadamard products are not widely used in linear algebra, in part because they are basis-

dependent. For the purposes of analyzing a given generalized stochastic system, however, this

basis-dependence is unimportant, because the system’s configuration space C naturally singles out

a specific basis, to be defined momentarily.

B. The Dictionary

As an alternative approach that will turn out to have significant ramifications, one starts by

defining an N -member collection of N × N constant, diagonal projection matrices P1, . . . , PN ,

which will be called configuration projectors. For each i = 1, . . . , N , the configuration projector Pi

consists of a single 1 in its ith row, ith column, and 0s in all its other entries. That is, Pi is defined

as

Pi ≡ diag(0, . . . , 0, 1
↑

ith entry

, 0, . . . , 0), (21)
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with individual entries

Pi,jk = δijδik, (22)

where δij is the usual Kronecker delta:

δij ≡

1 for i = j,

0 for i ̸= j.
(23)

It follows immediately that the configuration projectors satisfy the conditions of mutual exclusivity,

PiPj = δijPi, (24)

and completeness,

N∑
i=1

Pi = 1, (25)

where again 1 is the N × N identity matrix. These two conditions are the defining features of

a projection-valued measure (PVM) [33, 34], so the configuration projectors P1, . . . , PN naturally

constitute a PVM.

Letting tr(· · · ) denote the usual matrix trace, one can then recast the mathematical identity

(17) relating the entries of Γ(t) with the entries of Θ(t) as

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (26)

This equation is a new result. It will turn out to serve as an important dictionary that translates

between the formalism of generalized stochastic processes, as symbolized by Γij(t) on the left-hand

side, and an expansive set of mathematical tools for constructing stochastic dynamics, as embodied

by the right-hand side.3

C. The Hilbert Space

To understand what these mathematical tools are, the next step will be to introduce a set of

N × 1 column vectors e1, . . . , eN , where ei has a 1 in its ith component and 0s in all its other

components:

e1 ≡

 1
0
...
0
0

, . . . , eN ≡

 0
0
...
0
1

. (27)

3 Similar-looking formulas appear incidentally in equations (3)–(6) of [35] as an intermediate step in proving a lemma
that the authors use for conceptually different purposes.
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That is, ei has components

ei,j = δij . (28)

It follows that the column vectors e1, . . . , eN form an orthonormal basis for the vector space of all

N × 1 column vectors, and e1, . . . , eN will be called the system’s configuration basis. In particular,

e†iej = δij , eie
†
i = Pi, (29)

where Pi is the ith configuration projector, as defined in (21).

Hence, the right-hand side of the dictionary (26) is a trace over a Hilbert space, meaning a

complete inner-product space over the complex numbers. More explicitly, the dictionary picks

out a Hilbert space H that is isomorphic to the vector space CN of N × 1 column vectors with

complex-valued entries, under the inner product v†w:

H ∼= CN . (30)

The dictionary therefore provides a Hilbert-space formulation for constructing highly generic forms

of stochastic dynamics.

Substituting the right-hand side of the dictionary (26) into the linear Bayesian marginalization

relationship (7) between the system’s standalone probabilities pj(0) at the initial time 0 and the

standalone probabilities pi(t) at t ̸= 0, one finds that

pi(t) = tr(Piρ(t)), (31)

where ρ(t) is an N × N time-dependent, self-adjoint, unit-trace, generically non-diagonal matrix

defined as

ρ(t) ≡ Θ(t)

 N∑
j=1

pj(0)Pj

Θ†(t)

= Θ(t)diag(. . . , pj(0), . . . )Θ
†(t),

with ρ†(t) = ρ(t)

and tr(ρ(t)) = 1.


(32)

Crucially, notice how the linearity of the Bayesian marginalization relationship (7) is ultimately

responsible for the linearity of the relationship between the matrix ρ(t) and its value ρ(0) at the

initial time 0, as expressed in (32).

Similarly, by substituting the formula (31) for pi(t) into the definition (10) of the expectation

value of a random variable A(t), one obtains

⟨A(t)⟩ = tr(A(t)ρ(t)). (33)
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Here A(t) is now understood to be the N ×N time-dependent, diagonal matrix whose entries are

the random variable’s individual magnitudes a1(t), . . . , aN (t):

A(t) ≡
N∑
i=1

ai(t)Pi = diag(. . . , ai(t), . . . ). (34)

In the special case in which the system’s standalone probability distribution at the initial time

0 is pure, meaning that one of the system’s configurations j is occupied with probability 1, the

system’s probability vector at the initial time 0 is equal to the jth vector ej in the configuration

basis (28):

p(0) = ej =


0
...
0
1
0
...
0

← jth entry [pure]. (35)

One can then define an N × 1 column vector

Ψ(t) ≡ Θ(t)ej , (36)

which is ultimately just the jth column of Θ(t). Due to the summation condition (18) on Θ(t),

this column vector Ψ(t) automatically has unit unit norm, in the sense that

Ψ†(t)Ψ(t) = 1. (37)

Moreover, the ith component Ψi(t) of Ψ(t) is equal to the specific complex-valued matrix entry

Θij(t):

Ψi(t) = Θij(t). (38)

This component Ψi(t) is a purely law-like quantity, in the sense of being just another name for a

part of Θ(t), which is itself just a way of encoding the system’s dynamical law, as embodied by the

system’s transition matrix Γ(t).

It follows from a short calculation that when the purity condition (35) holds at the initial time

0, the self-adjoint matrix ρ(t) defined in (32) is rank-one and has factorization

ρ(t) = Ψ(t)Ψ†(t) [pure]. (39)

The probability formula (31) then simplifies to

pi(t) = |Ψi(t)|2, (40)
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and the formula (33) for the expectation value of a random variable A(t) becomes

⟨A(t)⟩ = Ψ†(t)A(t)Ψ(t). (41)

Looking at all these results, one notices a striking resemblance to mathematical objects and

formulas that are familiar from textbook quantum theory. Specifically, one sees that Θ(t) plays

the role of a time-evolution operator, ρ(t) is a density matrix, Ψ(t) is a state vector or wave function,

and A(t) represents an observable.4 The probability formulas (31) and (40) have the same form

as the Born rule, and (33) and (41) have the same form as the standard expressions for quantum

expectation values. (For pedagogical treatments of quantum theory, see [36–40].)

These formulas are all expressed in what would conventionally be called the Schrödinger picture.

It will also end up being useful to introduce the Heisenberg picture, which is defined according to

ρH ≡ ρ(0), ΨH ≡ Ψ(0),

AH(t) ≡ Θ†(t)A(t)Θ(t),

}
(42)

where AH(t) now includes both a possible explicit dependence on time through its magnitudes

ai(t) as well as an implicit dependence on time through the time-evolution operator Θ(t). In the

Heisenberg picture, the probability formula (31) becomes5

pi(t) = tr(PH(t)ρH), (43)

and the formula (33) for expectation values becomes

⟨A(t)⟩ = tr(AH(t)ρH). (44)

Despite the similarity to expressions found in quantum theory, as well as the appearance of

non-diagonal matrices, it is important to keep in mind that the system under investigation here is

always fundamentally in a specific configuration i = 1, . . . , N in its configuration space C at any

given time, and that the system’s dynamics is completely captured by the transition matrix Γ(t),

whose entries are conditional probabilities p(i, t|j, 0), in accordance with (4). The mathematical

objects Θ(t), ρ(t), Ψ(t), and A(t), despite being extremely useful, are difficult to assign direct

physical meanings, in part because they are not uniquely defined by C or Γ(t).

D. Gauge Transformations

To make this non-uniqueness more manifest, it will be helpful to introduce an analogy with the

Maxwell theory of classical electromagnetism. (For pedagogical treatments of classical electromag-

netism, see [41–43].)

4 Note that for the purposes of this paper, the terms ‘operator’ and ‘matrix’ will be used interchangeably, as will
the terms ‘state vector’ and ‘wave function.’

5 Note that for a generic time-evolution operator Θ(t), the Heisenberg-picture version PH
i (t) ≡ Θ†(t)PiΘ(t) of a

projector Pi will not likewise be a projector.
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In classical electromagnetism, the electric and magnetic fields are physically meaningful quanti-

ties, but it is often very convenient to work instead in terms of scalar and vector potentials, which

are not uniquely defined. All choices for the potentials that yield the same electric and magnetic

fields are said to be related by gauge transformations. Any one such choice for the potentials is

called a gauge choice, and the scalar and vector potentials themselves are called gauge potentials

or gauge variables.

Making a suitable gauge choice can greatly simplify many calculations, such as using Lorenz

gauge to compute the electric and magnetic fields for delayed boundary conditions. Ultimately,

however, no gauge choice is fundamentally more physically correct than any other gauge choice, and

all calculations of physical predictions in classical electromagnetism must conclude with expressions

that are written in terms of gauge-invariant quantities.

To set up the claimed analogy with electromagnetic gauge transformations, one starts by ob-

serving from the basic relationship Γij(t) = |Θij(t)|2 in (17) that the Schur-Hadamard product

(19) of the time-evolution operator Θ(t) and a matrix of time-dependent phases exp(iθij(t)) is a

transformation of Θ(t) with no physical effects, and therefore corresponds to a genuine form of

gauge invariance:

Θ(t) 7→ Θ(t)⊙


eiθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (45)

This gauge transformation can be written equivalently at the level of individual matrix entries as

Θij(t) 7→ Θij(t)e
iθij(t). (46)

To the author’s knowledge, this kind of gauge invariance, which will be called a Schur-Hadamard

gauge transformation, has not yet been described in the research literature, and is therefore a new

result. It will turn out to play a key role in the analysis of dynamical symmetries that will be

presented in Subsection VIA, and will be extended in an interesting way in the context of Hilbert-

space dilations in Subsection VIB.

The Hilbert-space formulation has another form of gauge invariance, which appears to have first

been written down in [44] in the context of transformations of the Schrödinger equation between

inertial and non-inertial reference frames. Letting V (t) be a time-dependent unitary matrix, the

following transformation is also a gauge invariance of the Hilbert-space formulation, leaving all

probabilities pi(t), expectation values ⟨A(t)⟩, and the transition matrix Γ(t) as a whole unchanged:6

ρ(t) 7→ ρV (t) ≡ V (t)ρ(t)V †(t),

Ψ(t) 7→ ΨV (t) ≡ V (t)Ψ(t),

A(t) 7→ AV (t) ≡ V (t)A(t)V †(t),

Θ(t) 7→ ΘV (t) ≡ V (t)Θ(t)V †(0).


(47)

6 One should be mindful of the appearance of the initial time 0 in V †(0) in the transformation rule for Θ(t).
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If the unitary matrix V (t) is taken to be time-independent, then the gauge transformation (47)

is merely a change of orthonormal basis. However, if V (t) depends nontrivially on time, and if

one regards the system’s Hilbert space at each moment in time as a fiber over a one-dimensional

base manifold parameterized by the time coordinate t, then V (t) represents a local-in-time, unitary

transformation of each individual Hilbert-space fiber. In particular, any given time-dependent state

vector Ψ(t), regarded as a trajectory through the Hilbert space H, can be mapped to any other

trajectory by a suitable choice of time-dependent unitary matrix V (t), so trajectories in H do not

describe gauge-invariant facts.

IV. THE STOCHASTIC-QUANTUM CORRESPONDENCE

A. Kraus Decompositions

In the most general case, a time-evolution operator Θ(t) may not satisfy any nontrivial con-

straints apart from the summation condition (18). It will turn out to be helpful to find alternative

ways of representing the N × N matrix Θ(t) in terms of more tightly constrained mathematical

objects.

For β = 1, . . . , N , let Kβ(t) be the N × N matrix defined to share its βth column with Θ(t),

but with 0s in all its other entries:

Kβ(t) ≡


0 · · · 0 Θ1β(t) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ΘNβ(t) 0 · · · 0

 [β = 1, . . . , N ]. (48)

The entries of Kβ(t) are given explicitly by

Kβ,ij(t) = δβjΘij(t). (49)

Then the summation condition (18) on Θ(t) becomes the statement that the matricesK1(t), . . . ,KN (t)

satisfy the Kraus identity :

N∑
β=1

K†
β(t)Kβ(t) = 1. (50)

These matrices are therefore called Kraus operators [45]. One can then write the dictionary (26)

in an alternative form called a Kraus decomposition:7

Γij(t) =

N∑
β=1

tr(K†
β(t)PiKβ(t)Pj). (51)

Like all the other mathematical objects in the Hilbert-space formulation, the Kraus operators

7 Conditional probabilities similar in form to (51) were studied in [46].
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K1(t), . . . ,KN (t) are not unique. Notice also that any number of N × N matrices satisfying the

Kraus identity (50) are guaranteed to yield a valid transition matrix Γ(t) via the Kraus decom-

position (51). Said in another way, the preceding argument establishes the existence but not the

uniqueness of Kraus operators for any given time-evolution operator Θ(t).

Kraus operators and Kraus decompositions play an important role in quantum information

theory. In particular, they provide (non-unique) expressions for generalizations of unitary time

evolution known as quantum channels, or completely positive trace-preserving (CPTP) maps.

B. Unistochastic Matrices

In general, Kraus operators need not have the specific form (48), and there need not be N of

them. In the most minimal case in which a system’s transition matrix Γ(t) is determined by just

a single Kraus operator K1(t), that Kraus operator will be denoted instead by U(t). In that case,

the general Schur-Hadamard factorization (20) specializes to

Γ(t) = U(t)⊙ U(t). (52)

That is,

Γij(t) = |Uij(t)|2. (53)

Equivalently, in dictionary form (26), one has

Γij(t) = tr(U †(t)PiU(t)Pj). (54)

The Kraus identity (50), meanwhile, reduces to the statement that U(t) is unitary,

U †(t) = U−1(t), (55)

and the system’s transition matrix Γ(t) is then said to be a unistochastic matrix. That is, a

unistochastic matrix is a square matrix whose individual entries are the modulus-squares of the

corresponding entries of a unitary matrix.

Note that a unitary time-evolution operator U(t) will not generically remain unitary under

arbitrary Schur-Hadamard gauge transformations (45). Hence, writing a unistochastic transition

matrix Γ(t) in terms of a unitary time-evolution operator U(t) corresponds to making a gauge

choice—or, somewhat more precisely, to partially fixing the gauge freedom (45).

Unistochastic matrices were first introduced in 1954 by Horn [47], who originally called them

‘ortho-stochastic’ matrices. The modern term ‘unistochastic matrix’ was introduced by Thompson

in 1989 [48, 49]. The term orthostochastic matrix now refers to a square matrix whose entries are

the modulus-squares of the corresponding entries of a real orthogonal matrix.

Every orthostochastic matrix is unistochastic. Importantly, however, the reverse statement

is not generally true, meaning that the complex numbers generically play a necessary role in
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formulating a unistochastic transition matrix Γ(t) in terms of a unitary time-evolution operator

U(t). Even when the complex numbers are not strictly necessary for writing down a unitary

time-evolution operator U(t), such as if the time-evolution operator can be taken to be real and

orthogonal, it is still very convenient to employ the complex numbers for a given Hilbert-space

representation, so that one can take advantage of the many highly useful constructs that show up

in standard treatments of quantum theory.

It follows immediately from the dictionary formula (54) that every unistochastic transition

matrix is doubly stochastic, or bistochastic, which means that summing over any of its rows or any

of its columns always yields 1:

N∑
i=1

Γij(t) =

N∑
j=1

Γij(t) = 1. (56)

C. Unistochastic Systems

A generalized stochastic system whose transition matrix Γ(t) is a unistochastic matrix will be

called a unistochastic system.

To provide a simple example, note that every permutation matrix is, in particular, a unitary

matrix. Moreover, because the entries of a permutation matrix are all 1s and 0s, they are individ-

ually invariant when one computes their modulus-squares, so every permutation matrix is also a

unistochastic matrix. It follows that a discrete, deterministic system whose dynamics is defined by

a permutation matrix is a special case of a unistochastic system.

Remarkably, as will be shown in Subsection VIB, every stochastic map can be expressed in

terms of a unitary time-evolution operator on a suitably enlarged or dilated Hilbert space. As a

consequence, every generalized stochastic system can be regarded as a subsystem of a unistochastic

system. This statement can be formalized as a theorem, called the stochastic-quantum theorem [50],

and implies that the study of generalized stochastic systems can essentially be reduced to the study

of unistochastic systems. Hence, assuming a unistochastic system is not as special a condition as

it might initially seem.

Assuming a unistochastic system based on a unitary time-evolution operator U(t) that is a

differentiable function of the time t, one can define a corresponding self-adjoint generator H(t),

called the system’s Hamiltonian, according to

H(t) ≡ iℏ
∂U(t)

∂t
U †(t) = H†(t). (57)

Here the factor of i ensures that the N ×N matrix H(t) is self-adjoint, and, for present purposes,

the reduced Planck constant ℏ is a fixed quantity introduced for purposes of measurement units.

Ultimately, the specific numerical value of ℏ in any given set of units must be determined empirically

by comparison with experiments.

In terms of the Hamiltonian, the system’s density matrix ρ(t) then evolves in time according to
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the von Neumann equation,

iℏ
∂ρ(t)

∂t
= [H(t), ρ(t)], (58)

its state vector Ψ(t) (if it exists) evolves according to the Schrödinger equation,

iℏ
∂Ψ(t)

∂t
= H(t)Ψ(t), (59)

its Heisenberg-picture random variables AH(t) evolve according to the Heisenberg equation of mo-

tion,

dAH(t)

dt
=

i

ℏ
[HH(t), AH(t)] +

(
∂A(t)

∂t

)H

, (60)

and its expectation values ⟨A(t)⟩ evolve according to the Ehrenfest equation,

d⟨A(t)⟩
dt

=
i

ℏ
tr([H(t), A(t)]ρ(t)) +

〈
∂A(t)

∂t

〉
. (61)

The matrix HH(t) appearing in the Heisenberg equation of motion (60) is the Hamiltonian ex-

pressed in the Heisenberg picture (42). Note also that the brackets [X,Y ] that naturally show up

in these equations are genuine commutators XY −Y X, not Poisson brackets, and involve products

of non-diagonal matrices that do not generally commute with each other under multiplication.

The emergence of these famous equations from a physical model based on a stochastically

evolving trajectory in a configuration space C is a surprising new result.

Intriguingly, if the system’s time-evolution operator Θ(t) = U(t) is indeed unitary, then under

the unitary gauge transformation defined by (47), the Hamiltonian transforms precisely as a non-

Abelian gauge potential :

H(t) 7→ HV (t)

= V (t)H(t)V †(t)− iℏV (t)
∂V †(t)

∂t
.

 (62)

This transformation behavior makes clear that a Hamiltonian is not a gauge-invariant observable,

even though it may happen to coincide with various observables according to particular gauge

choices. (For pedagogical treatments of non-Abelian gauge theories, see [51, 52].)

Furthermore, one can write the Schrödinger equation (59) as

D(t)Ψ(t) = 0. (63)

Here D(t) is a gauge-covariant derivative defined according to

D(t) ≡ 1
∂

∂t
+

i

ℏ
H(t), (64)
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which maintains its form under the unitary gauge transformations (47), in the sense that

V (t)

[
1
∂

∂t
+

i

ℏ
H(t)

]
(· · · ) =

[
1
∂

∂t
+

i

ℏ
HV (t)

]
[V (t)(· · · )]. (65)

These formulas make manifest that the Hilbert-space formulation of a generalized stochastic

system is ultimately a collection of gauge-dependent quantities, or gauge variables. Hence, although

a Hilbert-space formulation may be extremely useful for constructing stochastic dynamics or for

carrying out calculations, one might rightly be suspicious about trying to assign direct physical

meanings to its mathematical ingredients.

Notice that if one picks the gauge-transformation matrix V (t) to be the adjoint of the unis-

tochastic system’s time-evolution operator U(t),

V (t) ≡ U †(t), (66)

then the Hamiltonian precisely vanishes:

HV (t) = 0. (67)

This choice of gauge is nothing other than the definition (42) of the Heisenberg picture. Uni-

tary gauge transformations (47) can therefore be viewed as generalized changes of time-evolution

picture.8

D. Interference

The appearance of the Schrödinger equation (59) is an important signal that the dictionary (26)

is more than just a tool for using Hilbert-space methods to craft highly general forms of stochastic

dynamics. It also suggests that generalized stochastic systems might have the resources to replicate

the features of quantum theory more broadly.

As another hint pointing in this direction, one starts by noting that an arbitrary time-dependent

transition matrix Γ(t) is generically indivisible, in the sense that it does not satisfy the divisibility

property (14) at arbitrary times. To see what goes wrong with divisibility, suppose that at some

time t′, the transition matrix Γ(t′) has a matrix inverse Γ−1(t′), and define a new N ×N matrix

Γ̃(t← t′) according to

Γ̃
(
t← t′

)
≡ Γ(t)Γ−1

(
t′
)
. (68)

As an immediate consequence, one then has

Γ(t) = Γ̃
(
t← t′

)
Γ
(
t′
)
, (69)

8 The fact that one can set HV (t) = 0 for all t is a manifestation of the fact that the fiber bundle in this case,
consisting of copies of the system’s Hilbert space fibered over a one-dimensional base manifold parameterized by
the time t, has vanishing curvature.
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which resembles the divisibility property (14). However, it follows from an elementary theorem of

linear algebra that the inverse of a stochastic matrix can only be stochastic if both matrices are

permutation matrices, and therefore do not involve nontrivial probabilities.9 Hence, the matrix

Γ̃(t← t′) defined in (68) is not generically stochastic, so (69) does not express a genuine form of

divisibility.

There is an alternative—and far-reaching—way to understand the generic indivisibility of a

time-dependent transition matrix Γ(t). To this end, suppose that Γ(t) happens to be unistochastic,

and let U(t) be a unitary time-evolution operator for Γ(t). Then for any two times t and t′, one

can define a relative time-evolution operator

U
(
t← t′

)
≡ U(t)U †(t′), (70)

which yields the composition law

U(t) = U
(
t← t′

)
U
(
t′
)
. (71)

At the level of the unistochastic transition matrix Γ(t), one has from the Schur-Hadamard factor-

ization (52) that

Γ(t) = U(t)⊙ U(t)

= [U(t← t′)U(t′)]⊙
[
U
(
t← t′

)
U
(
t′
)]
,

}
(72)

which cannot generally be expressed in the form Γ(t← t′)Γ(t′) for any stochastic matrix Γ(t← t′),

due to the presence of cross terms.

Indeed, examining individual matrix entries, one finds more explicitly that

Γij(t) =
N∑
k=1

|Uik

(
t← t′

)
|2|Ukj

(
t′
)
|2

+
∑
k ̸=l

Uik(t← t′)Ukj(t′)Uil

(
t← t′

)
Ulj

(
t′
)
.

 (73)

With Γkj(t
′) defined according to (53) as usual,

Γkj

(
t′
)
= |Ukj

(
t′
)
|2, (74)

and defining

Γik

(
t← t′

)
≡ |Uik

(
t← t′

)
|2, (75)

9 Proof: Let X and Y be N × N matrices with only non-negative entries and with Y = X−1, so that XY = 1.
Then, in particular, the first row of X must be orthogonal to the second-through-Nth columns of Y . Because Y
is invertible, the columns of Y must all be linearly independent, so the first row of X must be orthogonal to the
(N − 1)-dimensional subspace spanned by the second-through-Nth columns of Y . Because the entries of X and Y
are all non-negative by assumption, the only way that this orthogonality condition can hold is if precisely one of
the entries in the first row of X is nonzero, with a 0 in the corresponding entry in each of the second-through-Nth
columns of Y . Repeating this argument for the other rows of X, one sees that X can only have a single nonzero
entry in each row. If X is a stochastic matrix, then each of these nonzero entries must be the number 1, so X must
be a permutation matrix. Because the inverse of a permutation matrix is again a permutation matrix, it follows
that Y must likewise be a permutation matrix. QED
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which is manifestly unistochastic, one sees that the discrepancy between Γ(t) and its would-be

division Γ(t← t′)Γ(t′) is given by

Γij(t)−
[
Γ
(
t← t′

)
Γ
(
t′
)]

ij

=
∑
k ̸=l

Uik(t← t′)Ψk(t′)Uil

(
t← t′

)
Ψl

(
t′
)
,

 (76)

where Ψ(t′) ≡ Θ(t′)ej is the system’s state vector at the time t′, in keeping with the general

definition of state vectors in (36).

Remarkably, the right-hand side of (76) gives the general mathematical formula for quantum

interference, despite the absence of manifestly quantum-theoretic assumptions. One sees from

this analysis that interference is a direct consequence of stochastic dynamics not generally being

divisible. More precisely, interference is nothing more than a generic discrepancy between actual

indivisible stochastic dynamics and hypothetically divisible stochastic dynamics.

In particular, quantum-mechanical interference does not imply that matter has a physically

wavelike nature, contrary to frequent claims in textbook treatments like [53]. Indeed, from the

perspective of the present discussion, the notion that quantum-mechanical interference ever ne-

cessitated assigning matter a physically wavelike quality was merely an unfortunate accident of

history, arising from the fact that many early empirical examples of interference in quantum sys-

tems happened to resemble the behavior of interfering waves propagating in three-dimensional

physical space.

These historical examples were clearly special cases. Multiparticle systems have Schrödinger

waves that propagate through high-dimensional configuration spaces, as was noted by Schrödinger

himself in his early work on wave mechanics [54]. For more abstract systems, like qubits, there fail

to exist continuous configuration spaces for Schrödinger waves altogether.

This new way of thinking about quantum-mechanical interference has implications for the inter-

pretation of the famous double-slit experiment. Recall that in the double-slit experiment, an emitter

sends particles one at a time toward a wall with two slits in it, and a detection screen on the other

side of the wall records the particle’s eventual landing site. In the usual ‘classical’ description of the

experiment, one asks first which slit the particle enters, and then, conditioning on the answer, one

then restarts the dynamics with that slit as the new initial condition. Over many repetitions of the

experiment, the detection screen records a blend consisting of the statistical distribution of landing

sites from particles passing through the upper slit with the statistical distribution of landing sites

from particles passing through the lower slit. In the case of quantum-mechanical particles like

electrons, however, one instead finds that the landing sites form a wavelike interference pattern,

and the conclusion is supposedly that each particle is really a Schrödinger wave of some kind, or

that the particle fails to go through one slit or the other.10

According to the approach laid out in this paper, the particle really does go through a specific slit

in each run of the experiment. The final interference pattern on the detection screen is due to the

10 The exposition in [53] ends up at precisely such a conclusion: “It is not true that the electrons go either through
hole 1 or hole 2.” [Emphasis in the original.] This conclusion, however, does not logically follow from the empirical
appearance of interference effects, but also implicitly depends on the hidden assumption that the behavior of an
electron in a double-slit experiment can be described by divisible dynamics.
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generic indivisibility of time evolution for quantum systems. One cannot divide up the particle’s

evolution into, firstly, its transit from the emitter to the slits, and then secondly, conditioned

on which slit the particle enters, the particle’s transit from the slits to the detection screen. The

interference that shows up in the double-slit experiment may be surprising, but that is only because

indivisible stochastic dynamics can be highly nonintuitive. In the historical absence of a sufficiently

comprehensive framework for describing indivisible stochastic dynamics, it was difficult to recognize

just how nonintuitive such dynamics could be, or what sorts of empirically appearances it could

produce.

In response to this last point, one might suggest that Schrödinger waves nonetheless offer a

superior means of explaining why the double-slit experiment yields the results that it does. Unfor-

tunately, such hopes are dashed as soon as one considers sending two particles toward the slits on

each run of the experiment. A two-particle system’s Schrödinger wave evolves in a six-dimensional

configuration space, which is arguably not more intuitive than indivisible stochastic dynamics.

Of course, if one regards the quantum-mechanical particles that make up matter as arising more

fundamentally from underlying quantum fields, then the wavelike properties of those quantum fields

ensure that particles of matter have wavelike properties as well, and therefore exhibit wave-particle

duality. That said, there is nothing about the analysis of the double-slit experiment alone that calls

for positing quantum fields. The necessity of quantum field theory comes from other theoretical

and empirical considerations. (For a modern motivation, see [55].) One should also keep in mind

that quantum fields are conceptually distinct from Schrödinger wave functions.

E. Implications of Interference

The fact that interference shows up in a sufficiently generic stochastic model means that relative

phase factors in state vectors have clear empirical signatures, even in the absence of the usual axioms

of textbook quantum theory. These empirical manifestations of relative phases are strong evidence

that it should be possible to carry out measurements on a much wider set of observables than those

that are represented by diagonal matrices (34) in a generalized stochastic system’s configuration

basis. Indeed, Subsection VB will show that non-diagonal, self-adjoint matrices will turn out to

be candidate observables as well.

Thinking more broadly, this overall analysis means that if one is given an indivisible generalized

stochastic system, then there will generically be a quantitative discrepancy between the system’s

actual behavior—as predicted theoretically or measured empirically—and predictions made for

the system based on the nearest divisible or Markovian approximation to the system’s stochastic

dynamics. Again, this discrepancy is precisely interference.

One way to understand this discrepancy is to note that under a divisibility approximation,

one can assign definite probabilities to each of the system’s possible trajectories by iteratively

applying transition matrices, according to the composition law Γ(t) = Γ(t← t′)Γ(t′) from (14).

Because iteratively applying transition matrices is not possible for a generalized stochastic system

with indivisible dynamics, such systems do not generically have well-defined probabilities for entire

possible trajectories.
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In the Hilbert-space formulation of a generalized stochastic system, one can assign complex-

valued quantities called amplitudes to the system’s possible trajectories, using the fact that unitary

time-evolution operators can be composed or applied iteratively, as in U(t) = U(t← t′)U(t′) from

(71). These amplitudes form the conceptual basis for the path-integral formulation of quantum

theory [18–20]. From the standpoint of the stochastic-quantum correspondence, which gives an

alternative formulation of quantum theory, the fact that these amplitudes ‘interfere’ with each

other does not mean that they all physically occur in some sort of literal superposition, or that the

system simultaneously takes all such paths in reality, but is merely an artifact of the indivisible

dynamics of the underlying generalized stochastic system.

Collectively, the foregoing observations lead to the concrete prediction that interference should

arise in a much broader class of contexts than just for quantum systems. Indeed, given any prob-

abilistically evolving system with indivisible or non-Markovian dynamics, one can now interpret

any discrepancies between the behavior of such a system and the behavior of its nearest divisible

or Markovian approximation as manifestations of interference. One could therefore imagine ex-

perimentally measuring interference effects for essentially any system that can be modeled using

indivisible or non-Markovian stochastic dynamics.

F. Division Events and the Markov Approximation

Why do discrete-time Markov chains (13) provide such a good approximation to so many

stochastic processes in the real world? One intuitively reasonable explanation is that when a

system is not isolated from a noisy and intrusive environment, delicate correlations from one time

to another ‘wash out’ over short time scales as those correlations leak out into the environment.

Deriving this intuitive picture from first principles in a more precise way might appear to be a

difficult task. Indeed, such a derivation would seem to require finding a more general framework for

describing a non-Markovian process, and then showing that such a process becomes approximately

Markovian in the appropriate physical circumstances. Fortunately, this paper provides just such a

framework.

To set things up, one starts by introducing a composite system SE consisting of a subject system

S together with an environment E . The configurations of the subject system’s configuration space

CS will be labeled by i = 1, . . . , N , and the configurations of the environment’s configuration space

CE will be labeled by e = 1, . . . ,M , where M ≥ N . The configuration space of the composite

system is then the Cartesian product11

CSE = CS × CE , (77)

meaning that each element of CSE is a simple ordered pair of the form (i, e). One then singles out

N configurations of the environment by labeling them as e(1), . . . , e(N).

For the dynamics, suppose for simplicity that the composite system evolves according to an

11 The right-hand side of (77) is indeed a Cartesian product, not a tensor product, because this equation is solely a
statement about the composite system’s configuration space, not its dynamics or its Hilbert-space representation.
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overall unistochastic transition matrix

ΓSE(t) = USE(t)⊙ USE(t), (78)

or, in terms of individual entries,

ΓSE
ie,i0e0(t) = |U

SE
ie,i0e0(t)|

2. (79)

Furthermore, suppose that the subject system and the environment interact up to a time t′ > 0 in

such a way that they end up with joint probabilities of the form

pSEi′e′
(
t′
)
= pSi′

(
t′
)
δe′e(i′), (80)

which describe an idealized statistical correlation between the configuration i′ of the subject system

at t′ and the corresponding configuration e(i′) of the environment.

If there is to be any possibility of the two subsystems evolving independently for times t > t′

after the interaction has concluded, then it should be possible to factorize the composite system’s

relative time-evolution operator USE(t← t′) between the two subsystems for t > t′ as the following

tensor product:12

USE(t← t′
)
= US(t← t′

)
⊗ UE(t← t′

)
for t > t′.

}
(81)

In terms of individual entries, one has

USE
ie,i′e′

(
t← t′

)
= US

ii′
(
t← t′

)
UE
ee′
(
t← t′

)
for t > t′,

}
(82)

meaning that each entry USE
ie,i′e′(t← t′) of the composite system’s relative time-evolution operator

is the product of corresponding entries US
ii′(t← t′) and UE

ee′(t← t′) of the relative time-evolution

operators for the two subsystems individually.

In light of the Born rule (40), the joint probabilities (80) correspond to a wave function13

ΨSE
i′e′
(
t′
)
= ΨS

i′
(
t′
)
δe′e(i′). (83)

The composite system’s wave function at later times t > t′ after the interaction is therefore given

in terms of the relative time-evolution operator (82) according to

12 Note the natural appearance of a tensor product in (81), which is a statement about the composite system’s
dynamics in the system’s Hilbert-space representation.

13 If necessary, one can easily write down idealized examples of unitary time-evolution operators for the composite
system that produce the wave function (83). For instance, one could use USE(t′) ≡

∑
i′ P

S
i′ ⊗ RE

e(i′), where PS
i′

is the i′th configuration projector (21) for the subject system, and where RE
e(i′) is a unitary transformation that

takes the environment’s initial configuration to the configuration e(i′).
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ΨSE
ie (t) =

∑
i′,e′

USE
ie,i′e′

(
t← t′

)
ΨSE

i′e′
(
t′
)

=
∑
i′

US
ii′
(
t← t′

)
ΨS

i′
(
t′
)
UE
ee(i′)

(
t← t′

)
.

 (84)

From the Born rule (40), one sees that the joint probabilities for t > t′ are given by

pSEie (t) =
∣∣ΨSE

ie (t)
∣∣2. (85)

Marginalizing over the configuration e of the environment and invoking the unitarity of the en-

vironment’s relative time-evolution operator UE(t← t′), one obtains the standalone probabilities

pSi (t) for the subject system alone for t > t′:

pSi (t) =
∑
e

pSEie (t)

=
∑
i′1,i

′
2

US
ii′1
(t← t′)ΨS

i′1
(t′)US

ii′2

(
t← t′

)
ΨS

i′2

(
t′
)

×
∑
e

UE
ee(i′1)

(t← t′)UE
ee(i′2)

(
t← t′

)
=
∑
i′

|US
ii′
(
t← t′

)
|2|ΨS

i′
(
t′
)
|2.


(86)

Taking the limit t→ t′ in (86) and referring back to the Born rule (40) again, one sees that the

subject system’s standalone probabilities at the time t′ are

pSi′
(
t′
)
= |ΨS

i′
(
t′
)
|2. (87)

One also sees from (86) that, as in (75), one can identify

ΓS
ii′
(
t← t′

)
≡ |US

ii′
(
t← t′

)
|2. (88)

Hence, (86) simplifies to a genuinely linear relationship that precisely mirrors the Bayesian

marginalization formula (7), with t′ now effectively serving as a new ‘initial time’:

pSi (t) =
∑
i′

ΓS
ii′
(
t← t′

)
pSi′
(
t′
)
. (89)

Applying the original Bayesian marginalization formula (7) from the actual initial time 0 to the

time t′, one also has the equation

pSi′
(
t′
)
=
∑
j

ΓS
i′j

(
t′
)
pSj (0). (90)
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Combining (89) with (90) immediately yields

pSi (t) =
∑
j

ΓS
ij(t)p

S
j (0), (91)

where ΓS(t) is a manifestly divisible transition matrix:

ΓS(t) ≡ ΓS(t← t′
)
ΓS(t′). (92)

Thus, the interaction between the subject system S and the environment E up to the time t′ has

led to a transition matrix ΓS(t) for the subject system that is momentarily divisible at t′.

It is natural to refer to t′ as a division event. An important corollary is that the initial time 0 is

not a unique or special time, but is instead only one of many division events inevitably experienced

by a system in sufficiently strong contact with a repeatedly eavesdropping environment—in the

sense that the interactions with the environment lead to correlations that look approximately like

those in (80). Division events will play a crucial role in the rest of this paper.

Suppose that these kinds of division events can be approximated as occurring regularly over a

characteristic time scale δt. Suppose, moreover, that the unistochastic dynamics is homogeneous

in time, in the sense that US(t+ δt← t) = US(δt) for all times t. Then the subject system’s

transition matrix after any integer number n ≥ 1 of time steps δt is given by

ΓS(n δt) =
(
ΓS)n, (93)

where

ΓS
ij ≡ |US

ij(δt)|2. (94)

The stochastic dynamics therefore takes the form of a discrete-time Markov chain (13). This anal-

ysis therefore provides a theoretical explanation for the ubiquity of Markovian stochastic dynamics

in so many real-world cases, and represents another new result.

G. Decoherence

Had the environment not interacted with the subject system, then the subject system’s density

matrix ρS(t′) at the time t′ would have generically been non-diagonal, in accordance with the

general definition (32):

ρS
(
t′
)
= US(t′)

∑
j

pj(0)Pj

US†(t′)
= US(t′)diag(. . . , pj(0), . . . )US†(t′).

 (95)

By contrast, suppose that the environment indeed interacts with the subject system to produce
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a division event (92) at t′. In that case, the standalone probability pSi (t) for the subject system to

occupy its ith configuration at t > t′ is given by the linear marginalization relationship (89), which

can be written instead as

pSi (t) = tr(Piρ
S(t)), (96)

where

ρS(t) ≡ US(t← t′
)
ρS
(
t′
)
US†(t← t′

)
, (97)

and where, in turn,

ρS
(
t′
)
≡
∑
i′

pSi′
(
t′
)
PS
i′ = diag

(
. . . , pSi′

(
t′
)
, . . .

)
, (98)

which is diagonal.

On comparing the two expressions (95) and (98) for the subject system’s density matrix ρ(t′)

at t′, one sees that the interaction with the environment has effectively eliminated the off-diagonal

entries, or coherences, in the subject system’s density matrix. This phenomenon is called decoher-

ence, and the foregoing analysis makes clear that decoherence is nothing more than the mundane

leakage of correlations into the environment when viewed through the lens of the Hilbert-space

formulation.

This analysis also sheds new light on the meaning of coherences in density matrices, as well

as on superpositions in state vectors, where superpositions are related to coherences in the case

of a rank-one density matrix through the formula ρi1i2(t) = Ψi1(t)Ψi2(t), in accordance with (39).

From the standpoint of this analysis, superpositions and coherences are merely indications that

one is catching a given system when it is in the midst of an indivisible stochastic process, between

division events, rather than implying that the system is literally in ‘multiple states at once.’

These results may also help explain why the precise connection between quantum theory and

stochastic processes has historically remained unclear for so long. If one assumes a Markov ap-

proximation, as is often the case in the research literature on stochastic processes, then coherences

and superposition do not show up, meaning that density matrices remain diagonal, state vectors

remain trivial, and nontrivial unistochastic dynamics cannot arise.14

H. Entanglement

Consider next a composite system AB consisting of a pair of subsystems A and B. Suppose

that the two subsystems do not interact from the initial time 0 up to some later time t′ > 0, but

then begin interacting at t′.

For times t between 0 and t′, the absence of interactions means that the composite system’s

transition matrix ΓAB(t) factorizes into the tensor product of a transition matrix ΓA(t) for A and

14 See [56] for an analysis of the connection between decoherence and Markovian dynamics within the standard
Hilbert-space formulation of quantum theory.



26

a separate transition matrix ΓB(t) for B:

ΓAB(t) = ΓA(t)⊗ ΓB(t) for 0 ≤ t < t′. (99)

Starting at the time t′, however, the composite system’s transition matrix ΓAB(t), which encodes

cumulative statistical information and therefore correlations, will fail to factorize between the two

subsystems, in the sense that

ΓAB(t) ̸= ΓA(t)⊗ ΓB(t) for t > t′, (100)

for any possible transition matrices ΓA(t) and ΓB(t) that properly capture the respective dynamics

of the two subsystems. (It is worth noting that this loss of factorization gives a highly general,

model-independent way to define an interaction.) Even if the two subsystems have a notion of

localizability in space, and are eventually placed at a large separation distance at some time t > t′,

the composite system’s transition matrix will still fail to factorize between the two subsystems,

thereby leading to the appearance of what looks like nonlocal stochastic dynamics across that

separation distance.15

However, if the composite system exhibits a division event of the form (92) at some later time

t′′ > t′, perhaps due to interactions between one of the subsystems and the larger environment,

then the composite system’s transition matrix ΓAB(t) will divide at t′′:

ΓAB(t) = ΓAB(t← t′′
)
ΓAB(t′′) for t > t′′ > t′. (101)

If the two subsystems A and B do not interact with each other after t′, then the relative transition

matrix ΓAB(t← t′′) appearing in (101) will factorize between them,

ΓAB(t← t′′
)
= ΓA(t← t′′

)
⊗ ΓB(t← t′′

)
, (102)

so the two subsystems will cease exhibiting what had looked like nonlocal stochastic dynamics.

This analysis precisely captures the quantum-theoretic notion of entanglement. Systems that

interact with each other start to exhibit what appears to be a nonlocal kind of stochastic dynamics,

even if the systems are moved far apart in physical space, and decoherence by the environment

effectively causes a breakdown in that apparent dynamical nonlocality.

This stochastic picture of entanglement and nonlocality provides a new way to understand

why they occur in the first place. The indivisible nature of generic stochastic dynamics could be

viewed as a form of nonlocality in time, which then leads to an apparent nonlocality across space.

A division event leads to an instantaneous restoration of locality in time, which then leads to a

momentary restoration of manifest locality across space.

15 Questions about nonlocality will be addressed in detail in Subsection VIC.
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V. MEASUREMENTS

A. Emergeables

The preceding sections have shown that a generalized stochastic system—that is, a physical

model with kinematics based on a configuration space and dynamics based on a suitable stochastic

law—is capable of accounting for signature features of quantum theory, like superposition, inter-

ference, decoherence, and entanglement. In addition, the Hilbert-space side of the dictionary (26)

contains many expressions and equations that are identical to those found in quantum theory.

However, an actual quantum system also includes observables beyond those that are diagonal,

as in (34), in a single basis. Indeed, the existence of noncommuting observables represented by

non-diagonal, self-adjoint matrices is another hallmark feature of quantum theory.

Remarkably, a generalized stochastic system will generically contain such observables as well.

Specifically, Subsection VB will establish that non-diagonal, self-adjoint matrices represent candi-

date observables that naturally satisfy the usual probabilistic rules of quantum theory, including

the Born rule, all without the need to introduce any new fundamental axioms. In so doing, the

analysis ahead will demonstrate that the dictionary (26) is not merely a tool for studying a broad

class of stochastic processes, but truly defines a comprehensive stochastic-quantum correspondence.

As motivation, let A be a time-independent (diagonal) random variable (34), and consider the

time derivative of its Heisenberg-picture counterpart AH(t), as defined for a generic time-evolution

operator Θ(t) by (42):

dAH(t)

dt
=

∂Θ†(t)

∂t
AΘ(t) + Θ†(t)A

∂Θ(t)

∂t
. (103)

Evaluating this matrix in the limit t → 0 gives an N × N self-adjoint, generically non-diagonal

matrix Ȧ at the initial time 0:

Ȧ ≡ lim
t→0

dAH(t)

dt
= Ȧ†. (104)

This matrix will not generally commute with the original random variable A itself:

[A, Ȧ] ̸= 0. (105)

Nonetheless, the matrix Ȧ has physical uses. For example, one has

tr(Ȧρ(0)) = lim
t→0

d⟨A(t)⟩
dt

, (106)

which is a perfectly meaningful physical quantity, even though the time derivative of an expectation

value is not necessarily the expectation value of something physical.

The matrix Ȧ therefore resembles a random variable in some ways, but incorporates stochastic

dynamics directly into its definition (104) through the time-evolution operator Θ(t), and does not

have a transparent interpretation at the level of the generalized stochastic system’s underlying
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configuration space C alone. Instead, Ȧ is an emergent amalgam of kinematical and dynamical

ingredients, so it will be called an emergeable.16 This terminology is intended to contrast Ȧ with

the system’s genuine random variables, which could be called beables—that is, ‘be-ables’—to invoke

a term coined by Bell in [57].

As a concrete example, consider a particle whose underlying position is regarded as a physical

configuration, corresponding to some random variable A. If the particle’s dynamics is stochastic, in

the sense that the particle can be described as a generalized stochastic system, then the particle’s

velocity (or, equivalently, the particle’s momentum) will not generally have a well-defined value at

all times, and will naturally be representable as an emergeable Ȧ along the lines described here.

B. The Measurement Process

With all the requisite conceptual background now in place, one can model the measurement of

a generic observable as a physical process. To start, consider a composite system SDE consisting of

three subsystems that will be called a subject system S, a measuring device D, and an environment

E . Note that one of the additional goals ahead will be to identify the criteria for a subsystem like

D to be regarded as a genuine measuring device.

Focusing momentarily on the subject system S, consider an N ×N self-adjoint matrix

ÃS = ÃS†, (107)

which may or may not be one of the subject system’s diagonal random variables.17 As a concrete

example, ÃS could be an emergeable like (104).

By the spectral theorem, ÃS has a spectral decomposition of the form

ÃS =
∑
α

ãαP̃
S
α , (108)

where ãα are the eigenvalues of ÃS and where P̃S
α are its eigenprojectors. These eigenprojectors P̃S

α

are not generically diagonal, but they nonetheless satisfy the analogues of the mutual exclusivity

condition (24),

P̃S
α P̃

S
α′ = δαα′P̃S

α , (109)

and the completeness relation (25), ∑
α

P̃S
α = 1

S , (110)

where 1S is the identity matrix for the subject system. These eigenprojectors therefore constitute

a projection-valued measure (PVM) of their own. Letting ẽSα be the corresponding orthonormal

16 There is a sense in which emergeables are not an entirely new idea, but are closely related to emergent physical
properties like temperatures or pressures.

17 More generally, one could take ÃS to be a normal matrix, meaning a matrix that commutes with its adjoint ÃS†.
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basis, one has, in analogy with (29), the following statements:

ẽS†α ẽSα′ = δαα′ , ẽSα ẽ
S†
α = P̃S

α . (111)

If ÃS happens to be one of the subject system’s random variables (34), then the eigenvalues ãα

are the random variable’s magnitudes, and the eigenprojectors P̃S
α are the configuration projectors

(21). More generally, however, the eigenvalues ãα and the eigenprojectors P̃S
α do not yet have an

obvious physical meaning.

Suppose that the measuring device D has configurations d(α) that can be labeled by the same

index α that appears in the spectral decomposition (108). Similarly, suppose that the environment

E has configurations e(α) that can also be labeled by α.

Generalizing (79) from the earlier analysis of the decoherence process, suppose, moreover, that

the composite system SDE evolves according to an overall unistochastic transition matrix:

ΓSDE
ide,i0d0e0(t) = |U

SDE
ide,i0d0e0(t)|

2. (112)

Generalizing (83) and letting ẽSα′,i′ denote the i′th component of the basis vector ẽSα′ with respect

to the subject system’s configuration basis eSi′ , suppose that the three subsystems interact up to a

time t′ > 0 in such a way that they end up with the overall wave function18

ΨSDE
i′d′e′

(
t′
)
=
∑
α′

Ψ̃S
α′
(
t′
)
ẽSα′,i′δd′d(α′)δe′e(α′), (113)

and that, mirroring (81), the composite system’s relative time-evolution operator factorizes between

the three subsystems for later times t > t′:

USDE(t← t′
)
= US(t← t′

)
⊗ UD(t← t′

)
⊗ UE(t← t′

)
for t > t′.

 (114)

Then the composite system’s wave function for times t > t′ after the interaction is

ΨSDE
ide (t) =

∑
i′,e′,d′

USDE
ide,i′d′e′

(
t← t′

)
ΨSDE

i′d′e′
(
t′
)

=
∑
i′

∑
α′

US
ii′
(
t← t′

)
Ψ̃S

α′
(
t′
)
ẽSα′,i′

× UD
dd(α′)

(
t← t′

)
UE
ee(α′)

(
t← t′

)
.


(115)

Invoking the Born rule (40), it follows from the explicit expression (115) for the composite

18 It is straightforward to write down idealized examples of suitable unitary time-evolution operators for the composite
system. One choice is USDE(t′) ≡

∑
α′ P̃

S
α′ ⊗RD

d(α′)⊗RE
e(α′), where P̃S

α′ is the α′th eigenprojector appearing in the

spectral decomposition (108), and where RD
d(α′) and RE

e(α′) are unitary transformations for the measuring device
and the environment that respectively put them in the configurations d(α′) and e(α′).
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system’s wave function that the joint probabilities for t > t′ are given by

pSDE
ide (t) =

∣∣ΨSDE
ide (t)

∣∣2. (116)

Marginalizing over the configuration i of the subject system S as well as the configuration e of

the environment E , and invoking the unitarity of both the subject system’s relative time-evolution

operator US(t← t′) and the environment’s relative time-evolution operator UE(t← t′), one obtains

the standalone probabilities pDd (t) for the measuring device D alone for t > t′:

pDd (t) =
∑
i,e

pSDE
ide (t)

=
∑
i′1,i

′
2

∑
α′
1,α

′
2

UD
dd(α′

1)
(t← t′)Ψ̃S

α′
1
(t′)ẽS

α′
1,i

′
1

× UD
dd(α′

2)

(
t← t′

)
Ψ̃S

α′
2

(
t′
)
ẽSα′

2,i
′
2

×
∑
i

US
ii′1
(t← t′)US

ii′2

(
t← t′

)
×
∑
e

UE
ee(α′

1)
(t← t′)UE

ee(α′
2)

(
t← t′

)
=
∑
α′

|UD
dd(α′)

(
t← t′

)
|2|Ψ̃S

α′
(
t′
)
|2.



(117)

In the limit t→ t′, the last line of (117) implies that

pDd(α′)

(
t′
)
= |Ψ̃S

α′
(
t′
)
|2. (118)

Hence, the measuring device D has a standalone probability |Ψ̃S
α′(t′)|2 of ending up in its configu-

ration d(α′), exactly as predicted by the textbook version of the Born rule. One can then naturally

define an expectation value ⟨ÃS(t′)⟩ for ÃS at t′ as the usual kind of statistical average:

⟨ÃS(t′)⟩ ≡∑
α

ãαp
D
d(α′)

(
t′
)
. (119)

This analysis establishes that as long as there exists a form of unistochastic time evolution (112)

for the composite system SDE that arrives at the wave function (113), the matrix ÃS represents a

genuine observable, in the sense that the time evolution (112) leads to the measuring device ending

up in the correct configuration with the correct Born-rule probability.

For times t > t′ after the interaction, the last line of (117) implies that the time t′ is a division

event for the measuring device:

ΓD(t) = ΓD(t← t′
)
ΓD(t′) for t > t′. (120)

Here the measuring device’s dynamics for times t > t′ is given by the relative unistochastic transi-
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tion matrix

ΓD
dd(α′)

(
t← t′

)
≡ |UD

dd(α′)

(
t← t′

)
|2. (121)

By contrast, if the observable ÃS is an emergeable, as opposed to one of the subject system’s

(diagonal) random variables (34), then the subject system S does not experience a division event

at t′. Instead, the subject system remains mired in indivisible time evolution at t′, with some

stochastically evolving underlying configuration. Moreover, if indeed ÃS is an emergeable, then

the measurement result obtained by the measuring device is an emergent effect of the interaction

between the subject system and the measuring device, in a sense suggested by Bohr in 1935 [58, 59],

rather than transparently revealing a physical aspect of the configuration of the subject system

alone.

Despite t′ not necessarily being a division event for the subject system S, one can nevertheless

compute the standalone probability pSi (t) for the subject system to be in its ith configuration for

times t > t′ by marginalizing over the measuring device D and the environment E :

pSi (t) =
∑
d,e

pSDE
ide (t)

=
∑
i′1,i

′
2

∑
α′
1,α

′
2

US
ii′1
(t← t′)Ψ̃S

α′
1
(t′)ẽS

α′
1,i

′
1

× US
ii′2

(
t← t′

)
Ψ̃S

α′
2

(
t′
)
ẽSα′

2,i
′
2

×
∑
d

UD
dd(α′

1)
(t← t′)UD

dd(α′
2)

(
t← t′

)
×
∑
e

UE
ee(α′

1)
(t← t′)UE

ee(α′
2)

(
t← t′

)
=
∑
α′

∑
i′1,i

′
2

US
ii′1
(t← t′)US

ii′2

(
t← t′

)
ẽSα′,i′2

ẽS
α′,i′1


× |Ψ̃S

α′
(
t′
)
|2.



(122)

Recognizing |Ψ̃S
α′(t′)|2 from (118) as the standalone probability pDd(α′)(t

′) for the measuring device

D to end up in its configuration d(α′) at the time t′, and recalling both the configuration projectors

PS
i defined in (21) as well as the eigenprojectors P̃S

α appearing in the spectral decomposition (108)

for ÃS , one can write (122) more succinctly as

pSi (t) = tr(PS
i ρ

S(t)). (123)

Here the subject system’s density matrix ρS(t) for t > t′ is given by

ρS(t) ≡ US(t← t′
)[∑

α′

pDd(α′)

(
t′
)
P̃S
α′

]
US†(t← t′

)
. (124)
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One can therefore recast the expectation value (119) for ÃS as

⟨ÃS(t′)⟩ = tr(ÃSρS
(
t′
)
), (125)

which precisely mirrors the formula (33) for the expectation value of a (diagonal) random variable.

Furthermore, (122) yields a linear relationship between the standalone probabilities pDd(α′)(t
′)

for the measuring device D at t′ and the standalone probabilities pSi (t) for the subject system S at

t > t′:

pSi (t) =
∑
α′

ΓSD
i,d(α′)

(
t← t′

)
pDd(α′)

(
t′
)
. (126)

The entries ΓSD
i,d(α′)(t← t′) of the hybrid relative transition matrix appearing here are given explic-

itly by

ΓSD
i,d(α′)

(
t← t′

)
≡
∑
i′1,i

′
2

US
ii′1
(t← t′)US

ii′2

(
t← t′

)
ẽSα′,i′2

ẽS
α′,i′1

.

 (127)

Because these matrix entries do not depend on the measuring device’s standalone probabilities

pDd(α′)(t
′), they naturally serve as conditional probabilities for the subject system S to be in its ith

configuration at the time t > t′, given that the measuring device D is in its configuration d(α′) at

t′:

pSD
(
i, t|d(α′), t′

)
≡ ΓSD

i,d(α′)

(
t← t′

)
. (128)

C. Wave-Function Collapse

Importantly, notice that one can write the hybrid transition matrix (127) in an overall form

that resembles the dictionary (26):

ΓSD
i,d(α′)

(
t← t′

)
= tr(US†(t← t′

)
PS
i U

S(t← t′
)
P̃S
α ).

 (129)

Rearranging the right-hand side gives the equation

ΓSD
i,d(α′)

(
t← t′

)
= tr(PS

i ρ
S|α′,t′(t)), (130)

with a conditional density matrix ρS|α
′,t′(t) for the subject system S at the time t > t′ naturally

defined by time-evolving the eigenprojector P̃S
α′ from t′ to t:

ρS|α
′,t′(t) ≡ US(t← t′

)
P̃S
α′US†(t← t′

)
. (131)
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Thus, the calculation (122) reduces to the statement that the standalone probabilities pSi (t) for

the subject system at t > t′ are given by

pSi (t) = tr(PS
i ρ

S(t)), (132)

where the subject system’s density matrix ρS(t), which was originally defined in (124), can equiva-

lently be expressed as a probabilistic mixture of the conditional density matrices ρS|α
′,t′(t) defined

in (131), statistically weighted by the measurement probabilities pDd(α′)(t
′):

ρS(t) ≡
∑
α′

ρS|α
′,t′(t)pDd(α′)

(
t′
)
. (133)

Taking stock of these results, one sees that to make future predictions for t > t′ about the

subject system S, conditioned on the measuring device’s result d(α′) at t′, one uses the conditional

probabilities (130), in which the subject system’s density matrix has been effectively replaced with

the conditional density matrix ρS|α
′,t′(t). This conditional density matrix corresponds to a collapsed

state vector or wave function defined as

ΨS|α′,t′(t) ≡ U
(
t← t′

)
ẽSα. (134)

The phenomenon of wave-function collapse therefore reduces to a prosaic example of conditioning,

a conclusion that represents another new result.

By contrast, for an observer who does not know the specific measurement result d(α′), the correct

density matrix ρS(t) to use is the one defined in (133). Again, this density matrix consists of an

appropriate probabilistic mixture of conditional or collapsed density matrices that are statistically

weighted over the measurement results.

D. The Measurement Problem

According to the foregoing treatment of the measurement process, a measuring device is an

ordinary physical system that can carry out a measurement of an observable, and then ends up

in a final configuration that reflects a definite measurement outcome. The probabilities for a

measuring device’s various possible measurement outcomes are given by the textbook Born rule

(118), and conditioning on the specific measurement outcome leads to the textbook formula (134)

for wave-function collapse. Hence, the picture of quantum theory presented in this paper arguably

has the resources to solve the measurement problem [60].

The stochastic-quantum correspondence is also helpful for understanding the measurement pro-

cess in another important way. Textbook treatments of quantum theory typically regard measuring

devices as axiomatic primitives or posits, without providing clear principles for deciding which kinds

of systems merit being called measuring devices and which do not. The approach taken toward

the measurement process in this paper not only gives a candidate resolution of the measurement

problem, but also yields a natural set of criteria for defining what counts as a good measuring
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device in the first place, without the need to regard measuring devices as special among all other

systems in any truly fundamental way.

Based on the approach in this paper, one sees that a good measuring device should be a

physical system with at least as many configurations as possible outcomes for the observable to be

measured (at least up to the desired level of experimental resolution), it should admit an overall

form of dynamics that results in the correct final correlations, and it should be in sufficiently strong

contact with a noisy and intrusive environment to generate a robust division event at the conclusion

of the measurement interaction. It is worth noting that the first two of these three criteria would be

standard requirements for a measuring device even without worrying about indivisible stochastic

dynamics or quantum theory.19

E. The Uncertainty Principle

Again, the foregoing treatment of the measurement process leads to the textbook Born rule

(118) and the textbook formula (134) for wave-function collapse. As a consequence, any pair of

observables Ã, B̃ and their respective standard deviations ∆Ã,∆B̃ will satisfy the Heisenberg-

Robertson uncertainty principle [62, 63],

∆Ã∆B̃ ≥ 1

2
|tr(i[ÃB̃ − B̃Ã]ρ)|, (135)

as follows from any of the standard proofs.20

The stochastic-quantum correspondence goes beyond replicating the uncertainty principle by

painting a clearer picture of what the uncertainty principle physically means. Consider for sim-

plicity the case in which Ã = A is a random variable, or beable, and B̃ is an emergeable, in

the language of Subsection VA. Then A has a direct interpretation solely in terms of the sub-

ject system’s configuration space, whereas B̃ encodes an emergent pattern in the subject system’s

dynamics that can nonetheless show up in the measurement outcomes of a measuring device.

Suppose that A has a definite value or magnitude at some initial time 0. Then the subject

system must be in a specific configuration with probability 1 at the initial time 0. The overall

stochastic dynamics will then lead to uncertainty in the outcome of any measurement of B̃.

Suppose that one goes ahead and measures B̃, so that a definite measurement outcome emer-

gently shows up in the configuration of a measuring device at some time t′ > 0. Then the analysis

in Subsection VC implies that there is an inevitable disturbance in the subject system that leads

its density matrix to end up effectively as a non-diagonal matrix equal to an eigenprojector of B̃.

A non-diagonal density matrix signifies that the system is in the midst of an indivisible stochastic

process, as explained in Subsection IVG. In the present circumstances, that indivisible stochastic

process is precisely one that would ensure that if B̃ were measured again shortly after t′, then

19 Without the third criterion—strong contact with an environment—one obtains a “latent measurement” in the
language of [56, 61].

20 Here is one proof, which is adapted from [64]: Because density matrices are positive semidefinite, it follows from
the spectral theorem that for any N × N matrix X and any N × N density matrix ρ, one has the inequality
tr(X†Xρ) ≥ 0. Let Ã, B̃ be any pair of observables, assumed without any real loss of generality to have vanishing
expectation values ⟨Ã⟩ = ⟨B̃⟩ = 0. Let x be a variable real number and let X ≡ xÃ + iB̃. Then tr(X†Xρ) ≥ 0
becomes the inequality f(x) ≥ 0, where f(x) ≡ ax2 + bx + c is a quadratic function with coefficients a ≡ (∆Ã)2,
b ≡ tr(i[ÃB̃ − B̃Ã]ρ), and c ≡ (∆B̃)2. The minimum value of f(x) is −b2/4a+ c, so one arrives at the inequality
−b2/4a+ c ≥ 0, which one can rearrange to give the Heisenberg-Robertson uncertainty principle. QED
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the measuring device would obtain the same outcome for B̃ as before. However, being in the

s of an indivisible stochastic process also implies uncertainty in the subject system’s underlying

configuration, thereby rendering the value of A uncertain.

VI. FURTHER IMPLICATIONS

A. Symmetries

The stochastic-quantum correspondence developed in this paper provides new ways to think

about dynamical symmetries in quantum theory, meaning transformations that leave the dynamics

invariant. Going in the other direction, the stochastic-quantum correspondence also makes it more

straightforward to impose dynamical symmetries systematically as constraints in the construction

of the dynamics for a given generalized stochastic system.

Classically, any invertible transformation of a system’s configurations i = 1, . . . , N is a permu-

tation transformation of the configuration projectors (21):

Pi 7→ Pσ(i),

with {σ(1), . . . , σ(N)} = {1, . . . , N}.

}
(136)

More generally, a transformation between two PVMs P1, . . . , PN and P̃1, . . . , P̃N is always a simi-

larity transformation of the form

Pi 7→ P̃i ≡ V †PiV, (137)

where V is some unitary operator.21 This similarity transformation reduces to the configurational

transformation (136) if and only if V is a permutation matrix.

The more general transformation (137) is a dynamical symmetry, meaning that it leaves the

stochastic dynamics invariant, precisely if the right-hand side of the stochastic-quantum dictionary

(26) remains unchanged:

tr(Θ†(t)P̃iΘ(t)P̃j) = tr(Θ†(t)PiΘ(t)Pj). (138)

This condition is equivalent to the statement that

tr(Θ̃†(t)PiΘ̃(t)Pj) = tr(Θ†(t)PiΘ(t)Pj), (139)

where

Θ̃(t) ≡ VΘ(t)V †. (140)

21 Proof: Let e1, . . . , eN be the orthonormal configuration basis (27), with e†iej = δij and eie
†
i = Pi as in (29), and

let ẽ1, . . . , ẽN be an orthonormal basis related to the new projectors P̃i in the analogous way, with ẽ†i ẽj = δij and
ẽiẽ

†
i = P̃i. Then the N ×N matrix defined by V ≡

∑
i eiẽ

†
i is unitary and satisfies V †PiV = P̃i. Going the other

way, if V is an N × N unitary matrix, then the N × N matrices defined for i = 1, . . . , N by P̃i ≡ V †PiV are
guaranteed to constitute a PVM. QED
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Re-expressing both sides of the equivalent condition (139) in terms of squared absolute values, as

in (17), one sees that (140) is a dynamical symmetry precisely if

|Θ̃ij(t)|2 = |Θij(t)|2. (141)

It follows immediately that Θ̃(t) can differ from Θ(t) by at most a Schur-Hadamard gauge

transformation (45), so a necessary and sufficient condition for a unitary matrix V to give a

dynamical symmetry is that

VΘ(t)V † = Θ(t)⊙


eiθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (142)

As special cases, this condition includes unitary dynamical symmetries,

VΘ(t)V † = Θ(t), (143)

as well as anti-unitary dynamical symmetries,

VΘ(t)V † = Θ(t), (144)

but (142) may also open up the possible existence of dynamical symmetries distinct from these two

cases.

For the specific case of an anti-unitary dynamical symmetry, note that if one redefines V 7→ V ,

which is still unitary, then one can re-express (144) in the somewhat more conventional form

V KΘ(t)KV † = Θ(t). (145)

Here K denotes the complex-conjugation operator, meaning that K is an involution,

K2 = 1, (146)

and, for any N ×N matrix X, one has

KXK = X. (147)

The composite operator V K as a whole is then said to be an anti-unitary operator. Anti-unitary

operators play an important role in describing time-reversal symmetries.22

If Θ(t) = U(t) is unitary, then VΘ(t)V † will likewise be unitary. In that case, suppose either

that V is continuously connected to the identity matrix 1 by some smooth parameter, with a

corresponding self-adjoint generator G = G†, or, alternatively, that V is an involution, meaning

22 Intriguingly, because K anticommutes with i, meaning that Ki = −iK, the three mathematical objects i, K,
and iK satisfy −i2 = K2 = (iK)2 = iK(iK) = 1, and therefore generate a Clifford algebra isomorphic to the
pseudo-quaternions [64]. In a sense, then, the Hilbert spaces of quantum systems are actually defined not over the
complex numbers alone, but over the pseudo-quaternions.
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that V 2 = 1, in which case G ≡ V = V † is itself self-adjoint. Either way, the expectation value

⟨G(t)⟩ is a physically meaningful quantity, and Noether’s theorem easily follows as the statement

that this expectation value is constant in time, or conserved :

⟨G(t)⟩ = tr(GU(t)ρ(0)U †(t)) = ⟨G(0)⟩. (148)

B. Dilations

In most textbook treatments of quantum theory, a quantum system is axiomatically defined

as a particular Hilbert space together with a preferred set of self-adjoint operators designated

as observables with predetermined physical meanings, along with a particular Hamiltonian to

define the system’s time evolution.23 From that point of view, modifying a system’s Hilbert-space

formulation in any nontrivial way would necessarily mean fundamentally modifying the system

itself.

From the alternative point of view developed in this paper, by contrast, a Hilbert-space formula-

tion is merely a collection of mathematical tools for constructing the dynamics of a given generalized

stochastic system. The generalized stochastic system itself is ultimately defined by a configuration

space and a dynamical law that stand apart from any arbitrary choice of Hilbert-space formulation.

As a consequence, one is free to modify a generalized stochastic system’s Hilbert-space formulation

as needed, much like changing from one gauge choice to another in a gauge theory, or like adding

physically meaningless variables to the Lagrangian formulation of a deterministic classical system.

With this motivation in place, recall again the basic stochastic-quantum dictionary (26):

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (149)

The Hilbert-space formulation expressed by the right-hand side can be manipulated for convenience,

provided that the left-hand side of the dictionary remains unchanged.

In particular, for any integer D ≥ 2, one can freely enlarge, or dilate, the Hilbert-space formu-

lation to a larger dimension ND by the following dilation transformation:

Θ(t) 7→ Θ(t)⊗ 1
I ,

Pi(t) 7→ Pi(t)⊗ 1
I ,

Pj(t) 7→ Pj(t)⊗ P I
γ .

 (150)

Here 1I is theD×D identity matrix on a new internal Hilbert spaceHI , and P I
1 , . . . , P

I
D collectively

form any PVM on that internal Hilbert space satisfying the usual conditions of mutual exclusivity,

P I
γ P

I
γ′ = δγγ′P I

γ , (151)

23 In some circumstances, it may turn out to be more convenient to define a quantum system by a formal C*-algebra
of observables alone, without picking a specific Hilbert-space representation [6, 65, 66].
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and completeness,

D∑
γ=1

P I
γ = 1

I . (152)

It is then a mathematical identity that one can rewrite the stochastic-quantum dictionary (26) as

Γij(t) = tr
(
trI

([
Θ†(t)⊗ 1

I
][
Pi ⊗ 1

I]
×
[
Θ(t)⊗ 1

I][Pj ⊗ P I
γ

]))
,

 (153)

with a second trace, or partial trace, over the internal Hilbert space HI . The choice of value for

the label γ here is immaterial, with different choices of γ related by gauge transformations.

One can equivalently write the dilated form (153) of the dictionary in block-matrix form as

Γij(t) = trI

(
[Θij(t)]

I†[Θij(t)]
IP I

γ

)
. (154)

Here [Θij(t)]
I is a diagonal D×D matrix consisting of repeated copies of the specific entry Θij(t)

(for fixed i, j) along the diagonal:

[Θij(t)]
I ≡ Θij(t) 1

I . (155)

Meanwhile, the adjoint operation † in (154) acts on this D ×D block matrix [Θij(t)]
I , so it does

not transpose the indices i and j on the N ×N matrix Θij(t) itself:

[Θij(t)]
I† ≡ [Θij(t)]

I
. (156)

It follows that

[Θij(t)]
I†[Θij(t)]

IP I
γ = |Θij(t)|2P I

γ , (157)

so the trace over HI indeed yields |Θij(t)|2 = Γij(t), as required.

In this dilated version of the Hilbert-space formulation, Schur-Hadamard gauge transformations

(45) are enhanced to the following local-in-time gauge transformations, which have not yet been

described in the research literature and therefore constitute another new result:

[Θij(t)]
I 7→ V I

(ij)(t)[Θij(t)]
I . (158)

Here V I
(ij)(t) are a set of N2 unitary, D ×D matrices, where each such unitary matrix as a whole

is labeled by a specific pair (ij) of configuration labels:

V I†
(ij)(t) = (V I

(ij)(t))
−1. (159)

The gauge transformations (158) will not generally preserve the factorization Θ(t)⊗1I appearing
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in (153), so they motivate considering more general ND × ND time-evolution operators Θ̃(t), in

terms of which the dilated dictionary (153) takes the form

Γij(t) = tr
(
trI

(
Θ̃†(t)

[
Pi ⊗ 1

I]Θ̃(t)
[
Pj ⊗ P I

γ

]))
. (160)

Any ND×ND matrix Θ̃(t) appearing on the right-hand side of this dictionary and satisfying the

natural generalization of the summation condition (18) is guaranteed to lead to a valid transition

matrix Γij(t) on the left-hand side, so working with a dilated Hilbert-space formulation essentially

provides a larger ‘canvas’ for designing transition matrices.

As a simple example of a dilation for the case D = 2, one can formally eliminate the com-

plex numbers from a quantum system’s Hilbert space [67]. Specifically, by increasing the system’s

Hilbert-space dimension from N to 2N , one can replace the imaginary unit i ≡
√
−1 with the

real-valued 2× 2 matrix
(
0 −1
1 0

)
, with the enhanced version (158) of Schur-Hadamard gauge trans-

formations now consisting of two-dimensional rotations of the internal Hilbert space HI .
24 One

can then represent the complex-conjugation operator K appearing in (145) as the real-valued 2×2

matrix ( 0 1
1 0 ). The result is that all unitary and anti-unitary operators become 2N × 2N real

orthogonal matrices. One cost of using this ‘real’ representation, however, is that the Hilbert

spaces of composite systems will not factorize as neatly into Hilbert spaces for their constituent

subsystems.25

As a much more significant application of dilations, recall that any transition matrix Γij(t) has

a Kraus decomposition (51):

Γij(t) =

N∑
β=1

tr(K†
β(t)PiKβ(t)Pj). (161)

The Stinespring dilation theorem [68, 69] then guarantees that by an appropriate dilation to a larger

Hilbert space if necessary, one can express Γij(t) in terms of a unitary time-evolution operator Ũ(t):

Γij(t) = tr
(
trI

(
Ũ †(t)

[
Pi ⊗ 1

I]Ũ(t)
[
Pj ⊗ P I

γ

]))
. (162)

This fact makes clear the inevitability of unitary time evolution in quantum theory. As mentioned

earlier, it also implies at the level of a theorem [50] that every generalized stochastic system can

be regarded as a subsystem of a unistochastic system.26

As yet another key application of dilations, a dilated Hilbert-space formulation can make it pos-

sible to describe new kinds of emergeables. Some of these dilation-emergeables may be observables

24 Importantly, notice that the proof of the uncertainty principle presented in Footnote 20 works just as well with
the imaginary unit i represented by a 2× 2 matrix in this way.

25 Without increasing the dimension N of a system’s Hilbert space, one could instead attempt to limit the appearance
of the complex numbers in a system’s Hilbert-space formulation by using the original Schur-Hadamard gauge
transformation (45) to make all the entries of the system’s time-evolution operator Θ(t) real-valued. In this
alternative approach, however, a unistochastic transition matrix Γ(t) may not be expressible in terms of a unitary
or orthogonal time-evolution operator, and the complex numbers will generally still be needed anyway to define
various observables.

26 From the starting assumptions presented here, one can sketch the following proof: Given N ×N Kraus operators
Kβ(t), with β = 1, . . . , N , define an N3 × N2 matrix Ṽ (t) according to Ṽ(iβm)(jl)(t) ≡ Kβ,ij(t)δlm, treating

(iβm) as the first index of Ṽ (t) and treating (jl) as its second index. One can show that this matrix satisfies
Ṽ †(t)Ṽ (t) = 1N2×N2 , so it defines a partial isometry, which can always be extended to a unitary N3 ×N3 matrix
Ũ(iβm)(ja)(t) by adding N3 − N2 additional columns that are mutually orthogonal with each other and with the

previous N2 columns already in Ṽ (t), where the new index a runs through N2 possible values. These additional
columns can always be chosen so that at the initial time 0, where V (0) = 1 is the N × N identity matrix, they
make Ũ(0) coincide with the N3 × N3 identity matrix. The last step is to show that Ũ(t) satisfies (162), whose
right-hand side reduces to

∑
β,m |Ũ(iβm)(jγ)(t)|2 =

∑
β |Kβ,ij(t)|2. QED
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that can yield definite results in measurement processes, along the lines of Subsection VB, despite

not having a direct meaning solely at the level of the system’s underlying configuration space.

In this way, a generalized stochastic system based on a configuration space can easily accom-

modate emergent observables that describe empirically meaningful patterns in the dynamics and

that model all kinds of quantum phenomena. Indeed, obtaining a unitary time-evolution operator

for a given system may require dilating the Hilbert space in just this way, as in (162).

It is important to keep in mind that whether or not one actually carries out this formal dilation

of the Hilbert-space formulation, the stochastic dynamics of the underlying generalized stochastic

system will still be the same. Any emergent patterns in the system’s stochastic dynamics that are

made manifest by the dilation, as represented by any new dilation-emergeables that arise, were

always there all along, albeit in a non-manifest way.

An important example of this last application is intrinsic spin. To introduce spin as a dilation-

emergeable, one merely dilates the Hilbert space to ND dimensions, introduces a D-dimensional

representation of SO(3) for the internal Hilbert space, and then requires that the dilated time-

evolution operator has the appropriate form of rotation symmetry. This approach to representing

spin ensures that despite picking an arbitrary three-dimensional coordinate axis in the process of

formally carrying out the dilation of the Hilbert space—such as by choosing the spin-z operator to

be diagonal on the dilated Hilbert space—the underlying generalized stochastic system does not

fundamentally involve any preferred direction or entail any basic violation of rotation invariance.

C. Nonlocality

This paper has shown that systems based on trajectories in configuration spaces and evolving

according to generically indivisible stochastic dynamics have Hilbert-space representations and can

replicate the usual mathematical formalism and empirical predictions of quantum theory.

Technically speaking, the configurations in this new picture for quantum theory play the role

of hidden variables, meaning physical parameters that exist separately from wave functions and

density matrices. Of course, one could argue that configurations should more properly be called

physical variables, given that wave functions and density matrices arise from the stochastic-quantum

correspondence merely as secondary, representational constructs, rather than as fundamental enti-

ties in their own right. Either way, any mention of ‘hidden variables’ immediately raises questions

about the potential invocation of nonlocality, the study of which has motivated famous papers

like that of Einstein, Podolsky, and Rosen [70], and has led to the development of a number of

important no-go theorems [71–74].

Before assessing the implications of these no-go theorems for the picture described in this paper,

it will be important to note that these theorems do not rule out the possibility of hidden variables

altogether. Nor do these theorems imply that introducing hidden variables would necessarily make

quantum theory any more dynamically nonlocal than it already is.

Being mindful of these caveats, there is ample reason to probe the question of nonlocal dy-

namics in the approach to quantum theory taken in this paper. After all, looking back at the

discussion of entanglement in Subsection IVH, a pair of systems that interact at some time will
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generically exhibit what look like nonlocal stochastic dynamics after that time, at least until the

later occurrence of a division event due to decoherence by an external system.

In what follows, it will be important to be keep in mind the distinction between deterministic

hidden-variables theories and stochastic hidden-variables theories.

Bell’s original nonlocality theorem, as formulated and proved in 1964 [71], only addressed the

case of a deterministic hidden-variables theory. Specifically, Bell showed that if one assumes that

a theory’s hidden variables uniquely determine measurement outcomes, and if one further assumes

that the hidden variables are local in the sense that measurement results should not depend on the

settings of faraway measuring devices, then one arrives at an inequality that is expressly violated

by quantum theory. Bell’s 1964 theorem therefore establishes that any purported formulation of

quantum theory based on local deterministic hidden variables is ruled out empirically.

At first glance, there might have seemed to be just two available options in response to Bell’s

nonlocality theorem. Either one could accept a theory of nonlocal deterministic hidden variables,

or one could deny the existence of nonlocal deterministic hidden variables and thereby try to avoid

having to introduce any ostensibly new dynamical nonlocality into quantum theory.

However, for a hidden-variables theory based on stochastic dynamics rather than on deter-

ministic dynamics, the question of dynamical nonlocality becomes murkier. The generalization

to stochastic dynamics means that one needs to rely on more abstract, statistical conditions for

establishing whether or not the theory’s hidden variables behave in a dynamically local manner.

The most frequently cited statistical locality criterion for stochastic hidden-variables theories

was formulated by Bell later on, in 1975 [73, 75, 76]. That statistical locality criterion is a state-

ment about how rich a theory’s hidden variables should be in order for the theory to qualify as

dynamically local.

To formulate Bell’s statistical locality criterion, one starts by considering the case of a mea-

surement outcome x based on local measurement settings a, and a far-separated measurement

outcome y based on local measurement settings b. Then one supposes that the joint probabilities

p(x, y|a, b) for the measurement results x and y, conditioned on the measurement settings a and b,

show a statistical correlation. Bell argued that in order for the theory in question to be considered

dynamically local, the theory should contain enough hidden variables to account for the statistical

correlation in the following precise sense: if one conditions on all the hidden variables λ in the past

light cone of the two measurements, then those hidden variables should screen off the correlation

between the measurement results, meaning that the joint probabilities should factorize according

to

p(x, y|a, b, λ) = p(x|a, λ)p(y|b, λ). (163)

Bell’s statistical locality criterion is precisely the condition that the theory in question should

have enough hidden variables to ensure that the factorization (163) is always possible. Based

on this statistical locality criterion, which should hold even in cases of ‘one-shot’ measurements

in which certain measurement outcomes can be assigned a 100% probability [74], one can again

derive predictions that are violated by quantum theory, just as in the case of a deterministic
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hidden-variables theory.

However, Bell’s statistical locality criterion is broader than the conditions he studied in his 1964

theorem on deterministic hidden-variables theories. Bell’s statistical locality condition is so broad,

in fact, that Bell used it to argue that textbook quantum theory is itself already dynamically

nonlocal [73, 77].

To understand why, observe that textbook quantum theory is committed to the existence of

measurement settings and definite measurement outcomes that end up behaving precisely as a

(highly incomplete) set of stochastically evolving hidden variables. In other words, although text-

book quantum theory is not a deterministic hidden-variables theory, it is, in fact, a stochastic

hidden-variables theory.

The stochastic-quantum correspondence derived in this paper makes these commitments by

textbook quantum theory manifest. Indeed, one can regard textbook quantum theory as the

insistence that for any measurement set-up consisting of a subject system S, a measuring device

D, and an environment E , as laid out in Subsection VB, the configurations of D are to be treated

as hidden variables (that is, as beables), whereas the configurations of S and E are to be regarded

merely as emergeables.

The stochastic-quantum correspondence therefore brings newfound clarity to the outstanding

foundational problems of textbook quantum theory. Specifically, one sees from this novel perspec-

tive that the seemingly arbitrary division of the world into measuring devices, which purportedly

have underlying configurations, and all other systems, which purportedly do not, leads directly

to all the usual mysteries about the measurement process according to textbook quantum theory.

After all, what, in the end, determines whether a given system counts as a measuring device, and

therefore merits having underlying configurations?

More relevant to the present discussion is that because textbook quantum theory includes

stochastic hidden variables for measuring devices, and because those stochastic hidden variables are

insufficient to ensure the factorization property (163), the nonlocality theorems that employ Bell’s

statistical locality criterion imply that textbook quantum theory is itself dynamically nonlocal.

Hence, there is no real cost to upgrading the configurations of S and E to being hidden variables

on an equal footing with the configurations of D. These additional hidden variables do not lead

to the factorization property (163) either, but they also do not lead to any trouble for the no-

communication theorem [78, 79], which precludes using quantum theory to send controllable signals

faster than light.

The main conclusion of this analysis is that if one takes Bell’s statistical locality criterion seri-

ously as the proper way to identify dynamical nonlocality, then textbook quantum theory is already

dynamically nonlocal, so adding some additional hidden variables to the theory will not ultimately

make that dynamical nonlocality any worse. Alternatively, one could instead dispute that Bell’s

statistical locality criterion is an acceptable criterion for locality in the first place, perhaps by

arguing that local correlation-producing interactions are valid common-causes explanations, but

are simply not the sorts of things that can be conditioned on. However, if one denies the validity

of Bell’s criterion, then it cannot be used to argue that the picture of quantum theory presented

in this paper is dynamically nonlocal. Either way, the approach taken toward quantum theory in
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this paper is no more or less dynamically nonlocal than textbook quantum theory already is.

It may be that a more empirically meaningful notion of dynamical locality is the condition

that new statistical correlations can only arise between systems that are in local contact, either

directly or through the mediation of other systems. As the no-communication theorem shows, this

empirical locality criterion is satisfied by textbook quantum theory, as well as by any physical

theory or interpretative framework that reproduces the predictions of textbook quantum theory,

and ultimately ensures the impossibility of sending controllable messages faster than light. One

could argue that any stronger locality requirements, such as Bell’s statistical locality condition, go

beyond what is empirically verifiable, and are therefore matters of metaphysics.

A number of other important no-go theorems have been proved over the years, including von

Neumann’s early no-go theorem [17, 80], the Kochen-Specker theorem [81], the Pusey-Barrett-

Rudolph theorem [82], and Myrvold’s no-go theorem [83]. These theorems either assume that all

observables are true random variables (that is, beables) that exist at the level of the given system’s

configuration space, or they assume that measurements are passive operations that merely reveal

pre-existing values of observables without altering the behavior of measured systems in the process,

or they assume that measurements are fundamentally irreversible, or they assume the existence of

additional probability formulas. Because the picture of quantum theory introduced in this paper

refrains from making any of these assumptions, it is consistent with these theorems.

VII. DISCUSSION AND FUTURE WORK

This paper has shown that one can reconstruct the mathematical formalism and all the empirical

predictions of quantum theory using simpler, more physically transparent axioms than the standard

Dirac-von Neumann axioms. Rather than postulating Hilbert spaces and their ingredients from

the beginning, one instead posits a physical model, called a generalized stochastic system, based

on trajectories in configuration spaces following generically indivisible stochastic dynamics. The

stochastic-quantum correspondence then connects generalized stochastic systems with quantum

systems in a fundamental way, showing that every quantum system can be viewed as the Hilbert-

space representation of an underlying generalized stochastic system.

This perspective deflates some of the most mysterious features of quantum theory. In particular,

one sees that density matrices, wave functions, and all the other appurtenances of Hilbert spaces,

while highly useful, are merely gauge variables. These appurtenances should therefore not be

assigned direct physical meanings or treated as though they directly represent physical objects,

any more than Lagrangians or Hamilton’s principal functions directly represent physical objects.

Superposition is then not a literal smearing of physical objects, but is merely a mathematical

artifact of catching a system in the middle of an indivisible stochastic process, as represented using

a Hilbert-space formulation and wave functions.

Moreover, from this standpoint, canonical quantization need not be regarded as the promotion

of classical observables to noncommutative operators by fiat, but can be implemented (when math-

ematically feasible) simply by generalizing a classical system’s dynamics from being deterministic

to being stochastic, with all the exotic features of quantum theory then emerging automatically. As
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a consequence, this formulation of canonical quantization potentially offers more straightforward

techniques for coupling classical systems to quantum systems in real-world applications.

In an important sense, the stochastic-quantum correspondence also legitimizes many standard

practices followed in physics and in other scientific areas, like astronomy, chemistry, biology, and

paleontology. To see why, notice that according to the thoroughly instrumentalist and operational-

ist Dirac-von Neumann axioms, the only predictions provided by textbook quantum theory are

predictions of measurement outcomes, probabilities of measurement outcomes, and expectation

values that are averages of measurement outcomes statistically weighted by measurement-outcome

probabilities [36–40]. However, scientists in all areas of research talk about other kinds of phe-

nomena that presumably just happen in some way, according to happening probabilities, in the

past, present, or future. Strictly speaking, however, the happening of phenomena lies outside

the axiomatic ambit of textbook quantum theory. The inability of textbook quantum theory to

account for the happening of phenomena either means that scientists are not speaking honestly

or coherently about their research, or that textbook quantum theory is inadequate as a physical

theory.

Decoherence alone cannot bridge the gap between measurement-outcome probabilities and hap-

pening probabilities, because decoherence can only temporarily change whatever orthonormal basis

momentarily diagonalizes a system’s density matrix (and, after all, every density matrix is always

diagonal in some orthonormal basis). After a system undergoes decoherence, textbook quantum

theory then still requires one to make a direct appeal to the measurement axioms to translate the

final density matrix into a statement about probabilities, which will then axiomatically end up

being measurement-outcome probabilities, rather than happening probabilities.

Nor can appealing to some sort of thermodynamic limit resolve the discrepancy either. In order

for a limit in a physical context to make sense, there should be clearly physical elementary ingredi-

ents or components involved. Furthermore, the end result of the limit should gradually emerge as

a better and better physical approximation at finite stages of the limiting process, simply because

a rigorous limit consists of inequalities between finite (if arbitrarily large or small) parameters.

For example, in the hydrodynamic limit of a system of classical interacting particles, the particles

are the physical elementary ingredients, and one sees fluid-like behavior gradually emerge as a

better and better physical approximation as the number of particles progressively increases. In the

case of textbook quantum theory, by contrast, every finite stage of any purported thermodynamic

limit features only measurement outcomes and measurement-outcome probabilities, so there are

no clearly physical elementary ingredients, and the gap between measurement outcomes and the

happening of phenomena never closes.

The stochastic-quantum correspondence yields a much richer version of quantum theory in

which physical phenomena really happen, with probabilities that are really happening probabilities,

and therefore vindicates the ways that scientists talk about the world. Measurement-outcome

probabilities are then merely a special case, arising when what is actually happening is a change

to the configuration of a measuring device.

Because this paper’s approach invokes hidden variables in the form of underlying physical con-

figurations, this framework for quantum theory shares some aspects with the de Broglie-Bohm for-
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mulation, or Bohmian mechanics [84–86]. However, in contrast to this paper’s approach, Bohmian

mechanics employs deterministic dynamics, and features a fundamental guiding equation that ex-

plicitly breaks Lorentz invariance by singling out a preferred foliation of spacetime into spacelike

hypersurfaces. This paper instead takes seriously what experiments strongly suggest—that the

dynamics of quantum theory is indeterministic, and that there is no fundamentally preferred fo-

liation of spacetime. The formulation of quantum theory in this paper is also more flexible and

model-independent than Bohmian mechanics, and works for all kinds of quantum systems, from

particles to fields and beyond.

In contrast with the Everett interpretation [87, 88], also known as the ‘many worlds’ interpreta-

tion, the framework presented in this paper assumes that quantum systems, like classical systems,

have definite configurations in configuration spaces, and does not attempt to derive probability

from non-probabilistic assumptions or grapple with fundamental aspects of personal identity in a

universe continuously branching into large (and somewhat undefined) numbers of parallel worlds.

The approach in this paper is therefore more modest, metaphysically speaking, than the Everett

interpretation.

Neither this paper’s approach nor the Everett interpretation satisfies the statistical locality

criterion formulated by Bell and described in Subsection VIC, but the Everett interpretation

arguably exhibits a different notion of dynamical locality at a level of description that transcends

its individual world-branches [89]. However, because each individual world-branch looks no more

or less nonlocal than the world according to textbook quantum theory, it is not clear whether the

Everett interpretation’s dynamical locality is more than a metaphysical statement, nor is it easy

to discern what concrete benefits it truly provides.

Unlike stochastic-collapse theories [14, 15], this paper does not invoke any fundamental viola-

tions of unitarity, nor does it require introducing any new constants of nature to specify dynamical-

collapse rates.

Looking forward, it would be interesting to see what implications the stochastic-quantum cor-

respondence could have for both phenomenological stochastic processes, like those in biology or

finance, as well as for future work in fundamental physics, like quantum gravity.

More broadly, by recasting the Hilbert-space formulation of quantum theory as merely a con-

venient way to represent a large class of stochastic processes, one opens the door to searching for

totally different representations that might look nothing at all like Hilbert spaces and that could

allow for the construction of more general kinds of stochastic processes. Perhaps one could even

find a way to generalize beyond stochastic processes altogether. work.
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