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Abstract: Models are of central importance in many scientific contexts and scientists spend 

significant amounts of time in building, testing, comparing, and revising models. The study 

of models and how they are used in scientific practice is a widely debated topic in the actual 

philosophy and history of science. An example of a model that we will consider is that of 

thin shell that is now widely used both in General Relativity and in Astrophysics. 
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1. Introduction 

Models are of central importance in many scientific contexts and scientists spend significant amounts 

of time in building, testing, comparing, and revising models. The study of models and how they are used 

in scientific practice is a widely debated topic in the actual philosophy and history of science. An 

example of a model that we will consider is that of thin shell - that is now widely used both in General 

Relativity and in Astrophysics - of which we will look for the essential characteristics. 

Models are important in scientific practice because it is through the study of them and their 

application to real cases that new generations of scientists are formed; in physics courses - for example 

- one is not interested in the historical process that led to the identification of a particular model, but 

only in its final structure and how to apply it to real cases (Giere 1988). Models are also essential for 

the acquisition and organization of scientific knowledge, as by studying a model one discovers the 

characteristics of the object it represents. But how does this representation take place? The approach 

that we will follow proposes that representation is effective insofar as a relationship of similarity is 

established between the model and the object represented. 

According to Frigg the similarity relationship can be described in its simplest form with the 

statement: “A scientific model M represents a target T iff M and T are similar in relevant respects and 

to the relevant degrees” (Frigg, Nguyen 2017). It is the scientist's task - through the determination of 

theoretical hypotheses - to establish which aspects of the model are reflected in reality and to what 

degree. 

A theoretical hypothesis is a linguistic entity – a statement – that asserts some kind of similarity 

relationship between a model and a real system. Thus, for example, to state that “the position and 

velocity of the earth and moon in the earth-moon system are very close to those of a Newtonian model 

of two particles with a central force inversely proportional to the square of the distance between them” 

(Giere 1988) is a classic example of a theoretical hypothesis that establishes which aspects of the model 

(position and velocity) have a real basis and to what degree this happens (very close). It is therefore 

possible to refine our definition of model by asserting: “A scientific model M represents a target system 

T if and only if a theoretical hypotheses H asserts that M and T are similar in certain respects and to 

certain degrees” (Frigg, Nguyen 2017). 

 
1 Presented at XLII SISFA Conference (2022) at link: XLII Sisfa Proceedings  

https://www.torrossa.com/it/resources/an/5533484
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It now remains to clarify what M consists of. In order to describe the properties of a model in General 

Relativity, we will have to deal with an abstract model whose components we are now going to describe 

following Giere's approach (Giere 2006). The starting point consists in choosing the mathematical 

structure of which the model is the implementation. The mathematical structure gives us the tools to 

build the models. If we consider the classic example of the harmonic oscillator, the mathematical 

structure used is that of second degree differential equations and their solution. 

Below it is necessary to indicate the Theoretical Principles which are the basis of the construction of 

the model. Giere defines the Theoretical Principles – of which the Principles of Dynamics are an 

example – as extremely general models whose task is to establish the relationships between the elements 

of the model; they are also defined as 'templates' to be used for the construction of more specific models. 

In the case of Newton's Principles of Dynamics, they establish a relationship between previously defined 

quantities such as the position and acceleration of an object and the concepts of force and mass which 

are not determined2. 

To build models that have a physical value, it is necessary to specify Special Conditions. In the 

example of Classical Mechanics that we are following, we have to indicate the correct force functions; 

so if Hooke's force is indicated as a special condition we obtain the model of the harmonic oscillator, 

while if we choose the universal gravitational force we determine the classical models of gravity. It is 

by choosing the special conditions that the models assume their explanatory power. 

The models defined by the Theoretical Principles and by the Special Conditions are however still 

abstract structures, in which the relationship of similarity with the target is missing. To achieve this goal 

it is necessary to give an interpretation to the components of the model (Giere 1988). Thus in the example 

of the harmonic oscillator the interpretation suggested by experience is that of linking the variable x 

with the displacement of a particle from its equilibrium position and the constant k with a specific 

property of the model. It is clear that the interpretation process in the case of models built on the basis 

of General Relativity will be decidedly more complex and problematic. 

2. Models in General Relativity 

The mathematical structures that are used today in General Relativity are those made available by 

differential geometry. Of particular importance is the concept of pseudo-Riemanian manifold M 

which is locally similar to an Euclidean vector space, equipped with a pseudo-Riemanian metric3. The 

manifold is covered with charts (𝐴, 𝑥𝑖) which allow to define the metric as 𝑔 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗. So we 

have a generic 'mathematical' model that we can represent as: 

< 𝑀,𝑔𝑖𝑗 >. 

Differential geometry in General Relativity was introduced starting from the 60s of the last century with 

what took the name of the 'geometric' or 'coordinate free' approach (Norton 1993). In the previous period, 

Einstein and the physicists used the absolute calculus of Ricci-Levi Civita without a precise geometric 

interpretation4. However, it was Minkowski in 1908/09 who introduced the first geometric methods in 

relativity; following the line indicated by the Erlangen program – which suggested determining the 

geometries on the basis of their characteristic transformation groups – he set out to identify the geometry 

generated by the Lorentz transformations5. Minkowski realized that the new geometry was a structure 

 
2 For Giere the principles of dynamics are definitions. 
3 The pseudo-Riemannian metric is equivalent to the inner product of the vectors of the tangent space at each point of the 

manifold, with indefinite signature. 
4 The 'non-geometric' approach to General Relativity characterizes the historical process of the thin-shell model construction. 
5 Lorentz transformations are used in Special Relativity in the transition between inertial reference systems. 
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that linked space and time in an inseparable entity, to which he gave the name of space-time. From this 

point of view, Minkowski's work must be seen as the first process of interpretation of the mathematical 

model of Relativity: a manifold represents (is in correspondence with) a physical space-time. 

If we now consider the Theoretical Principles underlying the models in General Relativity, Giere 

himself 6 (Giere 1999 pag.51) shows us the principle of general relativity as a possible example; this 

principle asserts that any reference system is equivalent for the formulation of physical laws. The 

validity of the principle of general relativity in Einstein's theory has given rise to a long dispute (Norton 

1993) which led to extreme positions such as that of Synge who asserted “… we need not bother about 

the name, for the word ‘relativity’ now means primarily Einstein theory and only secondarily the obscure 

philosophy which may have suggested it originally” (Synge 1960 p.IX). Indeed Einstein gave several 

definitions of the principle of general relativity and in some of them he deduced it from the principle of 

general covariance. For example, in a 1916 review article he states 

The general laws of nature are to be expressed by equations which hold good for all systems of co-

ordinates. that is, are co-variant with respect to any substitutions whatever (generally covariant). It 

is clear that a physical theory which satisfies this postulate will also be suitable for the general 

postulate of relativity (Einstein 1916). 

It is clear that this definition includes transformations not only between physical reference systems, but 

also between ‘mathematical’ coordinate systems such as those between Cartesian coordinates and Polar 

coordinates. To overcome the difficulty and following considerations on the 'point-coincidence 

argument' (Norton 1993) Einstein arrived at the definition that we find in the 1918 article, where the 

principle of relativity takes the form “The laws of nature are only assertions of timespace coincidences; 

therefore, they find their unique, natural expression in generally covariant equations” (Einstein 1918). 

The principle thus expressed has a physical content in its first part (space-time coincidence) and a formal 

content in the second one. If a Theoretical Principle has the task of establishing the relationships between 

the elements of the model, almost as if it were a template, the principle of relativity thus defined is an 

excellent candidate as it establishes a class of admissible point-events and the form of the physical laws 

that relate them. We have therefore built an extremely abstract model, made up of a mathematical 

structure (manifolds) and a general principle that informs us about how the laws, that act on it, should 

be (covariance principle). 

To make this modeling more concrete, it is necessary to introduce the Special Conditions. At this 

end Einstein provided an equation implementing the general covariance which has the following form: 

𝑅𝑖𝑗 +
1

2
𝑔𝑖𝑗R =

8πG

𝑐4
𝑇𝑖𝑗 

On the left side there is a purely geometric quantity described by the metric 𝑔ij and by components 

representing the curvature of the manifold (𝑅ij)
7. On the right-hand side there is the stress-energy 

tensor which describes the energy content associated with the manifold. The structure of our model 

now becomes < 𝑀,𝑔𝑖𝑗 , 𝑇𝑖𝑗 > and the properties of the metric are determined by the tensor T. Note 

that we are now in the presence of a class of physical models, in fact by modifying the tensor T – 

which is equivalent to choosing the typology of matter/fields in which we are interested – we generate 

a specific model of corresponding space-time8. If we represent the special condition in our model we 

get 

< M,𝑔𝑖𝑗 , 𝑇𝑖𝑗, f(𝑔, 𝑇) > 

 
6 In his writings Giere does not elaborate why the principle of general relativity is a theoretical principle. 
7 Which include the first and second derivatives of the metric. 
8 The reciprocal is also valid: by modifying the geometry of the manifold, one can ask which is the corresponding stress-energy 

tensor. 
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where 𝑓(𝑔, 𝑇) represents Einstein equations. 

Finally, we come to the interpretation phase which consists in the correct association of model 

structures with target elements. In our case the interpretation phase starts with the determination of 

the Special Condition; in fact Einstein identifies the correct correspondences in the development of 

the equations that bear his name. The standard interpretation that is taught in Relativity courses is that 

the manifold represents space-time and has a curved geometry, determined by the presence of the 

stress-energy tensor which describes the mass-energy content. 

A final consideration must be made for the theoretical hypotheses. As we indicated in the previous 

chapter, they are statements that establish the similarity link between the model and the target. If we 

examine the articles of the physicists who built the thin shell model at the beginning of the 900s, we 

find similar sentences, as evidenced by the following passage by Darmois: 

If we consider a set of masses in motion, and the four-dimensional manifold which corresponds to 

them […], to each of the masses corresponds a tube of universe limited by a certain three-

dimensional boundary. Between these universe tubes extends the representation of empty regions of 

matter. To a system comprising n masses, the solar system for example, corresponds a scheme with 

n universe tubes. This four-dimensional representation can be considered as a means […] of 

representing observations. (Darmois 1927). 

Here we are in the presence of a theoretical hypothesis because there is the establishment of a 

similarity between a scheme of n universe tubes with our solar system (even if the level of this 

relationship is not specified). 

3. Thin Shell Model 

The thin shell in General Relativity represents a 3-dimensional surface that separates two manifolds with 

different metrics. In the case of the thin shell, a quantity of mass-energy is distributed on it, but a limiting 

case that had historically precedence is when the surface has no energy content; in this case we are 

dealing with a boundary surface. In the following we study first the case of boundary surface and then 

that of thin shell; anyway, in both situations the mathematical structure that is implemented is the same 

and will consist of two 4-dimensional manifolds (𝑉1 e 𝑉2) separated by a 3-dimensional sub-manifold 

(S), as shown in Fig.1. In the figure we see some fundamental properties of S, among which it is 

important to remember the metric of the hypersurface ℎ = ℎαβ𝑑ξα𝑑ξβ which describes its geometric 

properties and its external curvature K, defined by the equation ∇𝑖�⃗� = 𝐾𝑖
𝑗
𝑒𝑗⃗⃗   , which describes its 

immersion respectively in 𝑉1 e 𝑉2.9 

  

Fig. 1. Mathematical model of thin-shell 

 
9  �⃗�  is the normal vector to S; ∇𝑖  is the 4-dimensional covariant derivative; 𝑒𝑗⃗⃗   are base vectors on V. We will use Latin 

indices for 4-dimensional properties and Greek indices for 3-dimensional properties. 
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According to the definition in the previous chapter, we therefore have two models:  

𝑀𝑘 =< Vk, 𝑔𝑖𝑗
(𝑘)

, 𝑇𝑖𝑗
(𝑘)

, f(𝑔(𝑘), 𝑇(𝑘)) > 

where index 𝑘 = 1,2 represents the two space-time. We now have to build the model associated with 

the separation surface of the two manifolds S = 𝑉1 ∩ 𝑉2 which has the form: 

N =< S, ℎαβ, 𝑇α,β, σ(𝑔(1), 𝑔(2)) > 

where σ(𝑔(1), 𝑔(2)) is the special condition that characterizes the model and is a function of the two 

metrics that are 'glued' on S. 

To identify the special conditions of our model, suppose that the stress-energy tensor presents a 

discontinuity as it passes through the surface S. In this case, the curvature also undergoes a 

discontinuity which corresponds to a discontinuity of the second derivatives of the metric. We 

therefore find ourselves with the problem of studying the continuity properties of the elements that 

make up our model.  

More generally, a mathematical physics problem cannot be solved completely by writing the 

solutions of partial differential equations, but we need also to specify the boundary conditions and the 

discontinuity conditions on the surfaces on which some unknown quantities can be discontinuous as 

well as their derivatives. 

If one considers, for example, the classical model of a spherical shell of matter – which is the 

classical analogue of the relativistic thin shell – we need to impose the condition that the potential 

tends to zero at infinity and that the derivative of the potential with respect to the normal to the shell 

is continuous. We find ourselves in a similar situation in General Relativity and in fact Synge and 

O'Brien in a 1952 article (O'Brien, Synge 1952) ask themselves “We think of a 3-space S in space 

time across which some of the component of Tμν are discontinuous (e.g. the history of the surface of 

the earth)” and try to determine the junction conditions of the metric and its partial derivatives, and 

of the stress-energy tensor. Using Gaussian coordinates10, a 'boundary layer' through which the 

quantities change continuously and making the thickness of the layer tend to zero, Synge and O'Brien 

obtain the following conditions for the mathematical physics problem: 

𝐶𝑂𝑆 ⇒ 𝑔𝑖𝑘 , 
∂𝑔μν

∂𝑥4  , 𝑇𝑘
4 are continuous through S.  

These conditions are called O'Brien - Synge junction conditions and are the special conditions that 

characterize our boundary surface model: 

NOS =< S, ℎαβ, 𝑇α,β, COS > 

A different approach was taken by Darmois (Darmois 1927). Starting from the form of Einstein's 

equations that admit gravitational waves (proposed by Einstein with a perturbative method) Darmois 

obtains a series of physical results based solely on properties intrinsic to the manifolds. Studying the 

case of boundary surfaces he uses the external curvature to determine the continuity of the metric and 

its derivatives on the surface S, obtaining as junction conditions: 

𝐶𝐷 ⇒ 𝑔𝑖𝑗 e 𝐾𝑖𝑗 are continuous through S. 

The Darmois conditions represent a new type of special conditions for our boundary surface model: 

ND =< S, ℎαβ, 𝑇α,β, CD > 

Lichnerowicz (Lichnerowicz 1955), a student of Darmois and Cartan, also determines his junction 

conditions for boundary surfaces. Unlike what has been seen up to now, the French mathematician 

introduces the concept of admissible coordinates, which are those particular coordinates with respect 

to which the components of the metric and its first derivative are continuous. Thus we have the 

Lichnerowicz conditions: 

𝐶𝐿 ⇒ S is covered by admissible coordinates 

 
10 In the Gaussian coordinate system chosen by Synge the surface equation is 𝑥4 = 0 
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that are related to the following boundary surface model: 

NL =< S, ℎαβ, 𝑇α,β, CL > 

We therefore have 3 boundary surface models which are identified by as many special conditions. 

Bonnor and Vickers (Bonnor, Vickers 1981) showed that the three conditions under consideration are 

equivalent to each other, therefore we can define a single model of the boundary surface using the 

Darmois condition 11  

NBoundarySurface =< S, ℎαβ, 𝑇α,β, [Kαβ] = 0 > 

where [𝐾αβ] = 𝐾𝑉2
− 𝐾𝑉1

 represents the jump of K in passing through S.  

Finally, we come to deal with the contribution of Israel (Israel 1966) which has the merit of 

dealing not only with the case of boundary surface but also with that of thin shell. In fact, he obtains 

Darmois's result for boundary surfaces and identifies thin shells as those particular surfaces in which 

only the metric is continuous, but not its first derivatives; this condition is expressed by the jump of 

external curvature  [𝐾𝛼𝛽] ≠ 0.  

The abrupt change of discontinuity of the metric through S is caused by the presence of mass-

energy distributed on S which Israel identifies in the stress-energy tensor of the surface, determined 

by the jump of the external curvature: 

8π𝑆αβ = −[𝐾αβ] + ℎαβ[𝐾γ
γ
] 

With this equation we can finally determine the correct thin shell model: 

NThinShell =< S, ℎαβ, 𝑆αβ, [Kαβ] ≠ 0 > 

3. Conclusions 

In this article we presented a generic definition of models in General Relativity and then we 

implemented it in the case of boundary surfaces and thin shells. 
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