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Abstract

It seems intuitive that our credal states are improved if we obtain evidence favoring

truth over any falsehood. In this regard, Fallis and Lewis have recently provided and

discussed some formal versions of such an intuition, which they name ‘the Mono-

tonicity Principle’ and ‘Elimination’. They argue, with those principles in hand, that

the Brier rule, one of the most popular rules of accuracy, is not a good measure, and

that accuracy-firsters cannot underwrite both probabilism and conditionalization. In

this paper, I will argue that their conclusions are somewhat hasty. Specifically, I will

demonstrate that there is another version of the Monotonicity Principle that can be

satisfied by some additive rules of accuracy, such as the Brier rule. Moreover, it will

also be argued that their version of the principle has some undesirable features re-

garding the epistemic betterness. Therefore, their criticisms can hardly jeopardize

accuracy-firsters until any further justification of their versions of the Monotonicity

Principle and Elimination is provided.

1 Introduction

It is often taken for granted that evidence, though not necessary, epistemically improves

our credal state. Some epistemic norms like the reflection principle, which is suggested

by van Fraassen (1984), depend on this kind of intuition about the relationship between

evidence and epistemic betterness. The epistemic plausibility of the principle may well

be bolstered by treating an agent’s future self as an expert who is epistemically superior

to her current self. Why do we take it that such epistemic superiority should hold? Some

authors may say that this is because the future self undergoes more courses of experience
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than the current one—in other words, credal states have more pieces of evidence than

their past states, thereby epistemically improving over time.1

Admittedly, there may be some misleading evidence that makes a credal state epis-

temically worse.2 In particular, it is entirely possible that one obtains evidence favoring a

false hypothesis over a true one. For example, you may get 8 heads in a row in tossing a

fair coin 10 times. This evidence obviously favors the false hypothesis that the coin toss

is biased, over the true hypothesis that the coin toss is fair—that is, such evidence raises

your credence in the false hypothesis to a greater degree than it does your credence in the

true one. In this case, the evidence may be said to make our credal state worse.

We don’t have to say, though, that evidence has little to dowith epistemic progress. By

the same token as the above example, it is also intuitive that evidence makes your credal

state better if the evidence raises your credences in a true hypothesis to a greater degree

than it does your credence in any false one. Having the Jamesian commandment of epis-

temology “Believe the truth and avoid error!” in mind, we should take it as a constitutive

principle of epistemology that your credal state is improved if you obtain evidence favor-

ing some true hypotheses over any false hypothesis (Joyce, 2009).

Notably, Fallis andLewis have recently providedanddiscussed some formal versionsof

such an intuition, which they name ‘the Monotonicity Principle’ and ‘Elimination’.3 Such

a formal principle can be regarded as a bridge connecting two epistemic quantities. The

first is a quantity representing the degree to which evidence has an impact on a credence.

The more impact evidence has on a credence, the more the evidence raises the credence.

Such a quantity, in this paper, will be called the ‘evidential parameter’. The second is a

quantity representing the actual epistemic betterness on the basis of which credal states

are epistemically compared with each other at a particular world. Such a quantity may

be dubbed the ‘epistemic utility’.4 Fallis and Lewis formulate the evidential parameter

1As is well known, this understanding of the reflection principle depends on the assumption that there
is no cognitive malfunction like memory loss in between the current and the past credal states.

2In this paper, the evaluative concepts of betterness and improvement of a credal state are all epistemic,
rather than practical in nature. I will occasionally omit the modifiers like ‘epistemic’ and ‘epistemically’ if
there is no danger of confusion.

3This principle and its variants can be found in Fallis and Lewis (2016). Their other paper considers a
weak version of the principle, which is called ‘Elimination’ (Lewis and Fallis, 2021).

4I would like to emphasize that the actual epistemic utility (or betterness) should be distinguished from
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using a ratio between two credences, and measure the epistemic utility using the concept

of accuracy.

With such principles in hand, they raise some interesting criticisms about the so-called

‘accuracy-first epistemology’. Accuracy-firsters assume that accuracy is the most funda-

mental epistemic virtue, and other virtues such as verisimilitude are overwhelmed by ac-

curacy.5 Under this assumption, they identify the epistemic utility with accuracy, and for-

mulate several rules measuring the accuracy of a credal state at a given world. Moreover,

accuracy-firsters are to vindicate probabilism and conditionalization using such rules and

some decision-theoretic maxims.

Fallis and Lewis argue in their 2016 paper that the Brier rule, which is a very popular

rule of accuracy, is not a goodmeasure. In a subsequent paper of 2021, they also argue that

accuracy-firsters cannot underwrite both probabilism and conditionalization. At least at

first blush, their criticisms appear to be very serious for accuracy-firsters. If their argu-

ments are sound, then accuracy-firsters may lose one of the most popular measures, and

may abandon at least one of their main two epistemological projects—that is, vindicating

probabilism and conditionalization.

However, I argue in this paper that their criticisms of the accuracy-first epistemology

are somewhat hasty. Specifically, I show that there is another version of the Monotonic-

ity Principle that can be satisfied by some additive rules of accuracy, such as the Brier

rule, and that Fallis and Lewis’s version of the principle has some undesirable features

regarding the epistemic betterness. As a result, I conclude that their criticisms can hardly

jeopardize accuracy-firsters until any further justification of their versions of the Mono-

tonicity Principle and Elimination is provided. For this purpose, this paper is structured

as follows: Section 2 is devoted to formulating Fallis and Lewis’s Monotonicity Principle

and its weak variant. In particular, I will introduce and explain evidential parameters and

the expected epistemic utility (or betterness). The former is the epistemic utility of a credal state at a par-
ticular world, whereas the second is a kind of average over those actual epistemic utilities each of which may
be different across possible worlds. It is noteworthy that some works employ expected epistemic utility to
investigate the relationship between evidence and the epistemic betterness. For example, see Good (1967)
and Myrvold (2012). Thanks to an anonymous reviewer for informing me of such references. My main con-
cern in this paper, however, is the actual epistemic utility, not the expected epistemic utility.

5Many works address the accuracy-first approach including Greaves and Wallace (2006), Joyce (2009,
1998), Leitgeb and Pettigrew (2010a,b) and Pettigrew (2016).
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accuracymeasures, both of which are connected by theMonotonicity Principle. In Section

3, I will provide several mathematical results related to the Monotonicity Principle. Some

have already been given by Fallis and Lewis, but some are new. Especially, it will be shown

that there is another version of the Monotonicity Principle that can be satisfied by some

additive rules of accuracy like the Brier rule. It will be argued in Section 4 that the law of

likelihood, which Fallis and Lewis rely on to justify their version of the principle, yields a

problemwhen we are to epistemically compare one credence function with another func-

tion. Furthermore, it will also be shown that Fallis and Lewis’s arguments cannot help

losing their way if they resort to a weak version of the law in order to circumvent the

problem in question.

Before I proceed further, some preliminary remarks are in order. I will assume that our

credal state could be identified by a function assigning a credence, which is represented

by a real number in [0, 1], to a proposition. Such a function will be called a ‘credence func-

tion’, and denoted by ‘c’ , ‘s’ , ‘r’ , etc. While credence functions are defined over various

sets of propositions, I will restrict the discussions to the functions over a finite partition

whose members are mutually exclusive and collectively exhaustive. I will often use an n-

tuple to represent a credence function over a partition consisting of nmembers. Suppose,

for instance, that a credence function c is defined over a partitionH = {H1, · · · , Hn}. This

can be represented as (c1, · · · , cn) such that c(Hi) = ci ∈ [0, 1] for any Hi ∈ H. If there

is no danger of confusion, I will assume, without any explicit explanation about the rele-

vant partition, that ci is the credence of a hypothesisHi inH. Similar stipulations apply to

other credence functions like s, and r. Most credence functions that appear in this paper

are probabilistically coherent. A credence function c over a finite partition is a probabilis-

tically coherent if and only if ci ∈ [0, 1] for any i, and
∑

i ci = 1.

2 Fallis and Lewis’s Monotonicity Principle

As stated, Fallis and Lewis’s Monotonicity Principle can be thought of as a bridge connect-

ing the evidential parameter and the actual epistemic utility. In this section, I will explain
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some features of the parameters andmeasures, and formulate Fallis and Lewis’s principle

using them.

2.1 Evidential Parameters

It seems intuitive that some evidence, which has a stronger impact on the credences in

truths than the credences in falsehoods, leads us to epistemic progress. Regarding this,

we should pay attention to what factors determine our credences. Suppose that your old

credence function is updated to new function after some evidence is obtained. It is well

accepted that, in such a case, your new credences are determined by two factors—that is,

your old credences and the evidence itself. Evidential parameters represent the impact of

evidence itself on a new credence with its old credence factored out.6

Fallis and Lewis use the ratios of new to old credences to formulate such a param-

eter. Suppose that two credence functions s and r are all defined over a partition H =

{H1, · · · , Hn}. Then, the ratio parameter ofHi(∈ H) with respect to the credence updat-

ing from s to r, which will be denoted by πs,r
i , is defined as follows:

Ratio Parameter. πs,r
i = ri/si, for any i such thatHi ∈ H.

Can we take πs,r
i as an adequate parameter representing only the impact of the evidence

itself? In particular, how can we ascertain that the ratio parameter has such a feature?

One quick way is to look into whether they satisfy what is called ‘Commutativity’.7

Commutativity. Suppose that s, p, q, r, and r∗ are all defined over a finite partition H.

Suppose also that αx,y
i is an adequate evidential parameter of Hi ∈ H with respect

to the credence updating from a credence function x to another function y. Then, it

holds that r = r∗ if αs,q
i = αp,r∗

i and αq,r
i = αs,p

i for any i.

The following diagram, which is borrowed from Wagner (2002, 2003), may be of help in

understanding the plausibility of this adequacy condition.

6Some relevant discussions can be found in Field (1978), Jeffrey (2004), and Wagner (2002, 2003). In
those works, evidential parameters are often called ‘input parameters’, ‘probabilistic observational re-
ports’, ‘indices of probability change’, and so on.

7Commutativity has been mainly discussed in the context related to the credence updating by Jeffrey
conditionalization. See Domotor (1980), Döring (1999), Lange (2000), and Wagner (2002, 2003).
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p r∗
r

qs αs,q

αp,r∗

αq,rαs,p

This displays two kinds of successive credence updating whose initial credence function

is s. On the one hand, s is first updated to q, and then updated to r. The first updating is

led by the evidence whose impact is represented by an evidential parameter αs,q, and the

second updating is led by another evidential impact αq,r. On the other hand, the diagram

displays another kind of successive belief updating in which s is first updated to p under

the impact of αs,p, and then updated to r∗ under the impact of αp,r∗ .

Then, what happens if the order in which the evidential impacts are incorporated into

the credal state is reversed? In particular, could the final credence functions r and r∗ be

different from each other even if αs,q
i = αp,r∗

i and αq,r
i = αs,p

i for any i? According to

Commutativity, this cannot be the case ifαx,y is an adequate evidential parameter factoring

out the impact of the old credences. As stated, Bayesians accept that a new credence is

determined by the evidence itself and its old credence. So, it can be said that the final

credence function r in the above diagram is determined by the evidential parameters αs,q

and αq,r, and the old credence function s. Similarly, r∗ in the diagram can be said to be

determined by αs,p, αp,r∗ , and s. Thus, it is natural, as Commutativity says, that r = r∗

when αs,q
i = αp,r∗

i and αq,r
i = αs,p

i for any i.

The ratio parameter π satisfies Commutativity.8 Hence, we cannot conclude, appealing

to Commutativity, that π is not an adequate evidential parameter. Admittedly, it is not the

case that nothing but the ratio parameter satisfies Commutativity. In what follows, I will

consider another parameter that also satisfies it.

8Here is the proof. For any two credence functions x and y defined over a finite partition H, it holds that
yi = xi · πx,yi . Then, we have that ri = qi · πq,ri = si · πs,qi · πq,ri and r∗i = pi · πp,r

∗

i = si · πs,pi · πp,r
∗

i . Suppose
now that πs,qi = πp,r

∗

i and πq,ri = πs,pi . Then it follows from the above equations that ri = r∗i . This holds for
any member in H. Hence, we can conclude that the ratio parameter satisfies Commutativity. □
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2.2 Accuracy Measures

Now, let us turn our attention to the rules measuring the accuracy. Following accuracy-

firsters, Fallis and Lewis assume that the epistemic utility of a credence function is iden-

tified with the accuracy of the function, and consider some rules of measuring such accu-

racy. In what follows, I will use ‘A’ , ‘BS’ ,‘SA’ etc. to refer to such rules—namely, the

accuracy measures.

LetA be an accuracymeasure. Then, ‘Aw(c)’ refers to the accuracy of a credence func-

tion c at aworldw relative toA. (Iwill often omit clauses like ‘relative toA’ inwhat follows

if there is no danger of confusion.) Accuracy is often thought of as something related to

a distance between the credence function c and the truth function vw. (Here, ‘vw’ refers

to the truth-function at w such that vw(Hi) = 1 when Hi is true at w, and vw(Hi) = 0

otherwise.) As noted, I consider in this paper only credence functions defined over a fi-

nite partition. So, the accuracy of a credence function depends on what member of such a

partition is true. I will use ‘Ai(c)’ to denote the accuracy of c at worlds whereHi is true.

Accuracy-firsters suggest several constraints that should be met by any legitimate ac-

curacy measure, and narrow the class of the measures down using such constraints. For

the discussion that follows, we need to take a look at the following constraint.9

Strict Propriety. Suppose that r is a coherent credence function defined over a partition

H, and that A is a legitimate accuracy measure. Then, for any coherent credence

function c over H, ∑
i

riAi(r) >
∑
i

riAi(c).

Most accuracy-firsters agree that Strict Propriety is a fundamental constraint on accuracy

measures. The accuracy measures that are not strictly proper could make an agent evalu-

ate her own credence function as being worse than the other functions in that the former

has a lesser expected epistemic utility than the latter. In such a case, the rational agentmay

be required to discard her own function and adopt the new one. However, this kind of cre-

9The following formulation of Strict Propriety is restricted to coherent credence functions. However,
many accuracy-firsters do not impose such a restriction on Strict Propriety. I will revisit this issue in the
next section.
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dence updating is epistemically implausible since it occurs in the absence of any relevant

new evidence. Strict Propriety helps us to avoid such ill-motivated credence updating.10

2.2.1 Simple Accuracy Measures

Here are some rules of accuracy that satisfy Strict Propriety.

Simple Accuracy Measures.

• Simple Brier rule: BS
k (c) = 2ck −

∑
i c

2
i .

• Simple Spherical rule: SS
k (c) = ck/

∑
i c

2
i .

• Simple Logarithmic rule: LS
k (c) = ln(ck).

Themodifier ‘simple’ and the superscript ‘S’ are added in order to distinguish these rules

from another kind of rules that will be introduced below.

We should note that these rules are of little help in vindicating probabilism. This is

because the simple accuracy measures are available only to the credence functions over

a partition. They cannot say anything about the accuracy of the function defined over a

set that is not a partition. However, accuracy-firster’s vindication of probabilism hinges

on the rules that canmeasure the accuracy of the credence functions defined over various

sets—inparticular, the so-calledσ-algebra, which is a set that is closed under a (countable)

truth-functional combination.

This problem is more serious for the simple logarithmic rule than the others. The

above version of Strict Propriety is restricted to coherent credence functions. However,

accuracy-firster’s vindication requires any legitimate accuracy measure to satisfy a gen-

eral version that does not have such a restriction. In particular, accuracy-firsters, who

are to vindicate probabilism, should make use of the measures satisfying the constraint

that is reformulated as follows: When r is a coherent credence function over a partitionH,∑
i riUi(r) >

∑
i riUi(c) for any coherent or incoherent credence function c over H. How-

ever, if Strict Propriety is reformulated in this way, then the simple logarithmic rule must

10Indeed, Weak Propriety, according to which
∑

i riAi(r) ≥
∑

i riAi(c) for any coherent credence func-
tion c, is sufficient to avoid such ill-motivated updating. However, Weak Propriety entails Strict Propriety
under some plausible assumptions. See Campbell-Moore and Levinstein (2021).
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violate the constraint, and so be of no use to vindicate probabilism.11

2.2.2 Additive Accuracy Measures

Then, are there any other accuracy measures that are free from the aforementioned prob-

lems? Of course, yes. In vindicating probabilism and conditionalization, several accuracy-

firsters like Joyce (2009), Leitgeb andPettigrew (2010a), and Pettigrew (2016) classify the

accuracy measures into two types, and provide a way of connecting them. The first type

is what may be called a ‘local accuracy measure’. This type measures only one particular

credence at a given world. Let ‘a’ be such a measure. Then, ‘aw(ci)’ denotes the accuracy

of a credence of ci at a world w.

The second type, which is dubbed a ‘global accuracy measure’, measures the overall

accuracy of credence functions. Some global accuracy measures are generated from their

local counterparts.12 Here is a way of generating a global rule A from a local rule a.

Additivity. Suppose that c is defined over a set F . Then, a global accuracy of c at a world

w, i.e., Aw(c), is generated from a local rule of accuracy a, as follows:

Aw(c) =
∑
X∈F

aw(c(X)).

Inwords, this says that the global accuracy of a credence function is a simple sumof the lo-

cal accuracies of all credences.13 This kind of global rule is often called an ‘additive (global)

accuracy measure’.

What kinds of additive global rule are there? To formulate such global rules, the cor-

responding local rules should be provided in advance. Here are such local measures:
11This point and some relevant discussions can be found in Pettigrew (2022). Consider two credence

functions defined over a partition {H1,H2,H3}: r = (1/3, 1/3, 1/3) and c = (1, 1, 1). Note that r is coherent
but c is not. Then,

∑
i riL

S
i (r) = − ln 3 < 0 =

∑
i riL

S
i (c), which conflicts with the reformulated version of

Strict Propriety.
12Not all the globalmeasures can be generated froma localmeasure. The simple spherical and logarithmic

rules can be taken as global, but they have no local counterpart from which they are generated.
13There is another way of generating the global measure from the local one, which can be called ‘Aver-

aging’. This way can be formulated as follows: A∗
k(c) = (1/N)

∑
i uk(ci). Here, N refers to the size of H.

For some relevant discussions, see Joyce (2009) and Carr (2015). The discussion that follows remains the
same even if we adopt Averaging, instead of Additivity, as a way of generating the global measure from the
local one. This is because, in this context, the rankings based on Additivity are ordinally equivalent to the
rankings based on Averaging.
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Local Accuracy Measures.

• Local Brier Rule: bw(c(X)) = −(vw(X)−c(X))2.

• Local Spherical Rule: sw(c(X)) = |vw(X)−(1−c(X))|√
c(X)2+(1−c(X))2

.

• Local Logarithmic Rule: lw(c(X)) = ln |vw(X)− (1− c(X))|.

Here, vw is a truth-function at the world w such that vw(X) = 1 whenX is true at w, and

vw(X) = 0 otherwise.

Now we can provide the additive version of each simple measure using Additivity.

Additive Accuracy Measures.

• Additive Brier Rule: BA
w(c) = −

∑
X∈F(vw(X)− c(X))2.

• Additive Spherical Rule: SA
w(c) =

∑
X∈F

|vw(X)−(1−c(X))|√
c(X)2+(1−c(X))2

.

• Additive Logarithmic Rule : LA
w(c) =

∑
X∈F ln |vw(X)− (1− c(X))|.

Here F is an arbitrary set of propositions. Similar to the simple rules, the superscript ‘A’

is intended to express that each rule is additive.14

The additive rules, unlike the simple ones, can measure the accuracy of any credence

function whether or not the function is defined over a partition. Thus, such a rule can be

said to be free from the problem besetting the simple rule, and thus useful to vindicate

probabilism. It is also noteworthy that all of those additive rules satisfy Strict Propriety.

In particular, contrary to the simple logarithmic rule, its additive counterpart LA satisfies

Strict Propriety even if the constraint is extended to incoherent credence functions.15

2.3 Fallis and Lewis’s Monotonicity Principle

Let me now provide Fallis and Lewis’s Monotonicity Principle and its consequences. Here

is the principle suggested in their 2016 paper.
14In regard to the credence functions over a partition, the additive Brier ruleBA is a positive linear trans-

formation of the simple Brier ruleBS . It is not hard to see this. Note thatBA
k (c) = −(1 − ck)

2 + (ck)
2 −∑

i(ci)
2 = 1 + BS

k (c). However, such a relationship between an additive rule and its simple counterpart
dose not hold for the spherical and logarithmic rules.

15Revisit the example in the previous section: r = (1/3, 1/3, 1/3) and c = (1, 1, 1). Note that
∑

i riL
A
i (r)

is negatively finite while
∑

i riL
A
i (c) is negatively infinite, and so that

∑
i riL

A
i (r) >

∑
i riL

A
i (c). (Recall

that
∑

i riL
S
i (r) = − ln 3 < 0 =

∑
i riL

S
i (c).)
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Monotonicityπ. Suppose that s and r are credence functions over a finite partition H.

Then, for any k, it holds that: Ak(s) ≤ Ak(r) if π
s,r
i ≤ πs,r

k for any i.

The superscript ‘π’ is added to express that this principle is formulated with the ratio

parameter π.

Suppose that the credence function is updated from s to r after some evidence is ob-

tained. Suppose also that the ratio parameter πs,r
i adequately represents the impact of the

evidence itself. Consider aworldwhereHk is true. The clause “πs,r
i ≤ πs,r

k for any i”means

that the evidence has an impact on the credence in truth at least as strongly as it does the

credence in any other falsehoods. In this case, it is natural that the relevant credal state

does not get epistemically worse at that world, as the principle says.

In addition, Lewis and Fallis (2021) consider a weak version of the principle.16

Eliminationπ . Suppose that s and r are credence functions over a finite partitionH. Then,

it holds that: Ak(s) < Ak(r) for any k (̸= n) if sn > 0 = rn and si/sj = ri/rj for any i, j ( ̸= n) .

Suppose that s assigns a positive credence to a false hypothesis Hn whereas r assigns a

zero credence to that hypothesis.17 Then, it seemsnatural that r shouldnot be evaluated as

being epistemically worse than s, other things being the same as each other. In this regard,

Fallis and Lewis take it that the proviso ‘other things being the same as each other’ is well

met by the condition that the credences in the remaining propositions stay in the same

ratio—that is, si/sj = ri/rj for any i, j (̸= n), and so πs,r
i = πs,r

j for any i, j (̸= n). (I will

revisit this issue in the following section.)

As said, the Monotonicity Principle may be regarded as a bridge principle connecting

the evidential parameters and the actual epistemic utilities. Similarly, Eliminationπ may

be thought of as a bridge principle connecting conditionalization and the actual epistemic

16Fallis and Lewis (2016, 582-583) say, without any explicit proof, that Monotonicityπ entails Elimina-
tionπ . M3 and M4 appearing in that paper correspond to Monotonicityπ and Eliminationπ , respectively.
However, for the proof at issue, we need an assumption entailing that, for any k( ̸= n), it holds that
Ak(s) ̸= Ak(r) if sn > rn and πs,ri = πs,rk for any i( ̸= n). Without such an assumption, we can prove
just a weak version of Eliminationπ—that is, Ak(s) ≤ Ak(r) for any k ( ̸= n) if sn > 0 = rn and si/sj =
ri/rj for any i, j ( ̸= n) . I think the assumption in question is very plausible although Fallis and Lewis do not
explicitly mention it.

17In other words, suppose that evidence eliminates the epistemic possibility thatHn is true, and so leads
to assign a zero credence to that hypothesis. This is why Fallis and Lewis call this version of themonotonicty
principle ‘Elimination’.
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utilities.18 Conditionalization is typically defined as follows:

Conditionalization. A credence function r is updated from another credence function s

in accordance with conditionalization on E if and only if r(·) = s(·|E) when s(·|E)

is well defined.

Suppose that s and r are credence functions over a finite partition H. Then, it holds that

sn > 0 = rn and si/sj = ri/rj for any i, j ( ̸= n) if r is updated from s in accordance with

conditionalization on the evidence that Hn is false. Thus, Eliminationπ can be thought of

as a claim that our credal states are epistemically improved if the states are updated in ac-

cordance with conditionalization on evidence. So, if Eliminationπ is a plausible constraint

on accuracymeasures and conditionalization is a rational credence updating rule, then the

accuracy measures should guarantee that conditionalization epistemically improves our

actual credal sates. For this reason, Fallis and Lewis require that accuracy-firsters who

want to ground conditionalization should use the accuracy measures satisfying Elimina-

tionπ .

3 Accuracy-firsters in Crisis and Evidential Parameters

Fallis and Lewis argue in their 2016 and 2021 papers that nothing but SS and LS of the

aforementioned rules satisfies Monotonicityπ (and Eliminationπ)—in particular, none of

the additive measures under consideration satisfies it. On the basis of these results, they

conclude that the Brier rule is not a good measure of accuracy, and that the additive accu-

racy measures, which are needed to vindicate probabilism, are not adequate to vindicate

conditionalization, and so accuracy-firster cannot underwrite both probabilism and con-

ditionalization. These conclusions seem to be very serious for accuracy-firsters. If these

conclusions are correct, accuracy-firstersmay lose one of themost popular accuracymea-

sures, and may abandon at least one of their main two epistemological projects—that is,

vindicating both probabilism and conditionalization.
18Note that Eliminationπ can be thought of as connecting conditionalization with the actual epistemic

utilities, not the expected epistemic utilities. See footnote 4. Indeed, there are many attempts to elucidate
the relationship betwen conditionalization and the expected epistemic utilities. One of the most relevant
works is given by Greaves and Wallace (2006).
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Then, are there any ways of rescuing accuracy-firsters from Fallis and Lewis’s criti-

cisms? In this regard, I would like to emphasize that the epistemic plausibility of Mono-

tonicityπ (and Eliminationπ) depends on how to formulate the degree to which evidence

raises credences—in other words, how to represent the impact of evidence itself with old

credences factored out. Fallis and Lewis use the ratio parameter to represent such an im-

pact.

Interestingly, they also explore the possibility that the difference between two cre-

dences may play a role as an evidential parameter (Fallis and Lewis, 2016, 585). The

difference parameter of Hi(∈ H = {H1, · · · , Hn}) with respect to the credence updating

from s to r, which will be denoted by δs,ri , is defined as follows:

Difference Parameter. δs,ri = ri − si, for any i such thatHi ∈ H.

By replacing the ratio parameter in Monotonicityπ and Eliminationπ with the difference

parameter, we obtain alternative formulations of the Monotonicity Principle and Elimina-

tion.

Monotonicityδ . Suppose that s and r are credence functions over a finite partition H.

Then, it holds that Ak(s) ≤ Ak(r) if δ
s,r
i ≤ δs,rk for any i.

Eliminationδ . Suppose that s and r are credence functions over a finite partitionH. Then,

it holds that Ak(s) ≤ Ak(r) for any k ( ̸= n) if sn > 0 = rn and si − sj = ri − rj for

any i, j ( ̸= n).

Here, the superscript ‘δ’ is added to express that this principle is formulated with the

difference parameter δ.19

Which rules of accuracy satisfy this version of the Monotonicity Priniciple? If no ad-

ditive rule of accuracy satisfies it, then taking another evidential parameter into account

may be of little help in rescuing accuracy-firsters from Fallis and Lewis’s criticisms. Un-

fortunately, Fallis and Lewis seem to make a mistake regarding this point. In particular,

19Similar to the relationship between Monotonicityπ and Eliminationπ , Monotonicityδ entails Elimina-
tionδ under the assumption that, for any k( ̸= n), it holds that Ak(s) ̸= Ak(r) if sn > rn and δs,ri = δs,rk for
any i( ̸= n). See footnote 16.

13



their example, which is intended to show that the simple (and additive) Brier rule violates

Monotonictyδ , misses the target. They write,

“Unfortunately though, these other [evidential parameters] do not vindicate

all of the verdicts of the Brier rule. For instance, the Brier rule says that r =

(3/7, 4/7, 0) is epistemically better than s = (3/10, 4/10, 3/10) if H1 is true

even though r2 − s2 > r1 − s1.” (Fallis and Lewis (2016, 585). My brackets.)

The calculations in their example are all correct. Nevertheless, the two credence functions

r and s in the example cannot be taken as functions showing that the Brier rule violates

Monotonicityδ . Rather, they are just an example showing that the rule violates the converse

Monotonicityδ—A1(s) ≤ A1(r) only if δ
s,r
i ≤ δs,r1 for any i.20

In this regard, someone may argue that the converse Monotonicity Principle is an-

other compelling constraint governing the relationship between the evidential param-

eter and the actual accuracy, and thus that the Brier rule still cannot be a good mea-

sure. However, this response is just pointless. It is entirely unclear whether our credal

state cannot be improved if evidence raises the credence in even just one falsehood to a

greater degree than the credence in a truth. To see this, suppose thatH1 is true, and that

s = (3/12, 3/12, 3/12, 3/12) is updated to r = (4/12, 2/12, 5/12, 0) after some evidence

is obtained. While the evidence raises the credence in the false hypothesis H3 to only a

greater degree than the credence in the true hypothesis H1, the other credences are all

farther from falsehoods than before. In this case, can we say that r is not epistemically

better than s? It is not clear.

Moreover, we can prove, contrary to what they attempted to argue, that several addi-

tive rules including the Brier rule satisfy Monotonicityδ . Table 1 summarizes the relevant

results.21 With these results in hand, we can arrive at the different conclusions from Fallis
20The additive Brier rule is a positive linear transformation of the simple Brier rule. Note that, in order

for s and r in the above quotation to be taken as an example to show that the simple (and additive) Brier
rule violates Monotonicityδ , it should be shown thatBS

2 (s) is greater thanBS
2 (r), but it is not the case since

BS
2 (s) = 0.460 < 0.632 = BS

2 (r).
21Table 1 includes the results given in Fallis andLewis (2016) andLewis andFallis (2021). ‘OK’means that

the relevant pair of an accuracy measure and an evidential parameter satisfies the Monotonicity Principle,
and ‘NG’ means that such a pair violates the principle. The relevant proofs and comments are given in
Appendix.
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Simple Rules Additive Rules

BS SS LS BA SA LA

δ OK NG OK OK NG OK

π NG OK OK NG NG NG

Table 1: Monotonicity and Accuracy Measures

and Lewis’s, assuming that the difference parameter, rather than the ratio parameter, is an

adequate evidential parameter. In particular, we can conclude, under the assumption, that

only the simple and additive spherical rules of the aforementioned rules violate the Mono-

tonicity Principle, and so such versions of spherical rule are not a good accuracy measure.

On the other hand, the condition ‘sn > 0 = rn and si − sj = ri − rj for any i, j (̸= n)’

in Eliminationδ is not equivalent to s being updated to r in accordance with conditional-

ization on the evidence thatHn is false. So, under the assumption at issue, we don’t have

to require accuracymeasures to guarantee that conditionalization epistemically improves

our credal states. Furthermore, the assumption at issue prevents us from arriving at the

conclusion that accuracy-firsters cannot underwrite both the Monotonicity Principle and

probabilism.22 This is because, as shown in Table 1, some additive measures likeBA and

LA satisfy Monotonicityδ .

As a result, Fallis and Lewis’s criticisms may lose their cogency unless it is justified

that the ratio parameter, rather than the difference parameter, is an adequate evidential

parameter. In this regard, we first need to note that, like the ratio parameter, the difference

parameter also satisfies Commutativity, which any adequate evidential parameter should

satisfy in order to represent only the impact of evidence itself with old credences factored

out.23 Thus, the difference parameter can be regarded as being at least as adequate as the

ratio parameter.24

22Note that Fallis andLewis’s claimcanbe thought of as the claim that accuracy-firsters cannotunderwrite
both the Monotonicity Principle and probabilism.

23Here is the proof. For any two credence functions x and y defined over a finite partition H, it holds that
yi = xi + δx,yi . Then, we have that ri = qi + δq,ri = si + δs,qi + δq,ri and r∗i = pi + δp,r

∗

i = si + δs,pi + πp,r
∗

i .
Suppose now that δs,qi = δp,r

∗

i and δq,ri = δs,pi . Thus, it follows from the above equations that ri = r∗i . This
holds for any member in H. Therefore, the difference parameter satisfies Commutativity. □

24A caveat needs to be stated. I just say here that Commutativity is a necessary, but not sufficient, con-
dition for an evidential parameter to represent only the impact of evidence itself. Other conditions have
also been suggested and utilized to epistemically compare various evidence parameters. See Jeffrey (2004)
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Admittedly, some readersmay argue that there being an alternative formulation of the

Monotonicity Principle, which is satisfied by some additive rules, is not sufficient to under-

mine Fallis and Lewis’s criticisms. In particular, such readers might say that any plausible

response to them should disclose some drawbacks of their version of the Monotonicity

Principle.25 I agree. And I will show in the next section that their Monotonicityπ has some

undesirable features regarding the epistemic betterness.

For this purpose, I will pay attention to the so-called law of likelihood. By appealing to

the law, Fallis and Lewis (2016) argue that conditionalization leads us to the ratio parame-

ter andMonotonicityπ . If this argument is sound, then it can be said that accuracy-firsters,

who aim to vindicate conditionalization, should advocate the ratio parameter instead of

the difference parameter, and thus Fallis and Lewis’s criticisms about accuracy-first epis-

temology remain intact, regardless of the results in Table 1. However, I will argue in the

next section that the law of likelihood renders their Monotonicityπ counterintuitive re-

garding the epistemic betterness. Moreover, it will also be argued that if we accept a weak

version of the law to circumvent this difficulty, then conditionalization cannot be used to

vindicate the ratio parameter and Fallis and Lewis’s criticisms do not go through.

4 The Law of Likelihood and Accuracy

Let me start with formulating a version of the law of likelihood:26

Law of Likelihood. Evidence E supports a hypothesis Hi at least as much as it does

another hypothesis Hj relative to a credence function s if and only if s(E|Hi) ≥

s(E|Hj).

Note that s(E|Hi) ≥ s(E|Hj) if and only if s(Hi|E)/s(Hi) ≥ s(Hj|E)/s(Hj). And, suppose

and Wagner (2002, 2003), for example. Using such conditions, those authors advocate what is known as
the Bayes factor. The Bayes factor of a proposition Hi against another proposition Hj with respect to the
credence updating from s to r, which may be denoted by βs,r

i,j , is defined as follows: βs,r
i,j = (ri/rj)/(si/sj).

(Here, ri and rj are the new credence inHi and inHj , respectively. These two propositionsHi andHj are
members of a partition H. Similarly, si and sj are the old credence inHi and inHj , respectively.) In words,
the Bayes factor ofHi againstHj is the ratio of new-to-old odds, not probabilities. Thanks to an anonymous
reviewer for helping me clarify this point.

25I am grateful to an anonymous reviewer for helping me clarify this point.
26Some formulations of the law and the relevant discussions can be found in Hacking (2016), Royall

(1997), and Sober (2008), for example.
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that s is updated to r in accordance with conditionalization when evidenceE is obtained.

Then, we can say, appealing to the law of likelihood, that E raises the credence in Hi at

least as much as it does the credence in Hj if and only if r(Hi)/s(Hi) ≥ r(Hj)/s(Hj). In

this manner, the law and conditionalization jointly provide a rationale to adopt the ratio

between two credences as an adequate evidential parameter, and so espouse Monotonic-

ityπ .

However, the law of likelihood is not beyond all doubt. Especially, what is called ‘the

problem of irrelevant conjunction’—also known as ‘the tacking problem’—has been re-

garded as one of themost serious problems of the law. Suppose that a hypothesisH entails

evidence E, and so that the likelihood ofH on E should be 1. Then, the law of likelihood

says that, for any propositionX , E supports the conjunctionH&X to the same degree to

which it doesH . This is becauseH&X also entailsE, and thus the likelihood ofH&X onE

is the same as the likelihood ofH on E. However, this is somewhat counterintuitive. The

more information a proposition contains, the harder the proposition is confirmed. Note

that H&X may contain much more information than H (unless H entails X). Thus, the

degree to which E supportsH&X may be less than the degree to which it supportsH .27

This undesirable feature of the law of likelihood seems to jeopardize Monotonicityπ as

well. To illustrate, consider a well-shuffled deck of cards consisting of 52 regular cards.

Someone has drawn a card from the deck at random, and you know this. Let H be the

proposition that the card is a heart, D be the proposition that the card is a diamond, and

B be the proposition that the card is black. In addition, let X be an arbitrary contingent

proposition that is not entailed by H . The evidence that the drawn card is not black is

entirely uninformative between a heart and a diamond drawn—namely, between H and

D. Thus, it can be said that the evidence thatB is false supportsH as much as it supports

D. On the other hand, it can also be said that the evidence in question supportsH&X to a

lesser degree than it supportsH . This is becauseH&X is more informative thanH . As a

27The problem of irrelevant conjunction is related to how to formulate the degree to which evidence in-
crementally supports a hypothesis—i.e., the degree of confirmation. In particular, the problem besets the
attempt to formulate the degree of confirmation by means of P (H|E)/P (H). (Here P is a probability func-
tion.) For theproblemof irrelevant conjunction and the lawof likelihood, seeEarman (1992), Fitelson (1999,
2007), Steel (2007), and Rosenkrantz (1994), for example.
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result, we can say that the evidence thatB is false raises the credence inH&X to a lesser

degree than it raises the credence inD.28

To make our discussions concrete, let me consider a case in which you have a lottery

ticket. LetX be the proposition that your ticket is awinning ticket. The lottery in question

will be canceledwhen a heart card is not drawn, and you know this. So, you currently have

credences in only the members of the partition {H&X,H&¬X,D,B}. In other words,

your current credence function s is defined over that partition. After a while, you obtain

the evidence thatB is false and nothing else, and update your credence function from s to

r using conditionalization on ¬B. Note that H&X is much more informative than D. In

light of the above consideration, thus, we can say that the evidence raises the credence in

H&X to a lesser degree than it raises the credence inD.

Consider now a world where H&X is true. Can we say in the above case that r is at

least as good as s at that world? According to our intuition motivating the Monotonicity

Principle, if the credence in a truth increases less than the credence in some falsehoods,

then we cannot say without any qualification that the new credence function is at least

as good as its old function. To make our intuition clear, let me assume that the chance of

your ticket being the winning ticket is extremely low (and you know this). Then, it can

be said that, after the evidence is obtained, the credence in the true proposition increases

less than the credence in every false proposition that is a member of the partition and is

compatible with the evidence.29 In this case, can we say conclusively that r is at least as

good as s at the world whereH&X is true? It seems not.

As seen above, the verdict about the epistemic betterness between s and r may vary

depending on how informative the propositionX is. IfX is highly informative and so your

credence in the true propositionH&X increases much less than the credence in the false

propositions, then rmay be worse than s at the world where H&X is true. On the other

hand, if X is only slightly more informative than a tautology, then r could be better than

28Note that, contrary to this consideration, the law of likelihood says that¬B raises the credence inH&X
as much as it raises the credence inD. This is because each of the two propositions entails ¬B.

29Suppose that the chance ofX is extremely low and so the chance of ¬X is extremely high. Then, while
H&X is much more informative thanH ,H&¬X is only slightly more informative thanH . So, it can be said
that the evidence ¬B raises the credence in H&X to a lesser degree than it raises the credence in H&¬X
as well asD. Note thatH&¬X andD are false at the world whereH&X is true.
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s at the world whereH&X is true. Any rule of accuracy cannot be said to be legitimate if

the epistemic comparison using the rule is insensitive to the informativeness at issue.

Are the rules of accuracy, which satisfyMonotonicityπ , sensitive to the informativeness

of X? Unfortunately, they cannot be sensitive when s is updated to r in accordance with

conditionalization. Such rules say, regardless of the informativeness ofX , that r is at least

as good as s at the world whereH&X is true.30

What about the Brier rule that satisfies Monotonicityδ? Interestingly, we can find that

the rule is sensitive to the informativeness in question. Suppose that s is updated to r in ac-

cordance with conditionalization on ¬B. Suppose also that s(H&X) = x/4, s(H&¬X) =

(1−x)/4, s(D) = 1/4, and s(B) = 1/2—that is, s = (x/4, (1−x)/4, 1/4, 1/2).31 The value

of xmay vary depending on the informativeness of the propositionX . In particular, it may

be said that the more informativeX is, the less the value of x is.

Now, we can find that the additive Brier ruleBA produces different verdicts about the

epistemic betterness between s and r, depending on the value of x. Consider a case where

the chance of your ticket being a winning ticket is significantly low (say 1/100), and thus

x = 1/100. In this case, the Brier rule says that s = (1/400, 99/400, 1/4, 1/2) is better

than r = (1/200, 99/200, 1/2, 0) at the world w—that is, BA
w(s) = −1.369 > −1.485 =

BA
w(r). (Here and below, ‘w’ refers to the world where H&X is true.) Consider another

case where the chance at issue is not significantly low (say 1/2), and thus x = 1/2—that

is, s = (1/8, 1/8, 1/4, 1/2) and r = (1/4, 1/4, 1/2, 0). In this case, the rule says, contrary to

the above case, that r is better than s at theworldw—that is,BA
w(r) = −0.875 > −1.094 =

BA
w(s). Moreover, with the help of a bit ofmathematics, we have thatBA

w(s) > BA
w(r)when

0 ≤ x < 0.152. TheBrier rule says that your credence functionmaybe epistemicallyworse

off than before if the true propositions are too informative.

30Suppose that s is updated to r in accordance with conditionalization on ¬B. Then, for any contingent
propositionX , r(H&X)/s(H&X) ≥ r(Y )/s(Y ) for any proposition Y in the partition at issue. Thus, if an
accuracymeasure satisfiesMonotonicityπ , then themeasure says, regardless of the informativeness at issue,
that r is at least as good as s at the world whereH&X is true.

31Here, I assume that X is probabilistically independent of H . Someone might think that the credence
function s is defined over the partition {H&X,H&¬X,D,B}, and therefore we cannot use s to formulate
the probabilisitic independence betweenH andX . However, there is no need to worry about this. We can
formulate the independence in question using some probabilistically coherent extensions of s, which are
defined over a σ-algebra that includesH andX as its members.
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This consideration seems to cast doubt on the plausibility of Monotonicityπ , and pro-

vide a reason to espouse Monotonicityδ rather than Monotonicityπ . How can the propo-

nents of Monotonicityπ like Fallis and Lewis cope with this problem? They may appeal to

a weak version of the law of likelihood, which can be formulated as follows.

Weak Law of Likelihood. Evidence E supports a hypothesis Hi at least as much as it

does another hypothesis Hj relative to a credence function s if s(E|Hi) ≥ s(E|Hj)

and s(¬E|¬Hi) ≥ s(¬E|¬Hj).

Note that the weak law of likelihood is free from the problem of irrelevant conjunction,

and so many Bayesians prefer this weak version to the original law.32

Can Fallis and Lewis’s arguments against accuracy-first epistemology still go through

when the Monotonicity Principle is reformulated by appealing to this weak law of likeli-

hood? Unfortunately, not. To see this, let me first assume that s is updated to r in accor-

dance with conditionalization when evidence E is obtained. Note also that s(¬E|¬Hi) ≥

s(¬E|¬Hj) if and only if s(¬Hi|E)/s(¬Hi) ≤ s(¬Hj|E)/s(¬Hj). So, we can say, with the

help of the weak law of likelihood, that E raises the credence in Hi at least as much as it

does the credence inHj if r(Hi)/s(Hi) ≥ r(Hj)/s(Hj) and r(¬Hi)/s(¬Hi) ≤ r(¬Hj)/s(¬Hj).

As mentioned, the law of likelihood and conditionalization jointly provide a rationale to

espouseMonotonicityπ . In a similar vein, it can be said that theweak law of likelihood and

conditionalization jointly undergird the following weak version of Monotonicityπ .

WeakMonotonicity. Suppose that s and r are credence functions over a finite partition

H. Then, it holds that Ak(s) ≤ Ak(r) if π
s,r
i ≤ πs,r

k and π̄s,r
k ≤ π̄s,r

i for any i.

Here, ‘π̄s,r
i ’ denotes r(¬Hi)/s(¬Hi).

Interestingly, Monotonicityδ also entails this weak version of Monotonicityπ , but the

converse does not hold.33 So, every accuracy rule that satisfies at least one of Monotonic-

ityπ and Monotonicityδ also satisfies Weak Monotonicity. (This is a reason why I name

this version ‘WeakMonotonicity’without attaching any superscript π and δ.) Then, it can
32For example, see Fitelson (2007) and Joyce (2021). The name ‘weak law of likelihood’ is borrowed from

Fitelson (2007). Joyce (2021) calls it the ‘weak likelihood principle’.
33A proof is given in Appendix II.
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be concluded, with the help of Table 1 in Section 3, that there are several additive rules,

including the additive Brier rule, that satisfy Weak Monotonicity.34

Moreover, it can be proved that all of the strictly proper rules of accuracy satisfy the

following weak version of Elimination, which corresponds to Weak Monotonicity.

Weak Elimination. Suppose that s and r are credence functions over a finite partitionH.

Then, it holds that Ak(s) < Ak(r) for any k (̸= n) if sn > 0 = rn, and si/sj = ri/rj

and (1− si)/(1− sj) = (1− ri)/(1− rj) for any i, j ( ̸= n).

Notably, the condition that si/sj = ri/rj and (1 − si)/(1 − sj) = (1 − ri)/(1 − rj) for any

i, j (̸= n) entails that si = sj for any i, j (̸= n). That is, the condition in question cannot

be met unless the credences in question are evenly distributed over all of the hypotheses

except forHn. And, it follows from this fact that all of the strictly proper rules satisfyWeak

Elimination.35

To sum up, conditionalization does not lead us to the ratio parameter andMonotonon-

icityπ when the weak version of the law of likelihood is assumed. Instead, conditionaliza-

tion and theweak law jointly lead us to espouseWeakMonotonicity andWeakElimination,

which undermine Fallis and Lewis’s criticisms about accuracy-first epistemology. In other

words, accuracy-firsters can rescue themselves from the criticisms by invoking the weak

law of likelihood.

5 Conclusions

The above considerations obviously suggest some ways out for accuracy-first epistemol-

ogy. We can address Fallis and Lewis’s criticisms by reformulating the condition for when

34How about the additive spherical ruleSA? Example A.2 in Appendix, which showsSA violates Mono-
tonicityδ , does not prove that the rule also violates Weak Monotonicity. This is because the credence func-
tions s and r in that example violate the condition that π̄s,rk ≤ π̄s,ri for any i. Similarly, Fallis and Lewis’s
example, which is used to show thatSA violates Monotonicityπ , cannot show thatSA violatesWeak Mono-
tonicity. (In that example, s = (1/7, 3/7, 3/7) and r = (1/4, 3/4, 0).) Admittedly, if it can be proved in this
paper whether SA satisfies Weak Monotonicity or not, my discussions will be more complete. However, I
will not prove such a thing. This is because it is proved here that Weak Elimination is satisfied by all of the
strictly proper accuracymeasures, and the conclusions in this paper do not depend onwhetherSA satisfies
Weak Monotonicity.

35Some proofs related to the discussion in this paragraph are given in Appendix II.
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evidence favors one hypothesis over another. The first reformulation is to use the differ-

ence parameter. The second reformulation is to appeal to theweak law of likelihood. Both

ways out lead us to the conclusion that some additive rules, including the Brier rule, sat-

isfy the Monotonicity Principle. In addition, the second way out makes us conclude that

all of the strictly proper rules satisfy Elimination. In light of these considerations, we can

say that it is somewhat hasty to conclude that the Brier rule is not a goodmeasure of epis-

temic utility (Fallis and Lewis, 2016), and that Accuracy-firsters cannot underwrite both

probabilism and conditionalization (Lewis and Fallis, 2021). Fallis and Lewis’s criticisms

can hardly be taken as serious threats to accuracy-firsters until it is explained why Mono-

tonicityπ , rather thanMonotonicityδ and/orWeakMonotonicity, should be expoused even

if Monotonicityπ suffers from a problem similar to what is known as the problem of irrel-

evant conjunction.

Appendix I: Proofs of the Results in Table 1

‘OK’ in Table 1means that the corresponding accuracymeasure satisfies the relevant ver-

sion of the Monotonicty Principle. On the other hand, ‘NG’ in the table means that the

correspondingmeasure violates the principle in question. Some proofs have already been

provided in Fallis and Lewis’s papers of 2016 and 2021. In particular, they have proved

what measure of the aforementioned accuracy measures satisfy Monotonicityπ . However,

they have not demonstrated the results related to Monotonicityδ . In what follows, I will

provide such proofs. In particular, I will use some concrete examples to show NGs, and

give somemathematical proofs of OKs. All credence functions inwhat follows are assumed

to be coherent and defined over a partition H = {H1, · · · , Hn}.

Examples showing NGs

The following examples show that neitherSS (Example A1) norSA (Example A2) satisfies

Monotonicityδ .
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Example A1. Suppose that s = (0.7, 0.2, 0.1) and r = (0.75, 0.25, 0). Then, δs,r1 = δs,r2 =

0.05 and δs,r3 = −0.1. So, δs,r1 ≥ δs,ri for any i. However, SS
1 (s) = 0.953 > 0.949 =

SS
1 (r).

Example A2. Suppose that s = (0.15, 0.35, 0.35, 0.15) and r = (0.2, 0.4, 0.4, 0). Then,

δs,r1 = δs,r2 = δs,r3 = 0.05, and δs,r4 = −0.15 and so δs,r1 ≥ δs,ri for any i. However,

SA
1 (s) = 2.920 > 2.907 = SA

1 (r).

A proof thatBS andBA satisfy Monotonicityδ

Suppose that the antecedent of Monotonicityδ—that is, rk − sk = δk ≥ δi = ri − si for any

i. (Here I use δi rather than δs,ri , for the sake of notational simplicity.) Then, it holds that:

BS
k (r) = 2rk −

∑
i

(ri)
2

= 2(sk + δk)−
∑
i

(si + δi)
2

=

(
2sk −

∑
i

s2i

)
+

(
δk −

∑
i

δi(δi + si)

)
+

(
δk −

∑
i

δisi

)

= BS
k (s) +

(
δk −

∑
i

δiri

)
+

(
δk −

∑
i

δisi

)
.

Note that
∑

i ri =
∑

i si = 1 and δk ≥ δi for any i. Thus, it holds that δk =
∑

i δkri ≥
∑

i δiri

and δk =
∑

i δksi ≥
∑

i δisi, which implies that BS
k (r) ≥ BS

k (s). Hence, BS satisfies

Monotonicityδ . As explained,BS is ordinally equivalent toBA, and therefore we can also

conclude thatBA satisfies Monotonicityδ . □

A proof that LS and LA satisfy Monotonicityδ

It is very straightforward that LS satisfies Monotonicityδ . Suppose that δs,ri ≤ δs,rk for any

i. Then, it holds that rk − sk > 0, and so LS
k (r) = ln rk > ln sk = LS

k (s), as Monotonicityδ

requires. However, it is not easy to show that LA satisfies Monotonicityδ . In what follows,

I will prove this, and provide some relevant examples.
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For this purpose, I will show that:

δs,rn ≤ 0 ≤ δs,rn−1 ≤ · · · ≤ δs,r2 ≤ δs,r1 (*)

entails that LA
1 (s) ≤ LA

1 (r). Note that
∑

i δ
s,r
i = 0 since r is coherent. Then, it should hold

that, if some δs,rs are positive, then some other δs,rs should be negative. In this regard, (*)

says that at most one δs,ri has a negative value. However, this assumption does not damage

the generality of the proof that follows. This is because a similar proof, mutatis mutan-

dis, can be provided for cases where two or more δs,ri s are negative. (Below, I will explain

this using Example A7.) Moreover, it is also noteworthy that (*) assumes that δs,ri s are

weakly decreasing—that is, δs,ri+1 ≤ δs,ri for any i = 1, · · · , n− 1. However, this assumption

does not undermine the generality of my proof, either. This is because any two credence

function s and r, whose δs,ri s are not weakly decreasing, can be transformed into two func-

tions s′ and r′, respectively, so that δs
′,r′

i s are weakly decreasing, without any change in

their epistemic utilities. Suppose, for instance, that s = (0.10, 0.30, 0.20, 0.40) and r =

(0.15, 0.30, 0.25, 0.30). Note that δs,r3 = 0.05 > 0 = δs,r2 and so δs,ri s are not weakly decreas-

ing. However, when s and r, respectively, are transformed into s′ = (0.10, 0.20, 0.30, 0.40)

and r′ = (0.15, 0.3, 0.25, 0.30), δs
′,r′

i s become weakly decreasing while LA
1 (s) = LA

1 (s
′) and

LA
1 (r) = LA

1 (r
′). It can be said, as a result, that (*) does not undermine the generality of

my proof.

Anyway, I will prove in what follows that (*) entails that LA
1 (s) ≤ LA

1 (r). In particular,

I will suggest a way of constructing a sequence of s1, · · · , sn−2 such that

LA
1 (s) ≤ LA

1 (s1) ≤ · · · ≤ LA
1 (sn−2) ≤ LA

1 (r), (**)

under the assumption of (*).

Let me begin with proving the following lemma.

Lemma A3. Suppose that c = (c1, · · · , cn) is a coherent credence function such that c1 > 0
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and ci < 1 for any i ̸= 1. Then,

1

c1
−

k∑
i=2

1

1− ci
+ k > 0,

where k = 2, · · · , n.

Proof. Suppose that c is coherent, and that c1 > 0, and ci < 1 for any i ̸= 1. Then,

we have that:

1

c1
= 1 + (1− c1) + (1− c1)

2 + · · · =
∞∑
j=0

(1− c1)
j ; and

1

1− ci
= 1 + (ci) + (ci)

2 + · · · =
∞∑
j=0

(ci)
j , for any i ̸= 1.

Moreover, it holds that (1− c1)
j = (

∑n
i=2 ci)

j ≥
∑k

i=2 (ci)
j for any natural number

j. Then, it follows from the above mathematical facts that

k∑
i=2

1

1− ci
=

k∑
i=2

∞∑
j=0

(ci)
j =

∞∑
j=0

k∑
i=2

(ci)
j =

k∑
i=2

(ci)
0 +

∞∑
j=1

k∑
i=2

(ci)
j

≤ (k − 1) +
∞∑
j=1

(1− c1)
j = (k − 1) +

1− c1
c1

< k +
1

c1
,

as required.

Now, Iwill suggest a particularway of constructing a credence function that is epistem-

ically better relative to LA than s at the world where H1 is true. The credence functions

so constructed will consist of s1, · · · , sn−2 satisfying (**) under the assumption of (*). The

following Theorem A4, which can be proved with help of Lemma A3, specifies such a way.

Theorem A4. Suppose that s = (s1, · · · , sn) is a coherent credence function. Let’s define

a credence function sx,k as follows:

sx,k = (s1 + x, · · · , sk + x, sk+1, · · · , sn−1, sn − kx),
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where x is a real number, and k is a natural number such that 1 ≤ k ≤ n − 1 and

0 ≤ x ≤ sn/k. Then, LA
1 (s) ≤ LA

1 (sx,k) for any x ∈ [0, sn/k].

Proof. It is not hard to find that this theorem is truewhen s ismaximally opinionated

—that is, si = 1 for some i. On the one hand, when si = 1 for some i < n, x should

be zero and so the theorem is trivially true. On the other hand, when sn = 1, it holds

that LA
1 (s) = ln 0 +

∑n−1
i=2 ln(1 − 0) + ln (1− 1) = −∞, and so the theorem is true.

Moreover, the theorem is also trivially true when sn = 0.

Now, consider the cases in which s is not maximally opinionated and sn ̸= 0.

Note that LA
1 (sx,k) can be regarded as a function of x. Let f be such a function. That

is,

f(x) = ln (s1 + x) +
k∑

i=2

ln (1− si − x) +
n−1∑

i=k+1

ln (1− si) + ln (1− sn + kx) .

This function is continuous and continuously differentiable on [0, sn/k]. Then, we

obtain the following equations:

f ′(x) =
1

s1 + x
−

k∑
i=2

1

1− si − x
+

k

1− sn + kx
.

f ′′(x) = − 1

(s1 + x)2
−

k∑
i=2

1

(1− si − x)2
− k2

(1− si + kx)2
.

Note that f ′′(x) < 0 for any x ∈ [0, sn/k], and so f ′(x) is a decreasing function of

x ∈ [0, sn/k]. So, if

f ′(sn/k) =
1

s1 + sn/k
−

k∑
i=2

1

1− si − sn/k
+ k ≥ 0, (†)

then it is guaranteed that f(x) is an increasing function of x ∈ [0, sn/k], and hence

that, for any x ∈ [0, sn/k], f(0) = LA
1 (s) ≤ LA

1 (sx,k) = f(x), which is the conclusion

that we want to reach.

To prove (†), let me first define another credence function c = (c1, · · · , cn), as
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follows:

ci =


si + sn/k if 1 ≤ i ≤ k;

si if k < i ≤ n− 1;

0 if i = n.

Note that c is coherent, and that c1 > 0 and ci < 1 for any i ̸= 1. (Recall that we

assume that s is not maximally opinionated. So, si < 1 for any i.) Then, we obtain,

with the help of Lemma A3, that:

f ′(sn/k) =
1

s1 + sn/k
−

k∑
i=2

1

1− si − sn/k
+ k.

=
1

c1
−

k∑
i=2

1

1− ci
+ k > 0,

where k = 2, · · · , n − 1. Hence, it can be said that, when k = 2, · · · , n − 1, the

decreasing function f ′ on [0, sn/k] has a positive minimum value, and so f(x)—

i.e., LA
1 (sx,k)—is an increasing function of x ∈ [0, sn/k]. Therefore, we have that

LA
1 (sx,k) ≥ LA

1 (s) for any x ∈ [0, sn/k]when k = 2, · · · , n− 1.

What about the case in which k = 1? It is easy to find that LA
1 (sx,1) ≥ LA

1 (s)

for any x ∈ [0, sn]. What is called ‘Truth-directedness’ entails that sx,1 = (s1 +

x, s2, · · · , sn−1, sn − x) is epistemically better than s = (s1, s2, · · · , sn−1, sn) at the

world where H1 is true. Note that, while sx,1 is closer to the truth hypothesis H1

than s, sx,1 is not closer to any false hypotheses than s. As a result, we have that

LA
1 (sx,k) ≥ LA

1 (s) for any x ∈ [0, sn/k]when k = 1, · · · , n− 1, as required.

Using this theorem, we can prove our main result—that is, LA satisfies Monotonicityδ .

For the proof, it may be helpful to consider a concrete example.

Example A5. Suppose that s = (0.10, 0.20, 0.30, 0.40) and r = (0.25, 0.30, 0.33, 0.12).

Note that 0 ≤ δs,ri ≤ δs,r1 for any i < 4, and δs,r4 < 0. Regarding these functions, we
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can provide two other credence functions s1 and s2, as follows:

s = (0.10, 0.20, 0.30, 0.40)

s1 = s0.03,3 = (0.13, 0.23, 0.33, 0.31)

s2 = s10.07,2 = (0.20, 0.30, 0.33, 0.17)

s3 = s20.05,1 = (0.25, 0.30, 0.33, 0.12) = r

Here, a credence function six,k is generated from the corresponding credence func-

tion si in accordance with the definition in Theorem A2. Then, it can be said, with

the help of the theorem, that LA
1 (s) ≤ LA

1 (s
1) ≤ LA

1 (s
2) ≤ LA

1 (r), as required by

Monotonicityδ .

In a similar way to this example, we can prove the main result, which is formulated as

follow.

Theorem A6. Suppose that s = (s1, · · · , sn) and r = (r1, · · · , rn) are coherent credence

functions. Suppose also that δs,rn ≤ 0 ≤ δs,rn−1 ≤ · · · ≤ δs,r2 ≤ δs,r1 . Then, LA
1 (s) ≤

LA
1(r).

Proof. I will use ‘δi’ instead of δs,ri ’ for notational simplicity. Suppose that two cre-

dence functions s and r satisfy all assumptions of this theorem. Let’s define recur-

sively a credence function si, as follows:

• s1 = sδn−1,n−1;

• si+1 = siδn−i−1−δn−i,n−i−1 for i = 1, · · · , n− 2.

Here, six,k is generated from the corresponding credence function si in accordance

with the definition in Theorem A4. Then, it follows from Theorem A4 that:

LA
1 (s) ≤ LA

1 (s
1) ≤ · · · ≤ LA

1 (s
n−2) ≤ LA

1 (s
n−1). (‡)
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Here, it can also be shown that sn−1 = r. In particular, it holds that: for any i,

sn−1(Hi) = sn−1
i = · · · = sn−i

i = (δi − δi+1) + sn−i−1
i

= (δi − δi+1) + (δi+1 − δi+2) + sn−i−2
i

= · · ·

= (δi − δi+1) + (δi+1 − δi+2) + · · ·+ (δn−2 − δn−1) + s1i

= (δi − δi+1) + (δi+1 − δi+2) + · · ·+ (δn−2 − δn−1) + δn−1 + si

= δi + si = ri = r(Hi).

To understand, it may be useful to pay attention to the underlined numbers in Ex-

ample A5, where n = 4 and it holds, for instance, that:

s3(H2) = s32 = s22 = (δ2 − δ3) + s12

= (δ2 − δ3) + δ3 + s3 = (0.10− 0.03) + 0.03 + 0.20

= 0.10 + 0.20 = δ2 + s2 = r2 = r(H2)

Therefore, we obtain that sn−1 = r, and so it follows from (‡) that LA
1 (s) ≤ LA

1 (r), as

required.

Asmentioned, TheoremA6 assumes that there is atmost one δs,ri that has a negative value.

As shown in the following example, however, this assumption does not undermine the

generality of Theorem A6 and its proof.

Example A7. Suppose that s = (0.10, 0.20, 0.30, 0.40) and r = (0.40, 0.30, 0.20, 0.10).

Note that there are two negative δs,ri s—that is, δs,r3 = −0.1 and δs,r4 = −0.3. Be

that as it may, we can provide two credence functions s1 and s2 such that LA
1 (s) ≤

LA
1 (s

1) ≤ LA
1 (s

2) ≤ LA
1 (r), as follows:

s1 = s0.10,2 = (0.20, 0.30, 0.30, 0.20)

s2 = s10.10,1 = (0.30, 0.30, 0.30, 0.10).
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Note first that Theorem A4 ensures that LA
1 (s) ≤ LA

1 (s
1) ≤ LA

1 (s
2). Now, consider

the following two credence functions:

s2∗ = (0.30, 0.30, 0.10, 0.30)

s3∗ = s2∗0.10,1 = (0.40, 0.30, 0.10, 0.20).

Here, s2∗ is the credence function generated from s2 by switching s23(= 0.30) with

s24(= 0.10). According to Theorem A4, it holds that LA
1 (s

2∗) ≤ LA
1 (s

3∗). On the other

hand, the definition of the additive Logarithmic rule entails that LA
1 (s

2) = LA
1 (s

2∗)

and LA
1 (s

3∗) = LA
1 (r). Therefore, we have that L

A
1 (s

2) ≤ LA
1 (r).

This example clearly shows that there is away of proving, without the assumption in ques-

tion, thatSA satisfies Monotonicityδ .

Appendix II: Proofs RegardingWeak Monotonicity and

Weak Elimination

In this appendix, I will prove some propositions that are relevant to the discussions in Sec-

tion 4. Especially, it is demonstrated here that Monotonicityδ entails Weak Monotonicity,

and that all of the strictly proper accuracy measures satisfy Weak Elimination.

A proof that Monotonicityδ entails Weak Monotonicity

Suppose that s and r are coherent credence functions over a partition H = {H1, · · · , Hn}.

For our purpose, it is sufficient to prove that: for any i,

πs,r
i = ri/si ≤ rk/sk = πs,r

k , and (a)

π̄s,r
k = (1− rk)/(1− sk) ≤ (1− ri)/(1− si) = π̄s,r

i (b)
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entails δs,rk ≥ δs,ri . Note that (b) entails that:

sk − rk ≥ si − ri + (rksi − risk).

Thus, we have that sk − rk = δs,rk ≥ δs,ri = si − ri since (a) says that rksi − risk ≥ 0.

This reasoning holds for any i. Therefore, it can be concluded that Monotonicityδ entails

Weak Monotonicity. On the other hand, if at least one of (a) and (b) does not follow from

the condition that δs,r1 ≥ δs,ri for any i, then it can be said that the converse does not hold.

Suppose that s = (0.7, 0.2, 0.1) and r = (0.75, 0.25, 0). Then, we obtain that δs,r1 ≥ δs,ri , for

any i. However, we have that πs,r
1 = 15/14 < 5/4 = πs,r

i —that is, (a) does not hold. Hence,

we can conclude that the converse in question does not hold. □

A proof that the strictly proper accuracy measures satisfy Weak

Elimination

Suppose that s and r are coherent credence functions over a partition H = {H1, · · · , Hn}.

Suppose also that sn > 0 = rn, and

si/sj = ri/rj; and (1)

(1− si)/(1− sj) = (1− ri)/(1− rj) (2)

for any i, j (̸= n). It is the case that n > 2. If not, r cannot be coherent. Similarly, it cannot

be the case that ri = 0 for any i( ̸= n), since r is coherent. Note that (1) entails that there is

a real number π such that ri = πsi for any i( ̸= n). Similarly, it follows from (2) that there

is a real number π̄ such that (1− ri) = π̄(1− si) for any i( ̸= 1). And, these consequences

entail that si = (1 − π̄)/(1 − π) for any i( ̸= n). As a result, we have that si = sj for any

i, j (̸= n), which says that the old credences are evenly distributed over the hypotheses,

except for the hypothesisHn.

Suppose now that A is a strictly proper accuracy measure. From the above result, it

follows that there is a real number r such that ri = r for any i( ̸= n). This is because
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ri = πsi for any i( ̸= n), and si = sj for any i, j (≠ n). As a result, it holds thatAi(s) = Aj(s)

and Ai(r) = Aj(r) for any i and j (̸= n). Therefore, we have that: for any k( ̸= n),

∑
i

riAi(r) =
∑
i ̸=n

riAi(r) + rnAn(r) = (n− 1)rAk(r) + 0 · An(r) = (n− 1)rAk(r);

∑
i

riAi(s) =
∑
i ̸=n

riAi(s) + rnAn(s) = (n− 1)rAk(s) + 0 · An(s) = (n− 1)rAk(s).

As assumed, A is strictly proper. Hence, we have that: for any k( ̸= n),

(n− 1)rAk(r) =
∑
i

riAi(r) >
∑
i

riAi(s) = (n− 1)rAk(s).

As mentioned, n ̸= 1 and r ̸= 0. Therefore, we obtain that Ak(s) < Ak(r) for any k( ̸= n).

□
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