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Abstract	
It	 is	 often	 claimed	 that	 one	 can	 avoid	 the	 kind	 of	 underdetermination	 that	 is	 a	 typical	
consequence	of	symmetries	in	physics	by	stipulating	that	symmetry-related	models	represent	
the	same	state	of	affairs	(Leibniz	Equivalence).	But	recent	commentators	(Dasgupta	2011;	Pooley	
2021;	Pooley	and	Read	2021;	Teitel	2021a)	have	responded	that	claims	about	the	representational	
capacities	of	models	are	irrelevant	to	the	issue	of	underdetermination,	which	concerns	possible	
worlds	themselves.	In	this	paper	I	distinguish	two	versions	of	this	objection:	(1)	that	a	theory’s	
formalism	does	not	(fully)	determine	the	space	of	physical	possibilities,	and	(2)	that	the	relevant	
notion	of	possibility	is	not	physical	possibility.	I	offer	a	refutation	of	each.	
	
1   Introduction 
It	is	often	thought	that	the	presence	of	symmetries	in	physical	theories	entails	an	undesirable	
form	of	underdetermination,	as	well	as,	in	certain	cases,	indeterminism.	In	brief,	let	the	space	
of	models	of	a	theory	consist	of	mathematical	structures	that	are	used	to	represent	ways	the	
world	 could	 have	 been	 if	 the	 theory	 were	 true.1	 The	 symmetries	 of	 a	 theory	 are	 certain	
transformations	that	preserve	the	space	of	models:	if	M	and	M¢	are	related	by	a	symmetry,	then	
M	is	a	model	of	the	theory	iff	M¢	is.2	In	many	cases,	symmetry-related	models	are	empirically	
equivalent.	 This	 is	 the	 case	 for	 the	 spacetime	 symmetries	 of	 both	 classical	 mechanics	 and	
general	 relativity,	 as	 well	 as	 for	 gauge	 symmetries.	 Consequently,	 theories	 that	 display	
symmetries	seem	to	exhibit	a	form	of	underdetermination:	for	each	physically	possible	world,	
there	exist	distinct	yet	empirically	equivalent	physically	possible	worlds	(Fig.	1).	
	

	
Figure 1. M represents a theory’s space of models; W represents the set of possible worlds, and P the subset of physically 
possible worlds. The curved line within M represents an orbit of symmetry-related models, and the curved line within P 

 
* Institute for Philosophy, Leiden University, Nonnensteeg 1-3, 2311 BE, Leiden, The Netherlands 
1 I here adopt what Wallace (2019a) calls the ‘Cosmological Assumption’: that a theory’s models represent states of the 
entire universe. A similar problem occurs for Wallace’s subsystem-local symmetries, so one could rephrase the argument of 
this paper in terms of them instead. 
2 This is only a necessary condition on symmetries. To develop a complete definition, one would have to specify which 
transformations are relevant. This lies beyond the scope of this paper; for two very different attempts, see Dasgupta (2016) 
and Wallace (2019b). 
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likewise represents an orbit of empirically equivalent worlds. When the map from models to worlds is one-to-one, 
underdetermination ensues. 

The	standard	solution	to	this	problem	is	to	endorse	a	principle	known	as	Leibniz	Equivalence.3	
Firstly,	define	a	representational	convention	as	a	function	from	the	theory’s	space	of	models	to	
the	 possible	worlds.	 The	 range	 of	 this	map	 is	 the	 set	 of	physically	 possible	worlds.	 Leibniz	
Equivalence	is	then	formulated	as	follows:	
	

Leibniz	 Equivalence.	 If	 models	 M	 and	 M¢	 are	 symmetry-related,	 then	 under	 any	
representational	convention	C	they	represent	the	same	possible	world	W.	
	

If	M	 and	M¢	merely	 represent	 “the	 same	 state	 of	 affairs	 differently	 described”	 (Greaves	 and	
Wallace	 2014),	 then	 the	presence	of	 symmetries	does	not	 entail	 the	 existence	of	 empirically	
equivalent	physically	possible	worlds:	underdetermination	is	averted	(Fig.	2).		
	

	
Figure 2. Here, the map from models to worlds is many-to-one: models within an orbit represent the same world from a 
‘reduced’ space of physical possibilities. There is no underdetermination. 

Leibniz	Equivalence	is	not	intended	as	an	a	priori	claim	about	the	representational	capacities	of	
symmetry-related	models.	Many	advocates	of	Leibniz	Equivalence	admit	that	such	models	could	
represent	distinct	worlds.	Rather,	Leibniz	Equivalence	amounts	to	the	stipulation	that	one	will	
use	symmetry-related	models	to	represent	the	same	possible	world.4	
	
That	is	how	the	story	is	usually	told.	But	these	days,	it	is	fashionable	to	deny	that	talk	of	models	
is	relevant	to	the	problem	of	underdetermination	(Dasgupta	2011;	Pooley	2021;	Pooley	and	Read	
2021,	Teitel	2021a).	The	objection	is	that	Leibniz	Equivalence	is	merely	a	thesis	about	the	way	
we	use	models	to	represent	possibilities,	not	one	about	possibilities	themselves.	On	the	other	
hand,	the	underdetermination	problem	does	concern	possibilities.	So,	theses	such	as	Leibniz	
Equivalence	cannot	bear	on	underdetermination.	We	are	free	to	use	a	theory’s	models	however	
we	please:	they	could	represent	physical	possibilities,	but	also	the	streets	of	Paris.	In	Dasgupta’s	
(2011,	134)	rousing	words:	“models	are	our	tools	not	our	masters”.	

 
3 Leibniz Equivalence is professed, in one form or another, by Saunders (2003), Baker (2010), and Greaves and Wallace 
(2014). For recent discussions of the principle, see Roberts (2020) and Jacobs (2021). Notice that Roberts’ definition of 
Leibniz Equivalence is different from mine, since it concerns isomorphic models. These definitions coincide when a theory’s 
symmetries are isomorphisms, as is the case for general relativity. There is a distinct literature on the representational 
capacities of isomorphic models: cf. Weatherall (2018), Fletcher (2020) and Pooley and Read (2021). 
4 I will address the question of whether such a stipulation is always warranted in Section 4. 
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Figure 3. As before, the models on an orbit represent the same physically possible world. But in addition, there are 
empirically equivalent physically possible worlds not represented by any of the theory’s models: underdetermination looms. 

This	 objection	 can	be	 sharpened	 in	 two	ways.	On	 the	one	hand,	 the	point	may	be	 that	 the	
formalism	of	a	theory	tells	us	little	about	what	is	physically	possible.	This	can	happen	if	one	
does	not	believe	that	each	physically	possible	world	is	represented	by	some	model	of	the	theory.	
It	 then	 follows	 that	 Leibniz	Equivalence	does	not	 constrain	 the	 space	 of	 physically	 possible	
worlds:	 the	 existence	 of	 empirically	 equivalent	 (yet	 numerically	 distinct)	 physically	 possible	
worlds	is	consistent	with	Leibniz	Equivalence	(Fig.	3).	For	example,	Leibniz	Equivalence	implies	
that	boost-related	models	represent	the	same	physically	possible	world.	But	this	does	not	rule	
out	that	those	models	all	represent	a	world	in	which	the	universe	is	at	absolute	rest,	while	there	
is	another	physically	possible	world	in	which	the	centre	of	mass	is	in	motion	not	represented	by	
any	 of	 the	 theory’s	 models.	 Since	 absolute	 velocity	 remains	 unobservable	 in	 this	 scenario,	
Leibniz	Equivalence	has	not	prevented	underdetermination.			
	
Both	Dasgupta	(2011)	and	Pooley	(2021)	can	be	read	as	making	this	point:	
	

For	a	substantivalist	might	grant	that	there	are	distinct	[symmetry-related]	worlds	W	
and	d(W)	but	simply	deny	that	they	are	represented	by	[symmetry-related	models]	M	
and	d(M)	respectively.	(Dasgupta	2011,	126)	
	
Premise	(1)	[that	symmetry-related	models	represent	distinct	possibilities]	is,	therefore,	
best	thought	of	as	the	combination	of	two	theses:	one	about	the	plurality	of	possibilities		
[…];	 and	 another	 about	 how	 particular	 mathematical	 objects	 represent	 those	
possibilities.	Ultimately,	it	is	only	the	first	thesis	that	does	essential	work	[…].	(Pooley	
2021,	149)	

	
Dasgupta	 and	 Pooley	 seem	 to	 suggest	 that	 a	 theory’s	models	 need	 not	 represent	 all	 of	 the	
theory’s	physically	possible	worlds.	It	follows	that	a	constraint	on	the	representational	capacities	
of	models	need	not	entail	a	restriction	on	the	space	of	physically	possible	worlds.	Teitel’s	(2021a)	
objection,	discussed	below,	also	has	this	flavour.	These	authors	seem	to	hold	a	relatively	loose	
view	of	the	connection	between	models	and	possibilities,	on	which	facts	about	the	latter	are	
significantly	independent	from	considerations	of	the	former.	In	Section	2,	I	will	argue	that	this	
view	is	mistaken.	
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On	the	other	hand,	it	is	unclear	from	the	context	whether	‘possibility’	here	refers	to	physical	
possibility	or	some	broader	notion—call	it	metaphysical	possibility.	Read	in	this	latter	way,	one	
may	concede	that	one	can	read	off	physical	possibility	from	a	theory’s	formalism,	yet	deny	that	
it	is	this	form	of	possibility	that	is	relevant	to	the	underdetermination	problem.	On	this	view	
there	is	a	threat	of	underdetermination	as	soon	as	there	are	symmetry-related	possible	worlds,	
even	if	some	of	those	worlds	are	unphysical	(Fig.	4).5	This	is	perhaps	better	understood	as	a	case	
of	underdetermination	of	theory	by	the	data,	rather	than	one	of	the	possible	world	within	a	
theory.	Nevertheless,	the	former	may	seem	equally	worrisome	as	the	latter.	In	Section	3,	I	will	
argue	that	it	is	not.	
	

	
Figure 4. The models within an orbit represent a unique physically possible world; there are no empirically equivalent 
physically possible worlds. But there are empirically equivalent possible worlds that are not physical. Is this a case of 
underdetermination? 

Finally,	 in	 Section	 4,	 I	 discuss	 the	 broader	 lessons	 for	 the	metaphysical	 interpretation	 of	 a	
theory’s	symmetry-related	models,	namely	that	Leibniz	Equivalence	 imposes	a	restriction	on	
the	metaphysical	picture	they	present.	
	
2   Interpretation and Representation 
There	is	one	sense	in	which	it	is	true	that	a	theory’s	models	are	wholly	uninformative	of	physical	
possibility,	namely	that	they	need	not	represent	physical	possibilities	at	all.	While	it	is	perhaps	
not	 fully	 true	 that	 we	 can	 use	 any	 model	 to	 represent	 “just	 about	 any	 physical	 situation	
whatsoever”	 (Teitel	 2021b,	 4137),	 Putnam’s	 infamous	 paradox	 suggests	 that	 any	model	 may	
represent	any	possibility	up	to	cardinality.	The	models	of	classical	mechanics,	for	instance,	can	
be	used	 to	 represent	worlds	 in	which	classical	mechanics	 is	 true,	but	also	 the	history	of	 the	
Dutch	Republic	1588-1795.	The	consequence	is	that	a	thesis	such	as	Leibniz	Equivalence	cannot	
constrain	 the	 space	 of	 physically	 possible	 worlds.	 Leibniz	 Equivalence	 says	 that	 symmetry-
related	models	represent	the	same	state	of	affairs,	but	if	they	are	used	to	represent	Dutch	history	
this	has	little	to	bear	on	what	is	physically	possible.	
	
However,	 this	 sense	 in	 which	 models	 are	 uninformative	 is	 also	 quite	 anodyne.	 The	
interpretation	of	physical	theories	does	not	proceed	in	isolation,	but	against	the	backdrop	of	
certain	plausible	principles.	It	is	perhaps	a	philosophically	worthwhile	exercise	to	consider	the	

 
5 Isn’t it definitional of symmetries that they preserve satisfaction of the laws? Not necessarily: Dasgupta (2021) discusses 
so-called ‘empirical symmetries’ that relate worlds with distinct yet empirically equivalent laws. For the sake of argument I 
am happy to accept this broader notion of symmetries. 
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representational	capacities	of	models	stripped	from	any	context.	For	example,	Teitel	(2021a,	9)	
argues	that	on	certain	representational	conventions	(we	will	see	an	example	below),	Leibniz	
Equivalence	 is	 moot:	 “these	 representational	 conventions	 may	 not	 be	 our	 own,	 but	 their	
coherence	is	all	we	need	to	bring	out	the	conceptual	rift	between	[Leibniz	Equivalence]	and	the	
target	 desideratum	 of	 no-shifts	 itself”.	 But	 the	 internal	 coherence	 of	 these	 conventions	 is	
insufficient.	If	it	is	the	interpretation	of	physical	theories	that	interests	us,	we	should	consider	
representational	conventions	that	are	consistent	with	the	practice	of	interpretation.	If	they	are	
not,	then	their	existence	is	unlikely	to	move	interpreters	of	physical	theories.	
	
The	question	thus	becomes:	given	certain	reasonable	constraints	on	theory	interpretation,	does	
Leibniz	Equivalence	entail	that	there	are	no	empirically	equivalent	physically	possible	worlds?	
The	remainder	of	this	section	defends	an	affirmative	answer	to	that	question.	
	
2.1 The Standard Account of Interpretation 
To	answer	the	question	we	have	to	know	the	relevant	constraints.	Consider	what	Ruetsche	(2011,	
7)	calls	 the	 ‘Standard	Account’	of	 interpretation:	 “to	 interpret	a	 theory	 is	 to	characterize	the	
worlds	 possible	 according	 to	 it”.	 The	 idea,	 Ruetsche	 explains,	 is	 that	 one	 can	 identify	 a	
proposition	with	the	set	of	possible	worlds	 in	which	 it	 is	 true.	The	content	of	a	 theory	 then	
consists	of	the	possible	worlds	in	which	the	theory’s	propositions—the	laws—are	true.	But	the	
Standard	Account	is	not	wedded	to	this	account	of	propositions;	 it	only	requires	the	weaker	
thought	that	to	understand	a	theory	is	to	know	“what	the	world	would	be	like	if	the	theory	were	
true”	(Earman	2004,	1234).	I	will	assume	the	Standard	Account	here.6	This	account	constrains	
the	 practice	 of	 theory	 interpretation	 because	 it	 provides	 a	 particular	 account	 of	 what	
interpretation	is.	
	
In	more	detail,	I	take	the	following	pair	of	principles	to	capture	the	Standard	Account:	
	

Soundness.	For	any	reasonable	representational	convention	C:	if	M	is	a	model	of	theory	
T,	then	M	represents	a	world	W	that	is	physically	possible	according	to	T	under	C.	

	
Completeness.	For	any	reasonable	representational	convention	C:	if	W	is	a	world	that	
is	physically	possible	according	to	T,	then	there	is	a	model	M	of	T	that	represents	W	
under	C.	
	

These	 principles	 implicitly	 define	 what	 it	 is	 for	 a	 representational	 convention	 to	 count	 as	
‘reasonable’.	
	
Soundness	and	Completeness	allow	one	to	infer	physical	possibilities	from	theoretical	models	
and	vice	versa.	Soundness	simply	says	that	the	models	of	a	theory	are	 intended	to	represent	
physically	possible	worlds,	rather	than,	say,	Dutch	history.	This	is	just	what	it	means	to	interpret	
a	theory’s	formalism	as	a	physical	theory.	Completeness	says	that	any	physically	possible	world	
is	indeed	represented	by	one	of	the	theory’s	models.	If	this	weren’t	the	case,	the	interpretation	
would	be	incomplete:	it	would	not	specify	the	theory’s	full	content	(by	some	prior	standard	of	
what	that	content	is,	such	as	consistency	with	experimental	evidence).	
	

 
6 The Standard Account has recently come under attack from Ruetsche (2011), Williams (2019) and Wallace (2021a). 
Ruetsche believes that interpretation should take into account ‘pragmatic’ factors; Williams argues that it should take into 
account inter-theoretic relations; and Wallace claims that theories chiefly represent subsystems of the universe. Yet these 
criticisms are consistent with the core idea that to interpret a theory is to characterise a set of possible worlds (or perhaps, 
in the case of Wallace, parts of possible worlds). Indeed, Ruetsche explicitly states that she is “not ready to give up” on this 
feature of the Standard Account. For an articulate defence of the Standard Account, see Belot (1998, §6). 
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Soundness	is	relatively	uncontroversial,	and	in	any	case	it	doesn’t	bear	on	the	present	debate.7	
But	Completeness	does,	as	I	will	discuss	now.	
 
2.2 Completeness & Leibniz Equivalence → No Underdetermination  
Given	 Completeness,	 Leibniz	 Equivalence	 entails	 that	 there	 are	 no	 empirically	 equivalent	
physically	possible	worlds	(the	situation	in	Fig.	2	rather	than	that	in	Fig.	3	obtains).	First,	fix	a	
representational	convention.	The	argument	proceeds	under	this	convention.	Then:	
	

1. If	W	and	W¢	are	physically	possible	worlds,	then	there	is	a	model	M	that	represents	W	
and	there	is	a	model	M¢	that	represents	W¢.	(Completeness)	

2. If	M	represents	W	and	M¢	represents	W¢,	then	if	W	and	W¢	are	empirically	equivalent	
then	M	and	M¢	are	symmetry-related.8	

3. If	M	represents	W	and	M¢	represents	W¢,	then	if	M	and	M¢	are	symmetry-related	then	
W=W¢.	(Leibniz	Equivalence)	

4. Therefore,	if	W	and	W¢	are	empirically	equivalent,	then	W=W¢.	
	
The	 argument	 is	 valid;	 and	 I	 have	 argued	 that	 Completeness	 is	 a	 reasonable	 interpretative	
principle.	 Therefore,	 Leibniz	 Equivalence	 entails	 that	 there	 is	 no	 problem	 of	
underdetermination.	
	
What	 has	 led	 the	 authors	 quoted	 in	 the	 introduction	 to	 reject	 the	 efficacy	 of	 Leibniz	
Equivalence?	 It	 is	now	clear	 that	Dasgupta’s	and	Pooley’s	claims	violate	Completeness.	Both	
believe	that	it	is	possible	for	a	theory’s	models	not	to	represent	all	physically	possible	worlds.	If	
that	is	the	case,	the	argument	fails:	it	would	only	establish	the	weaker	conclusion	that	of	the	
worlds	represented	by	the	theory’s	models	none	are	empirically	equivalent.	But	if	there	are	more	
physically	possible	worlds	than	that,	underdetermination	still	looms.	
	
The	rejection	of	Completeness	is	also	explicit	in	an	argument	from	Pooley	and	Read:9	
	

Suppose	that	C	is	a	class	of	[empirically	equivalent]	worlds—and	make	no	assumptions	
[…]	about	the	cardinality	of	C,	which	might	perhaps	contain	only	a	single	member.	Let	
M	and	M'	both	be	members	of	a	class	of	[symmetry-related]	spacetime	models	of	a	type	
and	particular	character	that	makes	them	apt	to	represent	members	of	C.	Someone	who	
embraces	 [Leibniz	 Equivalence]	 […]	 disavows	 being	 able	 to	 use	M	 and	M'	 to	 jointly	
describe	different	members	of	C	(if	different	members	there	are).	But	they	do	not	thereby	
save	 [the	 theory	 in	 question]	 from	 [underdetermination].	 If	 C	 really	 does	 contain	 a	
plurality	 of	 members	 […],	 then	 [the	 theory]	 […]	 does	 not	 distinguish	 between	 the	
possibilities	 even	 to	 the	 extent	 of	 not	 being	 able	 to	 refer	 differentially	 to	 them.	 It	
therefore	(implicitly)	regards	them	as	all	equally	possible,	which	is	just	to	say	that	[…]	
the	theory	is	[underdetermined].	(Pooley	and	Read	2021,	24)	

	
Pooley	and	Read	in	effect	assume	that	we	can	separately	consider	a	theory’s	physically	possible	
worlds,	C,	 and	 the	 class	of	worlds	 represented	by	 the	 theory’s	models.	Their	 argument	 then	
proceeds	from	the	claim	that	the	former	can	outstrip	the	latter,	so	that	Leibniz	Equivalence	has	

 
7 Soundness is not universally accepted. In particular, approaches that accept Butterfield’s (1989) ‘(One)’, such as Maudlin’s 
(1988) metric essentialism, are incompatible with Soundness. 
8 This assumes that only symmetry-related worlds are empirically equivalent; but one can restrict this premise and the 
conclusion to just those empirically equivalent worlds that are related in the relevant sort of way, for instance by a Galilean 
transformation. 
9 The scope of Pooley and Read (2021) is slightly narrower, as they only consider diffeomorphic models of general 
relativity. I have amended the quote to apply more generally. Even if Pooley and Read would not advocate these more 
general claims, however, they still reject Completeness in their treatment of general relativity in particular. 
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no	effect	on	which	worlds	are	members	of	C.	This	claim	clearly	violates	the	Standard	Account,	
since	Completeness	entails	that	if	the	models	of	a	theory	don’t	represent	some	world	in	C,	then	
C	is	not	the	class	of	physically	possible	worlds.		
	
Insofar	 as	 Completeness	 is	 one	 of	 the	 reasonable	 principles	 that	 guide	 the	 act	 of	 theory	
interpretation,	then,	Pooley	and	Read’s	argument	fails.	The	same	is	the	case	for	the	claims	from	
Dasgupta	and	Pooley	quoted	in	the	introduction.	Neither	Dasgupta,	nor	Pooley	or	Read	address	
Completeness	in	any	way.	I	have	argued	that	Completeness	is	part	and	parcel	of	the	Standard	
Account	 of	 theory	 interpretation,	 so	 bar	 any	 reason	 to	 depart	 from	 the	 standard	 on	 this	
particular	point	 the	 conclusion	 remains	 that	Leibniz	Equivalence	does	entail	 the	absence	of	
empirically	equivalent	physical	possibilities.	
	
I	 will	 now	 discuss	 two	ways	 in	which	 one	 could	 avoid	 this	 conclusion.	 Both	 are	 ultimately	
unsatisfactory.	
	
2.2.1	Reject	Completeness?	
The	easiest	way	out	is	to	reject	Completeness.	In	particular,	one	could	argue	that	the	universal	
quantification	 over	 representational	 conventions	 in	 Completeness	 is	 too	 strong,	 and	
accordingly	replace	it	with	an	existential	quantification.	This	yields:	
	

Weak	Completeness.	If	W	is	a	world	that	is	physically	possible	according	to	T,	then	
there	is	a	model	M	of	T	that	represents	W	under	some	representational	convention	C.	

	
According	to	Weak	Completeness,	it	is	possible	that	under	no	representational	convention	the	
models	 of	 a	 theory	 collectively	 represent	 all	 physically	 possible	 worlds.	 The	 full	 space	 of	
physically	 possible	worlds	 instead	 consists	 of	 the	worlds	 that	 are	 represented	by	 any	 of	 the	
theory’s	models	under	some	 representational	 convention.	Perhaps	under	one	 convention	an	
equivalence	class	of	symmetry-related	models	represents	a	certain	world,	and	under	a	different	
convention	it	represents	a	distinct	yet	empirically	equivalent	possible	world	(Fig.	5).	
	

	
Figure 5. The arrows of different types (unbroken, dashed, dotted) indicate different representational conventions. On each 
convention, models within an orbit represent the same possible world; but this world is different on different conventions.  

With	Completeness	so	weakened,	underdetermination	looms	once	more.	Although	no	pair	of	
symmetry-related	models	represents	distinct	yet	empirically	equivalent	possible	worlds	under	
the	same	representational	convention,	the	same	equivalence	class	of	symmetry-related	models	
may	 represent	 distinct	 yet	 empirically	 equivalent	 possible	 worlds	 under	 different	
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representational	conventions.	Since	Weak	Completeness	only	demands	that	physically	possible	
worlds	are	represented	by	the	theory’s	models	under	some	representational	convention,	all	of	
those	 worlds	 are	 physical.	 Leibniz	 Equivalence	 is	 nevertheless	 satisfied,	 hence	 it	 does	 not	
prevent	underdetermination.	
	
But	Weak	Completeness	is	a	questionable	principle	to	endorse.	It	implies	that	there	is	no	way	
to	 fix	 the	 referents	of	 the	 theory’s	names,	predicates	 and	 relations	 such	 that	 the	 theory	 can	
represent	all	physically	possible	worlds	‘at	once’.	It	is	impossible	to	simultaneously	represent	a	
pair	of	symmetry-related	worlds	without	changing	the	meaning	of	the	theory’s	terms	halfway	
through.	Put	differently,	there	is	no	way	to	describe	the	difference	between	these	worlds	within	
the	theory’s	language;	there	is	no	sentence	of	the	theory	which,	keeping	the	interpretation	fixed,	
is	true	of	one	world	but	false	of	the	other.10	In	such	a	situation,	it	is	more	natural	to	expand	the	
theory’s	expressive	resources	to	include	structure	that	distinguishes	between	such	worlds.	Once	
that	structure	is	added,	however,	the	models	in	question	are	not	symmetry-related	anymore,	
since	 the	additional	 structure	 is	 (by	 construction)	not	preserved	across	 them.	Therefore,	no	
symmetry-induced	problem	of	underdetermination	arises	in	this	case	either.	
	
I	emphasise	that	it	is	not	my	aim	to	prove	that	Completeness	is	absolutely	unassailable.	I	only	
defend	the	weaker	claim	that	Completeness	is	a	reasonable	principle	in	the	interpretation	of	
physical	theories,	whereas	Weak	Completeness	is	not.	This	is	borne	out	by	the	fact	that,	as	far	
as	I	am	aware,	no	one	has	ever	advocated	a	principle	like	Weak	Completeness.	This	is	sufficient	
for	Leibniz	Equivalence	to	solve	the	problem	of	underdetermination.	
	 	
2.2.2	Reject	Uniqueness?	
There	 is	 another,	perhaps	 less	 radical	way	 to	 avoid	 the	 conclusion	 that	Leibniz	Equivalence	
constrains	the	space	of	physically	possible	worlds:	reject	the	assumption,	implicit	in	Soundness	
and	 Completeness,	 that	 a	 model	 represents	 only	 one	 world	 under	 any	 representational	
convention.	When	that	assumption	fails,	we	cannot	refer	to	the	world	represented	by	a	model.	
This	 means	 that	 Leibniz	 Equivalence	 cannot	 prevent	 underdetermination.	 For	 even	 if	 the	
models	within	 an	 equivalence	 class	 of	models	 [M]	 closed	 under	 symmetries	 have	 the	 same	
representational	capacities,	they	may	each	represent	a	variety	of	empirically	equivalent	possible	
worlds	(Fig.	6).		
	

	
Figure 6. The models within an orbit still represent the same possibilities, but the representation-relation is many-to-many. 

 
10 This claim echoes the conclusions of Bradley and Weatherall (2020). 
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This	is	the	gist	of	Teitel’s	(2021a)	objection:11	
	

Notice	 that	 there	 is	 nothing	 incoherent	 about	 [someone]	 who	 accepts	 [Leibniz	
Equivalence]	yet	rejects	[that	there	are	no	symmetry-related	possibilities].	To	do	so,	she	
need	only	adopt	representational	conventions	governing	how	to	use	the	formalism	of	
[the	theory]	that	predict	[Leibniz	Equivalence],	and	there	are	many	options	for	doing	
so.	For	instance,	perhaps	she	thinks	that,	although	there	are	[symmetry]-related	nomic	
possibilities,	for	every	equivalence	class	of	[symmetry]-related	mathematical	solutions	
we	 use	 each	 member	 of	 the	 equivalence	 class	 to	 represent	 the	 same	 qualitative	
proposition	 […],	namely	 the	qualitative	proposition	which	 is	 true	 at	 all	 and	only	 the	
members	 of	 the	 corresponding	 equivalence	 class	 of	 [symmetry]-related	 nomic	
possibilities.	(Teitel	2021a,	9)	

	
Here,	Teitel’s	nomic	possibilities	are	equivalent	to	our	physical	possibilities.	
	
Of	course,	it	is	uncontroversial	that	the	same	model	can	represent	different	states	under	distinct	
representational	 conventions	 (Fletcher	 2020).	 Teitel’s	 objection	 turns	 on	 the	 claim	 that	 one	
model	can	represent	distinct	possible	worlds	even	under	the	same	representational	convention.	
This	happens	when	a	model	does	not	represent	all	physical	features	of	the	world.	For	example,	
consider	 a	 model	 of	 classical	 mechanics	 set	 on	 Galilean	 spacetime.	 On	 a	 standard	
representational	convention,	such	a	model	represents	particles	with	absolute	accelerations	but	
without	absolute	velocities.	But	on	a	different	representational	convention	the	same	model	may	
represent	an	equivalence	class	of	possible	worlds	related	to	each	other	by	uniform	boosts,	that	
is,	possible	worlds	in	which	particles	have	different	absolute	velocities.	On	this	view	the	theory’s	
models	simply	leave	out	a	standard	of	absolute	rest,	which	is	nevertheless	considered	as	real	
physical	structure.	
	
Teitel’s	 counterexample	 is	 consistent	with	Soundness	 and	Completeness.	But	 it	 does	 violate	
another	principle:	
	

Uniqueness.	If	M	is	a	model	of	theory	T,	then	under	any	representational	convention	
it	represents	a	unique	physically	possible	world	W.	

	
For	Uniqueness	to	fail	would	mean	for	the	world	to	contain	features	that	are	not	represented	in	
the	theory’s	models;	that	even	a	full	interpretation	of	a	model’s	structure	leaves	the	possibilities	
it	represents	partially	unspecified.		
	
Putting	 Soundness,	 Completeness	 and	 Uniqueness	 together,	 it	 follows	 that:	 under	 any	
representational	 convention,	 each	model	 represents	 a	unique	physically	possible	world;	 and	
each	physically	possible	world	is	represented	by	some	model.	There	is	thus	a	surjective	function	
from	the	space	of	models	onto	the	physically	possible	worlds.	This	leaves	open	whether	that	
function	is	injective	or	not,	that	is,	whether	models	represent	worlds	one-to-one	or	many-to-
one.	In	either	case,	however,	it	is	impossible	for	one	model	to	represent	distinct	possibilities.12	
	
Is	Uniqueness	plausible?	It	is	difficult	to	say,	because	the	principle	is	so	widely-accepted	that	
explicit	discussions	are	all	but	absent	 from	the	 literature.	The	only	exception	of	which	 I	am	

 
11 Teitel considers only the diffeomorphism symmetries of general relativity. I have amended the quote to cover 
symmetries more generally. Even if Teitel would not advocate this more general claim, however, he still rejects Uniqueness 
in his treatment of general relativity in particular. 
12 Uniqueness requires some modification if it is to apply to subsystem states, since the same model can represent 
different subsystem states when coupled to the environment. For models of subsystems, then, the relevant principle is 
that each model represents a unique state when coupled to a fixed environment.  
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aware	is	Butterfield	(1989),	who	argues	that	Uniqueness	is	entailed	by	physicalism:	the	only	way	
in	which	the	same	model	could	represent	distinct	possibilities	is	if	there	is	more	to	the	world	
than	 just	 physics.	 It	 doesn’t	 seem	 to	 occur	 to	 Butterfield	 that	 the	 same	 model	 could	 also	
represent	 distinct	 possibilities	 that	 differ	 in	 their	 physical	 features.	 Moreover,	 what	 if	
physicalism	were	false?	Would	the	presence	of	symmetries	then	entail	the	underdetermination	
of	a	theory	such	as	general	relativity?	It	seems	odd	to	suggest	that	the	truth	of	physicalism	could	
have	any	effect	on	such	mundane	matters.	For	the	same	reason,	it	seems	unnecessary	to	endorse	
physicalism	just	to	avoid	symmetry-induced	underdetermination.	
	
Once	one	realises	that	anti-physicalism	could	derail	Uniqueness,	one	can	spot	many	other	forms	
of	 ‘underdetermination’	 consistent	with	 our	 theories.	 Perhaps	 the	 thoughts	 of	 the	Gods	 are	
underdetermined	by	the	physical	facts;	or	perhaps	the	movements	of	invisible	ghosts	are	such	
that	one	model	may	represent	many;	or	perhaps	there	even	are	some	physical	fields	completely	
decoupled	from	any	empirically	accessible	quantities.	The	point	is	convincingly	made	by	Norton	
(2020),	who	puts	it	in	the	form	of	a	reductio:	if	so-called	symmetry-to-unreality	inferences	rule	
out	 the	existence	of,	 say,	 spacetime	points—as	alleged	by	Earman	and	Norton	(1987)—then,	
absurdly,	 they	must	 also	 rule	 out	 the	 existence	 of	 Gods,	 ghosts	 and	 any	 other	 entities	 not	
explicitly	represented	within	the	formalism	of	our	physical	theories.	
	
These	forms	of	underdetermination	need	not	worry	us.	Following	Norton	(2020),	the	kind	of	
underdetermination	 one	 should	 care	 about	 is	 internal	 underdetermination—
underdetermination	 of	 the	 quantities	 internal	 to	 the	 theory’s	 dynamics—and	 however	 one	
defines	that	term	of	art	it	should	surely	exclude	the	above	examples.	To	get	a	better	grip	on	the	
difference,	 note	 that	 models	 of	 Newtonian	 mechanics	 set	 on	 Galilean	 spacetime	 can	 only	
represent	mental	states	or	states	of	absolute	motion	in	an	unusual	way:	in	absentio.		Sticking	
with	the	latter	example,	there	is	no	element	of	the	theory’s	models	that	one	can	point	to	and	
say:	 “that	 represents	 the	particle’s	 state	of	 absolute	 rest”.	The	 same	 is	 the	 case	 for	 the	non-
qualitative	propositions	of	Teitel’s	scenario.	If	one	is	already	committed	to	the	claim	that,	under	
any	representational	convention,	symmetry-related	models	represent	the	same	class	of	possible	
worlds,	 then	 there	 cannot	 be	 any	 element	 of	 the	 theory’s	 formalism	 that	 represents	
haecceities—even	 if	 that	 very	 class	 of	 models	 is	 used	 to	 represent	 haecceitistically	 distinct	
worlds.	The	models	are	simply	silent	about	them.	Call	the	objects,	quantities,	and	structures	
that	 are	 explicitly	 represented	 by	 our	 theory’s	 models	 theory-internal.13	 Then	 the	 kind	 of	
underdetermination	that	is	relevant,	internal	underdetermination,	occurs	only	when	the	values	
of	the	theory-internal	quantities	are	underdetermined	by	the	empirical	facts.		
	
Furthermore,	call	possible	worlds	internally	equivalent	whenever	they	are	equivalent	insofar	as	
their	theory-internal	quantities	are	concerned.	It	is	an	immediate	consequence	that:	
	

Internal	Uniqueness.	 If	M	 is	a	model	of	 theory	T,	 then	under	any	 representational	
convention	it	represents	a	unique	equivalence	class	[W]	of	physically	possible	worlds	up	
to	internal	equivalence.	

	
Internal	Uniqueness	is	consistent	with	Teitel’s	counterexample,	as	well	as	with	the	possibility	
that	physicalism	is	false.	For	in	either	case,	the	differences	between	the	possibilities	represented	
by	one	and	the	same	model	are	non-internal.	
	
Nevertheless,	Internal	Uniqueness	suffices	to	avoid	any	worrisome	form	of	underdetermination.	
For	 it	 is	 underdetermination	 of	 the	 theory-internal	 quantities	 that	 one	 should	 care	 about;	

 
13 It follows that the set of theory-internal quantities is also theory-relative: microscopic degrees of freedom are internal to 
kinetic theory but external to thermodynamics. 
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underdetermination	 of	 those	 facts	 that	 our	 physical	 theories	 are	 about.	 The	 problem	 of	
underdetermination	 is	 that	 there	 are	 internally	distinct	 yet	 empirically	 equivalent	physically	
possible	worlds,	that	is,	physically	possible	worlds	that	are	empirically	alike	yet	differ	over	the	
values	 of	 one	 of	 the	 quantities	 explicitly	 represented	 by	 the	 theory.	 But	 Soundness,	
Completeness,	and	Internal	Uniqueness	jointly	entail	that	if	Leibniz	Equivalence	is	true,	then	
symmetry-related	physically	possible	worlds	are	identical	up	to	internal	equivalence.	It	follows	
that	 the	 theory	 is	 not	 underdetermined	 insofar	 as	 the	 facts	 within	 the	 theory’s	 domain	 of	
discourse	are	concerned.	Therefore,	these	three	reasonable	principles	of	theory	interpretation	
jointly	entail	that	an	endorsement	of	Leibniz	Equivalence	suffices	to	solve	the	only	problem	of	
underdetermination	worth	the	name.	
	
To	finish	this	section,	note	the	parallel	between	my	response	to	Teitel’s	objection	and	certain	
responses	to	the	Hole	Argument	that	advocate	qualitative	definitions	of	determinism.	Recall	
that	 in	the	Hole	Argument,	the	facts	at	some	time	t	do	not	uniquely	fix	the	facts	thereafter:	
indeterminism	ensues.	The	facts	left	unfixed	are	haecceitistic	ones.	Brighouse	(1997)	and	Melia	
(1999),	amongst	others,	have	argued	that	the	relevant	definition	of	determinism	should	only	
concern	 ‘physical’	 facts—and	 that	haecceitistic	 facts	 are	not	 physical.	 This	 is	 parallel	 to	 our	
restriction	 to	 internal	 quantities.	 This	 response	 to	 the	 Hole	 Argument	 has	 struck	many	 as	
unsatisfactory	(Belot	1995,	Brighouse	2020).	In	particular,	the	claim	that	haecceitistic	facts	are	
unphysical	seems	arbitrary,	designed	just	to	avoid	the	spectre	of	indeterminism.	The	restriction	
to	 internal	 quantities,	 on	 the	 other	 hand,	 is	 not	 arbitrary.	 It	 follows	 from	 the	 idea	 that	 the	
determinism	of	a	theory	should	only	concern	whatever	that	theory’s	models	explicitly	represent,	
that	is,	whatever	that	theory	is	about.	Notice,	for	instance,	that	my	criterion	does	not	entail	that	
haecceitistic	facts	are	always	external.	They	are	if	one	embraces	applies	Leibniz	Equivalence	to	
the	diffeomorphism-related	models	of	GR,	since	then	such	models	at	most	represent	qualitative	
facts.	But	if	one	rejects	Leibniz	Equivalence	and	hence	allows	for	the	possibility	that	symmetry-
related	 models	 represent	 haecceitistically	 distinct	 possible	 worlds	 then	 haecceitism	 does	
contribute	 towards	 the	 theory’s	 internal	 indeterminism,	 since	 in	 that	 case	 the	points	 of	 the	
spacetime	manifold	are	taken	to	explicitly	represent	haecceities.	This	is	not	a	problem	for	my	
approach,	however,	since	it	is	exactly	the	claim	that	Leibniz	Equivalence	enables	a	solution	to	
issues	such	as	indeterminism	that	I	wish	to	defend.		
	 	
3   Possibility and Detectability 
In	the	previous	section	I	showed	(i)	that	Soundness,	Completeness	and	(Internal)	Uniqueness	
are	reasonable	principles	of	theory	interpretation,	and	(ii)	that	conditional	on	those	principles,	
Leibniz	 Equivalence	 entails	 that	 symmetry-related	 models	 represent	 classes	 of	 internally	
equivalent	 physically	 possible	 worlds.	 This	 suffices	 to	 avoid	 the	 relevant	 kind	 of	
underdetermination,	namely	underdetermination	of	theory-internal	quantities	by	the	empirical	
data.	
	
The	 conclusion	 is	 premised	 on	 the	 claim	 that	 only	 physically	 possible	 worlds	 ‘count’	 for	
underdetermination.	The	second	version	of	the	objection	from	the	introduction	states	that	one	
faces	a	problem	of	underdetermination	as	soon	as	there	are	pairs	of	empirically	equivalent	yet	
internally	distinct	possible	worlds—whether	physically	possible	or	not.	Consider,	for	instance,	
a	 theory	 T	 which	 adds	 to	 classical	mechanics	 the	 postulate	 that	 the	 centre	 of	mass	 of	 the	
universe	is	at	absolute	rest.	Suppose	that	W	is	a	physically	possible	world	of	T,	and	that	W¢	is	
another	possible	world	just	 like	W	except	that	the	velocities	of	all	bodies	in	W¢	are	boosted.	
Because	absolute	velocity	is	a	quantity	internal	to	T—the	laws	of	T	are	partially	about	absolute	
velocity—these	 worlds	 are	 internally	 distinct.	 Yet	W¢	 is	 not	 a	 physical	 possibility	 of	 T:	 the	
universe’s	centre	of	mass	moves!	The	second	objection	claims	that	the	possibility	of	such	a	world	
nevertheless	poses	a	threat	of	underdetermination.	If	so,	Leibniz	Equivalence	does	not	preclude	
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underdetermination	after	all,	for	the	previous	section	established	only	that	Leibniz	Equivalence	
entails	that	there	are	no	empirically	equivalent	yet	internally	distinct	physically	possible	worlds.	
To	 be	 sure,	 this	 is	 a	 different	 kind	 of	 underdetermination.	 It	 is	 not	 the	 choice	 between	
symmetry-related	models	 of	 the	 same	 theory	 that	 is	 underdetermined	 by	 the	 data,	 but	 one	
between	systematically	related	models	of	different	theories.	The	aim	of	this	section	is	to	show	
that	this	is	not	a	worrisome	form	of	underdetermination.	
	
The	example	from	the	previous	paragraph	is	a	little	reserché:	there	is	no	law	that	says	that	the	
centre	of	mass	has	a	certain	absolute	velocity.	However,	 there	are	 similar	but	more	 realistic	
cases.	Maudlin’s	(1988)	metric	essentialism,	for	instance,	entails	that	in	general	relativity	it	is	
physically	 impossible	 to	simultaneously	translate	the	matter	and	the	metric	field,	despite	the	
fact	 that	 such	a	 transformation	 is	 ‘allowed’	by	 the	 theory’s	 equations.	Yet	 a	 shifted	world	 is	
metaphysically	possible	on	Maudlin’s	view.	So,	for	Maudlin	there	are	empirically	equivalent	yet	
internally	distinct	possible	worlds;	it’s	just	that	not	all	of	those	worlds	are	physical.	Furthermore,	
from	the	broader	literature	on	spacetime	symmetries	it	would	seem	that	the	chief	concern	is	
the	mere	existence	of	symmetry-related	possibilities	whether	physical	or	not:	doctrines	such	as	
relationism	 or	 anti-haecceitism	 do	 not	 just	 entail	 that	 boosts	 are	 forbidden	 by	 the	 laws	 of	
physics,	but	that	such	transformations	are	simply	impossible.	If	the	actual	world	fundamentally	
consists	of	spatiotemporal	relations	between	bodies,	then	there	just	are	no	absolute	velocities	
to	boost.	There	is	no	world	exactly	like	the	actual	world	except	that	all	velocities	are	different.	
Likewise,	 if	 anti-haecceitism	 is	 true	 then	 there	 are	 no	 numerically	 distinct	 yet	 qualitatively	
identical	possibilities.	Since	boosted	worlds	are	qualitatively	 identical	when	spacetime	has	a	
Galilean	 structure,	 this	 once	 more	 means	 that	 there	 just	 are	 no	 boosted	 worlds—whether	
physically	possible	or	not.	
	
But	this	approach	is	mistaken:	it	is	physical	possibility	that	matters	for	underdetermination	(and	
for	indeterminism,	but	I	will	focus	on	underdetermination).	The	reason	is	that	observation	itself	
is	a	physical	process.	Therefore,	whether	a	difference	counts	as	empirical	depends	on	what	is	
physically	possible.	I	will	give	two	arguments	for	this	claim.	The	first	is	that	the	very	concept	of	
detectability	has	a	modal	element.	In	particular,	symmetry-variant	quantities	are	undetectable	
only	 if	 the	 transformations	 under	which	 they	 vary	 preserve	 physical	 possibility.	 The	 second	
argument	is	that	underdetermination	results	from	a	kind	of	epistemic	incoherence:	the	theory’s	
evidence	seems	to	undermine	itself.	This	tension	arises	only	when	symmetry	transformations	
preserve	 physical	 possibility.	 Again,	 this	 means	 that	 the	 existence	 of	 physically	 impossible	
worlds	is	of	no	concern.	
	
I	should	note	that	although	this	second	version	of	the	objection	is	consistent	with	the	quotations	
by	Dasgupta	and	Pooley	from	the	introduction,	the	first	version	is	more	natural.	Indeed,	I	am	
not	aware	of	anyone	who	has	explicitly	advanced	the	objection	addressed	in	this	section—apart,	
perhaps,	from	Dasgupta	(2021).	Nevertheless,	it	is	useful	to	pre-empt	the	point	and	see	where	it	
fails.	
	
3.1 Detectability 
The	first	argument	concerns	detectability.	The	exact	definition	of	detectability	remains	the	topic	
of	 significant	debate,	 but	 all	hands	 agree	 that	 the	 following	 is	 a	necessary	 condition	on	 the	
successful	measurement	of	a	quantity	Q:	
	

Sensitivity.	If	the	value	of	Q	were	different,	then	a	successful	measurement	of	Q	would	
have	a	different	outcome.	
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For	example,	suppose	that	even	if	all	velocities	v	were	different	from	their	actual	values,	any	
purported	 measurement	 of	 velocity	 would	 have	 the	 same	 outcome	 no	 matter	 what.	 It	 is	
uncontroversial	that	in	that	case	velocities	are	undetectable.		
	
The	truth	of	the	counterfactual	in	Sensitivity	depends	on	which	states	of	affairs	are	physically	
possible.	Recall	that	on	Lewis’	(1979)	theory	of	counterfactuals,	it	is	of	the	utmost	importance	
to	avoid	gross	violations	of	the	laws.14	On	the	one	hand,	suppose	that	boosts	are	not	physically	
possible,	for	instance	because	the	laws	say	that	the	centre	of	mass	of	the	universe	is	at	absolute	
rest.	What,	then,	is	the	closest	possibility	in	which	I	have	a	different	velocity?	Presumably,	it	is	
not	a	boosted	possibility—for	such	a	possibility	violates	the	laws.	It	is	the	possibility	in	which	I	
have	a	different	velocity	with	respect	to,	say,	the	surface	of	the	earth.	In	that	possible	world,	any	
purported	measurement	of	my	velocity	would	have	a	different	outcome,	since	the	measurement	
device	 itself	 will	 keep	 the	 same	 velocity.	 Therefore,	 velocities	 are	 detectable	 if	 boosts	 are	
physically	impossible.15	To	put	the	point	differently,	in	such	a	scenario	absolute	velocities	have	
a	dynamical	role	to	play,	such	that	it	is	possible	to	express	one’s	velocity	with	respect	to	this	
dynamical	role	rather	than	merely	relatively	with	respect	to	another	body’s	velocity.	
	
On	the	other	hand,	if	boosts	are	physically	possible	then	absolute	velocities	are	not	detectable.	
In	particular,	 it	 seems	plausible	 that	 in	 this	 case	 the	closest	possibility	 to	ours	 in	which	my	
velocity	 is	 different	 from	actuality	 is	 a	 boosted	possibility:	 not	 only	 does	 a	 boosted	 velocity	
respect	the	laws,	when	spacetime	is	Galilean	it	also	matches	the	actual	world	on	all	qualitative	
facts.	 It	 is	 therefore	much	 closer	 to	 the	 actual	world	 than	 the	 possibility	 in	which	 I	 have	 a	
different	relative	velocity	with	respect	to	the	surface	of	the	earth.	Because	a	boosted	possibility	
is	empirically	equivalent	to	the	actual	world,	any	purported	velocity	measurement	would	have	
the	 same	 outcome.	 Sensitivity	 is	 violated;	 velocities	 are	 undetectable.	 Therefore,	 whether	
absolute	velocity	is	undetectable	depends	on	whether	boosts	are	physically	possible.	Since	it	is	
the	 undetectability	 of	 symmetry-variant	 quantities	 that	 drives	 the	 problem	 of	
underdetermination,	 this	 means	 that	 that	 problem	 only	 arises	 when	 symmetries	 relate	
physically	possible	worlds.	
	
3.2 Epistemic Incoherence 
The	second	argument	concerns	the	particular	kind	of	undetectability	that	occurs	in	the	presence	
of	symmetries.	There	are	many	ways	in	which	something	can	be	undetectable.	Some	things	are	
undetectable	merely	because	we	lack	the	requisite	technology.	Other	things	are	undetectable	
because	they	are	forever	inaccessible	to	us,	such	as	the	distant	past	or	beyond	the	event	horizon.	
But	even	these	are	detectable	in	the	weak	sense	that	if	one	were	to	be	able	to	travel	to	the	end	
of	time	or	the	outer	reaches	of	space,	one	could	observe	what	was	going	on	there.	
	
Symmetry-induced	 undetectability	 is	 different.	Here,	 it	 is	 the	 theory	 itself	 that	 tells	 us	 that	
symmetry-variant	quantities	are	in	principle	undetectable.	It	is	because	we	believe	that	classical	
mechanics	 is	 correct	 about	 absolute	 velocities	 that	we	must	 believe	 that	 such	 velocities	 are	
undetectable.	Healey	(2007)	puts	it	well:		
	

If	we	believe	Newton's	theory	as	he	interpreted	it,	then	we	believe	there	is	a	structure—
the	state	of	absolute	rest—about	which	there	is	no	way	of	obtaining	reliable	information	
by	observation.	This	is	not	because	of	the	contingent	limitations	of	human	sense	organs,	
but	because	the	theory	countenances	no	physical	process	that	discriminates	that	state	
from	a	host	of	others.	[…]	We	can	certainly	entertain	the	belief	that	Newton's	theory	is	

 
14 I don’t intend this argument to hang on Lewis’ account of counterfactuals specifically; rather, it offers a simple 
illustration of how physical possibility matters to detectability. 
15 For a similar claim, see Jacobs (2021, §6.2). 
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true	as	he	interpreted	it,	and	so	also	the	belief	that	there	is	a	unique	state	of	absolute	
rest.	But	no	matter	how	much	evidence	we	obtained	for	Newton's	theory,	we	would	have	
no	reason	to	hold	 this	 last	belief.	Consequently,	we	would	have	no	reason	to	believe	
Newton's	theory	as	he	interpreted	it.	(Healey	2007,	117)	

	
Put	 differently,	 theories	 in	 which	 symmetry-related	 models	 are	 taken	 to	 represent	 distinct	
physically	possible	worlds	are	in	epistemic	tension	with	themselves:	any	piece	of	evidence	for	
the	truth	of	such	theories	is	ipso	facto	evidence	that	one	can	never	discover	their	full	truth.16	
	
This	epistemic	 incoherence	arises	only,	however,	when	pairs	of	symmetry-related	worlds	are	
both	physically	possible.	Compare	the	situation	for	classical	mechanics	to	that	for	a	theory	in	
which	boosted	worlds	are	merely	metaphysically	possible.	Suppose,	for	example,	that	there	is	a	
universal	 force	 that	 acts	 on	 bodies	 in	 proportion	 to	 their	 velocities.	 In	 that	 case,	 absolute	
velocities	are	 detectable:	 they	have	 an	observable	 effect	 on	 the	world.	Nevertheless,	 for	 any	
world	W	in	which	this	theory	is	true,	there	is	another	world	W¢	exactly	like	W	except	that	all	
velocities	 are	 boosted.	 Because	 boosts	 preserve	 distances	 these	 worlds	 are	 empirically	
equivalent,	 yet	W¢	 is	 not	 physically	 possible	 by	 the	 light	 of	 this	 theory’s	 dynamics.	 If	 it	 is	
metaphysical	rather	than	physical	possibility	that	should	concern	us,	this	scenario	would	lead	
to	the	same	problem	of	underdetermination	as	before.	But	that	is	clearly	not	the	case.	The	non-
Galilean	invariant	theory	does	provide	us	with	evidence	that	absolute	velocities	exist,	and	even	
with	 the	 means	 to	 measure	 them.	 Therefore,	 evidence	 in	 favour	 of	 this	 theory	 does	 not	
undermine	the	theory’s	truth;	it	is	not	evidence	that	one	cannot	measure	absolute	velocities.	
The	mere	metaphysical	 possibility	 of	 boosted	worlds	 does	 not	 cause	 any	 epistemic	 tension.	
Insofar	 as	 symmetries	 are	 worrisome	 because	 they	 lead	 to	 such	 tension,	 then,	 physical	
possibility	is	what	counts.	
	
One	further	lesson	to	draw	from	these	considerations	is	that	theses	such	as	relationism	or	anti-
haecceitism	 are	 in	 a	 sense	 ‘overpowered’.	 In	 order	 to	 avoid	 symmetry-induced	
underdetermination,	it	suffices	to	rule	out	certain	transformations	as	physically	impossible—
not	 impossible	 per	 se.	 This	 is	 not	 to	 say	 that	 there	 are	 no	 other	 reasons	 to	 prefer	 such	
metaphysical	pictures,	for	example	for	reasons	of	parsimony.	I	will	say	more	about	this	in	the	
close	of	the	paper.	
	
4   Close 
I	have	argued	that	Leibniz	Equivalence	places	a	restriction	on	the	space	of	physically	possible	
worlds,	 and	 that	 physical	 possibility	 is	 the	 relevant	 notion	 of	 possibility	 in	 discussions	 of	
detectability.	 It	 follows	 that	 endorsement	 of	 Leibniz	 Equivalence	 constitutes	 a	 solution	 to	
symmetry-induced	underdetermination,	contrary	to	recent	objectors.	
	
One	may	wonder	whether	it	is	always	possible	to	simply	stipulate	that	symmetry-related	models	
represent	 the	 same	 possibility.	 Shouldn’t	 such	 a	 stipulation	 follow	 from,	 or	 at	 least	 stay	
consistent	 with,	 the	 metaphysical	 interpretation	 of	 such	 models?	 It	 may	 now	 seem	 as	 if	
underdetermination	is	far	too	easily	averted:	just	declare	that	pairs	of	models	that	threaten	the	
determination	of	the	theory	by	the	empirical	data	are	really	representatives	of	the	same	class	of	
internally	 equivalent	 possibilities	 under	 any	 representational	 convention.	 This	 will	 always	
suffice	to	avert	a	theory’s	underdetermination,	since	the	theory’s	underdetermined	features	are	
by	definition	demoted	to	a	merely	external	role.	Perhaps	this	is	a	final	sense	in	which	Leibniz	
Equivalence	does	not	suffice	to	solve	the	underdetermination	problem.	
	

 
16 It seems that the incoherence discussed in Huggett and Wuthrich (2013) is of a similar kind. 
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I	admit	that	one	cannot	always	simply	declare	that	certain	pairs	of	models	represent	the	same	
physical	possibility	(or,	equivalently,	declare	that	certain	quantities	are	merely	external).	For	a	
trivial	 example,	 consider	 a	 representational	 convention	 on	 which	 all	 of	 a	 theory’s	 models	
represent	 the	very	same	possibility.	 In	 that	case,	none	of	 the	theory’s	quantities	are	 internal	
except	perhaps	the	constants	of	nature.	But	that	clearly	conflicts	with	the	fact	that	a	theory,	if	
it	is	about	anything	at	all,	is	about	the	quantities	that	feature	in	its	dynamics:	quantities	such	as	
force,	mass	and	acceleration	that	take	on	different	values	in	different	physically	possible	worlds.	
So,	 our	 representational	 conventions	 are	 constrained	 by	 the	 demand	 to	make	 sense	 of	 our	
physical	 theories;	 and	 conversely	 the	ways	 one	 can	make	 sense	 of	 our	 physical	 theories	 are	
constrained	by	the	representational	conventions	one	has	adopted.	
	
If	we	now	return	to	symmetry-related	pairs	of	models,	the	attraction	of	Leibniz	Equivalence	lies	
exactly	in	the	fact	that	theories	are	not	about	symmetry-variant	quantities.	This	is	the	point	of	
so-called	 ‘symmetry-to-reality	 inferences’	 (Dasgupta	 2016).	 In	 more	 detail,	 Wallace	 (2019b)	
shows	 that	 the	 dynamics	 of	 symmetry-variant	 quantities	 are	 effectively	 decoupled	 from	 the	
dynamics	of	the	symmetry-invariant	quantities;	there	is	a	sense	in	which	the	former	have	no	
effect	on	the	latter.	In	the	words	of	Baker	(2022),	such	quantities	are	‘epiphenomenal’.	It	is	this	
feature	that	allows	one	to	consider	them	as	external	to	the	theory’s	subject	domain.		
	
Of	course,	one	may	still	debate	the	exact	conditions	under	which	one	is	allowed	to	adopt	Leibniz	
Equivalence.	On	 one	 end	 of	 the	 spectrum,	 one	 could	 claim	 that	 it	 is	 possible	 to	 ‘extract’	 a	
physical	 interpretation	 of	 the	 theory’s	 models	 from	 a	 restriction	 on	 their	 representational	
capacities.	This	is	the	approach	taken	by	Dewar’s	(2019)	‘sophistication’,	which	is	an	instance	of	
the	 broader	 approach	 known	 as	 interpretationalism.	On	 this	 view,	 one	 can	 always	 stipulate	
equivalences	between	models	 in	order	 to	define	 their	common	structure.	On	the	other	end,	
Møller-Nielsen’s	 (2017)	motivationalism	 holds	 that	 one	 can	 only	 identify	 symmetry-related	
models	once	one	has	a	‘perspicuous	metaphysical	characterisation’	of	the	underlying	physical	
content	 in	 virtue	 of	 which	 they	 are	 physically	 equivalent.17	 On	 this	 approach,	 Leibniz	
Equivalence	is	merely	a	desideratum	that	motivates	the	search	for	a	perspicuous	metaphysical	
picture.	
	
I	therefore	very	much	concur	with	the	following	remark	of	Teitel’s:	
	

Suppose	[Leibniz	Equivalence]	were	true:	we	now	know	that	we	use	each	member	of	any	
equivalence	class	of	[symmetry-]related	solutions	to	model	the	same	nomic	possibilities.	
Yet	that	is	all	we	have	learned,	and	so	this	doctrine	just	raises	a	host	of	further	questions:	
which	nomic	possibilities	do	they	represent?	And	what	are	those	possibilities	like?	[…]	
At	 best,	 determining	which	 differences	 are	 [symmetry-variant]	 is	 a	 preliminary	 step	
towards	 developing	 an	 adequate	 answer	 to	 the	 non-mathematical	 questions	 we’re	
generally	interested	in.	(Teitel	2021a,	10)	
	

This	 is	 undoubtedly	 correct:	 Leibniz	 Equivalence	 is	 a	 merely	 preliminary	 step	 in	 the	
interpretation	of	 a	 theory	with	 symmetries.	This	does	not	mean	 that	Leibniz	Equivalence	 is	
consistent	with	underdetermination:	we	have	seen	that	it	is	not.	Rather,	it	means	that	there	are	
non-trivial	 conditions	 on	 the	warrantability	 of	 Leibniz	 Equivalence.	 This	 doesn’t	 show	 that	
representational	 conventions	are	 irrelevant	 to	 the	question	of	underdetermination,	 as	Teitel	
seems	to	believe.	Quite	the	opposite:	it	means	that	representational	conventions	non-trivially	
interact	with	the	exact	metaphysical	questions	that	Teitel	is	interested	in.		

 
17 For Møller-Nielsen, a perspicuous picture is always available  the symmetry-related models of a theory are isomorphic; if 
not, a reformulation of the theory is necessary. For further discussion of interpretationalism vs motivationalism, see 
Martens and Read (2020) and Jacobs (2022). 
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Finally,	 let	me	 comment	 on	 an	 issue	 raised	 at	 the	 end	 of	 the	 previous	 section.	 The	 typical	
conclusion	of	a	symmetry-to-reality	inference	is	that	symmetry-variant	features	are	not	real,	yet	
to	 avoid	 underdetermination	 it	 suffices	 to	 consider	 symmetry-variant	 quantities	 as	 merely	
external.	However,	there	are	other	reasons	to	support	the	symmetry-to-reality	inference.	One	is	
simply	the	virtue	of	parsimony:	if	absolute	position	or	intrinsic	identity	play	no	dynamical	role,	
then	surely	a	theory	is	better	off	without	them.	Another	reason	consists	of	a	particular	claim	
about	fundamentality:	that	the	internal	quantities	are	more	fundamental	than	the	external	ones.	
It	 is	 easy	 to	denounce	 absolute	 velocities	 as	 external,	 but	 on	 an	 intuitive	 picture	 of	motion	
absolute	 acceleration	 depends	 on	 absolute	 velocity.	 It	 took	 the	 development	 of	 Galilean	
spacetime	 to	 discover	 how	 acceleration	 could	 itself	 be	 fundamental.	 This	 explains	 why	
discussion	 has	 focused	 on	 ‘overpowered’	 theses	 such	 as	 relationism	 or	 anti-haecceitism.	
Although	 these	 theses	 are	 stronger	 than	 necessary	 to	 have	 Leibniz	 Equivalence,	 they	 are	
required	 to	 provide	 a	 sensible	metaphysical	 picture	 of	 the	world.	 These	 constraints	 further	
complicate	 the	 task	 of	 the	 interpreter.	 Again,	 however,	 this	 does	 not	 mean	 that	
underdetermination	is	independent	from	Leibniz	Equivalence,	but	only	that	the	latter	raises	as	
many	questions	as	it	answers.	
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