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Abstract

Is more information always better? Or are there some situations in

which more information can make us worse off? Good (1966) argues

that expected utility maximizers should always accept more informa-

tion if the information is cost-free and relevant. But Good’s argument

presupposes that you are certain you will update by conditionaliza-

tion. If we relax this assumption and allow agents to be uncertain

about updating, these agents can be rationally required to reject free

and relevant information. Since there are good reasons to be uncertain

about updating, rationality can require you to prefer ignorance.

1 Introduction

We care about learning the truth for its own sake, but we also care about

learning because it can lead us to make better decisions. That is, besides

the epistemic benefits of finding out the truth, learning often comes with

instrumental benefits as well.

Is more information always instrumentally better? Or are there situations

in which more information can make us foreseeably worse off? It is clear that

information can make us worse off if we consider the cost of processing and

storing the information or the opportunity cost of thinking for too long before

acting. Nobody thinks that you have to read all the reviews before buying a
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new vacuum cleaner or that you should think long before hitting the brakes

when a red light comes up. It is also clear that information can make us

worse off if it is false, so let me be clear that when I talk about information,

I always mean true information.

What if the information is cost-free? For rational agents, is it always

instrumentally valuable to accept free information? Good (1966) argues that

the answer is ‘yes’ if we accept the principle of maximizing expected utility.

However, Good presupposes that you are certain you will update by condi-

tionalization, which means you are certain your new credences after learning

are equal to your old conditional credences given the learned event. There

are good reasons to assign positive probability to failures of conditionaliza-

tion, even for rational agents. I show that if you assign a positive probability

to failures of conditionalization, the principle of maximizing expected utility

can require you to reject free information. Sometimes, even expected utility

maximizers are better off knowing less. Moreover, this offers a vindicating

explanation of why people sometimes reject information in real-life examples,

such as medical testing.

To be clear, this paper is not about situations in which you actually fail

to conditionalize. In all my examples below, we can assume that the agent

conditionalizes in the actual world. Rather, this paper is about situations in

which you fail to be certain that you will conditionalize. You can fail to be

certain that you will conditionalize even if you always conditionalize.

Here is the plan. First, I explain Good’s argument. Then, I explain

why Good’s argument presupposes that you are certain you will update by

conditionalization and give reasons to reject this assumption. I show how

assigning a positive probability to failures of conditionalization can make it

rational to reject free information for expected utility maximizers and sketch

how this can explain information aversion in the real world. I finish by

explaining how we can generalize the value of information to agents who are

uncertain about how they will update.
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2 Good’s Argument

I start by introducing some terminology and explain Good’s argument.

2.1 Terminology

I use the framework of Savage (1972) to model decision making under uncer-

tainty. We have a set Ω of states, which contains all epistemically possible

worlds from the point of view of the agent we are modeling. Events are sub-

sets of Ω and we model the credences of our agent by a probability function.1

We also have a set O of outcomes, where outcomes contain everything our

agent cares about. We model our agent’s preferences over outcomes by a util-

ity function u which maps outcomes to their utilities. Actions are functions

from states to outcomes. I assume actions are causally and probabilistically

independent of states.2

Given a probability function p and utility function u, the expected utility

of action f is:

Ep(f) =
∑
ω∈Ω

p(ω)u(f(ω)).3

I assume your utility function remains fixed through learning.4 However, your

credences change in response to evidence, so I relativize expected utility to

a probability function.

A choice set is a set of actions among which our agent makes a decision.

I assume that all choice sets are finite. Our agent maximizes expected utility

if for every available choice set S = {f1, ..., fn}, she picks an action fi ∈ S
which maximizes expected utility relative to her probability function p and

utility function u.

I model learning by an evidence partition E of Ω. This partition contains

1I assume Ω is finite and model credences as finitely additive probability function
p : P(Ω)→ [0, 1].

2Adams and Rosenkrantz (1980) and Maher (1990) discuss how Good’s argument fails
if this assumption is relaxed, in both evidential and causal decision theory.

3p(ω) is shorthand for p({ω}).
4I set aside cases in which learning leads you to change your utility function, perhaps

in a ‘transformative experience’ (Paul 2014; Pettigrew 2019).
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the events our agent might learn, which are mutually exclusive and collec-

tively exhaustive. We can think of the evidence partition as a question, for

example the question whether it is sunny or rainy outside. In this case, the

evidence partition contains two cells: the worlds where it is sunny outside

and the worlds where it is rainy outside. Since the events in the evidence

partition are live possibilities for what our agent might learn, they all have

non-zero probability, so p(E) > 0 for all E ∈ E .

When learning event E in the evidence partition, our agent updates her

credences to PE. I allow our agent to be uncertain about how she will update.

This means that PE is not a particular probability function, but rather a

random variable whose values can be different probability functions. (Hence

the fancy typeface.) The only constraint I impose is that after learning an

event, our agent is certain of that event.5 I write p(· | E) for the credences our

agent adopts after learning event E ∈ E and updating by conditionalization.6

Here is an example of our framework in action. You are at the horse

track thinking about which horse to bet on. The states specify which horse

will win the race (and other relevant facts) and the actions are different bets

you might place. The probability function p encodes your credences about

different horses winning and the utility function u models how much you

value the outcomes of these bets, for example different amounts of money.

Imagine a charming stranger comes up to you and offers you their opinion

on which horse is likely to win. Are you willing to listen? The evidence par-

tition E contains different opinions the stranger might voice and PE models

how you expect to update your credences after listening. To be clear, the

information you learn is not which horse is likely to win but only what the

stranger is saying. The stranger might be lying or clueless.

You need to decide: Do you want to find out what the stranger has to

say or would you rather place your bet now? It is not obvious how to answer

this question. On the one hand, you might listen to the stranger and ignore

5Let ∆(Ω) be the set of all probability functions p : P(Ω) → [0, 1]. Formally, PE is
a function from E to ∆(Ω) such that for each ω ∈ E, PE(ω)(E) = 1. For each ω ∈ E,
PE(ω) is a particular probability function.

6I use the standard ratio definition: p(A | E) = P (A∩E)
p(E) assuming p(E) > 0.
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what they say if you do not find it helpful, so how could listening harm you?

On the other hand, perhaps the stranger is trying to mislead you. In this

case, do you trust yourself to listen before placing your bet?

2.2 The Argument

Good (1966) thinks you should listen to the stranger before placing your bet.

More generally, Good argues that if you are rational, then given any choice

set and evidence partition, you are never worse off by first learning the true

event in the evidence partition and making your choice afterwards rather

than making your choice now.7 Good does not mean that more information

always leads to better decisions. You might get unlucky and learn something

misleading. Rather, Good argues that learning cannot make you foreseeably

worse off.

The idea behind Good’s argument can be illustrated by an example. Sup-

pose there is a race between horse A and horse B tomorrow. You have to

decide whether (i) to bet on horse A, which means you win $1 if A wins

and lose $2 otherwise, (ii) to bet on horse B, which means you win $1 if B

wins and lose $2 otherwise, or (iii) to play it safe, which means you won’t

win or lose anything. You think A and B are equally likely to win, so your

best option right now is to play it safe. But you can listen to the (accurate)

weather report for tomorrow. You think that A is 3
4

likely to win if it rains

and B is 3
4

likely to win if the sun shines. We can illustrate your decision

problem as shown in figure 1, where rectangles stand for decisions you face

(‘choice nodes’) and circles stand for events which might happen (‘chance

nodes’).

Here is a more general explanation. Good assumes that rational agents

maximize expected utility. So, if you are rational, then given some choice set

S, you will choose what seems best by your current lights: an action in S
7Skyrms (1990) provides a helpful overview and points out that Ramsey (1990) and

Savage (1972) give similar arguments. Good (1966) notes that his argument is partly
anticipated by Raiffa and Schlaifer (1961, p. 90) and Lindley (1965, p. 66). Hosiasson
(1931) discusses similar ideas and cites an unpublished paper by Ramsey as inspiration.
Interestingly, the argument does not work when you decide whether someone else should
learn more information before making a decision (Good 1974).
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Bet on horse B. Expected payoff: 1
4

Shine
1

2

Bet on horse A. Expected payoff: 1
4

Rain

1
2

Learn

Play it safe. Expected payoff: 0

Don
’t

lea
rn

Figure 1: If you care about winning, you should listen to the weather report.

which maximizes expected utility with respect to your current credences. So

the expected value of choosing now is the expected utility of one of the best

actions in S relative to your current credences p:

max
f∈S

Ep(f).

If, on the other hand, you learn that E is the true event in our evidence

partition, you update your credences p to PE. Good assumes that in each

state with non-zero probability, your updated credences are obtained from

your current credences by conditionalizing, so PE = p(· | E). Good also

assumes that learning is cost-free. This means that before and after learning,

you choose among the same actions and outcomes have the same utilities.

The only impact of the information is to change your credences.8

After learning, you choose what seems best by your updated lights—an

action in S which maximizes expected utility with respect to your updated

credences:

max
f∈S

Ep(·|E)(f).

8Consider cases in which the information is not free (processing costs, library fees).
In such cases, outcomes before and after learning do not have the same utility. Kadane,
Schervish, and Seidenfeld (2008, pp. 17-20) discuss this issue in detail. You might also
ascribe negative utility to the information itself, for example because it makes you feel
bad (Golman, Hagmann, and Loewenstein 2017). I set such cases aside and focus on the
instrumental value of information.
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You don’t know yet which element of the evidence partition you will learn.

But we can consider the expected value of acting after learning:∑
E∈E

p(E) max
f∈S

Ep(·|E)(f).

Good completes the argument by proving that the expected value of acting

after learning is always greater than or equal to the expected value of choosing

now: ∑
E∈E

p(E) max
f∈S

Ep(·|E)(f) ≥ max
f∈S

Ep(f).

Moreover, this inequality is strict unless there is some action f ∈ S which

is best regardless of which event in the evidence partition you learn—that

is, unless the evidence partition is irrelevant for the choice set under consid-

eration. So according to Good, the principle of maximizing expected utility

entails:

Value of Learning:

i. Rational agents are always permitted to accept free infor-

mation before making a decision.

ii. Rational agents are always required to accept free and rele-

vant information before making a decision.

2.3 What does the Argument show?

Does Good’s argument show that Value of Learning is correct? There are

ways to push back. One might question the assumption that rational agents

always maximize expected utility (Buchak 2010; Campbell-Moore and Salow

2020) or that rationality requires precise credences (Bradley and Steele 2016;

Wheeler 2021).9 Relaxing these assumptions leads to cases where you can be

9One could also question the assumption that learning can always be modeled as learn-
ing an element of a partition (Salow and Ahmed 2019; Dorst 2020; Das 2023), which is
foreshadowed by Williamson (2000, pp. 230-7). Merely finitely additive probabilities can
also lead to information aversion (Kadane, Schervish, and Seidenfeld 1996, 2008). Since I
restrict attention to finite state spaces, the debate over finite versus countable additivity
does not concern me here.
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required to reject free information. One might take this to question Value of

Learning. However, one might also take this as a strike against alternatives

to expected utility theory with precise credences.

One might think that the permissibility of accepting free information

before making a decision is independently plausible, a piece of common sense:

‘look before you leap’. It is a mark in favor of expected utility theory that it

entails this piece of common sense and a problem for other decision theories

if they conflict with it. From this perspective, Good’s argument is not really

an argument for Value of Learning but rather an argument for expected

utility theory. This interpretation is suggested by Kadane, Schervish, and

Seidenfeld (2008):

So the question remains of whether it is reasonable to impose the

requirement on a theory of rational decision making that it not

require or permit paying not to see cost-free data. If it is, the

only such theory known to us is Bayesian decision theory with a

single countably-additive proper prior. (Kadane, Schervish, and

Seidenfeld 2008, p. 33)

Arguments along these lines are common. The general shape of the argument

is that (a) Value of Learning is correct and (b) alternatives to expected

utility theory are bad because they conflict with this. This assumes that (c)

expected utility theory entails Value of Learning.10

These arguments are misguided. At least, they require serious qualifica-

tion. This is because expected utility theory, supplemented with plausible

assumptions, entails that there are cases in which we are rationally required

to reject free information. Good’s argument rests on the auxiliary assumption

10More examples: Wakker (1988) shows that violating the independence axiom of ex-
pected utility theory leads to situations in which agents reject free information and takes
this to show that such violations are irrational. Al-Najjar and Weinstein (2009, p. 249)
object to decision theories allowing for ambiguity aversion because they rationalize aver-
sion to information “which most economists would consider absurd or irrational”. Briggs
(2015) and Ahmed (2016) object to risk-weighted expected utility (REU) theory because
it leads to diachronic inconsistency and aversion to information. Buchak (2013, pp. 187–9)
also discusses how the value of information can be negative in REU theory and considers
this to be a serious cost.
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that you are certain you will update by conditionalization. This assumption

should not be built into expected utility theory and there are good reasons

to reject it. If we reject this assumption, expected utility maximizers with

precise credences can be required to reject free and relevant information. So

(c) is false: expected utility theory does not entail Value of Learning. I also

argue that (a) is false: rational agents can be required to reject free informa-

tion. So we should not take Value of Learning as axiomatic in our theories

of instrumental rationality.

If you are already skeptical of Value of Learning, you might argue as fol-

lows: expected utility theory entails Value of Learning but Value of Learning

is clearly false. There are many situations in real life where we are better

off ignoring free information. Perhaps you think that the stranger at the

horse track will try to deceive you. Therefore, we should reject expected

utility theory and look for an alternative decision-theoretic framework, per-

haps risk-weighted expected utility theory or imprecise credences. I agree

that there are many situations in real life where we are better off ignoring

free information. However, once we understand that expected utility theory

does not entail Value of Learning, we can make sense of information aver-

sion within the standard framework of expected utility theory and Bayesian

epistemology.

3 Against Good’s Argument

I explain why Good’s argument presupposes that you are certain you will

conditionalize (Immodesty). I argue that this assumption is implausible.

Instead, we should assign some positive probability to not conditionalizing

(Modesty). I show that expected utility maximization can require modest

agents to reject free information.

3.1 Good presupposes Immodesty

As we have seen, Good’s argument requires that whichever event in the

evidence partition you learn, your future credences are obtained from your
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current credences by conditionalization:

The Equation: PE = p(· | E) for every E ∈ E .11

At first glance, one might think The Equation means that you are actually

a conditionalizer. This is how the assumption is sometimes glossed in presen-

tations of Good’s argument.12 However, The Equation actually means that

you assign subjective probability one to the event that you will conditional-

ize.13 In other words, you are certain you will conditionalize. This is because

The Equation says that for every event you might learn, your new credences

equal your old credences conditional on the learned event. Taken together,

the events in the evidence partition sum to probability one. This means that

in every state with positive probability, your new credences equal your old

credences conditional on the true event in the evidence partition. Since states

represent epistemic possibilities, you are certain you will conditionalize.

So Good’s argument presupposes

Immodesty: You are certain you will conditionalize.

Here is another way to bring this out. You might in fact update by

conditionalization. Nonetheless, you might assign positive probability to a

state in which you fail to conditionalize. In this case, The Equation does

not hold and Good’s argument does not go through. On the other hand,

you might be certain you will conditionalize—and so satisfy The Equation—

but fail to conditionalize in the actual world. This might be because you

have assigned probability zero to an unforeseen failure of rationality. In this

case, Good’s argument still applies. What is at issue is not whether you will

actually conditionalize but whether you are certain you will conditionalize.

Even if you always conditionalize, you might have good reasons not to be

certain of that.
11Technically, Good’s result requires only that this equality holds with probability one.
12For example, Laffont (1989, p. 58) presents a result equivalent to Good’s and writes

that the agent under consideration “revises his expectations by using Bayes’s theorem”.
This sounds like we’re assuming that the agent is actually a conditionalizer.

13As Skyrms (1990, p. 247) writes, “the proof implicitly assumes not only that the
decision maker is a Bayesian but also that he knows he will act as one. The decision
maker believes with probability one that if he performs the experiment he will [...] update
by conditionalization [...]”. Huttegger (2014, p. 283) also makes this point.
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3.2 The Case for Modesty

Immodesty is implausible. Instead, we should accept:

Modesty: There is some positive probability that you will not

conditionalize.

To be clear, what I have in mind here is subjective probability, not objective

chance. So to accept Modesty means to assign some positive credence to the

possibility that you will not conditionalize.14

There are good reasons for Modesty. Moreover, these reasons flow from

standard principles of Bayesian epistemology. Let me first be clear that it

is by no means (physically or metaphysically) necessary that you will condi-

tionalize. Rather, the claim that your new credences after learning are your

old credences conditional on the learned event is a substantive claim about

how your credences will evolve over time. The following passage by Ramsey

makes the point clear:

[the degree of belief in p given q] is not the same as the degree to

which [a subject] would believe p, if he believed q for certain; for

knowledge of q might for psychological reasons profoundly alter

his whole system of beliefs. (Ramsey 1931, p. 21)15

So it is a consistent possibility that you fail to conditionalize. Many Bayesians

are attracted to the principle of regularity, which says that you should assign

14Modesty has been defended before. For example, discussing whether we should defer
to our future credences, Briggs (2009, pp. 59–60) writes: “Under all but the most ideal
circumstances, agents will have reasons to suspect that future failures of conditionalization
are in store”. Pettigrew (2020) points out that standard arguments for conditionalization
assume ‘deterministic updating’ and so leave no room for uncertainty about how you will
update. Lederman (2015) draws on failures of common knowledge that we will conditional-
ize to construct counterexamples to Aumann’s claim that rational agents cannot ‘agree to
disagree’. Cohen (2020) discusses uncertainty about updating in the context of epistemic
logic. Christensen (2007, p. 3) defends the broader claim that “even an agent who is in
fact cognitively perfect might, it would seem, be uncertain of this fact”. Similar ideas are
defended by many others, including Carr (2019), Bradley (2020), and Dorst (2020).

15Diaconis and Zabell (1982) discuss this passage. Of course, the general idea is much
more broadly recognized. For example, in The Portrait of a Lady, Henry James writes
about some piece of news: “But it had been one thing to foresee it mentally, and it was
another to behold it actually” (James [1882] 2011, p. 217).
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positive prior probability to all consistent possibilities. This principle entails

Modesty.

More broadly, that you will conditionalize is an empirical proposition.

Rationality should not require you to be certain that some empirical propo-

sition is true. For example, if you suffer brain damage as the result of a

stroke, you will likely not conditionalize. Plausibly, you should not be cer-

tain that you won’t suffer brain damage in the future. Therefore, you should

not be certain that you will conditionalize.16

We can make an even stronger case for Modesty. There is a long research

tradition in psychology and cognitive science which aims to demonstrate that

humans are not ideal Bayesian agents and so do not always conditionalize.

There are a number of well-documented fallacies and heuristics which deviate

from conditionalization. An example is the base rate fallacy, in which people

ignore prior probabilities and so overestimate the probability of rare events

(Kahneman and Tversky 1973). Another example is the gambler’s fallacy,

which is when people think that a fair coin landing heads provides evidence

that the next coin flip will land tails.

Once you learn about these empirical findings, it seems reasonable to be-

lieve that they might also apply to yourself. Therefore, you should assign

some positive credence to not conditionalizing and accept Modesty. In ad-

dition to such general considerations, you might remember specific cases in

which you did not conditionalize, but committed (say) the gambler’s fallacy.

If you have such evidence, this gives you another strong reason for Modesty.

Perhaps you are quite confident of your future rationality. But even

if you currently have no evidence that you might fail to conditionalize, it

seems reasonable that you might obtain such evidence. For example, you

might learn that you just took a drug which increases your susceptibility

to the gambler’s fallacy or that your brain is wired to misfire in certain

situations.17 Surely, if you learned something like this, you should decrease

your credence that your future self will conditionalize. But Immodesty rules

16Note that the possibility of malfunction does not only apply to humans, but also to
AI agents and plausibly to any kind of agent which is physically realized.

17The reason-impairing drug is inspired by Christensen (2007).
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this out: once you assign probability zero to failures of conditionalization,

then no matter what you learn, you will continue to assign probability zero

to failures of conditionalization (if you actually conditionalize).18 This seems

unreasonable—surely, there are some things you might learn that would make

you doubt your own future rationality. Therefore, you should assign non-zero

probability to failures of conditionalization, so Modesty follows.

The arguments above appeal to substantive constraints on prior proba-

bilities. Subjective Bayesians reject such constraints beyond adherence to

the axioms of probability. So subjective Bayesians will not be moved by my

arguments. However, Immodesty is also a substantive constraint on prior

probabilities and does not follow from the axioms of probability. Subjective

Bayesians have no reason to accept this constraint.19

There are, of course, good reasons to think that rationality requires condi-

tionalization, for example diachronic coherence arguments (Lewis 1999) and

various accuracy arguments (Joyce 1998; Greaves and Wallace 2005; Petti-

grew 2016). Modesty is entirely consistent with this claim. Arguments for

conditionalization aim to show:

Conditionalization: You should conditionalize.

Good’s argument relies on Immodesty, which says that you are certain you

will conditionalize. Conditionalization does not entail Immodesty. We can

accept that we should conditionalize but still have good reason to assign

positive probability to failures of conditionalization in the future. This is be-

cause we might not be certain that our future selves will be rational. Indeed,

as good Bayesians, we should not be certain that our future selves will be

rational if our evidence suggests that we might not be.

18This is the key reason Bayesian epistemologists tend to be skeptical of assigning proba-
bility zero to any possible event. For example, Lewis (1980, p. 268) argues that regularity is
“required as a condition of reasonableness: one who started out with an irregular credence
function (and who then learned from experience by conditionalizing) would stubbornly
refuse to believe some propositions no matter what the evidence in their favor.”

19As Hacking (1967, p. 315) points out, the axioms of probability don’t entail that you
will actually conditionalize, much less that you are certain of doing so: “The idea of the
model of learning is that Prob(h/e) represents one’s personal probability after one learns
e. But formally, the conditional probability represents no such thing. [...] Prob(h/e)
stands merely for the quotient of two probabilities.”
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Some philosophers have argued that the arguments for conditionalization

only support the norm that you should intend or plan to conditionalize,

rather than the norm that you should actually conditionalize.20 If these

philosophers are correct, then it is even harder to see any conflict between

the arguments for conditionalization and Modesty. We can rationally plan

to φ while also thinking that there is some positive probability that we will

fail to φ. For example, I can plan to run a 10K race while also thinking that

there is some chance I won’t make it to the end.21

There are also reasons to doubt whether conditionalization is always ra-

tionally required. For example, Douven (2013) argues that an alternative to

conditionalization, which he calls ‘Inference to the Best Explanation’, leads

you to converge to the truth faster in some circumstances. If you care about

fast convergence, this might be a reason to use Douven’s ‘Inference to the Best

Explanation’ instead of conditionalization. While this is no conclusive argu-

ment against conditionalization, it might perhaps instill some doubt about

whether conditionalization is always rational. Plausibly, the right response

to this normative uncertainty is to assign some positive probability to failures

of conditionalization even if you are sure you will update rationally.

3.3 Modesty entails Information Aversion

Let us assume Modesty. I now explain how for modest agents, maximizing

expected utility can require you to reject free information. The basic idea is

quite simple. If you are modest, you assign some credence to the possibility

that learning more information will lead you to make inferences which you

do not currently endorse. This might lead you to make choices which, from

your current point of view, seem like a bad idea. Therefore, you might be

better off ignorant.

Suppose a fair coin will be flipped twice and Ann knows this. She chooses

among bets on the second coin flip: a safe bet which always yields zero, a

20This point is discussed, for example, by Pettigrew (2016, pp. 187-88).
21Bratman (1992, p. 11-12) discusses similar examples and argues that one can plan to

φ without believing that one will φ.
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risky bet on heads and a risky bet on tails. Our choice set S is:

safe : {$0 always},

risky-heads : {$1 if the second coin flip lands heads,−$2 otherwise},

risky-tails : {$1 if the second coin flip lands tails,−$2 otherwise}.

Ann values money linearly and is an expected utility maximizer. She is also

certain that her future self will be an expected utility maximizer.22

I offer Ann the following choice: She can either make her decision now or

learn the outcome of the first coin flip and make her decision afterwards. If

Ann makes her decision now, she will pick safe. So the expected value of

choosing now is:

max
f∈S

Ep(f) = Ep(safe) = 0.

What happens if Ann learns the outcome of the first flip and makes her

decision afterwards? If Ann conditionalizes, she will choose the safe bet no

matter what she learns since she regards the two coin flips as independent.

So there is no reason for her to avoid learning. It can’t help her, but it can’t

hurt her either.

But Ann is modest and assigns some positive probability to failures of

conditionalization. In particular, Ann assigns some positive probability to

committing the gambler’s fallacy: after she learns that the first coin flip lands

heads, she will become confident that the next coin flip will land tails and

vice versa. In particular, Ann assigns some positive probability ε to the event

that when she learns that the first coin flip lands heads, she will become .9

22I mean that she is certain she will pick one of the actions in S which maximizes
expected utility relative to her updated credences—which might or might not be obtained
from her current credences by conditionalization. The value Ann currently assigns to f on
the supposition of E is the conditional expected utility Ep(·|E)(f) =

∑
ω∈Ω p({ω} | E)f(ω).

Gyenis and Rédei (2017) discuss conditional expectations in a much more general setting.
The important point is that this conditional expected utility can come apart from the value
Ann assigns to f after actually learning E. I also assume that S does not include actions
like ‘adopt credence p after learning evidence E’. With such an extended option set, one
can argue that certainty that one will maximize expected utility entails certainty that one
will conditionalize (Brown 1976), although Pettigrew (2020) points out how uncertainty
about updating complicates this argument. Thanks to an anonymous referee for pushing
me to clarify how exactly I understand certainty that one maximizes expected utility.
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confident that the second coin flip will land tails and vice versa.

Now suppose Ann learns that the first coin flip lands heads and commits

the gambler’s fallacy. Relative to her updated credences, the risky bet on

tails now looks like the best option. However, given Ann’s current credences,

the risky bet is the wrong choice. The situation is analogous if Ann learns

that the first coin flip lands tails and commits the gambler’s fallacy. Figure

2 sums up Ann’s situation.

Ann chooses risky-heads. EU: −1
2

Fallacy
ε

Ann chooses safe. EU: 0
Bayes

1− ε
Tails
1

2

Ann chooses risky-tails. EU: −1
2

Fallacy
ε

Ann chooses safe. EU: 0
Bayes

1− ε

Heads

1
2

Learn

Ann chooses safe. EU: 0

Don
’t

lea
rn

Figure 2: Ann’s decision problem.

The expected value of learning and deciding afterwards is− ε
2
, strictly worse

than the expected value of choosing now.23 Learning the outcome of the first

coin flip can hurt Ann but it can’t help her, so she is better off ignorant.

Since Ann can foresee all of this, it is rational for her to reject free informa-

tion. So the principle of maximizing expected utility sometimes recommends

rejecting free information.

When I say that the information is ‘free’, I mean the same as Good:

the information does not change the available actions or the utility function.

The only impact of the information is to change Ann’s credences. And it

23If Ann learns and decides afterwards, she chooses one of the risky options with proba-
bility ε and the safe option with probability 1− ε. The risky options have expected utility
− 1

2 and the safe option has expected utility zero. So the expected value of learning and
deciding afterwards is ε×− 1

2 + (1− ε)× 0 = − ε
2 .
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is not part of the example that Ann ever commits the gambler’s fallacy.

What makes it rational for Ann to reject the information is not that she

actually deviates from conditionalization but that she assigns some positive

probability to deviating from conditionalization.

I assume Ann is a ‘sophisticated chooser’: she predicts her own future

choices and takes these predictions into account when making her present

decisions (Hammond 1988, pp. 35–6).24 Since she predicts that her future

self might be irrational, she has an incentive to prevent her future self from

making bad choices. So Ann faces a predicament similar to Odysseus in

Greek mythology. She predicts that learning might compromise her future

rationality, so she is better off ignorant.

You might complain that this example is a bit weird. Since Ann regards

the two coin flips as independent, there is no way that learning the outcome of

the first coin flip could help her make a better choice. At best, the information

is neutral. In other words, if Ann is certain she will conditionalize, learning

the outcome of the first coin flip is not relevant to her choice set. However, we

can modify the example so that the information is relevant to her choice set

but the principle of maximizing expected utility still recommends rejecting

the information.

Again, a coin will be flipped twice and Ann must decide among several

bets on the second coin flip. There is a safe bet, a slightly risky bet on heads,

a slightly risky bet on tails, a very risky bet on heads and a very risky bet

24Buchak (2013, p. 176) describes the debate around sophisticated choice in decision
theory. In moral philosophy, there is a similar debate between actualism and possibilism
about what you should do when your future self will act wrongly (Smith 1976; Jackson
and Pargetter 1986). Louise (2009) and White (2021) discuss the legitimate role of self-
predictions in practical reasoning in more depth.
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on tails in our choice set S:

safe : {$0 always},

heads : {$1 if the second coin flip lands heads,−$1 otherwise},

tails : {$1 if the second coin flip lands tails,−$1 otherwise},

v-risky-heads : {$2 if the second coin flip lands heads,−$10 otherwise},

v-risky-tails : {$2 if the second coin flip lands tails,−$10 otherwise}.

This time, Ann does not consider the coin to be fair but thinks that the

coin has an unknown bias. The coin might be fair, it might be biased towards

heads or it might be biased towards tails—she has no idea. Again, I offer

Ann the following choice: She can either make her decision now or learn the

outcome of the first coin flip and make her decision afterwards.

Since the coin has an unknown bias, observing the outcome of the first

coin flip is informative for Ann. In particular, let us assume that, conditional

on the first coin flip landing heads, Ann thinks that the second coin flip lands

heads with probability 2
3
. The same goes for tails.25

If Ann makes her decision now, she is indifferent between safe, heads

and tails. So the expected value of choosing now is:

max
f∈S

Ep(f) = Ep(safe) = 0.

If Ann observes the outcome of the first coin flip, things are more interesting.

Suppose Ann will conditionalize. Then if the coin lands heads, Ann will think

that the coin is probably biased towards heads, so the slightly risky bet on

heads will seem best to her. The very risky bet on heads will still seem too

risky. The situation is analogous if the coin lands tails.

But Ann is modest and assigns some positive probability ε to the event

that she overweights the evidence: when she learns that the first coin flip

lands heads, she becomes .9 confident that the second coin flip will land heads

and vice versa. So Ann takes the evidence into account, but thinks that she

might be overconfident in how she does it. There are several reasons for why

25These probabilities can be derived from the ‘rule of succession’ (Zabell 1989).
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Ann might do this. She might commit some version of the base rate fallacy,

ignoring or underweighting prior probabilities. Or she might be susceptible

to some form of the hot hand fallacy, believing that ‘streaks’ of successive

heads are more likely than warranted by her evidence.

Suppose Ann observes the first coin flip landing heads. If she conditional-

izes, she will take the slightly risky bet on heads. But if she is overconfident,

she will choose the very risky bet on heads, which looks like a bad choice

from her current point of view. A similar story applies if Ann observes the

first coin flip landing tails. Figure 3 sums up Ann’s situation.

Ann chooses v-risky-tails. EU: −2

Fallacy
ε

Ann chooses tails. EU: 1
3

Bayes

1− ε
Tails
1

2

Ann chooses v-risky-heads. EU: −2

Fallacy
ε

Ann chooses heads. EU: 1
3

Bayes

1− ε

Heads

1
2

Learn

Ann chooses safe. EU: 0

Don
’t

lea
rn

Figure 3: Ann’s other decision problem.

The expected value of learning is 1
3
(1 − ε) − 2ε.26 So if Ann thinks the

probability of overconfidence is more than 1
7
, the expected value of learn-

ing and making her decision afterwards is worse than the expected value of

deciding now.27 So even if learning could be informative, expected utility

maximizers can be required to reject free information. Again, it is not part

26If Ann learns and decides afterwards, she chooses one of the very risky options
(v-risky-heads, v-risky-tails) with probability ε and one of the less risky options
(heads, tails) with probability 1 − ε. The very risky options have expected utility −2
and the less risky options have expected utility 1

3 . So the expected value of learning and
deciding afterwards is ε×−2 + (1− ε)× 1

3 = 1
3 (1− ε)− 2ε.

27Choosing now has expected value zero and 0 > 1
3 (1− ε)− 2ε ⇐⇒ ε > 1

7 .
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of the example that Ann actually overweights her evidence but only that she

assigns some probability to doing so.

These example show two things. First, the principle of maximizing ex-

pected utility does not imply Value of Learning. Expected utility maximizers

are not always permitted to accept free and relevant information. Good’s ar-

gument essentially depends on the assumption of Immodesty. If we assume

Modesty, the principle of maximizing expected utility can require agents to

reject free and relevant information.

Second, Value of Learning is false: Ann is rational but not permitted to

accept free and relevant information. This might seem contentious. Whether

or not rationality requires us to always conditionalize, the gambler’s fallacy

certainly looks irrational. So Ann thinks there is some probability that her

future self will be irrational. However, the fact that Ann thinks her future

self might be irrational does not entail that Ann is currently irrational. Ra-

tionality does not require you to be certain that your future self will be

rational.

We can suppose that Ann has good evidence she might commit the gam-

bler’s fallacy. All her friends have committed it and she thinks they are

relevantly similar to her. In this situation, it is implausible to think that

Ann must be certain that her future self will conditionalize. Rather, if she is

a good Bayesian, she should take her evidence into account and be modest.

We can also suppose that Ann plans to conditionalize. Furthermore, we can

suppose that in the actual word, Ann always manages to follow her plan. She

just thinks that there is some chance she might fail. This does not seem like

a failure of rationality. Therefore, we should let Value of Learning go even

if we accept expected utility theory with precise credences and information

which partitions logical space.

3.4 Information Aversion in the Real World

Moreover, we can use Modesty to make sense of real-world cases of informa-

tion aversion. I will briefly illustrate this with medical testing, blind grading,

checking one’s stock portfolio and resisting manipulation.
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People sometimes reject medical tests. There are several reasons: mis-

trust of doctors, fear of bad news and so on (Hertwig and Engel 2016, p.

365).28 Modesty suggests another reason. People could fear that the test

results might lead them (or their doctors) to draw inferences which they do

not currently endorse, resulting in unnecessary treatment and further test-

ing. For example, imagine you learn that a certain marker has increased in

your blood test since last time but is still in the normal range. Learning this

information might lead you to suspect a worrying trend where there are only

random fluctuations. As a result, you might want another test soon which is

unnecessary.

Blind grading is often considered good practice. Why is it bad to know

the student’s names? The standard explanation is that blind grading reduces

bias. For example, I might give too much weight to the fact that George got

an ‘A’ on the first paper and treat it as better evidence than it is that his

current paper deserves a good grade.

It is sometimes suggested that you shouldn’t check your stock portfolio

daily. One reason is that it might stress you. However, another reason is

that you might be tempted to change the allocation of your portfolio in a

way that you currently view as a bad idea. This, in turn, can be explained

by the risk of overweighting the significance of small fluctuations.29

It appears rational to refuse information designed to manipulate you. For

example, one reason to avoid social media is that the information shown on

your feed is designed to influence your behavior: to make you buy the prod-

ucts advertised there, to make you spend even more time on the platform and

so on (Véliz 2020, pp. 69–76). Even if we sidestep issues of misinformation

and assume the information you see on your feed is accurate, the fact that

this information is designed to influence your behavior by companies which

28Information aversion with respect to medical tests is discussed by Osimani (2012),
Jouini and Napp (2018) and many others.

29In a best-selling popular science book on computer science and decision theory, Chris-
tian and Griffiths (2016, p. 148) write: “If you want to be a good intuitive Bayesian—if
you want to naturally make good predictions, without having to think about what kind of
prediction rule is appropriate—you need to protect your priors. Counterintuitively, that
might mean turning off the news”. They do not consider how we can make sense of this
idea without contradicting Good’s theorem. Modesty offers an elegant way of doing so.
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do not have your best interest at heart is a reason to stop looking. A similar

case is when you refuse to talk to a manipulative person. Even if everything

the manipulative person says is true, you might be better off not listening.

This is because you might suspect that you will not update rationally on

information designed to manipulate you.

Many other examples of information aversion in real life can be explained

along similar lines.30 There are, of course, competing explanations: per-

haps people deviate from expected utility theory, have imprecise credences or

assign negative utility to bad news. But in the examples above, it seems inde-

pendently plausible that we assign some probability to overweighting evidence:

giving too much weight to the result of medical tests, the past performance

of our students, small fluctuations in our stock portfolio and the informa-

tion on our feed. When we reflect on how much weight we should assign to

this information, we might conclude: ‘a little bit, but not very much’. But

once we actually learn the information, we might assign more weight to it

than we have previously considered rational. Imagine a positive result on a

medical test slightly increases your probability of serious illness. Before do-

ing the test, you might calmly assign conditional probabilities which reflect

this slight increase. But when you learn that the test actually turned out

positive, you might increase our probability of serious illness more than you

previously considered warranted.

If we model overweighting evidence as deviation from conditionalization,

we have seen that it can be a good idea to reject free information. So Mod-

esty can explain these examples of information aversion in the real world in a

way that seems to get at the heart of the matter. On the other hand, explain-

ing these cases by saying, for example, that people are not expected utility

maximizers seems to have less independent motivation. So while I have no

conclusive argument that Modesty is the correct explanation for these cases,

it seems like a particularly plausible candidate.31

30For example elite-group ignorance, which Kinney and Bright (2021) explain using
risk-weighted expected utility theory. Yong (2023) critically discusses this explanation.

31Thanks to an anonymous referee for pushing me to clarify why Modesty is a plausible
explanation of these cases of information aversion.
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4 Value of Information Generalized

Surely, modest agents are not always required to reject free information.

Even if you have some uncertainty about how you will update, this does not

mean that you are always better off ignorant. But how should modest agents

decide when to learn more information? And how general is the link between

information aversion and Modesty? I answer these questions by generalizing

the value of information to modest agents.

4.1 Good’s Value of Information

Good’s argument gives us a way to measure the value of information. To

state this idea, it is useful to introduce an additional bit of notation. I write

P(· | E) for your credences updated by conditionalization on the evidence

partition E . This is a random variable which takes different probability

functions as values in different state.32 Then, we can define the value of

information as follows (Blackwell 1951; Raiffa and Schlaifer 1961; Howard

1966):33

Definition 1. The value of information for E is:

V alGood(E) = Ep
(

max
f∈S

EP(·|E)(f)

)
−max

f∈S
Ep(f).

This is the difference between the expected value of choosing after learning

and the expected value of choosing now. It measures how much you expect

the information to improve your decision. In this context, Value of Learning

is captured by the fact that for any evidence partition E , V alGood(E) ≥ 0. In

slogan form: ‘the value of information is always non-negative’.

This concept is useful because it allows us to say how much you should

value learning the answer to a question. It also allows us to compare the value

32More rigorously, we can define P(· | E) as the random variable which maps each ω ∈ Ω
to p(· | E) for the unique E ∈ E such that ω ∈ E.

33Le Cam (1996) sketches the history of this concept, which apparently goes back to
an unpublished RAND memorandum entitled ‘Reconnaissance in Game Theory’ based on
suggestions by von Neumann (Bohnenblust, Shapley, and Sherman 1949).
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of learning the answers to different questions. This means we can formalize

tradeoffs between acting now versus learning more and acting later even if

learning is costly. Such tradeoffs are ubiquitous. In many real-life contexts,

such as drug trials, we have to decide how much to sacrifice for learning more

information.34 So it is not surprising that the value of information is widely

used in economics and artificial intelligence.35 However, the standard way of

defining the value of information presupposes Immodesty.

4.2 General Value of Information

Here is a proposal for how we can define the value of information in a more

general way. I write PE for your credences updated on the evidence partition

E without assuming you are certain you will update by conditionalization.

This is a random variable whose values are different probability functions in

different states.36

Suppose you will learn the true element of some evidence partition E .

Then you update your credences in some way—perhaps you conditionalize,

perhaps you do something different—and choose the action which maximizes

expected utility relative to your updated credences:

arg max
f∈S

EPE (f).37

This expression will usually denote different actions in different states, be-

cause you might learn different events and update on those events in different

34Such decision problems can be formalized as ‘multi-armed bandits’ in which one must
balance exploiting, acting according to one’s current best estimate, and exploring new and
potentially better options (Lattimore and Szepesvári 2020). The value of information can
be used to define optimal solutions to such problems.

35Russell and Norvig (2018, pp. 628-33) discuss the value of information in AI research.
Hadfield-Menell et al. (2017) discuss a model of how to ensure that AI agents always defer
to humans which relies on the value of information being non-negative. In addition, the
value of information is relevant to much other work, for example in the philosophy of
language (Van Rooy 2003), to discussions about ‘longtermism’ in ethics (Askell and Neth
Forthcoming) and the epistemology of disagreement (Dorst forthcoming).

36On each E ∈ E , PE agrees with PE as defined in section (2.1).
37The term arg maxx∈X g(x) denotes the argument of the maximum: the x ∈ X such

that g(x) is maximal.
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ways. I assume that there is a unique best action in every state.38

We are interested in evaluating how good this action is from your current

perspective, so we consider the expected utility of this action given your

current credences:

Ep
(

arg max
f∈S

EPE (f)

)
.

This is the expected utility of the action you think you will actually do

after learning. We model a ‘sophisticated chooser’: our agent predicts her

future choices and takes this information into account when making present

decisions. I propose the following definition:

Definition 2. The general value of information for E is:

V alGeneral(E) = Ep
(

arg max
f∈S

EPE (f)

)
−max

f∈S
Ep(f).

This measures the difference between the expected utility of your current

best action and the expected utility of the action that you think you will

choose after learning. In contrast to Good, I do not assume that you are cer-

tain you will conditionalize. I still assume you are certain you will maximize

expected utility.

If we assume Immodesty, my proposal is identical to Good’s:

Theorem 1. If PE = p(· | E) for all E ∈ E , then V alGeneral(E) = V alGood(E).

In contrast to Good’s value of information, the general value of informa-

tion can be negative. We have seen this in the examples above. But it is not

always negative. This is shown by the second example above. When Ann

considers the possibility of overconfidence sufficiently unlikely, she is better

off observing the first coin flip. In (slightly clunky) slogan form: ‘the value

of information is sometimes negative, but not always. It depends’.

38So for every ω ∈ Ω, there is a unique f∗ ∈ S maximizing EPE(ω)(·). Recall that
PE is a function from states to probability functions, so PE(ω) is a particular probability
function—the credence you adopt after learning the true element of E in state ω. I do
not consider cases where two actions are tied for the best action because in such cases,
we would need to consider how to break the tie (introduce a selection function), which
leads to additional complications. Buchak (2013, p. 190) provides relevant discussion and
references on how indifference complicates sophisticated choice.
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We can also say something about how general the link between Mod-

esty and information aversion is. For this purpose, I make two additional

assumptions. Utility Richness says that for every x ∈ [0, 1], there is some

outcome o ∈ O such that u(o) = x.39 Evidential Independence says that

conditional on the learned event, your updated credences are independent

of what action is best.40 Evidential Independence rules out cases where you

deviate from conditionalizing because you become more certain of the truth.

For example, you might observe that a fair coin lands heads and be able to

foresee that it lands tails next. If we agree that your evidence is that the coin

lands heads on the first flip, you do not update by conditionalizing on your

evidence. However, clairvoyance can lead you to make better decisions than

conditionalization. In contrast, I consider deviations from conditionalization

which are not systematically correlated with which action is actually best. I

have implicitly made this assumption earlier: Ann is equally likely to commit

the gambler’s fallacy whether the second coin flip lands heads or tails.

Assuming Evidential Independence, we can write V alGeneral(E) as:

V alGeneral(E) =
∑
E∈E

p(E)
n∑
i=1

p(choose fi | E)Ep(·|E)(fi)−max
f∈S

Ep(f),

where ‘choose fi’ denotes the event that you choose action fi after learning

E, which means that fi maximizes expected utility relative to your updated

credences after learning E. Note that p(choose fi | E) is your current con-

ditional probability that you will choose action fi after learning E. You

evaluate how good this action is by its conditional expected utility Ep(·|E)(fi)

given your current credences. If you do not conditionalize, this conditional

39Our outcome space could contain lotteries which yield outcome b with probability p
and outcome w with probability (1−p). In this case, we only need two ‘primitive’ outcomes
b and w with u(b) > u(w) to obtain rich utilities.

40More precisely, for every E ∈ E , your updated credences PE , which determine which
action you will choose after learning, are independent of all f ∈ S conditional on E. This
means, in particular, that for all f, g ∈ S, Ep(·|E∩choose f)(g) = Ep(·|E)(g), where ‘choose
f ’ is the event that you choose action f after learning. The intuition is that learning
that you choose a particular action after learning E does not affect the expected utility of
actions beyond learning E. It would be interesting to investigate cases where deviations
from conditionalization are systematically correlated with which actions are best. In this
paper, I focus on the simple case where Evidential Independence holds.
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expected utility can come apart from the unconditional expected utility of

the action according to your updated credences.41

We can show the following:

Theorem 2. Assuming Utility Richness and Evidential Independence, for

every modest agent, there is some choice set where V alGeneral(E) < 0.

Given our assumptions, any positive probability of not conditionalizing leads

to information aversion. It does not matter why we are modest, as long

as Evidential Independence holds. The examples above demonstrated how

psychological uncertainty about whether you will update rationally leads to

information aversion. The theorem shows that even if you are certain that

your future self will be rational, normative uncertainty about whether con-

ditionalization is rational leads to information aversion. So we have a very

general argument against Value of Learning. This also means that we can-

not rescue Good’s argument by saying that while we might not be certain

we will conditionalize, we are very confident we will conditionalize. (Perhaps

we have a ‘default entitlement’ to believe in our future rationality.) Any

non-zero probability of failing to conditionalize means trouble for Good.

We can also show:

Theorem 3. Assuming Evidential Independence, E , V alGeneral(E) ≤ V alGood(E)

for every evidence partition E .

Doubts about how you will update cannot increase the value of information.

Note that one might take this theorem as a reason to think that you should

conditionalize, at least relative to the assumption of Evidential Independence.

But we are often not sure whether we will be rational in the future and cannot

change anything about that. If we are in such a situation, the theorem tells

us that we should value learning less than if we were certain that we would

conditionalize.

41Thanks to an anonymous referee for suggesting to make the formula for V alGeneral(E)
more explicit and see Lemma (1).

27



5 Conclusion

Good argues that the principle of maximizing expected utility entails Value

of Learning: rational agents are always permitted to accept free information

and required to accept information which is free and relevant. I have argued

that the principle of maximizing expected utility does not entail Value of

Learning and that Value of Learning is false. The key observation is that

Good’s argument only works if we are certain that we will update by condi-

tionalization but we have good reason not to be.

What follows? First, we can give better advice to modest agents: some-

times, they are better off ignorant. Since we arguably are—and should be—

modest, this advice applies to us. Sometimes, we are better off ignorant.

Sometimes, we should avert our eyes and stuff our ears with wax to avoid

learning the song of the Sirens. Second, proponents of expected utility theory

should be careful when objecting to alternative decision-theoretic frameworks

on the grounds that these frameworks sometimes permit or require agents

to avoid free information. Properly understood, expected utility theory does

the same. So this objection loses much of its dialectical force. Third, in-

formation aversion is a feature and not a bug. Plausible arguments from

Bayesian epistemology push us towards Modesty. And once we accept Mod-

esty, we can explain many instances of information aversion in the real world

which would otherwise be puzzling. By going beyond Good, we end up with

a better decision theory.

Appendix

Theorem 1. If PE = p(· | E) for all E ∈ E , then V alGeneral(E) = V alGood(E).

Proof. It suffices to show that if PE = p(· | E) for all E ∈ E , then

Ep
(

arg max
f∈S

EPE (f)

)
= Ep

(
max
f∈S

EP(·|E)(f)

)
. (1)

By the law of total expectation, since E is a partition with p(E) > 0 for all
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E ∈ E ,42

Ep
(

arg max
f∈S

EPE (f)

)
=
∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
.

We assume that PE = p(· | E) for all E ∈ E , so

∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=
∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
Ep(·|E)(f)

)
.

Now Ep(·|E)

(
arg maxf∈S Ep(·|E)(f)

)
= maxf∈S Ep(·|E)(f), so

∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
Ep(·|E)(f)

)
=
∑
E∈E

p(E) max
f∈S

Ep(·|E)(f) = Ep
(

max
f∈S

EP(·|E)(f)

)
,

which shows that (1) holds.

Lemma 1. Assuming Evidential Independence, for every f ∈ S,

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi),

where ‘choose fi’ is the event that you choose action fi after learning E.

Proof. Suppose the range of arg maxf∈S EPE is f1, ..., fn. Intuitively, these

are the actions you might choose after learning. Let us abbreviate the event

arg maxf∈S EPE = fi by ‘choose fi’. Intuitively, this is the event that you

choose action fi after learning E. (Recall that there is always a unique best

action after learning.)

Evidential independence holds if for every E ∈ E , PE is independent of

all f ∈ S conditional on E.43 This means, in particular, that for all f ∈ S
and fi with 1 ≤ i ≤ n, Ep(·|E∩choose fi)(f) = Ep(·|E)(f). The intuition is that

42In general, the law of total expectation says that for any random variables X and Y ,
E(X) = E(E(X | Y )) (Pitman 1993, p. 403). I use the special case where E is a partition
with p(E) > 0 for all E ∈ E and X a random variable. Then E(X) =

∑
E∈E p(E)E(X | E).

On every E ∈ E , arg maxf∈S EPE agrees with arg maxf∈S EPE
.

43Pitman (1993, p. 400) defines conditional independence for random variables.
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relative to your prior, the event that you choose a particular action after

learning E does not affect the expected utility of actions beyond learning E.

We want to show:

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi). (2)

Since the events ‘choose f1’, ...., ‘choose fn’ form a partition, we can apply

the law of total expectation:

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E∩choose fi)

(
arg max

f∈S
EPE

(f)

)
.

Now Ep(·|E∩choose fi)

(
arg maxf∈S EPE

(f)
)

= Ep(·|E∩choose fi) (fi) by the defini-

tion of ‘choose fi’, so

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E∩choose fi)(fi).

By Evidential Independence, Ep(·|E∩choose fi)(fi) = Ep(·|E)(fi), so (2) holds.

Theorem 2. Assuming Utility Richness and Evidential Independence, for

every modest agent, there is some choice set where V alGeneral(E) < 0.

Proof. An agent is modest iff she assigns some positive probability to not

conditionalizing. So for some evidence partition E , there is some E ∈ E such

that with positive probability, PE 6= p(· | E). This means that for some

ω ∈ E with p(ω) > 0, PE(ω)(A) 6= p(A | E) for some event A. I write pE

for PE(ω) and assume pE(A) > p(A | E). (In the other case, the proof is

analogous.)

We want to show that there is a choice set where V alGeneral(E) < 0.

Consider the following choice set S (with payoffs in utils):

safe : {0 always},

risky : {a if A ∩ E,−b if AC ∩ E, 0 otherwise}.
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We want to find values for a > 0 and b > 0 such that, conditional on E, the

expected utility of the risky bet is worse:

Ep(·|E)(risky) < 0. (3)

But if our agent deviates from conditionalization, she prefers the risky bet:

EpE(risky) > 0. (4)

If we find these values, we can show that V alGeneral(E) < 0. Recall that

V alGeneral(E) = Ep
(

arg max
f∈S

EPE (f)

)
−max

f∈S
Ep(f).

Now maxf∈S Ep(f) = 0. This is because Ep(safe) = 0 but Ep(risky) < 0.

We need to show

Ep
(

arg max
f∈S

EPE (f)

)
< 0. (5)

We re-write this term using the law of total expectation:

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
+ p(EC)Ep(·|EC)

(
arg max

f∈S
EP

EC
(f)

)
.

Now the right-hand term is zero, since both safe and risky yield zero when

E is false. Thus, we focus on the left-hand term, which we can re-write as

follows, using Evidential Independence and Lemma (1):

p(choose risky | E)Ep(·|E)(risky) + p(choose safe | E)Ep(·|E)(safe).

The right-hand term is again zero, so we focus on the left-hand term. We

have p(choose risky | E) > 0, since we have assumed that there is a positive

probability our agent deviates from conditionalization and so chooses the

risky action. By assumption, Ep(·|E)(risky) < 0, which shows (5).

We still need to show that we can find values a and b which do the trick.
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By (3), a and b need to obey the following constraint:

ap(A ∩ E | E)− bp(AC ∩ E | E) < 0,

which simplifies to

ap(A | E)− b(1− p(A | E)) < 0. (6)

By (4), a and b need to obey the following constraint:

apE(A ∩ E)− bpE(AC ∩ E) > 0,

which, using our assumption that pE(E) = 1, simplifies to

apE(A)− b(1− pE(A)) > 0. (7)

Let us write q for pE(A) and r for p(A | E). So our question is whether the

following system of equations has a solution for any q and r such that q > r:

aq − b(1− q) > 0 > ar − b(1− r). (8)

The answer is ‘yes’: real numbers a > 0 and b > 0 such that 0 ≤ r < b
a+b

<

q ≤ 1. We can find outcomes with these utilities by Utility Richness.

Theorem 3. Assuming Evidential Independence, E , V alGeneral(E) ≤ V alGood(E)

for every evidence partition E .

Proof. It suffices to show

∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
≤ Ep

(
max
f∈S

EP(·|E)(f)

)
. (9)

Consider any E ∈ E . By Evidential Independence and Lemma (1),

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi). (10)
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The right-hand side is a weighted sum of expected values relative to p(· | E)

and Ep(·|E)(f) ≤ maxf∈S Ep(·|E)(f) for all f ∈ S.44 Therefore,

n∑
i=1

p(choose fi | E)Ep(·|E)(fi) ≤ max
f∈S

Ep(·|E)(f),

and so by (10),

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
≤ max

f∈S
Ep(·|E)(f).

Taking expectations on both sides, (9) follows.
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