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Abstract

We show that the common core of the recently-discovered non-relativistic
geometric trinity of gravity is Maxwell gravitation. Moreover, we explain
why no such dynamical common core exists in the case of the better-known
relativistic geometric trinity of gravity.
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1 Introduction

Inter alia, the following questions surely count as mainstream in contemporary
philosophy of spacetime physics:

1. What is the ‘correct’ spacetime setting for Newtonian gravity, especially
in light of Newton’s Corollary VI?1 (On this topic, see e.g. Dewar (2018),
Knox (2014), Teh (2018), Wallace (2020), and Weatherall (2016, 2018).)

∗Balliol College, University of Oxford, UK. eleanor.march@balliol.ox.ac.uk
†Faculty of Philosophy, University of Oxford, UK. william.wolf@philosophy.ox.ac.uk
‡Faculty of Philosophy, University of Oxford, UK. james.read@philosophy.ox.ac.uk
1Recall that Newton’s Corollary VI reads as follows: “If bodies are moving in any way

whatsoever with respect to one another and are urged by equal accelerative forces along
parallel lines, they will all continue to move with respect to one another in the same way as
they would if they were not acted on by those forces.” (Newton 2014, p. 99).
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2. Are there spacetime theories which are in some sense or other ‘equivalent’
to general relativity, and what would be the philosophical significance of
such theories, were they to exist? (On this topic, see e.g. Bain (2006),
Duerr and Read (2023), Knox (2011), Rosenstock et al. (2015), Wolf and
Read (2023a), and Wolf, Sanchioni, et al. (2023).)

3. How is one to take the non-relativistic limit of general relativity, and
what is the resulting theory? (On this topic, see e.g. Fletcher (2019) and
Malament (1986).)

Until now, discussions of these questions have, broadly speaking, been quar-
antined from one another. Our purpose in this article is to show that these
questions (and answers to said questions) are in fact related to one another in
intimate and significant ways.

To explain what we mean here, begin with question (1). (For the time being a
qualitative account will suffice; the mathematics to substantiate the claims made
here will follow later in this article.) Typically, Newtonian gravitation theory
(NGT) in its potential-based formulation chez Laplace and Poisson is taken to
be set in a flat spacetime; gravitational effects in this spacetime are encoded in
the gravitation potential which leads to test bodies not traversing geodesics of
the flat, compatible connection. This being said, NGT has a hidden symmetry
(sometimes referred to as ‘Trautman symmetry’ (Teh 2018)): if one (a) subjects
all material bodies to an additional constant gravitational field, and (b) changes
one’s standard of straightness (i.e. one’s derivative operator) to compensate
for this, then in fact no physical change ensues. (This is related to Newton’s
Corollary VI, as we will explain below; cf. Read and Teh (2022).) When one
moves to a new formalism purged of this additional symmetry,2 one arrives
at the structure of Newton-Cartan theory (NCT): a non-relativistic spacetime
theory in which gravitational effects are, just as in the case of general relativity
(GR), manifestations of spacetime curvature.

This much is well-known. But there remains some ambiguity in the liter-
ature as to how NGT relates to another spacetime theory known as ‘Maxwell
gravitation’ (MG), also developed in light of Newton’s Corollary VI. (On this,
see Chen (2023), Dewar (2018), March (2023), and Saunders (2013)) Moreover,
recently NGT has been shown to in fact admit of an interpretation whereby it
is a theory with a torsionful geometry, in the sense that the gravitational po-
tential can be associated with the torsion of the ‘mass gauge field’ which arises
when one gauges the Bargmann algebra (for more on the mass gauge field, see
Andringa et al. (2011), Read and Teh (2018), Teh (2018), and Wolf, Read, and
Teh (2023)). Even less well-known (indeed, we might say, almost unknown!)
is that both NGT and NCT are equivalent to an alternative non-relativistic
theory, recently dubbed ‘symmetric Newtonian gravitation theory’ (SNGT), in
which gravitational effects are manifestations neither of curvature (as in NCT)

2Here, we set aside the differences between what are known as ‘reduction’ and ‘internal
sophistication’ about symmetires: see Dewar (2018) and Martens and Read (2021).
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Figure 1: Maxwell gravitation as the common core of the non-relativistic geo-
metric trinity of gravity.

nor of torsion (as in NGT), but of spacetime non-metricity.3 Here, we demon-
strate that these pieces fit together in the following way: NGT, NCT and SNGT
constitute a ‘non-relativistic geometry trinity’; the structure common to all said
theories (the ‘common core’, in the sense of Le Bihan and Read (2018)) just is
the structure of MG (see Figure 1).4

Already, this illuminates quite substantially the connections between these
four non-relativistic theories of spacetime and gravity. And yet, that is only the
beginning of the story. Taking now together questions (2) and (3) in our above
list, it is becoming increasingly well-known to philosophers of physics that there
exists a ‘geometric trinity’ of relativistic theories of gravitation, of which GR
constitutes but one node (see e.g. Jiménez et al. (2019) for a recent review in the
physics literature). The other two nodes are ‘teleparallel gravity’ (TEGR), in
which gravitational effects are a manifestation of exclusively spacetime torsion,
and ‘symmetric telelparallel gravity’ (STGR), in which gravitational effects are a
manifestation of exclusively spacetime non-metricity. In Wolf and Read (2023b),
it was shown that the above-discussed non-relativistic trinity (sans any mention
of MG) is indeed the non-relativistic limit (in the sense of a 1/c expansion à la
Schwartz (2023)) of this relativistic geometry trinity. The web of connections
is, therefore, as presented in Figure 2 (in that figure, for clarity, we omit MG).

What we add to this discussion in the present paper is an answer to the
following question: does there exist a ‘common core’ of the relativistic geometric
trinity in the same sense that MG is the common core of the non-relativistic
trinity, and if so is it the case that MG is the non-relativistic limit of said
relativistic common core? In fact, we do not need to answer the second part
of this question, for we will answer the first part in the negative: there is no
suitable common core of the relativistic geometric trinity to begin with.

We should be clear about what ‘suitable’ means here. Although it is true

3To remind the reader: ‘curvature’ quantifies the extent to which parallel transport of a
vector along a closed loop doesn’t preserved angles; ‘torsion’ quantifies the extent to which
parallel transport in two directions doesn’t commute; ‘non-metricity’ quantifies the extent to
which parallel transport of a vector along a closed loop doesn’t preserve the length of that
vector. For further background, see e.g. Hehl et al. (1995).

4The same notion of a common core is also discussed in e.g. De Haro and Butterfield (2021).
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Figure 2: The relativistic geometric trinity and the non-relativistic geometric
trinity as its non-relativistic limit.

that there is some common core to the kinematical structure of the relativistic
geometric trinity—indeed, in Wolf, Sanchioni, et al. (2023) this was argued to
be the conformal structure common to all three of GR, TEGR, and STGR—
said kinematical structure is insufficient to build up dynamics such that the
resulting theory is equivalent all three original nodes of the trinity. By contrast,
in the non-relativistic case there is again a kinematical common core—this time,
it consists in what has been dubbed in the recent philosophical literature a
‘standard of rotation’ (see Weatherall (2018))—; however—and quite differently
to the relativistic case!—that common core is sufficient to construct dynamics
(naturally, the dynamics of MG) which are equivalent to the dynamics of each
of the nodes of the non-relativistic geometric trinity. Later in this article, we
will explain exactly how this comes to be the case: it turns out that the crucial
ingredients are, as it were, ‘injected’ on taking the non-relativistic limit of the
relativistic geometric trinity.

To summarise, then, in this article we (a) identify MG as the dynamical com-
mon core of the recently-discovered non-relativistic geometric trinity of gravity,
and (b) explain how it can be that no analogous common core exists in the
case of the relativistic geometric trinity of gravity. In so doing, we (i) clarify
questions in (1) regarding the ‘correct’ spacetime setting for Newtonian gravity,
(ii) connect that entire literature up to the geometric trinity of gravity and its
Newtonian limit, which has also aroused recent philosophical interest. More
specifically, the structure of the article is this. In §2, we remind the reader
of the mathematical details of both the relativistic geometric trinity and the
non-relativistic geometric trinity. In §3, we present MG as the common core of
the non-relativistic trinity, and connect our discussion to that of the ‘correct’
spacetime setting for Newtonian gravity. In §4, we address the matter of the
existence (or otherwise) of a relativistic common core. We close in §5.
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2 Geometric trinities

In this section, we recall the mathematical details underlying the existence
of the relativistic geometric trinity of gravitation theories (§2.1) and the non-
relativistic geometric trinity of gravitation theories (§2.2).

2.1 The relativistic geometric trinity

The ‘geometric trinity’ of gravity refers to a family of three relativistic theories
of gravitation: general relativity (GR), the ‘teleparallel equivalent to general
relativity’ (TEGR), and the ‘symmetric teleparallel equivalent to general rel-
ativity’ (STGR). These theories are all ‘equivalent’ to each other in the sense
that they share equivalent dynamical equations of motion, but distinct in the
sense that these shared dynamics result from entirely different geometric degrees
of freedom that manifest in each respective theory (see e.g. Capozziello et al.
(2022) and Jiménez et al. (2019)).

Kinematical possibilities of general relativity are typically presented as tuples
of the form ⟨M, gab,Φ⟩, where M is a four-dimensional differentiable manifold,
gab is a Lorentzian metric field on M , and Φ represents material fields. The dy-
namical possibilities of the theory are encoded by the Einstein field equations,
which govern the behavior of these spacetime and material fields. However, the
geometric degrees of freedom responsible for sourcing the dynamics of the re-
spective theories in the geometric trinity are properties of the affine connection.

We will thus take GR to be a theory given by models of the form ⟨M, gab,
c

∇,Φ⟩,
where

c

∇ refers to the familiar Levi-Civita derivative operator with non-vanishing

curvature. Typically,
c

∇ is not included explicitly in the models of GR, for it is
fixed uniquely by gab.

Spacetime curvature is defined in the following way:

Ra
bcdξ

b := −2∇[c∇d]ξ
a, (1)

where ξa is a smooth vector field. However, curvature is not the only geometric
property that a connection can manifest. An affine connection can also possess
torsion or non-metricity. The torsion tensor is given by

T c
ab∇cα := 2∇[a∇b]α, (2)

where α is a smooth scalar field; torsion thereby encodes the antisymmetry
of a connection. Non-metricity is given by the non-vanishing of the covariant
derivative of the metric tensor

Qabc := ∇agbc. (3)

Heuristically, curvature measures the rotation of a vector when it is parallel
transported along a closed curve, torsion measures of the non-closure of the
parallelogram formed by two vectors being parallel transported along each other,
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and non-metricity measures how the length of a vector changes when parallel
transported (see e.g. Figure 1 in Jiménez et al. (2019) or Hehl et al. 1995).

The Levi-Civita connection of GR is unique in the sense that it is the
unique derivative operator which is both torsion-free (i.e. T a

bc = 0) and metric-
compatible (i.e. Qabc = 0), but with generically non-vanishing curvature (i.e.
Ra

bcd ̸= 0). However, in order to build a viable relativistic spacetime theory, it

is not necessary to use
c

∇. Indeed, one can decompose a general affine connection
as

∇ = (
c

∇,Ka
bc + La

bc), (4)

where Ka
bc is known as the ‘contorsion tensor’ and La

bc is known as the ‘dis-
tortion tensor’ (here, we use the notation of Malament (2012, p. 53)). The
contorsion tensor can be understood as the difference tensor between the Levi-
Civita connection and the torsionful (but flat and metric-compatible) connec-
tion of TEGR. The disortion tensor can be understood as the difference tensor
between the Levi-Civita connection and non-metric (but flat and torsionless)
connection connection of STGR.

If—as above—we take GR to be a theory with kinematical possibilities of

the form ⟨M, g,
c

∇,Φ⟩, then TEGR can be taken to be a theory with kinemati-

cal possibilities given by ⟨M, g,
t

∇,Φ⟩, where
t

∇ = (
c

∇,Ka
bc ) refers to the TEGR

connection with non-vanishing torsion. Likewise, STGR is a theory with kine-

matical possibilities given by ⟨M, g,
n

∇,Φ⟩, where
n

∇ = (
c

∇, La
bc) refers to the

STGR connection with non-vanishing non-metricity.
One can use (4) as a dictionary by which to translate between these theories.

That is, one can rewrite the geometric objects of interest in one theory in terms
of the geometric objects of one of the other trinity theories, and thereby witness
their equivalence. For example, one can take the curvature scalar R of the Levi-
Civita connection, and use (4) to express it in terms of the TEGR connection
and the contorsion tensor, or in terms of the STGR connection and the distorsion
tensor. One finds that

−R = T +BT = Q+BQ, (5)

where T is the torsion scalar, Q is the non-metricity scalar, and BT/Q refers to
boundary terms of the respective theories. This also illustrates that these the-
ories are dynamically equivalent, as the Lagrangian expressions for all of these
theories can be written using the geometric scalars (in the case of GR, recall
the Einstein-Hilbert action). Upon utilizing standard variational procedures,
the boundary terms that arise in (5) vanish, resulting in the standard Einstein
field equations for all theories (but of course expressed in their particular geo-
metric languages).5

5For more on the significance of these boundary terms, see Wolf and Read (2023a) for
philosophical discussion on concerning their implications for theory equivalence and theory
structure and see Oshita and Wu (2017) for further physics discussion.
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2.2 The non-relativistic geometric trinity

It was shown recently by Wolf and Read (2023b) that there is a non-relativistic
analogue of the geometric trinity, whereby standard Newtonian gravity can like-
wise be reconceptualised and/or reformulated as a theory of curvature, tor-
sion, or non-metricity. The three nodes of the non-relativistic geometric trinity
of gravity are ‘Newton-Cartan theory’ (NCT), ‘Newtonian gravitation theory’
(NGT), and ‘symmetric Newtonian gravitation theory’ (SNGT).

Following the presentation of the relativistic theories above, we take NCT

to be a theory with kinematical possibilities of the form ⟨M, ta, h
ab,

c

∇,Φ⟩. As
before, M is a four-dimensional differentiable manifold, Φ represents material

fields, and
c

∇ is a torsion-free and compatible (now in the sense that ∇atb =
∇ah

bc = 0) derivative operator with non-vanishing curvature. However, there
are some important differences:

1. The metrical structure of non-relativistic theories is notably different from
that of relativistic theories, because ta and hab refer to degenerate tem-
poral and spatial metrics on M : see Malament (2012, ch. 4).6 Metric
compatibility applies separately to both metrics; in addition, ta and hab

are orthogonal to each other, so that tah
ab = 0. Loosely speaking, ta is

supposed to represent Newtonian absolute time, and hbc is supposed to
represent Newtonian absolute space.

2. The dynamical possibilities for NCT are encoded in the ‘geometrised Pois-
son equation’:

Rab = 4πρtatb, (6)

where Rab is the Ricci curvature of the NCT connection
c

∇; moreover,
one typically includes the following curvature conditions in one’s presen-
tation of NCT (we will discuss these curvature conditions more later in
the article7):

Ra c
b d = Rc a

d b, (7)

Rab
cd = 0. (8)

NGT is a theory given by models of the form ⟨M, ta, h
ab,

t

∇,Φ⟩, where
t

∇ again is a flat, metric-compatible derivative operator with (in a certain
quite non-obvious sense which we will explain!) non-vanishing torsion. One
can translate between NCT and NGT by introducing the difference tensor
t

∇ = (
c

∇, tbtc
t

∇aϕ), where ϕ is a scalar field representing the gravitational po-
tential. This allows one to cast the dynamics of this theory in its familiar form

6Through this article, we assume temporal orientability, in the sense of Malament (2012,
ch. 4).

7See also Malament (2012) and Teh (2018) for further discussion of the physical significance
and meaning of these conditions.
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given by the standard Poisson equation:

t

∇a

t

∇aϕ = 4πρ. (9)

Although the translation between NCT and NGT (in the form of the the famous
‘geometrisation’ and ‘recovery’ theorems—(see also Malament (2012, ch. 4)) has
been known since the work of Trautman (1965), it was much more recently
shown by Read and Teh (2018) that standard Newtonian gravity can be un-
derstood as the ‘teleparallel equivalent’ of NCT in much the same way that
TEGR is the teleparallel equivalent of GR. Here, the gravitational field follows
from the torsion of the ‘mass gauge field’ ma, which is obtained by gauging the
Bargmann algebra: one has T (M) := dma; gauge fixing ma = ϕta yields (9).

Even more recently, SNGT has been constructed by Wolf and Read (2023b).

This theory is given by models of the form ⟨M, ta, h
ab,

n

∇,Φ⟩, where
n

∇ is flat
and torsion-free but possesses non-vanishing non-metricity, so that in particular

n

∇atb = σatb,
n

∇ah
bc = σah

bc,
(10)

where σa = αta is an exact, spatially constant one-form such that that encodes
the non-metricity of the theory. Similarly, one can translate between NCT and

SNGT by introducing the difference tensor
n

∇ = (
c

∇, σ(bδ
a
c)) and obtain an

equivalent equation to (6) and (9) cast now in terms of non-metricity degrees
of freedom:

−3

2

n

∇bσc +
3

4
σbσc = 4πρtbtc. (11)

This ‘non-relativistic geometric trinity’ mirrors the more familiar relativistic
geometric trinity in that one can present three gravitational theories that are
dynamically equivalent to familiar Newtonian gravitational theory, formulated
in the geometric languages of curvature, torsion, and non-metricity. While in
the relativistic case this is apparent at the level of the action, NCT, NGT, and
SNGT by contrast cannot be formulated using an action principle (for the rea-
sons underlying this, see Hansen et al. (2019)), so we can only demonstrate
their equivalence via Trautman-style geometrisation and recovery theorems.8

However, the non-relativistic trinity bears another important relationship to
the relativistic trinity. All of the theories in the non-relativistic trinity can be
obtained by taking an appropriate non-relativistic limit (typically in terms of
a 1/c expansion in the style of Schwartz (2023)) of their corresponding curva-
ture, torsion, or non-metricity based relativistic analogues: see Wolf and Read
(2023b). This completes all the legs of Figure 2.

8Off-shell non-relativistic equivalence would require recourse to the ‘Type II’ versions of
these theories, which we discuss in §5.
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3 Maxwell gravitation and the non-relativistic
trinity

As emphasised in the previous section, the three nodes of each of the relativis-
tic and non-relativistic geometric trinities are all empirically equivalent theo-
ries, which nevertheless appear to disagree fundamentally on the geometrical
structure which they attribute to the world. For instance, according to GR
the gravitational behaviour of matter is to be understood as a manifestation
of spacetime curvature, whereas according to TEGR and STGR spacetime is
necessarily flat. This means that the relativistic and non-relativistic theories
present a case of strong underdetermination—distinct theories between which
no possible evidence could be expected to decide.

Faced with such cases of strong underdetermination, philosophers have sug-
gested several approaches to dealing with the problem (on this see e.g. Le Bihan
and Read (2018)). Famously, one of these is the common core approach.9 The
common core approach advocates identifying the invariant kinematical structure
of the theories, and then showing that this structure is sufficient to formulate
a distinct, ontologically viable theory in its own right; one which, moreover,
retains the empirical content of the original theories. Moving to this new in-
terpretative framework alongside a judicious invocation of Occamist norms (on
which see Dasgupta (2016)) then allows one to ‘break’ the underdetermination
by interpreting the theories in such a way that they completely agree on the
structure they attribute to the world. The aim of this section is to show that
in the case of the non-relativistic geometric trinity, such a common core theory
exists, and it is a theory known as ‘Maxwell gravitation’: a theory which has
quite independently attracted philosophical interest (for reasons to do with (1)
as presented in the introduction).

To do so, we begin by recalling some facts about Maxwellian spacetime.
This is a structure ⟨M, ta, h

ab,⟳⟩, where ta, h
ab are orthogonal temporal and

spatial metrics as introduced in the previous section, and ⟳ is a standard of rota-
tion compatible with ta and hab. This was introduced originally by Weatherall
(2018): if ta, h

ab are compatible temporal and spatial metrics on M , then a
standard of rotation ⟳ compatible with ta and hab is a map from smooth vector
fields ξa on M to smooth, antisymmetric rank-(2, 0) tensor fields ⟳b ξa on M ,
such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =
α ⟳a ξb + ξ[bda]α;

3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

9Alternatively, Duerr and Read (2023) suggest that the relativistic geometric trinity invites
a certain conventionalism about geometry; we’ll return to this in §5.
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5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb],

where D is the unique Levi-Civita connection induced by hab on each spacelike
hypersurface. We will say that a connection and a standard of rotation are
compatible iff ⟳a ηb = ∇[aηb] for all vector fields ηa on M . It follows that any
compatible, torsion-free connection ∇ on M determines a unique compatible
standard of rotation—namely, the map ⟳: ηa → ∇[aηb] (Weatherall 2018).

However, in light of the discussion of the previous section, this invites a
natural further question: are there non-metric or torsionful connections which
are also associated with metric compatible standards of rotation in the above
sense? It turns out that the answer to this question is ‘yes’, and a partial
characterisation of such connections is given by the following two propositions:10

Proposition 1. Let ⟨M, ta, h
ab,∇⟩ be a non-relativistic spacetime, where ta

and hab are compatible, and where ∇atb = σatb and ∇ah
bc = σah

bc. Then the
map ⟳: ηa → ∇[aηb] is a standard of rotation compatible with ta and hab iff
hanσn = 0.

Proof. First, suppose that hanσn = 0. That ⟳ satisfies conditions (1)-(3) is
immediate from properties of derivative operators. For condition (4), note that
if da(η

ntn) = 0 we have

0 = ∇a(η
ntn) = tn∇aη

n + σatnη
n, (12)

so that

tn(h
m[n∇mηa]) = −1

2
hmatn∇mηn

=
1

2
hmaσmtnη

n

= 0

= tn(h
m[a∇mηn])

and ⟳a ηb is spacelike in both indices. Finally, consider condition (5). We
know that ∇ahbc = hanσnh

bc = 0. So let ξa be a unit timelike vector field on
M , ĥab the spatial metric relative to ξa,11 and D the unique spatial derivative
operator such that Dah

bc = 0. Then for any spacelike vector field σa on M ,
Daσ

b = ĥanĥ
b
m∇nσm (Weatherall 2018) so that

hn[aDnσ
b] = hn[aĥnmĥb]

r∇mσr = hn[a∇nσ
b],

where we have used the fact that since hanσn = 0, ∇a(tnη
n) = tn∇aηn for any

smooth vector field ηa on M .
Conversely, suppose that the map ⟳: ηa → ∇[aηb] is compatible with ta and hab.

10Partial, because Proposition 1 considers only the case of Weylian non-metricity, where
Qabc = σagbc. Given Proposition 1 though, the generalisation is obvious.

11That is, the unique symmetric tensor field on M such that ĥanξn = 0 and hanĥnb =
δab − tbξ

a.
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Then we must have for all smooth vector fields ηa on M that if da(η
ntn) = 0,

⟳a ηb is spacelike in both indices. If da(η
ntn) = 0 then (12) holds with respect

to ηa so that tn(h
m[n∇mηa]) = 1/2hmaσmtnη

n = 0. But this can only be the
case for arbitrary ηa if hanσn = 0.

Proposition 2. Let ⟨M, ta, h
ab,∇⟩ be a non-relativistic spacetime, where ta and

hab are compatible, and ∇ is compatible with the metrics but possibly torsionful.
Then the map ⟳: ηa → ∇[aηb] is a standard of rotation compatible with ta and
hab iff T abc = 0.

Proof. First, note that since ∇ is compatible with ta and ta is closed, tnT
n
ab =

0. That the map ⟳: ηa → ∇[aηb] satisfies conditions (1)-(3) is again immediate
from properties of derivative operators. (4) follows from the fact that ∇ is
compatible with ta, using that daα = ∇aα for any 0-form field α. Finally,
consider (5). Let ξa be a unit timelike vector field on M , and ĥab the spatial
metric relative to ξa. We know that the action of D on spacelike vector fields
is defined as follows: Daσ

b = ĥanĥ
b
m∇′nσm, where ∇′ is an arbitrary torsion-

free derivative operator such that ∇′ahbc = 0. Moreover, we know that ∇ =
(∇′,Ka

bc) for some such ∇′, where Ka
bc = 1/2T a

bc + T a
(b c) + hant(bfc)n is the

Newton-Cartan contorsion (Schwartz 2023). Hence

D[aσb] = ĥ[a
nĥ

b]
m∇′nσm

= ĥ[a
nĥ

b]
m(∇nσm − hnrKm

rsσ
s)

= ∇[aσb] −K [ab]
nσ

n

= ∇[aσb] − 1

2
Tnabσn

for some covector σn, where we have used the fact that σa is spacelike and
tnT

n
ab = 0. Thus if T abc = 0, then (5) is satisfied. Conversely, if the map

⟳: ηa → ∇[aηb] satisfies (5), it follows that T abc = 0.

Propositions 1 and 2 are tantalising, because they show that non-relativistic
affine connections which exhibit either torsion or non-metricity may—under
certain conditions—be associated with a compatible standard of rotation, just
as with curvature based connections. This raises the prospect that Maxwellian
spacetime might be the invariant kinematic structure of the non-relativistic
geometric trinity. We isolate the sense in which this is so in the following
proposition:

Proposition 3. Consider the triple ⟨M, ta, h
ab⟩ with ta and hab defined as

above. Consider three connections: a curvature based connection
c

∇, a non-

metricity based connection
n

∇ with
n

∇atb = σatb and
n

∇ah
bc = σah

bc, and a

torsion based connection
t

∇. Let
c

∇ = (
n

∇, La
bc) = (

t

∇,Ka
bc), where La

bc =

−σ(nδ
a
c) and Ka

bc is as in Proposition 2. Then
c
⟳,

n
⟳,

t
⟳ are standards of

rotation compatible with the metrics and
n
⟳=

c
⟳=

t
⟳ iff hanσn = 0, T abc = 0, and

fab = t[aϕb] for some ϕa.
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Proof. That
c
⟳ is a standard of rotation compatible with the metrics follows

immediately from Proposition 1 of Weatherall (2018). The remainder of the
proof just involves some calculation. Let ηa be an arbitrary vector field on M .

We know (Proposition 1) that
n
⟳ is compatible with the metrics iff hanσn = 0,

so for the first half of the equality we just need to verify that if hanσn = 0,

c

∇[aηb] −
n

∇[aηb] = −L[ab]
nη

n

= hm[aσ(mδb]n)η
n

=
1

2
σmhm[aηb]

= 0.

For the second part of the equality, let ξa be a unit timelike vector field, and
ĥab the spatial metric relative to ξa. Given Proposition 2, we need to show that

if T abc = 0, then
n
⟳=

t
⟳ iff fab = t[aϕb] for some ϕa. We have

c

∇[aηb] −
t

∇[aηb] = −K [ab]
nη

n

= −1

2
(Tn

ab + tnf
[ab])ηn

= −1

2
(ĥnmTmab + tnf

ab)ηn

= −1

2
tnf

abηn,

where we have used that fab is antisymmetric. Since ta is nowhere vanishing
and ηa is arbitrary, this last term will vanish just in case fab = 0. But this is
equivalent to the requirement that fab = t[aϕb] for some covector ϕa.

The significance of Proposition 3 stems from two facts. First, σa = αta = daλ
in any model of SNGT. Meanwhile, the homogeneous Trautman conditions (7)
and (8) ensure that given any model of NCT, we can always guarantee that
T abc = 0, fab = t[aϕb] in the associated models of our teleparallel theory through
a judicious ‘gauge fixing’ of the torsion and frame (see Read and Teh (2018) and
Schwartz (2023) for details). The result is that each model of SNGT, and its
corresponding model of NCT, and associated family of Trautman recoveries all
pick out a unique Maxwellian spacetime.

Not only this, but the condition (8) guarantees in addition that this Maxwellian
spacetime is unique, up to isomorphism, across the entire space of models.12 So
Proposition 3 in fact gives us the stronger result: SNGT, NCT, and NGT can
all be understood as theories built on the very same Maxwellian spacetime back-
ground.

12This follows since (8) holds with respect to
c
∇ iff

c
∇ is rotationally equivalent to some

flat compatible torsion-free connection (Malament 2012, proposition 4.2.4; Weatherall 2018,
proposition 1), and flat compatible torsion-free connections are unique up to isomorphism.
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This agreement is striking. It is also to be expected. Stepping back for a
minute, all three nodes of the non-relativistic geometric trinity are supposed
to be empirically equivalent to standard potential-based Newtonian gravity
(i.e. NGT sans a torsionful interpretation). That theory is one in which space-
time is flat, metric, and (spatiotemporally) torsion-free. Moreover, the dynamics
of Newtonian gravitation pick out a privileged class of frames which are non-
rotating with respect to that connection.13 Any theory which is empirically
equivalent to Newtonian gravitation must be able to distinguish this same class
of frames, which requires agreement on the Maxwellian spacetime structure.

We can see this in more detail by considering the conditions which ensure
agreement of the rotation standard. As remarked before, in the case of NCT and
NGT, these amount to the homogeneous Trautman conditions. It is well known
that only one of these conditions (7) emerges in the non-relativistic limit of GR.
The second Trautman condition (8) must be put in by hand as an additional
assumption once the non-relativistic limit has been taken.14 In light of this, a
well-known result by Künzle and Ehlers proceeds to generalise the Trautman
recovery theorem by dropping the condition (8) (see Malament (2012, ch. 4)
for discussion). The resulting theory, however, is not empirically equivalent to
standard potential-based Newtonian gravity, but leads to ineliminable coriolis
force terms in the recovered models.

A similar story plays out, mutatis mutandis, for SNGT and NCT. There,
the relevant condition which ensures agreement of the rotation standard is that
hanσn = 0. Moreover, since models of NCT satisfy the homogeneous Trautman
conditions, we also require that σa is closed (on which, see Wolf and Read
(2023b)). The first of these conditions emerges naturally in the non-relativistic
limit of STGR (Wolf and Read 2023b), but the second, which ensures that the

metrics can be conformally rescaled to be compatible with
n

∇, does not. Without
the assumption that σa is closed, however, the recovered models of NCT (and by
extension, NGT) will not be empirically equivalent to standard potential-based
Newtonian gravity, via the same reasoning applied above.

To summarise the results of this section so far, we’ve isolated a Maxwellian
spacetime structure as the common core of the non-relativistic geometric trin-
ity. We’ve also seen that the constraints which guarantee agreement on the
Maxwellian spacetime structure are precisely the constraints which are stan-
dardly imposed after taking the non-relativistic limit to ensure empirical equiv-
alence with the potential-based formulation of Newtonian gravity. The next
point to note is that this structure is sufficient to formulate the dynamics of
Newtonian gravity. This was first done in Dewar (2018), and recently given an
‘intrinsic’ formulation by Chen (2023) and March (2023); the resulting theory—
‘Maxwell gravitation’—has models of the form ⟨M, ta, h

ab,⟳,Φ⟩. Together with
propositions 1, 2, and 3, this substantiates our earlier claim that MG constitutes

13Here we set aside substantivalist-relationalist questions of whether this is a correct pre-
diction of Newtonian theory, on which see e.g. Barbour (2010) and Pooley (2013).

14Although one can recover this condition by restricting attention to spacetimes which are,
in a certain weak sense, asymptotically flat when taking the non-relativistic limit—on which,
see e.g. Malament (2012, ch. 4.5).
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the dynamical common core of the non-relativistic geometric trinity.15 It also
paves the way for an interpretation of Newtonian gravity on which the structure
it attributes to the world is strictly less than that of a connection.

This takes us to the connection with Corollary VI and the Trautman sym-
metry, to which we alluded in Section 1. As articulated by Jacobs (2023), the
‘dynamic shift’ symmetry of potential-based Newtonian gravity à la Corollary
VI and the Trautman symmetry in which the connection and gravitational po-
tential are altered simultaneously can be understood as being two sides of the
same coin: both consequences of the invariance of the Newtonian dynamics
under the Maxwell group. But Maxwell transformations produce a linear, time-
dependent acceleration of the matter content of the original solution. Prima
facie, one might think that purging the theory of this symmetry would involve
excising the structure needed to make sense of such linear accelerations—to wit,
a connection—leaving only the standard of rotation.

In that sense, that MG should be the dynamical common core of the non-
relativistic geometric trinity was already suggested by the dynamical symmetries
of Newtonian gravity. On the one hand, the irrotational degrees of freedom of
the connection were already known to be superfluous to the internal dynamics of
the matter distribution. On the other hand, agreement on the rotation standard
is necessary for empirical equivalence to standard Newtonian gravity.

What, then, to make of the fact that one can also use Trautman symmetry
to motivate the move to NCT? One way to think about this is that while we
are always free to define a connection from the standard of rotation and matter
distribution by coupling the degrees of freedom of the connection to the matter
distribution, there is necessarily a certain amount of slack in how this connec-
tion is constructed. This is because the projective degrees of freedom of an
affine connection far outstrip the degrees of freedom of the matter distribution.
Taking up this slack in different places allows us to express Newtonian gravity
as a theory of curvature, or torsion, or non-metricity—in some cases, we can
even specify the connection uniquely! That we can specify the curvature-based
connection uniquely under certain weak conditions on the mass density field is

what ensures that
c

∇, as well as the rotation standard, is also an invariant of
Trautman gauge symmetry. But the fact remains viz-à-viz Corollary VI that
the full structure of an affine connection is not needed to support the dynamics,
and so, if one introduces such a connection, one has to reckon with the fact
that—again, necessarily—there are multiple distinct ways of doing so.

4 Prospects for a relativistic common core

Recall that the projective structure of a spacetime theory identifies a certain
subset of worldlines the (unparameterised) geodesics; the conformal structure
of a given relativistic spacetime theory specifies a lightcone at every spacetime

15In the following section, we’ll discuss further the distinction between ‘kinematical’ and
‘dynamical’ common cores.
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point (see e.g. Matveev and Scholz (2020)). Famously—a result going back to
Weyl (1921)—a Lorentzian spacetime is fixed by its associated projective and
conformal structure: see Malament (2012, ch. 2); the corresponding existence
result was proved by Ehlers et al. (2012), and is discussed further by Linnemann
and Read (2021a). In Wolf, Sanchioni, et al. (2023), it was identified that one
can move between nodes of the relativistic geometric trinity by modifying pro-
jective structure while leaving conformal structure unchanged (for all three the-
ories leave lightcone structure unmodified); in a similar manner (one ultimately
irrelevant to our purposes here, but perhaps nevertheless worth pointing out)
one can move to non-relativistic theories by ‘widening the lightcone’, thereby
changing conformal structure (this constitutes a geometrical way of thinking
about taking the non-relativistic limit: see Malament (1986)).

This means that, at the level of kinematics at least, the ‘common core’ of the
geometric trinity is conformal structure. Unlike the non-relativistic geometric
trinity, the kinematical common core in the relativistic trinity cannot consist
in a standard of rotation, for the three geometric trinity connections agree on

their associated standards of rotation iff Q
[ab]

c = T ab
c = 0, which is certainly

not true in general. But conformal structure alone is, of course, insufficient to
recover the predictions of all models of GR (mutatis mutandis TEGR, STGR),
as (for example) there are many solutions of that theory which are not con-
formally invariant, and so which make recourse to structure over and above
conformal structure. Thus, although there is a kinematical common core to the
relativistic geometric trinity, there is no obvious dynamical common core: by
which we mean, some alternative theory the equations of which advert only to
the kinematical objects common to each of the models of the elements of the
trinity, yet which can nevertheless recover all of the empirical predictions of the
models of the original theories.16

This situation differs strikingly from that of the non-relativistic geometric
trinity. In that case—as we have already seen in the previous section—in order
to obtain each of the nodes of the trinity from its relativistic counterpart, one
must impose additional geometrical restrictions; it is precisely said restrictions
which guarantee the empirical equivalence of the resulting theories. So, in the
case of the non-relativistic trinity, not only is there a kinematical common core
(namely, a standard of rotation), but, in addition, there is a dynamical common
core—namely, the dynamics of Maxwell gravitation.

5 Conclusions

In this article, we’ve shown that Maxwell gravitation constitutes the mathemat-
ical common core of the recently-discovered non-relativistic geometric trinity of
gravity (first presented by Wolf and Read (2023b)); we’ve also explained why
there exists no such common core of the relativistic geometric trinity. In un-

16Here, we’re eliding to some extent the fact that equation-like statements are often also
taken to be part of the kinematical content of a theory: see (Curiel 2016; Linnemann and
Read 2021b) for further discussion.
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dertaking this work, we take ourselves to have made good on the exhortation
of Lehmkuhl (2017) to explore and chart the ‘space of spacetime theories’—
at least with respect to this small (albeit philosophically important!) corner of
the landscape. Along the way, we have developed certain tools—e.g. the dis-
tinction between a ‘kinematical common core’ and ‘dynamical common core’ of
spacetime theories—which we hope might find broader application.

Our work has interesting philosophical implications. For example, the ab-
sence of a common core in the case of the relativistic geometric trinity, in con-
trast to the case of the non-relativistic geometric trinity, could be taken to imply
that there is a stronger case to be made for geometric conventionalism—i.e., the
systematic and conscious refusal to assign truth values to propositions about
geometry—in the relativistic case than in the non-relativistic case (cf. Duerr
and Read (2023), in which the absence of a common core is stated explicitly to
militate in favour of geometric conventionalism). This stands in contrast to the
verdict of Weatherall and Manchak (2014), for whom the case for conventional-
ism is stronger in the non-relativistic case than in the relativistic case.17

There also are many future prospects; here we mention just two. First:
one might be interested in whether (a) there exists an extended non-relativistic
geometric trinity for the off-shell Newtonian limit presented by Hansen et al.
(2020) (this question was also raised by Wolf and Read (2023b)), and (b) if so,
whether there exists a dynamical common core to this non-relativistic trinity.
And second: one might wonder whether (a) there exists an ultra-relativistic
geometric trinity obtained by taking the ultra-relativistic (i.e. roughly speaking,
c → 0) limit of the relativistic geometric trinity, and (b) again whether there
exists a dynamical common core to that trinity also.
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