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The Formats of Cognitive Representation: A Computational Account 

Abstract 

Cognitive representations are typically analysed in terms of content, vehicle and format. 

While current work on formats appeals to intuitions about external representations, such as 

words and maps, in this paper we develop a computational view of formats that does not rely 

on intuitions. In our view, formats are individuated by the computational profiles of vehicles, 

i.e., the set of constraints that fix the computational transformations vehicles can undergo. 

The resulting picture is strongly pluralistic, it makes space for a variety of different formats, 

and is intimately tied to the computational approach to cognition in cognitive science and 

artificial intelligence. 
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1. Introduction 

Representation is a central, and arguably foundational notion in mainstream cognitive 

science and artificial intelligence (Burge 2010; Cummins 1989; Neander 2017; Shea 2018). 

Appealing to representations internal to biological and artificial systems provides us with 

tools to help explain the relational nature of cognition and intelligence: to be cognitive and 

intelligent is to behave in such a way as to protect and further the system’s own interests, 

satisfying its needs, preserving its existence (and occasionally that of its group) in 

interaction with a complex, changing, and often hostile environment. The defining 

characteristic of representations is their aboutness, that is to say, the fact that 

representations are about something other than themselves. A map can be about the spatial 

layout of a region, a sentence can be about the current weather there. Similarly, internal 

representations are states and processes within biological and artificial systems that are 

about states, processes, and events beyond themselves, typically in the body and the 

environment of the system. What representations are about or refer to are their contents 

(Shea 2018, 6)2. 

While representations are primarily characterised by their contents—a representation of the 

location of my office, a representation of Ursula von der Leyen’s face—representations 

 
2 Traditionally it has been preferred to take a non-referential view of content, individuating 

contents as conditions of satisfaction instead, which in turn pick out referents. This 

difference will not matter for our purposes. 
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can also be characterised in other terms, typically for somewhat different explanatory 

purposes. We may be interested in what kinds of physical states and processes carry, or 

possess, representational contents. And, perhaps less obviously, we might be interested, 

roughly put, in the shape or format a representation takes: is it a map, a photo, a sentence? 

In this paper, we will be interested in the latter feature of representations. What are 

representational formats? What are they good for? We will investigate such questions 

within cognitive science and artificial intelligence research. Our exclusive focus will be on 

the representational states and processes going on in brain areas, layers in artificial neural 

networks, and the like, which are at the centre of the explanatory and modelling 

endeavours in those fields.  

We will advance an  account of representational formats, which main aim is that of 

capturing the epistemic roles that the notion plays, or can play, in the relevant areas of 

science and engineering by appeal to the notion of physical computation, i.e., computation 

in physical systems (rather than in mathematical theory). Computational views of 

representational formats have a long history (Sloman 1978, Larkin and Simon 1987, Fodor 

1975). However, such views were often left relatively underdeveloped and/or focused 

exclusively on specific kinds of format, with the linguistic/iconic distinction drawing most 
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of the attention (Fodor 2008; Sloman 1978). The latter distinction is still among the most 

discussed (Quilty-Dunn 2019; Quilty-Dunn et al. 2022).3  

This is unfortunate for at least two reasons. First, extant  accounts of formats, including the 

ones inspired by the computational approach, have typically taken for granted intuitive 

views about formats modelled on external, public representations, such as words, pictures, 

and maps. It is debatable, to say the least, that categories applicable to public, external 

representations can or should be applied to capturing the goings-on in cognitive and 

computational systems. The focus on intuitive distinctions—such as linguistic/pictorial, 

analogue/digital—that have marked the literature are a symptom of this (typically implicit) 

assumption. Second, and relatedly, an account of representational formats should be 

general, and thus able to capture all the formats that are relevant to cognitive (and 

computational) processing, rather than being tailored only to account for a subset of 

formats.  

In this paper, we will try and free our understanding of representational formats from its 

intuitive chains. We will do so by developing a computational view of formats that takes as 

 
3 The terminology in the debate is rather confusing. The iconic format is sometimes also 

called “depictive” (Kosslyn, Thompson and Ganis 2006), “image-like,” “picture-like” or 

“analog” (Quilty-Dunn 2019; Beck 2018; Maley 2011; Paivio 1986; but see Clarke 2019 for 

a distinction between iconic and analogue). The discursive or symbolic format is also called 

“language-like” (Paivio 1986), “Fregean” (Sloman 1978), or “propositional” (Pylyshyn 

1973).  
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its starting point the explanatory needs of the cognitive sciences, rather than common 

intuitions. As a consequence, the resulting account yields formats ill-fitted to the categories 

traditionally employed in the literature, while positing varieties of representational formats 

that have no analogue in external representations. The standard of success for a theory of 

representational formats for cognitive science is the epistemic value it has in informing and 

guiding research, and not the extent to which the resulting formats fit our pre-theoretic 

expectations. The second part of the paper will thus be dedicated to illustrating the 

epistemic value of the resulting computational theory of representational formats.  

Here is how we will proceed. After presenting our distinctive perspective on the question 

of representational formats in 2.1, we will briefly go through the main extant families of 

views about their nature, making clear where our own view belongs (sect. 2.2). In 2.3 we 

will set out the central explanatory roles played by representational formats in the 

cognitive sciences, which, together with broader philosophical considerations, make up a 

set of desiderata for any account of representational formats for those fields. We present 

and defend the computational view of formats in section 3, while section 4 is dedicated to 

illustrating the account by applying it to two case studies: one from neuroscience (the place 

cell system), and one from computational modelling (episodic memory recall). Finally, in 

section 5 we show that the computational view fulfils the desiderata on theories of 

representational formats in the cognitive sciences. 
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2. Representational Formats: Nature and Roles 

2.1. Three Notions of Representational Format 

Coloured pieces of paper, binary code stored in a memory drive, and patterns of neural 

activation in the brain can all carry representational content: they can all be 

representations, say, of von der Leyen’s face. As carriers of content, these internal states 

and processes are called representational vehicles.  

Importantly, vehicles are individuated not purely in terms of their physical properties, but 

rather in terms of those physical properties to which an interpreter or system is sensitive. In 

a paper map, the vehicles are printed shapes and colours, not the type of paper used; in an 

electronic computer, the vehicles are ultimately voltage ranges that code for 1s and 0s 

during specific time intervals, irrespective of the continuous values voltages take; in a 

brain, the vehicles are most likely some aspect(s) of neural activity, such as firing rates, but 

not neurons’ colour or smell. Often, different vehicles can carry the same content, thus 

representing the same thing; and different things can be represented by the same vehicles.  

Qualifying the last sentence with an ‘often’ may seem intuitive enough. It seems 

implausible, or at least very doubtful, that a photo of von der Leyen has the very same 

content of a verbal description of her facial features. And even if they do, they seem to 

represent in very different ways. They also seem to be more appropriate for different uses: 

a photo will be better than a verbal description for recognising von der Leyen in a crowd, 

while a verbal description will be better if we are interested in a specific, less noticeable 

feature. 
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It is not always clear how best to try and accommodate these considerations, especially 

when it comes to examples that rely on intuitions about external, public representations 

such as photos, words, and maps. One common attempt is to rely on the notion of 

representational format to shed light on those and related differences between 

representations (Beck 2018; Clarke 2019; Fodor 2007, 2008; Quilty-Dunn 2019). Photos 

and verbal descriptions, intuition suggests, belong to different formats, insofar as they 

represent different contents, and/or to represent them in different ways. Similar 

considerations apply to cognitive science and artificial intelligence (AI) research. Some 

kinds of internal representations may have different constraints on what they can and 

cannot represent, and/or on how well or efficiently they can represent what they do. 

The general shape that an account of representational formats must take plausibly differs 

between different domains of application, such as cognitive science and AI on the one 

hand, and external, public representations on the other. Even within the former domain, it 

is likely that there are differences in terms of epistemic needs and tools when it comes to 

the states that the cognitive sciences discover and investigate, and the states that populate 

our folk psychology. Failing to keep these two domains separate risks generating 

considerable confusion and unclarity.4 

 
4 One  way to cash this out is in terms of the personal vs sub-personal distinction. As a 

reviewer helpfully pointed out, the distinction can be spelled out in different ways (Drayson 

2014). In the remainder of this paper, we shall mainly discuss paradigmatic cases of sub-

personal states for ease of exposition, yet our challenge to the mainstream approach to 
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Given their importantly different features, it is to be expected that the expression 

‘representational format’ captures fundamentally different constructs in the two domains. 

Indeed, an account of the formats of external, public representations is highly likely to 

hinge, in complicated ways, on social practices and conventions for the production and 

consumption of representations, as well as on individuals’ goals, intentions, and 

interpretative abilities. Moreover, in light of the tight connection between social practices 

of communication and interpretation, and the posits of folk psychology, it is likely that the 

notion of representation format relevant for folk psychological explanations is closer to the 

foregoing than it is to that central to the states and processes cognitive science and AI 

focus on. 

An account of representational formats suitable to cognitive science and AI can rely on 

none of the factors mentioned above, on pain of pernicious circularity. For, in these 

sciences, the notion of format at play is much more basic, furnishing part of the 

representational story that endows systems with the very capacities to engage in social 

practices and conventions, to entertain intentions, to interpret, to form goals, and so on. 

We will thereby remain silent in what follows on how to account for the representational 

formats of public representations, as well as those in folk psychology. The computational 

view of formats we propose is designed to capture solely the notion useful for the scientific 

study and engineering of cognitive states. Thereby, the standards by which it is to be 

 
formats applies equally to personal-level states. Our account does not depend on the 

adequacy or else of the sub-personal/personal distinction. 
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assessed derive from the epistemic value of appeal to formats within those scientific 

endeavours. 

2.2. Three Approaches to Formats 

There are several ways of carving the space of existing theories of representational format. 

A popular way of doing so is in terms of the number and kinds of formats that different 

views commit to. Some theories recognise only one kind of format (Pylyshyn 1973), some 

recognise two (Fodor 2008; Paivio 1986), others more, but not many more (Haugeland 

1991). The most commonly mentioned are symbolic, discursive, iconic, analogue, discrete, 

and distributed formats. Depending on how each account individuates formats, some of the 

terms in that list may be considered to be synonymous (e.g., discrete and symbolic). 

Existing theories of representational formats can be grouped into three broad categories, 

depending on what conceptual component of the notion of representation they take to be 

central to individuating formats: contents, vehicles, or the function from the former to the 

latter (Lee et al. 2022).  

Some views take representational formats to be tied essentially to the kinds of content a 

representation can possess (Haugeland 1991; Peacocke 2019). On such views, 

representations are in different formats insofar as they represent different kinds of contents. 

In Peacocke’s (2019) content-based view, representations in analogue format are those that 

represent magnitudes, i.e., that have magnitudes as their contents. According to 

Haugeland’s (1991) picture, there are at least three kinds of formats, individuated by the 

kinds of content they represent: logical or discursive representations, which represent 
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‘absolute elements’ (i.e., contents that stand by themselves independently of relations to 

other elements); iconic representations, which represent ‘relative elements’ (i.e., contents 

intrinsically tied to relations to other contents); and distributed representations, which 

represent ‘associative elements’ (i.e., contents associated by similarity or by stimulus-

response patterns). 

A more common family of views takes formats to depend on the properties of 

representational vehicles (Beck 2019). For instance, if a representational system (only) 

employs representational vehicles that come in discrete types, such as the digits/voltage 

ranges in digital computers, then that system has a discrete format. If, on the other hand, it 

employs vehicles typed in terms of continuous variation across one or more dimensions, as 

in a mercury thermometer, the system has an analogue format. 

The third family of views, the function-based account, is often conflated with the former 

two, and especially with the vehicle-based one. This account has it that representational 

formats are individuated by the function that maps vehicles into contents (Lee et al. 2022). 

A view along these lines might, for example, identify a type of format in terms of vehicles 

structurally resembling, or mirroring, their contents (Beck 2019). 

The debate is still open as to which of these approaches, if any, is most adequate. 

Challenges have been moved against all of them, typically taking the shape of examples in 

which they seem to yield counterintuitive results, such as categorising a format as analogue 

that actually seems to be digital (Shimojima 2001). Often such disputes are evaluated in 

terms of intuitions about public representations, as in pictures and sentences, or about the 
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nature of our conscious states, such as in perception and thought. We will not delve into 

those discussions.  

Our purposes here are exclusively constructive, namely to detail and defend  a version of 

the vehicle-based approach motivated and shaped by the computationalist framework in 

mainstream cognitive science, and aimed at producing a notion of representational format 

that can be useful and fruitful for cognitive science and artificial intelligence research. 

Accordingly, our standards of evaluation for accounts of representational formats rely not 

on intuitive judgements about specific cases, but rather on the potential of such accounts to 

capture the epistemic roles and needs of cognitive science and AI, and to point toward 

fruitful avenues of research. This distinguishes our proposal from most other approaches to 

formats—including vehicle-based ones—given the latter’s reliance on intuitions, rather 

than on explanatory needs; and their failure to keep apart folk-psychological considerations 

from those most relevant to the cognitive sciences, which, as we have pointed out above, 

are likely to involve rather different factors and constraints. 

We must therefore look more closely at the roles that representational formats play and can 

play in the explanatory practices of the cognitive sciences, in order to shed light on the 

nature of representational formats in biological and artificial cognitive systems. In other 

words, why are representational formats important for explaining cognition and 

intelligence? Why aren’t contents and vehicles enough? 
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2.3. The Role of Formats 

There is widespread agreement that representational formats play key explanatory roles in 

the cognitive sciences. Both early (Sloman 1978, 1994, 2002; Larkin and Simon 1987) and 

more recent proponents (Fodor 2008) of computation-based approaches to formats have 

often characterised formats in analogy to public representations. Sloman (1978, 144-76) 

discusses Fregean (discursive) and analogical representational structures (or ‘symbolism’ 

in his jargon), such as pictures and diagrams. Fodor (2008, 171-73) distinguishes between 

discursive representations—modelled on sentences in natural languages—and icons, 

understood as akin to pictures (see also Quilty-Dunn 2019; Quilty-Dunn et al. 2022). 

Analogies to public representations provide an intuitive grasp on why some explanations 

need appeal to formats. As noted earlier, we use different kinds of external representation 

depending on what we want to achieve with them: a city map is a more immediate and 

flexible means to convey information about spatial layout than a series of sentences.      

Let us examine in detail an example of this sort of analogical appeal to formats in science, 

more specifically in animal cognition research, discussed by Camp (2009). Some species 

of baboon live in troops of varying size, sometimes comprising several dozen members, in 

which there are separate hierarchies of dominance-subalternity relations for males and 

females. There are dominance-subalternity relations between females belonging to 

different families, forming a hierarchy of high-status, mid-status, and low-status families. 

Within families, there is also a hierarchy dictated by age, with younger mature females 

having higher status than older sisters (with some complications; see Lea et al. 2014). 
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Female baboons are very capable of navigating this complex, two-tiered hierarchy, 

behaving according to their ranks across and within families, and both when they are 

directly involved in a dispute, or only a kin member is. They also seem to show surprise 

when experimenters play calls associated with encounters in which lower-ranking females 

challenge higher-ranking ones (Cheney and Seyfarth 2007). 

The behaviour of female baboons indicates that they can represent single individuals, 

relations of dominance between individuals and families, as well as occasional changes in 

the hierarchy. We can safely assume that the representational vehicles are certain features 

of neuronal activity in the baboon nervous system. More must be said, however. How are 

those contents represented, such that appropriate behaviour is produced, for instance when 

there are changes in the dominance relations that call for prompt adaptation to a partially 

different social environment?  

Some degree of discreteness seems to be required, such that each individual can 

independently come to occupy a different place in the represented social hierarchy. 

Similarly, some degree of combinatoriality is needed, such that changed social status 

changes an individual’s represented dominance-subalternity relations to other individuals 

and families. Finally, and more tentatively, it might be expected that the relevant 

representations of social hierarchy be in some sense holistic, in the sense that when an 

individual’s represented place in the hierarchy changes, all of its represented relations to 

other members of the group change in one go, as it were.  
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In light of considerations along these lines, Camp (2009) hypothesises that the format that 

the social hierarchy representational system takes in those female baboons is somewhat 

akin to that of a tree diagram, similar to the genealogical trees that some humans are quite 

keen on cobbling together. Indeed, tree diagrams can represent individuals and their 

hierarchical relations, they have combinatorial properties, and when an individual’s 

position in the tree changes, their relations to all other individuals change automatically, as 

it were.5 (Compare: if such representations were somewhat similar to linguistic 

representations, then for each change in dominance relation, a large number of  single 

representations would have to be updated—X is now higher in the hierarchy than Y; X is 

now higher than Z, etc.—which is arguably inefficient and cognitively taxing). 

Another explanatory virtue of appealing to tree diagrams or similar formats in this case 

study is that it helps explain not only what female baboons can do, but also what they 

cannot. If we were to ascribe language-like representations to baboons, insofar as they are 

also discrete and combinatorial, we would be left with the puzzle of why they can use such 

 
5 In a similar vein, Boyle (2019) suggests that mindreading in apes may be underlain in 

some cases by another format yet, namely map-like representations (see also Camp 2007). 
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a powerful and flexible representational system to represent social hierarchy, while their 

behaviour in other tasks indicates less powerful representational capabilities.6 

Putting to one side whether it is appropriate to frame the discussion in terms of analogies to 

public representations, this case study illustrates that questions about the nature of the 

representations employed remain even after determining (or assuming) that the content and 

vehicle questions have been answered. These remaining questions are questions about 

representational format. 

In brief, we need appeal to representational formats in cognitive science and AI because 

they play distinctive epistemic roles: they allow us to identify distinctive features of 

cognition and intelligence that call for treatment in ways that are not exhausted by appeal 

to contents and vehicles. More specifically, representational formats are useful in cognitive 

science and AI, at least in large part, insofar as they fulfil the following explanatory roles: 

Transformation-based explanation: help explain the workings and 

behavioural effects of cognitive states and processes in terms of the specific kinds 

of transformation or manipulation available and performed over such states and 

processes; 

 
6 For this reason, Camp (2009) rejects Cheney and Seyfarth’s (2007) claim that, in light of 

their ability to navigate such a complex social hierarchy, baboons must thereby make use 

of language-like representations. 
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Efficiency-based explanation: help explain why certain cognitive states 

and processes are more (or less) adequate for a specific task in terms of certain sets 

of transformations/manipulations being more efficient, powerful, less taxing and/or 

temporally advantageous.7 

In addition, a theory of representational formats should be epistemically fruitful (epistemic 

fruitfulness). First, in light of the ambiguity of much appeal to representational formats in 

the literature, a theory of representational formats should identify a clear, motivated 

domain of questions that can or should be tackled by such an appeal. Second, such a theory 

of formats needs to strike a balance between overly coarse-grained and overly fine-grained 

individuation of formats, so as to secure a distinctive explanatory role to representational 

formats, and avoid conflating them with contents or vehicles. Should such an attempt fail, 

we would have grounds to be eliminativists about formats, insofar as their job description 

could be filled by appeal to contents and vehicles, thus voiding their explanatory purchase. 

Third, a theory of representational formats for cognitive science and AI should provide 

insight into the nature of representational formats as explanatory posits in those sciences. It 

should, in other words, clarify how formats fit with other posits in the cognitive sciences, 

including therefore the related notions of representational content, representational vehicle, 

and computational process. 

 
7 For a recent account of mechanistic efficiency-based explanations, see Fuentes (2023). 
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These considerations are both a job description and a list of desiderata on theories of 

formats suitable for the cognitive sciences. Such theories are to be evaluated in terms of the 

extent to which they satisfactorily provide an account that fits that job description.  

With this description of the job to do, it is time to put together a job application. 

3. The Computational View of Formats 

3.1. Computational Vehicles, Functions, and Formats 

Views about the nature of representational formats in cognitive systems have typically 

relied heavily on the notions of computation, computational process, and computational 

transformation. These notions, in contrast to their use in mathematics and computability 

theory, are to be understood in concrete, physical terms: they are meant to capture the 

physical systems that are computational and carry out computational processes, such as 

laptops, smartphones, artificial neural networks, and, plausibly, nervous systems. 

Appeal to computation makes it possible to explain the behaviourally adequate transitions 

between, and transformations of, representations in a purely mechanical way—in terms, 

that is, of following computational rules that are appropriate to the task at hand. 

Computational rules are regularities in a physical system that capture the systematic 

transitions from inputs (and internal states) to internal states and outputs.  

Computational vehicles are individuated by their computational roles, not by the physical 

details of their implementation. Individuation of computational systems and the 

computations they perform abstracts away from implementational details almost 
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completely: computational vehicles and processes may be equivalent in their roles and 

effects while differing, even radically, in what kinds of physical states and processes 

implement them—voltages, neuronal spike rates, or beads in an abacus. Facial 

identification can be achieved by means of the computations performed by populations of 

neurons in the fusiform gyrus of the mammalian brain, as well as, arguably, by matrix 

operations performed by an electronic computer, as in artificial neural networks. Only 

those properties that allow physical states to perform their computational roles are relevant 

to their computational properties. These are the degrees of freedom, or dimensions of 

variation, of the subset of physical properties of the physical vehicles that are 

computationally relevant (Piccinini 2015, 2020; Miłkowski 2013; Fresco 2014, Coelho 

Mollo 2018, 2019). 

An important, albeit occasionally rejected (Dewhurst 2018), feature of computational 

systems is that they can miscompute (Fresco and Primiero 2013). They can fail to compute 

what they are supposed to, or, in other words, they can fail to perform the computations it 

is their function to perform. An old pocket calculator, say due to some dust in a transistor, 

may generate the wrong values, or no value at all, for an arithmetic operation it gets as 

input. Functions to compute may derive from design, or from human-independent 

processes in the case of biological systems (Piccinini 2015, Coelho Mollo 2019).  

To be a computational system therefore just is to be a physical system of a type that can 

perform transformations over physical vehicles according to medium-independent rules, 

and that has the designed or natural function to do so. Similarly, to be a computational 

vehicle or a computational operation just is to be a physical state or process in a 
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computational system individuated in terms of its contributions to its computational 

nature.8 

According to the mainstream representational-computational approach to cognition, 

representational systems in cognitive systems, be them biological or artificial, are 

composed of computational states and processes, some of which are also carriers of 

content, and thus representational vehicles (Colombo and Piccinini forthcoming). 

Computational vehicles are individuated by means of theories of computational 

individuation—such as the one briefly presented in this section—while representational 

vehicles and contents are individuated by means of theories of cognitive representation 

(Shea 2018; Neander 2017; Millikan 2017).9  

Cognitive systems are regimented so that the transitions between and transformations of 

computational vehicles mirror the behavioural, semantic, or rational constraints relevant to 

 
8 For more detail on and detailed defence of this approach to the individuation of physical 

computation, see Piccinini (2015). 

9 There is ongoing debate about how best to individuate computation, especially in ways that 

avoid computations becoming indeterminate (Fresco, Copeland and Wolf 2021; Shagrir 

2001; 2022; Piccinini 2015). Such a debate is beyond the scope of the paper, but see Coelho 

Mollo (2018, 2019) for defence of the foregoing view against indeterminacy worries. At any 

rate, for our purposes any theory of computational individuation that avoids the 

indeterminacy problem would be suitable, be it the one hinted at here or  a different one. 
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the contents they carry. That is, parts of representational systems can be manipulated 

computationally in ways that are appropriate to their contents. In explaining and building 

cognitive systems in cognitive science and AI, computation and representation typically go 

together, each playing a distinctive explanatory role. 

3.2. Individuating Representational Formats Computationally 

Representational systems can vary considerably in their computationally relevant 

dimensions of variation, depending on the computational vehicles of which they are 

composed. Such computational vehicles can have a host of different computationally-

relevant properties. They can vary in the number and nature of the values they might take 

across multiple dimensions of variation, and changes in the values they take across one or 

more dimensions may lead to constraints on the values that other computational vehicles 

may take. We call the limitations over available values across one or more 

computationally-relevant dimensions of variation of computational vehicles their inner 

constraints; and the mutual constraints between computational vehicles in a 

representational system their outer constraints.10   

 
10 Outer constraints bear some similarities to what Lande (2021, 651) calls distributional 

properties, i.e., the properties of a mental state that “characterise how states of that type 

can, cannot, or must co-occur in a particular system with mental states of other types” 

(2021, 651). In contrast to Lande’s account, however, we focus exclusively on the relevant 

computational features of cognitive states and processes.  
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In artificial systems, these constraints typically stem from design choices, as well as 

engineering convenience and technical limits. In biological systems, on the other hand, 

they likely stem from contingent features of evolutionary and developmental history, as 

well as the limitations imposed by the ‘wetware’. 

As an illustrative analogy, take action figures, a popular kind of toy. One important feature 

that distinguishes between action figures is which parts of the puppet can be moved (arms, 

legs, head?), and how independent their movements are. Some action figures, often the 

cheapest ones, are fully rigid and none of their parts can be moved. Sophisticated ones, on 

the other hand, have several mobile parts (legs, arms, neck, etc.), which can typically be 

moved independently of the others. Moreover, their limbs may move fluidly and stop at 

any specific position, or, less satisfyingly, they may move in jerks, and have predetermined 

stop points. Some less sophisticated ones, to great frustration, have more constrained 

movements: moving a forearm is impossible without moving the whole arm, or moving a 

leg also makes the other leg move.11 The parts that can be moved are what we may call, 

with quite some stretch, the ‘vehicles’. The number of relative positions the moving parts 

can occupy and the relations between variations over them (such as one leg also making 

the other leg move), are their inner and outer constraints, respectively. 

 
11 Incidentally, talk of degrees of freedom is not extraneous to talk of action figures: 

indeed, given the former’s correlation with quality (and fun), advertisements for these toys 

often mention their degrees of freedom explicitly. 
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We can categorise different types of action figure in terms of their moving parts, the values 

that those moving parts can take (which positions can they occupy relative to the body and 

to each other?), and the relations between variations over those parts (does moving a leg 

also lead to moving the other leg, or rather an arm?), and we can do the same with 

computational vehicles. How many parts of the vehicle can be computationally wiggled 

and what values can they take? How does wiggling one part affect the possible values of 

another part? And how does wiggling values of a vehicle affect (or not) other 

computational vehicles, i.e., does changing the values taken by one vehicle affect the 

values of the others?12  

We can thus type representational systems in ways not unlike how we type action figures, 

that is, in terms of their computational (moving) parts, the values (positions) those parts 

may take across multiple dimensions, and the mutual constraints between values of the 

parts of different vehicles. Representational systems that differ in these respects differ in 

what we call their ‘computational profiles’. 

 
12 It is important to keep in mind that only the degrees of freedom that are computationally 

relevant are to be considered here (see section 3.1). For instance, even though physical 

vehicles in electronic computers can take continuous voltage values, downstream systems 

are only sensitive to those values falling within two specific voltage ranges. Therefore, in 

such a case there is only one computationally-relevant degree of freedom, i.e., the voltage 

range is either ‘0’ or ‘1’. 
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Computational profiles are individuated by the inner and outer constraints of the 

computational and representational vehicles in a representational (sub-)system. These 

factors determine what computations are available to representational systems, and thus 

which kinds of transformations of representations are available to tackle a certain 

behavioural task. To type representations in this way, per the foregoing computational 

view of formats, is to type them in terms of their representational format.13 

In sum, we hold that the proper way of characterising the computational view of formats is 

in terms of the following set of claims: 

T1: Representational formats are the computational profiles of representational 

(sub-)systems in cognitive systems, be them biological or artificial.  

T2: Computational profiles, in their turn, are individuated by the inner and outer 

constraints of computational vehicles, i.e., the values they can take, and their 

mutual constraints. 

It is a corollary of the view that different representational formats have different 

computational properties. In most cases different formats will be best suited to solving 

 
13 Of course, computations and representations are ultimately implemented by neural 

computations in brains or symbolic or numerical computations in AI systems. However, as 

pointed out above, the relevant kind of individuation for our purposes is medium-

independent—i.e., computational and representational—rather than implementational. 
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different tasks, and will require different amounts of processing steps—and thus, in real-

time systems, of time—than other  task-appropriate formats. 

To illustrate how our proposed computational view of formats can tackle relevant 

questions in the cognitive sciences, we will apply it to a couple of case studies coming 

from the cognitive sciences, namely the place cell system in the mammalian brain, and 

computational models of episodic memory recall. We will show that this purely 

computational approach to the individuation of representational formats makes analogies to 

public representations explanatory redundant, and at best of heuristic value (§5). 

4. Representational Formats in the Cognitive Sciences 

4.1 The Case of Place Cells 

Place cells are neurons found in the hippocampus of several mammals, which have a very 

interesting property: they fire when the animal occupies specific points in space (O’Keefe 

and Dostrovsky 1971; Grieves and Jeffrey 2017). Together, they form a sort of array, with 

different (groups of) cells firing when the animal occupies different points in space. Due to 

this property, place cells are believed to be part of the ‘cognitive map’ system comprising 

the entorhinal cortex and hippocampus, and including other kinds of cells relevant to 

spatial cognition, such as grid cells and head-direction cells. In light of its activation 

properties, it seems natural to treat this system of brain areas as forming a mechanism for 

representing spatial locations and spatial relations in the immediate environment of 

mammals, given their abstract similarity to how public maps represent. 
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However, place cells are not spatially arranged in a way that corresponds to the spatial 

locations they respond to: there is no map-like correspondence between relative spatial 

locations of place cells in the hippocampus and relative spatial locations of points in the 

environment. The crucial feature of this system is the coactivation relations cells have to 

each other: cells that represent a certain location tend to produce activation in cells that 

represent nearby locations, both in online and offline tasks (Shea 2018; Diba and Buzsáki 

2007; Dragoi and Tonegawa 2013).   

Let us forget for a second that place cell activation correlates with spatial locations, and 

that cells that are more likely to be coactivated correlate with nearby spatial locations. Let 

us look purely at the computational properties of the vehicles themselves, that is, the 

populations of cells and their firing patterns. These patterns constitute a structure of 

activation relations, which can be described in terms of probabilistic coactivation relations: 

if cell A has firing rate a, then cells B, C, D … N will have firing rates in range x-y with 

probabilities p, q, r, .. u. Taken together across the whole system of place cells, these 

activation relations constitute a relational structure of computational vehicles.  

The computational view allows us to examine the place cell system purely in terms of its 

computational features. We have a set of computational vehicles that can vary across one 

dimension, and whose values are equivalence classes of firing rates that are treated as the 

same by downstream processes. The possible values depend on which and how many such 

equivalence classes there are, which hinge in turn on physiological properties of the cell as 

well as of the cells it feeds its output to—and are thus to be empirically determined. These 

are the inner constraints of the place cell system. 
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The outer constraints are more interesting in this case. If each cell probabilistically 

modulates the activity of cells it is strongly connected to, then, in computational terms, 

each vehicle’s value stochastically constrains the values a subset of the other vehicles in 

the system may take. If vehicle V has value H (a high value, say), then vehicles C, D can 

take values in the range, say, M (medium) to H, with specific probabilities assigned to each 

downstream vehicle and possible value.14 In other words, we have, roughly, a partially 

connected stochastic array of computational vehicles. 

In brief, a description of the computationally-relevant features of the place cell system 

comprises the following: 

● a set of computational vehicles A, …, N, implemented by the place cells; 

● their inner constraints: the values that each vehicle may take, i.e., the set of discrete 

values a, …, n implemented by different firing rates (assuming that firing rates are 

what is computationally relevant);  

● their outer constraints, captured by a probabilistic function from values a, …, n of 

vehicles A, …, N to values a, …, n of vehicles A, …, N-1. 

These computational features determine which kinds of representational roles place cells 

can adequately play: any representational task that involves representing concrete or 

abstract points in a concrete or abstract space of relations should be a good candidate. Such 

a computational profile seems well suited to be employed by representational systems 

 
14 This is of course a simplification, for the sake of ease of illustration. 
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tasked with solving spatial cognition tasks. But there is evidence suggesting that this 

system is also employed to solve other kinds of tasks, having to do with ‘distance’ relations 

in abstract conceptual spaces (Constantinescu et al. 2016), as well as other behavioural 

tasks (Aronov et al. 2017; Mok and Love 2019; Whittington et al. 2020). Place cells may 

not always, nor even often, be about places. By the light of the foregoing computational 

view, this is to be expected, as the computational profile of that representational system 

makes it adequate for a variety of non-spatial tasks.  

According to the computational view, these computational features together, that is to say, 

the computational profile of the place cell system as a partially connected stochastic array 

of vehicles, constitutes a representational format. Analogies with public maps are 

misleading for at least three reasons. 

First, as noted, there is no spatial-to-spatial correspondence relation between place cells 

and what they represent, as in maps. Second, the place cell system has strongly stochastic 

features that maps do not have. Third, the analogy to public maps erroneously suggests that 

the place cell system is only about space. To talk of the place cell system as having a map-

like format—and thus as helping to form ‘cognitive maps’—is thereby misguided: the 

analogy with maps is very partial, and overreliance on it obscures important computational 

and representational features of  the system. 

4.2 The Case of Episodic Memory 

Episodic memory is a type of declarative memory that concerns, roughly speaking, stored 

information about experienced episodes, such as our memory of whom we met yesterday 
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and in what context (Cheng and Werning 2015). Growing evidence suggests that episodic 

memory retrieval and recollection are generative processes of scenario construction (Cheng 

and Werning 2015; Lackey 2005). This means that memories are reconstructed at each 

retrieval through the complex dynamic interaction of different functional areas that encode 

different memory traces or engrams (Sekeres et al. 2018). 

The main neural locus for episodic memory is the hippocampus and its subregions, 

although other brain areas are involved as well (Rolls 2018; Scoville and Milner 1957). 

The anterior hippocampus (aHPC) encodes the memory trace about the gist of the episode, 

i.e., essential features like the ‘story elements’ that are central to plot coherence (Sekeres et 

al. 2018).   

For instance, this could be the “story line” of your 10th birthday party—that there were 

other children, it was in the afternoon, and so on. The posterior hippocampus (pHPC) and 

the neocortex encode the memory trace with fine-grained perceptual-like details; such as 

the shape and colour of your birthday cake (Collin et al. 2015; St.-Laurent et al. 2016). 

Finally, the aHPC has been shown to interact with the medial prefrontal cortex (mPFC), 

which stores the schema engrams, i.e., networks of knowledge structures extracted from 

multiple similar experiences (Robin and Moscovitch 2017). In our example, information 

about birthday parties in general. 

The exact nature of the computations relevant for memory recall in the brain are still 

largely unknown (Cheng 2013; Rolls 2018). According to plausible theories about what is 

involved in recall, however, we can identify four different components: rich 



 
 

30 

representations of perceptual and semantic information; a representation of the gist of the 

episode; an even less informationally-rich memory trace that can reactivate the relevant 

episodic gist; and the output representation, namely the reconstructed detailed memory that 

is eventually recalled, where the informational detail left out in the gist is ‘filled in’ by 

recourse to rich representations of perceptual and semantic information. In other words, we 

have, basically, a process of lossy compression followed by a process of decompression 

that includes generative elements (Fayyaz et al. 2022). 

There have been promising recent attempts at modelling this process in a biologically-

plausible way by means of artificial neural networks: for instance, by combining a 

variational autoencoder with a convolutional neural network and simple attentional 

selection mechanisms (Fayyaz et al. 2022). The details of such models will not exercise us 

here: what matters for our purposes is that they provide a computational story through 

which the process of recall as described above may be implemented in brains and/or 

artificial systems. And that story plausibly involves transitions between different 

representational formats. 

In order to shed further light on this case, it is helpful to introduce the notions of vehicular 

density and inner repleteness.15 Roughly, a representational system can be more or less 

dense depending on whether it admits, for each pair of vehicles, a third vehicle between 

them or not, and a further one between this third vehicle and another one, and so on. In its 

turn, a vehicle can be more or less replete depending on the range of computationally 

 
15 These notions are inspired by Goodman (1976). 
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relevant dimensions of variation it possesses. A vehicle may be able to take a range of 

values in one dimension (like a line), in two dimensions (like a shape), in three dimensions 

(like a solid), and so on.  

A potential way to build episodic gists from perceptual information is by means of forcing 

rich perceptual information into a ‘vehicular funnel’ before storage. That is to say, the 

system must move from a format with high density of relatively replete representational 

vehicles—which due to these features are able to represent fine-grained details of an 

episode—to a format with a rather low density of vehicles with relatively low repleteness, 

which encodes only the gist of the episode, and thus requires less storage space and may be 

less energetically expensive to access and reactivate. Since information is lost, this is a 

lossy compression process. 

Memory recall, in its turn, may involve a transformation from a low-density, low-

repleteness format, with its highly compressed representations (the gist), into a higher-

density higher-repleteness format, marked by a qualitatively higher availability of vehicles, 

and a larger range of possible values and mutual constraints between them. Since the 

compression process involves information loss, recall is partly a generative process. Gist 

information can provide pointers to access information stored elsewhere, for instance in 

semantic memory, to fill in the information lost during compression (Fayyaz et al. 2022).  

This case illustrates that, in computational models, and possibly in cognitive systems, 

vehicular density and inner repleteness are computationally relevant properties that help 

distinguish different formats. For they involve qualitative differences in the computational 



 
 

32 

profiles of representational systems. Given the lack of detailed knowledge about the 

specific features of the vehicles and processes underlying episodic memory recall, the 

foregoing computational view of formats can only provide pointers, rather than a precise 

specification of the formats involved. However, these pointers can be precious, as they 

help identify some of the likely features that the underlying vehicles and processes possess, 

and thus the processing signatures that might be expected from their employment (e.g., 

more or less sparse connectivity, higher or lower ranges of values). Moreover, they help 

identify the features that need yet to be discovered so that we can have a fuller picture of 

the workings of episodic memory recall. 

At this juncture, it is worthwhile to point out that small differences in vehicular density and 

inner repleteness may be overly fine-grained for the individuation of different formats. For 

many explanatory purposes we may wish to generalise over formats, which would be 

hindered by an overproliferation of formats, leading to the near impossibility of two 

representational systems sharing the same format.  

In the life and cognitive sciences, it is often the case that there are no sharp boundaries 

fixed by our explanatory concepts. For many explanatory purposes, representational 

formats, like other cognitive and biological concepts, should be seen as coarser-grained 

and as having fuzzy boundaries: formats are thereby more-or-less well defined clusters of 

computational profiles that are significantly similar in their computational capacities to be 

considered as identical without explanatory loss. On the other hand, some explanatory 

purposes may require finer-grained individuation of formats, say if one wants to examine 

small but relevant computational differences between two place cell-like formats.  
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The computational view is thus pluralist in more than one sense. It is pluralist insofar as it 

recognises a large variety of different representational formats (instead of the few, 

intuition-based ones typically discussed in the literature); and it is pluralist insofar as it 

recognises that formats may be individuated in more or less fine-grained ways depending 

on the explanatory aims at hand. It is likely that no immediate analogy can be made to the 

formats of public representation, but this is no impediment (nor guide) to providing an 

epistemically useful notion of representational format for the cognitive sciences. 

5. The Explanatory Roles of Representational Formats 

5.1. Satisfying the Job Description without Public Representations 

The foregoing case studies illustrate that reference to public representational formats—

such as words, pictures, and maps—does not play explanatorily relevant roles and is, at 

worst, misleading. We contend that a purely computational approach to formats can fulfil 

the explanatory roles identified in section 2.3—transformation-based explanation, 

efficiency-based explanation, and epistemic fruitfulness—without any appeal to public 

representations. Let us look at each explanatory role in turn.  

It should be quite clear that the foregoing computational view is well positioned to meet 

transformation-based explanation. After all, it individuates representational formats by 

appealing to some of their computational properties, i.e., their computational profiles. And 

the notion of computation in cognitive science and AI has as its chief role that of allowing 

explanations of internal state-transitions that are rule-based, able to respect semantic, 

coherence, and rationality constraints—and all that in naturalistically acceptable ways. The 



 
 

34 

main innovation of the cognitive revolution was not the vindication of the notion of 

internal representation, which has a long history in philosophy and science, but rather the 

discovery of that of computation, and its ensuing application to explaining how transitions 

between representational states can lead, mechanically, to behaviourally-adequate 

outcomes (Fodor 1975; Haugeland 1981). 

The computational view has it that the proper way of understanding formats is in terms of 

the computational transformations that representational systems can undergo, which are 

determined in their turn by the nature of the computationally-individuated vehicles that 

compose them, and the constraints they pose in light of their computational properties. By 

capturing such computational properties, the notion of representational format opens the 

way to explaining how computational goings-on in representational systems go along, or 

map onto, goings-on in the subject matter represented, such as to lead to adequate 

behaviour. Therefore, transformation-based explanation is satisfied: representational 

formats capture the computational operations available to representational systems, which 

have important consequences for the behavioural appropriateness of their outputs. 

There are typically many different possible solutions to one and the same problem. The 

same applies to behavioural problems, and the representational and computational states 

and processes that can solve them. That of course does not mean that every solution is 

equally desirable. There are better or worse, quicker or slower, more or less efficient ways 

of solving problems. Rube Goldberg machines, for instance, do solve problems, but in 

absurdly, unnecessarily complicated ways. Something similar applies to formats: some 

computational solutions to a behavioural problem can be more or less efficient in terms of 
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resources employed, such as (metabolic) energy and time. The more appropriate the 

computational profile of a certain representational (sub-)system to a task, the fewer or less 

expensive the computations to reach the solution will be.   

In brief, by capturing the relevant computational properties of representational systems, the 

computational view of formats allows us to explain why certain representational formats 

are better suited to specific kinds of tasks—such as spatial navigation—than others. More 

appropriate formats will typically involve fewer, less complex, less expensive 

computations than less appropriate ones. In consequence, the view satisfies efficiency-

based explanation.  

Moreover, this sort of consideration can be of quite some epistemic value: even though 

natural selection does not typically lead to optimal outcomes, it is in any case to be 

expected that it will have led to representational formats that approximate to some extent 

the most adequate one for a certain task. Thereby, we can try to reverse-engineer the 

representational format at work in a certain behavioural task by trying to find the best 

computational solutions to that task, and then assess whether behavioural, psychological, 

neuroscientific or explainable AI techniques suggest that something similar is taking place 

in the cognitive system at hand. This is one of the aspects that makes the computational 

view also fulfil the third and final part of the job description, namely epistemic 

fruitfulness.  

5.2. Format Pluralism and the Fate of Public Representations 
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Approaches to formats that are modelled on public representations are typically saddled 

with dichotomies, such as the much discussed one between propositional and pictorial 

formats. However, once we have freed the computational view of formats from the 

shackles of intuition, a more pluralistic perspective opens up, in which there are many 

different varieties of formats—many more than typically discussed. For instance, in the 

case of episodic memory, we have shown that vehicular density and inner repleteness are 

computationally relevant properties. Both density and inner repleteness are dimensions of 

variation that admit different degrees. There can be computational structures that are more 

or less dense, and more or less replete, and these features can be combined in different 

ways in different systems. 

While we still lack a good understanding of the computational workings of cognitive 

systems, a  purely computational view of formats sheds light on what we should be looking 

for when we look for representational formats in cognitive systems, be them biological or 

artificial, namely computational profiles. There are no a priori limitations on what sort of 

computationally relevant dimensions of variation may be discovered.  

The resulting picture is thus highly pluralistic, since it envisages:  

● Multiple computationally-relevant dimensions that must be empirically discovered;  

● Graded computationally-relevant dimensions, rather than only all-or-nothing ones;  

● Multiple possible combinations of such dimensions. 

It is clear that this pluralism about formats goes well-beyond the frequently-discussed 

formats based on public representations.  
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Before we conclude, let us briefly return to public representations, and look at what 

epistemic roles, if any, they can still play. Consider once again the case of baboon social 

navigation. Camp’s reasoning that the format of baboon social cognition is more 

diagrammatic than pictorial or language-like may be construed as a heuristic. On the basis 

of observable behaviour, we can put forward conjectures about what sorts of properties the 

underlying representational structures should possess, such that they can explain the 

capacities observed, as well as the capacities that are not displayed by the system under 

investigation. Such initial conjectures may helpfully tap into analogies with the 

behavioural capacities we display when we use specific types of external, public 

representation. 

When used as heuristic tools, public representations work as format-schemas, i.e., sketchy, 

tentative hypothetical models of the computational profiles that internal representational 

systems might possess. Such tentative models can then be improved and adjusted in light 

of more fine-grained information (behavioural, psychological, neuroscientific, etc.) about 

the cognitive system at hand. This process is likely to generate more advanced explanatory 

models that depart considerably from the initial format-schemas based on public 

representations, as the heuristically-useful analogies break down. 

6. Concluding Remarks 

In this paper, we have shown that the computational theory of representational formats—

targeted at capturing an explanatorily useful notion of format for cognitive science and 

artificial intelligence research—not only does not require, but can actually be hindered by 
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overbearing analogies to public representations. This computational view offers an account 

of what representational formats are: the computational features of physical vehicles that 

capture the kinds of transformation/manipulation they can undergo. We have dubbed such 

features inner and outer constraints, which together come to form computational profiles. 

Per the computational view, representational formats just are the computational profiles of 

representational (sub-)systems. 

Representational formats can be individuated in coarser- or finer-grained ways, depending 

on the explanatory purposes at hand. The computational view also detaches the question of 

what formats are, and how many there are, from intuitions based on public representations. 

We have taken some preliminary, speculative case studies from current neuroscience and 

computational modelling to illustrate the type of analysis that the computational view 

provides, and the lines of further empirical investigation that it invites, both in biological 

organisms and artificial systems.  

 

 

 

 

 

 



 
 

39 

References 

Aronov, Dmitriy, Rhino Nevers, and David W. Tank. 2017. “Mapping of a Non-Spatial 

Dimension by the Hippocampal-Entorhinal Circuit.” Nature 54: 719-736. 

doi:10.1038/nature21692. 

Beck, Jacob. 2018. “Analog Mental Representation.” WIREs Cognitive Science. 

https://doi.org/10.1002/wcs.1479 

Burge, Tyler. 2010. Origins of Objectivity. New York: Oxford University Press. 

Camp, Elisabeth. 2009. “A Language of Baboon Thought.” In The Philosophy of Animal 

Minds, ed. Robert W. Lurz, 108-27. New York: Cambridge University Press. 

Cheney, Dorothy and Robert M. Seyfarth. 2007. Baboon Metaphysics. Chicago: University 

of Chicago Press. 

Cheng, Sen. 2013. “The CRISP Theory of Hippocampal Function in Episodic Memory.” 

Frontiers in Neural Circuits. doi: 10.3389/fncir.2013.00088.  

Cheng, Sen and Markus Werning. 2014. “What is Episodic Memory if it is a Natural Kind?” 

Synthese. DOI 10.1007/s11229-014-0628-6 

Clarke, Sam. 2019. “Beyond the Icon: Core Cognition and the Bounds of Perception.” Mind 

& Language. DOI: 10.1111/mila.12315. 

Coelho Mollo, Dimitri. 2018. “Functional Individuation, Mechanistic Implementation: the 

Proper Way of Seeing the Mechanistic View of Concrete Computation.” Synthese 195: 3477-

497. 

Coelho Mollo, Dimitri. 2019. “Are There Teleological Functions to Compute.” Philosophy 

of Science 86(3): 431-52. 



 
 

40 

Collin, Silvy H.P., Branka Miliovojevic, and Christian F. Doeller. 2015. “Memory 

Hierarchies Map Onto the Hippocampal Long Axis in Humans.” Nature Neuroscience. 

doi:10.1038/nn.4138. 

Colombo, Matteo and Gualtiero Piccinini. Forth. The Computational Theory of Mind. New 

York: Cambridge University Press 

Constantinescu, Alexandra O., Jill X. O’Reilly, and Timothy E.J. Behrens. 2016. 

“Organizing Conceptual Knowledge in Humans with a Gridlike Code.” Science 352(6292): 

1464-68.  

Craver, Carl F. and Lindley Darden. 2013. In Search of Mechanisms. Chicago: University 

of Chicago Press. 

Cummins, Robert. 1989. Meaning and Mental Representation. Cambridge, MA: MIT 

Press. 

Dewhurst, Joe. 2018. “Computing Mechanisms Without Proper Functions.” Minds and 

Machines 28(3): 569-88. 

Diba, Kamran, and György Buzsáki. 2007. “Forward and Reverse Hippocampal Place-Cell 

Sequences During Ripples.” Nature Neuroscience 10(10):1241-2. 

Dragoi, George and Susumu Tonegawa. 2013. “Distinct Preplay of Multiple Novel Spatial 

Experiences in the Rat.” PNAS 110(22): 9100-05. 

Drayson, Zoe. 2014. “The Personal/Subpersonal Distinction.” Philosophy Compass 9(5): 

338-46. 



 
 

41 

Fayyaz, Zahra, Aya Altamimi, Carina Zoellner, Nicole Klein, Oliver T. Wolf, Sen Cheng, 

and Laurenz Wiskott. 2022. “A model of semantic completion in generative episodic 

memory.” Neural Computation 34: 1841-70.  

Fodor, Jerry. 1975. The Language of Thought. Cambridge: Harvard University Press. 

Fodor, Jerry. 2007. “The Revenge of the Given.” In Contemporary Debates in Philosophy 

of Mind, eds. Brian McLaughlin and Jonathan Cohen, 105-16. New York: Blackwell.  

Fodor, Jerry. 2008. LOT2. Cambridge, MA: MIT Press. 

Fresco, Nir and Giuseppe Primiero. 2013. “Miscomputation.” Philosophy and Technology 

26(3): 253-72. 

Fresco, Nir. 2014. Physical Computation and Cognitive Science. Berlin: Springer.  

 Fresco, Nir, Jack Copeland, and Marty Wolf. 2021. “The Indeterminacy of Computation.” 

Synthese 199(5-6): 12753-75. 

Goodman, Nelson. 1976. Languages of Art. Indianapolis-Cambridge: Hackett. 

Haugeland, John. 1981. Semantic engines. Cambridge, MA: MIT Press. 

Haugeland, John. 1998. Having Thought. Cambridge: Harvard University Press. 

Kosslyn, Stephen. 1994. Image and Brain. Cambridge, MA: MIT Press. 

Kosslyn, Stephen, William L. Thompson, and Giorgio Ganis. 2006. The Case for Mental 

Imagery. Oxford: Oxford University Press. 

Lackey, Jennifer. 2005. “Memory as a Generative Epistemic Source.” Philosophy and 

Phenomenological Research 70(3): 636-58. 

Lande, Kevin. 2021. “Mental Structures.” Noûs 55(3): 649-77. 



 
 

42 

Larkin, Jill H. and Herbert A. Simon. 1987. “Why a Diagram is (Sometimes) Worth Ten 

Thousand Words.” Cognitive Science 11: 65-100. 

Lea, Amanda J., Niki H. Learn, Marcus J. Theus, Jeanne Altmann, and Susan C. Alberts. 

2014. “Complex Sources of Variance in Female Dominance Rank in a Nepotistic Society.” 

Animal Behaviour 94: 87–99. 

Lee, Andrew Y., Joshua Myers, and Gabriel Oak Rabin. 2022. “The Structure of Analog 

Representation.” Noûs 57: 209-37. 

Maley, Corey. 2011. “Analog and Digital, Continuous and Discrete.” Philosophical Studies 

155: 117-31. 

Miłkowski, Marcin. 2013. Explaining the Computational Mind. Cambridge, MA: MIT Press. 

Miłkowski, Marcin. 2023. “Correspondence Theory of Semantic Information.” British 

Journal for Philosophy of Science. https://doi.org/10.1086/714804 

Mok, Robert M. and Bradley C. Love. 2019. “A non-spatial account of place and grid cells 

based on clustering models of concept learning.” Nature communications 10: 1-9.  

Neander, Karen. 2017. A Mark of the Mental. Cambridge, MA: MIT Press. 

Paivio, Allan. 1986. Mental Representations. New York: Oxford University Press. 

Peacocke, Christopher. 2019. The Primacy of Metaphysics. New York: Oxford University 

Press. 

Piccinini, Gualtiero. 2015. Physical Computation. New York: Oxford University Press. 

Piccinini, Gualtiero. 2020. Neurocognitive Mechanisms. New York: Oxford University 

Press. 



 
 

43 

Pylyshyn, Zenon. 1973. “What the Mind’s Eye Tells the Mind’s Brain: A Critique of 

Mental Imagery.” Psychological Bulletin 80(1): 1-24. 

Quilty-Dunn, Jake. 2019. “Perceptual Pluralism.” Noûs 54(4): 807-38. 

Quilty-Dunn, Jake, Nicolas Porot, and Eric Mandelbaum. 2022. “The Best Game in Town: 

The Re-Emergence of the Language of Thought Hypothesis Across the Cognitive Sciences” 

Behavioral and Brain Sciences. DOI: https://doi.org/10.1017/S0140525X22002849 

Robin, Jessica and Morris Moscovitch. 2017. “Details, Gist and Schema: Hippocampal-

Neocortical Interactions Underlying Recent and Remote Episodic and Spatial Memory.” 

Current Opinion in Behavioral Sciences 17: 114-23. 

Rolls, Edmund T. 2018. “The Storage and Recall of Memories in the Hippocampo-Cortical 

System.” Cell and Tissue Research 373(3): 577-604.  

Scoville, William B. and Brenda Milner. 1957. “Loss of Recent Memory After Bilateral 

Hippocampal Lesions.” Journal of Neurology, Neurosurgery & Psychiatry 20(1): 11-21. 

Sekeres, Melanie J, Gordon Winocur, and Morris Moscovitch. 2018. “The Hippocampus 

and Related Neocortical Structures in Memory Transformation.” Neuroscience Letters 680: 

39-53. 

Shagrir, Oron. 2001. “Content, Computation and Externalism.” Mind 48: 369-400. 

Shagrir, Oron. 2022. The Nature of Physical Computation. New York: Oxford University 

Press. 

Shea, Nicholas. 2018. Representation in Cognitive Science. New York: Oxford University 

Press. 



 
 

44 

Shimojima, Atsushi. 2001. “The Graphic-Linguistic Distinction.” Artificial Intelligence 

Review 15: 5-27. 

Sloman, Aaron. 1978. The Computer Revolution in Philosophy. Hassocks England: 

Harvester Press. 

Sloman, Aaron. 2002. “Diagrams in the Mind?” In Diagrammatic Representation and 

Reasoning, eds. Michael Anderson, Bernd Meyer, and Patrick Olivier, 7-28. London: 

Springer. 

St-Laurent, Marie, Morris Moscovitch, and Mary P. McAndrews. 2016. “The Retrieval of 

Perceptual Memory Details Depends on Right Hippocampal Integrity and Activation.” 

Cortex 84: 15-33. 

Whittington, James, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil 

Burgess, Timothy E.J. Behrens. 2020. “The Tolman-Eichenbaum Machine: Unifying Space 

and Relational Memory through Generalization in the Hippocampal Formation.” Cell 

183(5): 1249–63. 


