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Abstract

The argument for the Euclidean nature of space based on the relativity of magnitudes has been overlooked by contemporary
philosophers of physics and mathematics.In the present essay, we focus on the relevance of this argument to 19th Century philosophy
of geometry. In this context, Delboeuf’s contribution has been unduly neglected. Delboeuf’s philosophy of geometry is more
authentically neo-Kantian than that of Helmholtz, it is connected in curious ways to some of Leibniz’s unpublished writings and
helps to resolve certain questions in the foundations of Poincaré’s philosophy of mathematics. We refute a fallacious argument
against Delboeuf’s ideas, espoused by Russell, which seems to have gone unchecked since. We conclude with some comments
concerning the relevance of the discussion to scientific methodology and present-day cosmology.
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4 Morals for scientific methodology

Dieser Stoff kann also vorgestellt werden als ein
physischer Raum; dessen Punkte sich in dem
geometrischen bewegen.

Bernhard Riemann
Gravitation und Lichts, 1853

Preprint submitted to Studies in History and Philosophy of Science

Introduction

Following the discovery of the mathematical possibility
of non-Euclidean geometries by Lobachevsky (1829a,b), the
“problem of space”, that is, the problem of determining which
among the available geometries should be chosen as that which
represents the space of our physical world, drew the attention
of pre-relativistic physicists, philosophers and mathematicians
throughout the 19th Century. The well known contributions
of Helmholtz (1870, 1876), Riemann (1854), Poincaré (1898)
and Lie (1893) brought together an assemblage of empiricist
and neo-Kantian ideas which would give birth to new perspec-
tives, such as geometrical conventionalism. On one hand, neo-
Kantian strands of thought suggested that the geometry of space
should be something regarded as distinct from the material con-
tents therein; on the other hand, empiricists argued that geome-
try is only an abstraction from the observed behaviours of ma-
terial bodies. By considering space as a condition for the pos-
sibility of measurement rather than a condition for the possi-
bility of experience, Helmholtz developed a form of empiricist
neo-Kantianism, which had a profound and enduring influence
on later neo-Kantians and logical positivists (Ryckman, 2003;
Friedman, 2001, 2009).

There are, however, some problems with this standard 19th
Century approach to the problem of space: Firstly, Helmholtz’s
“conditions for the possibility of measurement” rely on an
approximately physically instantiated notion of rigid bodies,
which was undermined by later developments in special and
general relativity. Secondly, while Poincaré’s lesser empha-
sis on empiricism arguably avoids this issue, the Helmholtzian
views which he adopts appear to be inconsistent with certain
other aspects of his philosophy of space (see sec. 3.3).

The aim of this paper is to introduce English-speaking audi-
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ences to Joseph Delboeuf’s alternative approach to the problem
of space, which has been overlooked by most recent accounts
(for instance Dewar and Eisenthal (2020); Heinzmann (2001)).
While Delboeuf’s work of 1860 is likely one of the earliest ex-
amples of neo-Kantianism in the philosophy of geometry, he is
not even mentioned in recent neo-Kantian texts in the philoso-
phy of physics such as Friedman (2001, 2014/1983); Ryckman
(2005); Bitbol et al. (2009). The most significant acknowledge-
ment of Delboeuf’s contribution since the mid 20th Century is
by Torretti (2012/1978). While Toretti recognises that Delboeuf
was “probably the earliest philosophical writer who had first-
hand acquaintance with the works of Lobachevsky” (p.153),
and acknowledges Delboeuf’s ideas as “interesting” (p.298), he
ultimately gives them a disfavorable verdict. Indeed, Torretti
revives a fallacious objection to delboeuf’s philosophy of ge-
ometry which had formerly been touted by Russell as well as
Poincaré (see sec. 3.2).

Delboeuf defended the apriority of Euclidean space on the
basis of the relativity of magnitudes. Although he developed his
ideas largely independently, the central argument is not unique
to him, indeed the insight dates back all the way to Wallis
(1696) (see sec. 2.2.1), and has recently been revived by Culina
(2020, 2018, 2023). Delboeuf is unique in that he gives this no-
tion of the relativity of magnitude the status of “first postulate”,
thereby attempting to erect geometry upon new foundations. In-
terestingly, his account bears a remarkable affinity to some of
Leibniz’s unpublished writings on the foundations of geometry
(see sec. 2.3.2).

One might claim that this discussion of Euclidean apriorism
is a purely historical curiosity; after all, we are equipped to-
day with far more sophisticated mathematical tools than were
available in the 19th Century. However, I contend that the is-
sues that this essay helps to illuminate are of perennial philo-
sophical import. Moreover, Delboeuf’s ideas are directly rele-
vant to physics in two domains: (1) the abundance of relativis-
tic gravitational models that propose a return to flat space for
methodological reasons (often by appealing to Poincaré’s geo-
metrical conventionalism), and (2) perhaps more interestingly,
Delboeuf’s ideas may provide philosophical grounds for specu-
lative scale-invariant models of cosmology, which have recently
seen rising interest.!

Among the novel arguments and findings made in this essay:
(1) We uncover the remarkable convergence of thought between
Delboeuf’s approach and an essay by Leibniz titled Uniformis
locus which has only been made available relatively recently
by De Risi (2005, 2007) (see section 2.3). (2) we elucidate the
fundamental difference between Helmholtz’s empirically real-
isable motions, and Delboeuf’s symmetry conditions, and de-

!For flat space models of general relativity or similar theories on flat space,
see for example: Rosen (1940a,b); Gupta (1954); Kraichnan (1955); Dicke
(1957); Thirring (1961); Huggins (1962); Weinberg (1964a,b); Ogievetsky and
Polubarinov (1965); Mittelstaedt and Barbour (1967); Nachtmann et al. (1969);
Deser (1970); Fang and Fronsdal (1979); Cavalleri and Spinelli (1980); Davies
and Falkowski (1982); Logunov and Mestvirishvili (1985); Lasenby et al.
(1998); Pitts and Schieve (2001); Arminjon (2002); Broekaert (2005). For the
question of scale-invariance in cosmology, see for instance: Barbour (2010);
Mercati (2018); Sloan (2018); Gryb and Sloan (2021)

termine that only the latter are relevant to the Kantian concep-
tion of space (see section 3.1). (3) We refute Bertrand Russell’s
enduring ‘relative angles’ objection to Delboeuf’s notion of the
relativity of magnitudes (see section 3.2). (4) We propose that
Delboeuf’s intuition of homogeneity may provide a foundation,
not merely of Euclidean geometry, but for synthetic a priori rea-
soning in general, and show how it may account for Poincaré’s
notion of the mathematical infinite (see section 3.3). We con-
clude in section 4 with some suggestions concerning the rele-
vance of these findings to scientific methodology. In section 1,
we set the scene by discussing certain key aspects of Poincaré’s
philosophy of space that do not directly involve the question
of geometry, but which are nonetheless deeply relevant to later
discussions.

1. Poincaré on space and mathematical reasoning

While Poincaré is quite famous today for his geometrical
conventionalism (which will be discussed in section 2.1), other
aspects of his philosophy of space and mathematics are equally
significant and will help provide context for our subsequent
discussion of geometry. In this section, we will briefly cover
some of these aspects: (1) Poincaré’s revision of the Kantian
notion of synthetic a priori reasoning, (2) Poincaré’s empiricist
account of the distinction between changes of state and changes
of place, (3) the distinction between empirical objects and their
mathematical idealisations.

1.1. Mathematical reasoning

By the late 19" Century, Kant’s claim that mathematics con-
tains synthetic a priori propositions was being subjected to se-
vere criticism by the logicists. Frege and Russell attempted
to show that all true mathematical statements could be derived
from a basic set of concepts defined terminologically. Thus all
mathematical truths would be reduced to logic, without need of
intuitions.? Poincaré, on the other hand, did not abandon the
notion of synthetic a priori reasoning, but rather, attempted to
revise it.?

Poincaré expounds his conception of synthetic a priori
knowledge in the first chapter of Science and Hypothesis, titled
On the Nature of Mathematical Reasoning. Kant had claimed
that the basic propositions of arithmetic, such as 5+7 = 12, are
synthetic, since nowhere in the concept of the sum of 5 and 7 is
contained the concept of 12. Something additional is needed for
Kant, that is, an intuition of space in which the two quantities
can be placed side-by-side with one another, and the operation
of summation can be accomplished (Kant, 2004/1783, p.18).
Such a claim is controversial, in part because it depends greatly
upon how we define things. It is not too difficult to define our
numbers in such a way that basic propositions of arithmetic,

2Note that for Frege, this meant that mathematics would be purely analytic,
whereas Russell viewed logic as synthetic.

3See (Folina, 2016/1992) for an in depth discussion of Poincaré’s neo-
Kantianism.



suchas 5+ 7 = 12 or 2 + 2 = 4 appear as analytic truths. Un-
like Kant, Poincaré does not argue that there is anything syn-
thetic in these basic propositions; instead, he claims that the so-
called “demonstrations” of these sums are really only analytic
“verifications”. However, these trivial verifications are not the
true subject matter of mathematics, on the contrary, Poincaré
(2015/1913, p.33) insists:

It may even be said the very object of the exact sci-
ences is to spare us these direct verifications.

The essence of mathematics, for Poincaré, lies in the ability
to generalise across an infinity of cases, using what is called
“reasoning by recurrence”, or “mathematical induction”. The
basic structure of a proof by induction proceeds as follows:

1. The theorem is proven for n = 1.

2. It is shown that if it is true for n = a, it must be true for
n=a-+l.

3. Therefore we know that it is true for n = 2, and likewise
n = 3,4,5.... By induction, we have shown that it must be
true for all n € Z.

This enables one to make generalisations about some theorem
over an infinity of cases.* It is in this possibility of reasoning
by recurrence—which Poincaré calls “the mathematical reason-
ing par excellence”—that he locates the true synthetic a priori
judgement (Poincaré, 2015/1913, p.39):

This rule, inaccessible to analytic demonstration and
to experience, is the veritable type of the synthetic a
priori judgment. [...] Mathematical induction, that is,
demonstration by recurrence, [...] imposes itself nec-
essarily because it is only the affirmation of a prop-
erty of the mind itself.

1.2. Empirical ground of space

In chapter IV of Science and Hypothesis, titled Space and
Geometry, Poincaré takes up the perspective of a naive in-
vestigator attempting to make sense of the world present to
his senses while lacking any pre-conceived notions about how
these ought to be organised and interpreted. How do we come
to the idea of space, and in particular, how do we distinguish be-
tween changes of position and changes of state (such as changes
in colour)? Poincaré presents this problem as follows (Poincaré,
2015/1913, p.70):

Whether an object changes its state or merely its posi-
tion, this is always translated for us in the same man-
ner: by a modification in an aggregate of impressions.
How then could we have been led to distinguish be-
tween the two?

His solution is rather straight forward:

“In section 3.3, we will argue that this reasoning by recurrence is made
possible due to a fundamental a priori intuition of homogeneity.

It is easy to account for. If there has only been a
change of position, we can restore the primitive ag-
gregate of impressions by making movements which
replace us opposite the mobile object in the same rel-
ative situation. We thus correct the modification that
happened and we reestablish the initial state by an in-
verse modification.

A change in spatial position is distinguished from a change in
state by the possibility of performing the reverse operation by
means of the correlative movement of our own bodies. In the
case of sight, this movement may also be performed by the “ap-
propriate movement of the eyeball.”

Now the possibility that certain “aggregates of impressions”
may be restored through our correlative movements depends
upon the existence of “solid bodies”, i.e. bodies which re-
tain the relations among their parts while changing position
with respect to us. Indeed, it is the observation of solid bod-
ies, Poincaré argues, that has taught us to distinguish between
changes of state and changes of position, such that, he con-
cludes:

if there were no solid bodies in nature, there would be
no geometry.

1.3. Mathematical idealisation

While this empiricist account of the origin of geometry is
persuasive, it does not lead directly to the complete mathemat-
ical notion of geometric space. While I may observe that as
a body recedes from me, I can restore its original size by ap-
proaching it once more, I can never infer from experience that
this will continue to be true if the body recedes to an arbitrar-
ily large distance. Should my concept of space therefore be
limited to distances for which the compensation is practically
realisable? Clearly, when we imagine objects in geometrical
space, we do not limit ourselves to distances which our bodies
are capable of traversing. Rather, we consider space as poten-
tially infinite in extent, and thereby we implicitly imagine an
idealised observer capable of visiting all parts of this space at
will to perform the necessary compensatory motions. The space
of geometry differs in this respect from the empirical condition
that motivated its invention.

It is even more clear that an idealisation is involved when
we place our representations in space-time.’ In space-time
we imagine bodies, extended in time as well as in space, and
thereby we implicitly invoke the possibility of an idealised ob-
server that may travel to the different parts of this space-time
and measure it with ideal rulers and clocks. But these motions
are by no means physically realisable. It is not even possible
to visit distant points which seem to lie in our plane of simul-
taneity, let alone to travel into the past. If geometry can, in any
sense, be said to have an empirical origin, it must have departed
from this empirical conception in order to encompass the notion
of time.

3The present comments concerning space-time are not drawn directly from
Poincaré’s works, however, they are inspired by his discussions of the issues.
We will quote Poincaré explicitly towards the end of the subsection.



A second issue concerning the difference between the empir-
ical and mathematical concepts of space is that no empirically
given “natural solid” is absolutely rigid. When we look at any
given body close enough we find motion and change in its struc-
ture, modifications due to heat, the vibrations of the constituent
particles, and so on. These contingencies make it impossible
for us to use empirical objects as standards for the definition of
a mathematical space. As Poincaré (2015/1913, p.79) puts it:

Geometry would be only the study of the movements
of solids; but in reality it is not occupied with natural
solids, it has for object certain ideal solids, absolutely
rigid, which are only a simplified and very remote
image of natural solids.

To reach the mathematical concept of space, we must substitute
our empirical notions of solid bodies with their ideal counter-
parts; and in so doing we substitute the empirically grounded,
physical concept of space—which we have no definite knowl-
edge of—with the pure, mathematical concept of space, of
which we have absolute knowledge a priori. Once we have
performed this substitution of the empirical objects with their
ideal counterparts we make it possible to apply the mathemat-
ical reasoning which Poincaré characterises as synthetic a pri-
ori: While we may attempt to infer by physical induction that
a rock remains the same wherever it is placed in relation to the
other bodies of the universe, this knowledge will only ever be
approximate, contingent and subject to the possibility of being
refuted by experience. However, if my object is not a rock, but
an ideal rigid body in Euclidean space, I can say with abso-
lute certainty that it will retain the relations amongst its parts
no matter where it is placed in this space. In Poincaré’s words
(Poincaré, 2015/1913, p.40):

Induction applied to the physical sciences is always
uncertain, because it rests on the belief in a general
order of the universe, an order outside of us. Math-
ematical induction, that is, demonstration by recur-
rence, on the contrary, imposes itself necessarily be-
cause it is only the affirmation of a property of the
mind itself.

2. The problem of space’s geometry

In the first part of this section, we briefly recount the well-
known history of Helmholtz and Riemann’s canonical 19th
Century approach to the problem of spatial geometry which was
based on the notion of the free mobility of bodies (2.1). In the
latter parts (2.2 and 2.3), we discuss an alternative approach to
the problem based on the idea of the relativity of magnitude.

2.1. The axiom of free mobility

The repeated failures to prove the necessity of Euclid’s
fifth postulate on the basis of the first four culminated in
Lobachevsky’s construction of a self-consistent geometry based
on the denial of the parallel postulate (Lobachevsky, 1829a).
Just as theorems concerning shapes in Euclidean geometry can

be studied and proven, a corresponding set of theorems per-
taining the Lobachevsky’s hyperbolic geometry can be proven
mathematically. Which set of theorems is, then, true of our
space? This glaring ambiguity at the level of mathematics
prompted various thinkers, including Riemann and Helmbholtz,
to seek an empirical ground for the validity of Euclidean geom-
etry, or lack thereof.

2.1.1. Riemann

Following from Gauss’ work on the geometry of curved sur-
faces, Riemann developed the general concept of a “multiply
extended manifold” whose curvature may vary from point to
point. Since the metrical properties of this manifold should be
grounded in empirical facts, this manifold needed to be sus-
ceptible of measurement, which implied the mobility of certain
quantities in space (Riemann, 1854):

Measuring involves the superposition of the quanti-
ties to be compared; it therefore requires a means of
transporting one quantity to be used as a standard for
the others.

The first hypothesis that Riemann explores is that “the length of
lines is independent of their configuration, so that every line can
be measured by every other.” This allows for a broad class of
possible geometries that we now know as Riemannian geome-
tries. Riemann also remarked that if we assume—not only that
lines are independent of configuration—but also that the bodies
are so, then:

it follows that the curvature is everywhere constant,
and the angle sum in all triangles is determined if it is
known in one.

2.1.2. Helmholtz

Helmholtz placed great emphasis on this latter idea, arguing
that the mobility of rigid bodies was a necessity for the possi-
bility of measurement, and concluded that only the spaces of
constant curvature could properly be considered as geometry
(Helmbholtz, 1866, 1870). Helmholtz acknowledges, however,
that the natural bodies apparent to observation are never identi-
cal to our idealisations of these. In his latter paper (Helmholtz,
1870), Helmholtz approaches something like a Kantian view,
according to which the notion of a geometric figure would
be “formed independently of actual experience”. However,
Helmboltz insists that:

we should have to maintain that the axioms of geome-
try are not synthetic propositions, as Kant held them:
they would merely define what qualities and deport-
ment a body must have to be recognised as rigid.

Rather than being a condition for the possibility of representa-
tion, like Kant thought, space and its geometry become condi-
tions for the possibility of measurement, as it were.® Helmholtz

OThis view is elaborated by Russell (1898).



finishes his essay by settling on a conventionalist stance accord-
ing to which: if taken apart from mechanical propositions, the
axioms of geometry “constitute a form into which any empiri-
cal content whatever will fit.” However, this is not only true of
Euclid’s axioms, but also of the axioms of spherical and pseu-
dospherical geometry (Helmholtz, 1870).”

2.1.3. Poincaré

Poincaré further developed this conventionalist standpoint
(Poincaré, 1898, 1905/1902), for which he is quite famous to-
day. According to Poincaré any empirical assertion of some
given geometry over another is founded on a “disguised defi-
nition”; It is a convention, and only an appeal to some extra-
empirical theory virtue such as “simplicity” may allow us to
decide between conventions. Poincaré’s preference for conven-
tionalism, rather than a purer form of Kantianism was grounded
in his group-theoretic approach to the problem. For Poincaré
space is not a form of the sensability, since “sensations by them-
selves have no spatial character”, rather the “sensible space”
must be a form of our understanding: ‘it is an instrument which
serves us not to represent things to ourselves, but to reason upon
things” (Poincaré, 1898).

However, the geometry of this form cannot be determined a
priori for Poincaré, since there are a multiplicity of conceiv-
able forms that we may use to reason on things. These are the
group structures, which are the objects of study of mathemat-
ics. The various transformations on a Euclidean space are only
one among a multitude of possible group structures that may
be employed if experience warrants it. From this point of view,
nothing truly distinguishes Euclidean geometry from the alter-
natives apart from its simplicity, and the fact that it is at least
approximately instantiated in the observable behaviours of nat-
ural solids and rays of light.

Despite claiming the conventionality of geometry, Poincaré
devotes very little attention in his work to geometries of chang-
ing curvature. The bulk of Poincaré’s discussion of the conven-
tionality of geometry in part II on Space (chapters IIL, IV and V)
of Science and Hypothesis concerns the geometries of constant
curvature. The reason for his neglect of the former is given in
the one passage in which they are briefly discussed (Poincaré,
2015/1913, p.63):

most of these definitions are incompatible with the
motion of a rigid figure, [...] These geometries of
Riemann, in many ways so interesting, could never
therefore be other than purely analytic and would not
lend themselves to demonstrations analogous to those
of Euclid.

Like Helmholtz, Poincaré rejects Riemann’s geometries of
changing curvature on the basis that they are incompatible with
the motion of rigid figures. However, for Poincaré the crucial
point here is that this incompatibility would undermine the very
aim of mathematics. Since the geometrical properties of figures

"The “pseudospherical” geometry is Helmholtz’s term for the hyperbolic
geometry of Lobachevsky and Bolyai.

in a space of changing curvature would depend upon the value
of the curvature from place to place, it would become hopeless
to make those inductive generalisations that Poincaré views as
so central to mathematical reasoning. Particular propositions
about these geometries would not be synthetic, but analytic,
since they would depend upon how the curvature is defined to
change from point to point.

2.2. The relativity of magnitude I: before Delboeuf

Helmholtz and Poincaré’s refutations of Kant’s Euclidean
a priori rest essentially on a single claim: that the geome-
tries of constant positive or negative curvature of Riemann and
Lobachevsky respectively may just as well serve as forms into
which the empirical content of our sensations may be placed.
These geometries, they say, have just the same right to be
viewed as transcendental as that of Euclid.

But is there not some characteristic of Euclidean space, be-
yond its mere “simplicity”, that sets it apart from those of con-
stant non-zero curvature? Indeed there is. It is that the Eu-
clidean space remains similar to itself at different scales. In
other words, we may zoom into some part of this space with-
out changing anything about it. Thinking in terms of figures,
rather than space itself, Euclidean space is the only space which
allows for the possibility of incongruent similar figures (i.e.
figures which differ in size but possess the same shape). All
other geometries necessarily fail this test since curvature is a
scale-dependent property of space. For instance, the sum of the
angles of a triangle placed in Lobachevsky’s hyperbolic space
will shrink as the triangle is enlarged with respect to this space;
therefore, two equilateral triangles of different sizes will not be
similar.

This criterion, by which Euclidean space can be uniquely
determined, seems to have only been considered a handful of
times in the history of geometry.® For us, it is easy to become
conscious of it, since we have knowledge of non-Euclidean ge-
ometry, and we can thereby easily identify what characteristic
distinguishes Euclidean geometry by contrast. Prior to the de-
velopment of the theory of non-Euclidean geometries however,
it would have been more difficult to deduce the relationship be-
tween the absence of an absolute scale and the parallel postu-
late.

2.2.1. Wallis (1663)

The relationship between the possibility of similarities and
the parallel postulate was first recognised by the English math-
ematician John Wallis, Savilian Chair at Oxford, in 1663 (al-
though his proof was published in 1696 (Wallis, 1696)), over
a century prior to the discovery of non-Euclidean geometries.
Wallis attempted to show that Euclid’s fifth postulate can be
deduced from ideas which are self-evident. Though his proof
is usually regarded as yet another failed historical attempt to
prove the parallel postulate, we will see that his argument is
quite significant and profound.’

8See Culina (2018) for a modern proof.
9See for instance Jammer (2013, p.145) for a characterisation of Wallis’s
proof as a failed attempt to prove the parallel postulate.



Wallis’s proof is in two parts:'?

1. Firstly, Wallis demonstrates that Euclid’s fifth postulate is
identical to the possibility of constructing similar trian-
gles, that is, triangles which have the same shape though
they differ in size.

2. Secondly, Wallis provides a metaphysical argument for the
possibility of transformations by similarity. This is due to
the distinction between quality and quantity. Whereas, for
Wallis, the size of a figure is a quantity, the shape of a
figure belongs to the category of quality. Being different
categories, these two must be able to vary independently
of one another.

2.2.2. Carnot and Laplace

The next mention of this relationship between the possibility
of similar figures and the parallel postulate appears in a note in
Carnot’s Géometrie de Position (Carnot, 1803):!!

The theory of parallels depends on a more primary
notion which appears to me to be of the same order
of clarity as that of the perfect equality or superpo-
sition of figures; this is the notion of similarity. It
seems to me that it can be regarded as a self-evident
principle, that that which exists as large, such as a
ball, a house, a drawing, can be made in small, and
vice-versa; by consequence, whatever figure we may
imagine, it is possible to imagine others of all sizes
and similar to the first, that-is-to-say of which all the
dimensions have amongst themselves the same pro-
portions as that of the first. This notion once admit-
ted, it is easy to establish the theory of parallels, with-
out recourse to the notion of infinity.

Though Carnot asserts that the proof is easy, he does not derive
it. Moreover, he does not cite Wallis’s proof, so it is not clear
whether or not he learned of it from there.

This idea is also mentioned by Laplace in passing amid a
discussion of the scale-invariance of the inverse-square law of
gravitational attraction (Laplace, 1835, p.471-472). Likewise
in a footnote we find:'?

10The original text is written in Latin by Wallis. We will not go through the
details of Wallis’s demonstration here; the reader can consult this in Hill (1925)
for a reconstruction of the proof in English. See also Therrien (2020) for a more
detailed discussion of Wallis’s proof.

Translation of: “La théorie des paralleles tient & une notion premiére qui
me paroit étre a-peu-prés du méme ordre de clarté que celle de I’égalité par-
faite ou de la superposition; c’est la notion de similitude. 11 me semble qu’on
peut regarder comme un principe de premiere évidence, que ce qui existe en
grand, comme une boule, une maison, un dessin, peut étre fait en petit et
réciproquement; que part conséquent, quelque figure qu’on veille imaginer,
il est possible d’en imaginer d’autres de toutes grandeurs et semblables a la
premiere, c’est-a-dire dont toutes les dimensions aient entre elles les mémes
proportions que celles de la premiére. Cette notion une fois admise, il et facile
détablire la théorie des paralleles, sans recourir a la notion de I'infini.” (Em-
phasis in original).

2Translation of: “La perception de 1’étendue renferme donc une propriété
spéciale, évidente par elle-meme et sans laquelle on no peut rigoureusement
établir les propriétés des paralleles. L’idée d’une étendue limitée, par exem-

The perception of extension contains a special prop-
erty, self-evident and without which we cannot rigor-
ously establish the properties of parallels. The idea
of a limited extension, for example of the circle, con-
tains nothing which depends on its absolute size. But,
if we diminish, by thought, its radius, we are in-
evitably inclined to diminish in the same ratio its cir-
cumference and the sides of all the figures inscribed.
This proportionality appears to be a much more nat-
ural postulate than that of Euclid; it is curious to find
it again in the results of universal gravity.

Once again, the work of Wallis is not mentioned.

2.3. The relativity of magnitude Il: Delboeuf

Joseph Delboeuf was a Belgian psychologist, mathematician,
and philosopher. Although he spent the bulk of his career as
an experimental psychologist, he obtained doctoral degrees in
both philosophy and mathematics and was deeply concerned
with the foundations of geometry in his youth. While he was
studying philosophy at the University of Liege, his friend and
colleague Francois Folie had attempted to prove the necessity
of Euclid’s parallel postulate. Folie’s professor had pointed out
the questionable proposition involved, and this disappointment
led Folie to abandon the endeavour (Delboeuf, 1895, p.346).
Delboeuf, on the other hand, did not abandon his youthful am-
bitions, and some years later published a radical reconception
of geometry that would place Euclidean intuitions surely at its
foundation (Delboeuf, 1860).

The difficulty with Euclid’s fifth postulate draws investiga-
tors into a labyrinth from which they can only escape by a to-
tal revolution in thinking about geometry. In this respect, two
pathways are available; we may either (1) seek new founda-
tions for Euclidean geometry, or (2) we should absorb Euclid’s
geometry into a more general conception, of which Euclid’s is
only a special case. The second approach, that of the “neo-
geometers”, has been favoured by history. Delboeuf, on the
other hand, embarks upon the first project (Delboeuf, 1894b,
p-122). Lobachevsky’s discovery, for Delboeuf, did not dis-
prove the necessity of the parallel postulate in geometry; rather,
it only served to help us better understand what our Euclidean
intuitions are founded on.

In his Prolegomenes Philosophiques De La Geometrie Et So-
lution Des Postulats of 1860, Delboeuf proposes that the ho-
mogeneity of space be taken as the first postulate of geometry
(Delboeuf, 1860, p.129). Homogeneity, for Delboeuf, is a more
restrictive criterion than what this word usually means today.
Today, people define the homogeneity of a manifold by the cri-
terion that all points stand in the same relation to the whole;
the whole can be decomposed into equal parts. This condi-
tion holds of the circumference of a circle for instance, or the

ple du cercle, ne contient rien qui dépende de sa grandeur absolue. Mais, si
nous diminuons, par la pensée, son rayon, nous sommes portés invinciblement
a diminuer dans le meme rapport sa circonférence et les cotes de toutes les fig-
ures inscrites. Cette proportionnalité me parait étre un postulatum bien plus
naturel que celui d’Euclide; il est curieux de la retrouver dans les résultats de la
pesanteur universelle.”



surface of a sphere. Delboeuf calls this criterion “isogeneity”;
homogeneity, on the other hand, is a stronger criterion accord-
ing to which the parts of a homogeneous “quantum” are re-
lated by similarity, i.e. a homogeneous quantum is similar to
itself at different scales.'®> The only examples of homogeneous
quanta that can be represented in three dimensional space are:
the straight line, the plane, and Euclidean space itself (Del-
boeuf, 1860, p.145):14

The circumference and the spherical surface are not
homogeneous like the line, the plane and our space,
but simply isogenous.

An isogenous space would permit the possibility of equal fig-
ures about any point; that is, it allows for the congruence of fig-
ures. We have seen above how this criterion implies that such a
space must be of constant curvature. But a homogeneous space,
in addition to being isogenous, must permit the possibility of
similar but incongruent figures, that is, changes in a figure’s
size do not affect its shape (Delboeuf, 1860, p.133). As Del-
boeuf puts it:'>

The reciprocal independence of shape and size, such
is the first postulate of geometry. We have established
philosophically, basing ourselves on the homogeneity
of space, the need for our mind to conceive and admit
this independence.

It is not hard to notice that this is exactly the same axiom that
Wallis (1696) had discovered to replace the parallel postulate,
indeed for both of these gentlemen, the possibility of similar-
ity is not in need of mathematical proof, but must be asserted
philosophically as a foundational principle of geometry. There
is no indication that Delboeuf was aware of Wallis’s proof since
it was never cited in his works. Unlike Wallis, however, who
had merely used this principle to replace the parallel postulate,
Delboeuf elevates it to the status of first postulate and derives
the entire edifice of Euclidean geometry from it (Mach, 1906,
p-119).

2.3.1. Mathematical definitions

In present-day terms, we may define Delboeuf’s notion of
isogeneity in terms of the translational symmetry of a metric.
Suppose the group action of the translational group 7 on a man-
ifold M is an exact isometry of the metric g. In that case, we
can call the geometry (M, g) translationally symmetric, which
corresponds to what Delboeuf calls isogeneity. It can be shown
that non-Euclidean geometries of constant curvature such as the
hyperbolic geometry of Lobachevsky and the spherical geome-
try of Riemann, are translationally symmetric.

31n his writings, Delboeuf uses the term “quantum” to refer to geometrical
objects such as lines, surfaces or spaces.

4Translation of: “La circonférence et la surface sphérique ne sont pas ho-
mogenes comme la droite , le plan et notre espace , mais simplement isogénes”

5Translation of: “L’indépendance réciproque de la forme et de la grandeur,
tel est le premier postulat de la géométrie. Nous avons établi philosophique-
ment, en nous basant sur I’homogénéité de 1’espace, la nécessité pour notre
esprit de concevoir et d’admettre cette indépendance.” (Emphasis in original).

Delboeuf’s notion of homogeneity, or self-similarity corre-
sponds to a special case of conformal isometry. Conformal
isometries are transformations ¢ which preserve the metric
structure up to an overall scale factor Q:

¢'g = Qg (1

If Q is constant across space, then the transformation produced
by ¢ is a dilatation. It can be shown that for a Riemannian
manifold, the combination of translational isometry and rescal-
ing conformal isometry uniquely selects Euclidean geometry
(Wald, 2010).

2.3.2. The Leibniz connection

One of the most intriguing things about Delboeuf’s concepts
of homogeneity and isogeneity is that one can find an almost
identical discussion in an unpublished essay of Leibniz titled
Uniformis locus which has so far been discussed solely in the
work of Vincenzo de Rizi (De Risi, 2005, 2007, 2015). The
essay, which is accessible in De Risi (2007, p.582-585) (Latin)
and De Risi (2005) (English), begins with the definitions of the
plane, the straight and space in terms of self-simlarity:'®

A locus can be called uniform or self-congruent if
its congruently bounded parts are congruent. On
the other hand, a locus is self-similar if its similarly
bounded parts are similar. The only self-similar loci
are the straight line, the plane, and space itself. Uni-
form loci include all self-similar loci and, besides,
others—that is to say, among the lines, the arc of a
circle and the cylindrical helix and, among the sur-
faces, the spherical and the cylindrical ones.

The self-similarity Leibniz speaks of corresponds to the homo-
geneity of Delboeuf, whereas self-congruence corresponds to
Delboeuf’s isogeneity. This is confirmed a little later in the es-
say, where Leibniz writes:

As I have discussed similarity and congruence, I have
also distinguished between homogeneity and equal-
ity. In fact, the loci that can be transformed into sim-
ilar ones are homogeneous; while the loci that can be
transformed into congruent ones are equal.

The resemblance to Delboeuf’s writings here is quite striking.
Not only does Leibniz share Delboeuf’s definition of homo-
geneity, but indeed, Delboeuf himself had used the notion of
the equality of all points to define isogenous quanta. There is
no evidence however that Delboeuf was aware of this essay by
Leibniz, since it had not been published at the time. In fact,
Delboeuf recounts that he was only alerted to the similarity be-
tween his work and some of Leibniz’s other writings (which
had just been made available two years prior in Leibniz (1858))
by his mentor Ueberweg after the publication of his book (Del-
boeuf, 1895, p.346). While it is plausible that Delboeuf may

16The term “locus”, which Leibniz uses, corresponds to the term “quantum”
in Delboeuf’s writings.



have been influenced indirectly by Leibniz through his conver-
sations with Ueberweg, the similarity between Leibniz and Del-
boeuf should be understood first and foremost as an instance of
convergence of thought, suggesting a remarkable affinity be-
tween their respective attempts to lay new foundations for ge-
ometry in the light of the difficulties concerning the parallel
postulate.'’

2.3.3. Neo-Kantianism

Delboeuf’s philosophy of geometry is essentially neo-
Kantian. Kant’s philosophy is discussed throughout Prole-
gomenes, indeed the central argument of the text is framed in
terms of a dialectic between Kantian idealism and Ueberweg’s
realism. The influence of Kant’s thought is perhaps made most
clear in book III, chp. 1 during his discussion of the definitions
of the straight line and the plane. Delboeuf notes that there are
a multitude of available definitions of a straight: viewed from
the standpoint of distance, it is the shortest path between two
points; from that of direction, it is a line of constant direction,
and so on (Delboeuf, 1860, p.175). Given one of these defi-
nitions, the others would appear as synthetic truths, but none
can be used to demonstrate the others analytically. However,
these synthetic theorems, Delboeuf argues, are each in fact an-
alytic decompositions of the original intuition that gave rise to
them all (p.177). If we wish to escape the paradoxes, to over-
come the impossible task of deriving one definition from an-
other, we must seek to characterise the fundamental essence of
the straight or of the plane. This leads Delboeuf to define them
in terms of their homogeneity; like Euclidean space, the straight
and the plane are distinguished by their invariance under dila-
tions (p.180):!8

The plane is a homogeneous surface;

The straight is a homogeneous line;'°

that is to say that a portion of a plane, magnified, gen-
erates the same plane; that a portion of a straight,
magnified, reproduces the straight. We can therefore
regard homogeneity as being the genetic characteris-
tic of space, of the plane, and of the line.

Throughout his writings on the foundations of geometry,
Delboeuf places great emphasis on his view that space, the
plane and the straight are not real things; on the contrary, these
homogeneous forms are pure products of thought, purely ideal

7For more information concerning Leibniz’s work on the foundations of
geometry, see De Risi (2015).

8 Translation of: “Le plan est une surface homogene; La droite est une ligne
homogene; c’est-a-dire qu’une portion de plan , majorée , engendre le méme
plan; qu’une portion de droite , majorée , reproduit la droite. Nous pouvons
donc regarder ’homogénéité comme étant le caractere génétique de I’espace ,
du plan , de la droite.”

191t is this definition, that, as mentioned above, Delboeuf’s mentor Ueberweg
remarked had been given previously by Leibniz. The relevant passages can be
found in (Leibniz, 1858, p.185, 188): “Recta est linea, cujus pars quaevis est
similis toti”, and “Ego quoque aliquas plani definitiones commentus sum. Una
est, ut sit superficies, in qua pars similis toti”, though they may also occur in
other parts of Leibniz’s works.

and immutable. Returning to the topic 33 years after his origi-
nal publication of 1860, Delboeuf devotes his essay of 1893 en-
tirely to distinguishing his ideal Euclidean space from the real
space of experience (Delboeuf, 1893). Concerning Delboeuf’s
views on real space, Torretti (2012/1978) has brought attention
to the following intriguing passage in which Delboeuf argues
that the non-Euclidean geometries of constant curvature would
in no ways help us to represent real space (Delboeuf, 1894a,
p.372):%°

We can therefore say of Riemann and Lobachevsky’s
spaces that they are artificial spaces, like Euclidean
space; and in this respect they are just as geometrical
as Euclidean space. But they have no special quality
to represent real space better than the latter. This [real
space] certainly has a curvature, but this curvature is
different at each of its points and varies there at each
instant. The real figures, that is to say, the bodies,
change with time and place. The constant curvatures
of meta-Euclidian spaces are therefore as far from re-
ality as is the homogeneity of Euclidean space.

From the present-day perspective, we are compelled to respond:
why not then ditch Euclidean space, and the “meta-Euclidean”
spaces of constant curvature? Why not embrace the varying
curvature of real space and apply Riemann’s broader notion of
differentiable manifolds? Delboeuf seems on the point of antic-
ipating the revolutions of the subsequent decades, but instead
he passes by this and retreats to his aprioristic defence of Eu-
clidean geometry. Torretti (2012/1978, p.300) takes this as evi-
dence that Delboeuf had not read Riemann. However, it is more
likely that Delboeuf avoided considering Riemann’s geometries
of changing curvature for the very same reason that most com-
mentators did at the time; that, as Poincaré put it, these ge-
ometries are purely analytic, they do not permit the kinds of
mathematical generalisations that are the essence of all a priori
synthetic reasoning. In Delboeuf’s terminology, they are not
“geometrical”’. Delboeuf, as we have seen, sought to ground
geometry in intuition, but our intuitions are powerless to predict
how the curvature of real, empirical space might change from
point to point. Space from the standpoint of experience would
begin with diverse and heterogeneous phenomena, resisting all
generalisations. But space, from the standpoint of mathematics,
begins with our most basic intuition of pure homogeneity. As
Delboeuf puts it (Delboeuf, 1860, p.73):>!

20Translation of: “On peut donc dire des espaces de Riemann et Lo-
batschewsky, que ce sont des espaces artificiels, comme I’espace euclidien; et
sous ce rapport, ils sont tout aussi géométriques que 1’espace euclidien. Mais ils
n’ont pas qualité spéciale pour représenter mieux que lui I’espace réel. Celui-
ci, comme je I’ai dit dans ma premiere étude, a certainement une courbure,
mais cette courbure est différente en chacun de ses points et y varie a chaque
instant. Les figures réelles, c’est-a-dire les corps, y changent avec le temps
et avec le lieu. Les courbures constantes des espaces méteuclidiens sont donc
aussi éloignées de la réalité que I’est I’homogénéité de 1’espace euclidien.”

21The full passage in French reads: “Il y a donc, comme nous I’avons dit dans
le premier paragraphe de ce chapitre, une double géométrie. L'une s’efforce,
une forme étant donnée, de la ramener a une forme idéale on en a des exemples
dans la cristallographie, et dans les recherches de Kepler pour déterminer la na-



There is therefore, [...] a double geometry. The first
strives, given a natural form, to bring it back to an
ideal form; [...] this experimental geometry stud-
ies bodies or phenomena independently of their sub-
stance [...]. The second, theoretical geometry, follows
an inverse course, and, starting from ideal, absolute
principles, creates an infinity of forms and seeks to
make them coincide with natural forms.

Moreover, it is worth remarking that Riemann’s own writ-
ings are not in contradiction with Delboeuf’s position as Tor-
retti seems to believe. Amid some of Riemann’s most sugges-
tive remarks, in which he proposes (as early as 1853) that the
force of gravity be described along with inertia in terms of the
dynamical geometry of a physical space, anticipating Einstein’s
equivalence principle (Riemann, 1876), we find the very same
distinction between a physical (or real) and geometrical space
that Delboeuf makes:*>

I seek the cause [of gravity] in the state of motion of
the continuous substance spread throughout the entire
infinite space. [...] this substance may be thought of
as a physical space whose points move in geometrical
space.

The only difference to Delboeuf is that Riemann ventures to
propose some means by which this dynamical space of chang-
ing curvature might be described. Neither disagrees, however,
on the distinctness of the concept of geometrical space.

3. Reflections and discussions

3.1. Mobility or Leibniz shifts?

Readers may have noticed the contrast between Delboeuf’s
arguments for scale-invariance and Helmholtz’s requirements
for the possibility of congruence. Helmholts’s notion of con-
gruence is empirically grounded, it depends upon the physi-
cally realisable motions of natural solids. Dilations of natural
solids, on the other hand, are not physically realisable. On what
grounds, then, do we assert the possibility of similarities?

In the physically realised motion of a natural solid, the given
body is known to have been moved because it has changed its
relation to other bodies. Has it moved in geometrical space?
That is entirely a matter of convention since this space is a cre-
ation of our minds. The only space in which we know it to be

ture de I’orbite de Mars qui était toute tracée dans le ciel ; cette géométrie
expérimentale étudie les corps ou les phénomenes indépendamment de leur
substance ( et de la substance transformée en force). L’autre, la géométrie
théorique, suit une marche inverse, et, partant de principes idéaux, absolus, crée
des formes a I’infini et cherche a les faire coincider avec les formes naturelles.”

22The contracted passage given above is from Peter Pesic’s English trans-
lation (Riemann, 2007/1853). The full passage in German reads as follows:
“Die nach Grosse und Richtung bestimmte Ursache (beschleunigende Schw-
erkraft); welche nach 3. in jedem Punkte des Raumes stattfindet, suche ich in
der Bewegungsform eines durch den ganzen unendlichen Raum stetig verbre-
iteten Stoffes, und zwar nehme ich an, dass die Richtung der Bewegung der
Richtung der aus ihr zu erldarenden Kraft gleieh, und ihre Geschwindigkeit der
Grosse der Kraft proportional sei. Dieser Stoff kann also vorgestellt werden als
ein physischer Raum; dessen Punkte sich in dem geometrischen bewegen.”

moved is the relative space defined, and perhaps conditioned,
by the surrounding bodies. By verifying the empirical pos-
sibility of congruence, we have only shown that this physical
space—the relative space conditioned by surrounding bodies—
is approximately isogenous. We have shown nothing of geo-
metrical space.

The translations that are analogous to the dilatations imag-
ined by Wallis, Laplace, Delboeuf, and others, are not transla-
tions of single bodies with respect to others, they are Leibniz
shifts: motions of all bodies in the universe with respect to geo-
metrical space itself. These motions lack any physical meaning,
and take place only in our minds. We are not concerned with
motions of some bodies with respect to others, since such mo-
tions could only tell us of the properties of bodies. We want to
know about the properties of space itself, and, since we con-
ceive this space as passive, we may assert that the relations
among bodies should be invariant under Leibniz shifts. This
condition tells us with certainty that the curvature of geomet-
rical space is constant. Further, we also assert the invariance
of the relations among bodies under universal dilations, which
tells us that geometrical space must be Euclidean.

The impossibility of dilating natural solids with respect to
one another informs us that the real, physical space they mutu-
ally inhabit possesses a definite scale, but tells us nothing about
the properties of an ideal space. The converse is also true: the
possibility of dilating all bodies with respect to an imagined
space ensures that it must be Euclidean, but says nothing of
the physical properties bodies possess with respect to one an-
other. One class of motions is proper to the one, the other to the
other, but the two are not interchangeable. In his Metaphysical
Foundations of Natural Science, Kant explicitly distinguishes
between absolute space, which is an ideal form, and empirical
or relative space which are those spaces in which we perceive
objects to be moved (Kant, 1970/1786, p.16-17). Therefore
Helmholtz’s claim that the possibility of congruence of natu-
ral solids implies anything about Kant’s ideal forms, is simply
mistaken.

If we admit that Helmholtz’s empiricist method can only tell
us of the geometry of a real or physical space, then history has
vindicated Delboeuf’s objection to this. As we saw in section
2.3.3, Delboeuf insisted that real space has a curvature which is
“different at each of its points and varies there at each instant”,
therefore the non-Euclidean spaces of constant curvature “have
no special quality to represent real space better than the [Eu-
clidean]” (Delboeuf, 1894a, p.372). On the other hand, If we
wish to determine the properties of a space conceived as a pure
form in the Kantian sense, then, once again, it is Delboeuf’s
method which is more appropriate.

3.2. Russell’s relative angles objection

The tendency to assert the relativity of position to the neglect
of the relativity of magnitude is epitomised by Russell (1897,
1898). Towards the end of the 19th Century, like Helmholtz
and Poincaré, Russell defended the notion that space should be
of constant curvature, but that we had no criterion by means
of which to favour Euclidean geometry. In his essay of 1898,



Russell addresses Delboeuf’s argument for the apriority of Eu-
clidean space directly (Russell, 1898):

I come now to the principal argument in favour of
the a priori character of Euclidean space, namely the
argument which derives from the impossibility of an
absolute magnitude. For this discussion, it will suit
me better to adopt Delboeuf’s terminology than to
insist upon my own. [...] The question is: Can it be
demonstrated that homogeneity is an a priori property
of space?

On this point, a strong argument in my favour is de-
rived, I believe, from the absolute magnitude of an-
gles. Those who affirm it to be evident a priori that
the sides of a triangle can be lengthened in a given ra-
tio without altering the angles, ought to hold, it seems
to me, that it is equally possible to alter all the angles
in a given ratio without altering the sides. But that,
we know, is impossible in all Geometries. If the log-
ically relative nature of all magnitude is admitted, I
cannot see why the argument would apply only to lin-
ear dimensions, and not to angles, which are equally
magnitudes.

This rather strange argument by Russell might be dismissed as
an idiosyncrasy were it not that others have claimed the same.
It is independently repeated by Torretti (2012/1978, p.297) for
instance. Even Poincaré (1898) raises the same objection in his
own essay of 1898:

It is absurd, they say, to suppose a length can be equal
to an abstract number. But why? Why is it absurd for
a length and not absurd for an angle?

Both Russell and Poincaré’s remarks were published in 1898.
Delboeuf, who had died abruptly in 1896 at the age of 64, did
not get a chance to address the objection. On his behalf, there-
fore, we will show that this argument is founded on a blatant
misconception.

The rebuttal to this argument is contained in Russell’s formu-
lation of it; the relativity of angles is impossible in all geome-
tries. Why is this?

One does not need to compare two angles in order to measure
them. The angle of intersection of two lines is already a rela-
tion, a relation between the directions of these two lines. Angles
are expressed by numbers, but these numbers are always ratios
of the full revolution: 2r. This 2x, however, is not a property
of space itself, it simply denotes the size chosen for the revolu-
tion. If we were to double the value attributed to all angles, we
would necessarily have to double the value of the revolution as
well, which would become 4, but this would amount to a mere
change of coordinates. Nothing of the angles themselves will
have changed since the ratio of their new values to the revolu-
tion will have remained invariant. An angle denotes an objec-
tive relation between two directions, not relations of objects to
space. While we may assert the relativity of directions (based
on the isotropy of space), we cannot assert the relativity of an-
gles. Similarly, while we may assert the relativity of magni-
tudes (based upon the homogeneity of space), we cannot assert
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the relativity of ratios between magnitudes. We cannot assert
the relativity of angles therefore, for the very same reason that
we cannot assert the relativity of ratios between magnitudes.

Angles differ from magnitudes, in that they do not live in an
unbounded, homogeneous (in Delboeuf’s sense) space. Rather,
the set of possible angles between two lines traces an inherently
isogenous “quantum’”: the circle. But, we might ask, what if
space itself were isogenous too? Russell continues (Russell,
1898):

We have an angular space-constant in every space,
namely the four right angles. [...] angles are tied ab-
solutely to their magnitude, and cannot be conceived
as all expanded in a given ratio. We cannot therefore
infer, from the fact that magnitude is relative, the im-
possibility of a space-constant.

The fallacy in Russell’s argument is that he assumes that angles
denote relations of things to space. In fact, they do not, and that
is exactly the reason why they are “tied absolutely to their mag-
nitude”. They are already relations among things. But let us, for
the sake of argument, entertain Russell’s reasoning: We might
imagine space as a hyperspherical surface possessing a definite
scale defined by a curvature-constant, A # 0, along with a defi-
nite angular-constant, 2, at every point. In this case, scale too
would occupy an isogenous space. But we are here witness to
a sleight-of-hand. Delboeuf’s assertion of the homogeneity of
space is, above all, an assertion of its ideality. Real things do
not have real relations to space, but only to one another. If space
possessed a scale constant, then bodies would be endowed with
real relations to space, and space would no longer be ideal. Rus-
sell asks: what is the problem with that, after all, space already
possesses an angular-constant? But this angle constant is not
a property of space, since angles are not relations of bodies to
space, rather, as we have seen, angles are relations between the
directions of lines.

As relations, angles are measurable in and of themselves,
whereas the magnitudes of bodies must be compared to one
another if they are to be measured. This is the source of their
relativity. Epistemically, all measurement is a relation between
two given things. As we have seen, Laplace (1835, p.472) in
particular emphasised this point with regards to magnitude. By
means of this principle, it is easy to rule out the possibility of
using non-Euclidean geometries as forms for phenomena. If it
is claimed that we live, or should represent ourselves to live, in
a space of constant positive or negative curvature, we must ask
upon what reason this claim is based. There are two options:

1. If this choice is grounded upon some empirical observa-
tions, suppose for instance that we live on the surface of a
hypersphere; then according to the principle stated above,
this hypersphere—whose curvature is measurable with re-
spect to real objects—must be a real object itself.

If on the other hand, it is not grounded empirically, rather,
this geometry is being used purely in its capacity as a form;
then there is no reason to choose it over the Euclidean. In
this case, Poincaré’s simplicity criterion rules it out, more-
over, a compensatory field would need to be invented to
abrogate its needless effects.



In both cases we find therefore that the geometries of con-
stant, nonzero curvature, cannot—despite what was asserted by
Helmholtz and others—be used as forms for phenomena on ac-
count of the relativity of all measurement of sizes. This argu-
ment naturally carries over to the more general geometries of
changing curvature as well, which are even less competent to
be conceived as forms. We are forced to the conclusion that
space, as pure form, must be Euclidean.

3.3. Synthetic knowledge and the passivity of space

Given the weakness of the relative angles objection, it is sur-
prising that Poincaré approves it in his essay of 1898 (Poincaré,
1898). A decade later, however, Poincaré’s views concerning
the relativity of magnitude seem to have changed. In book II of
his volume Science and Method (Poincaré, 1914/1908), amid
comments concerning the relativity of space, Poincaré affirms
the relativity of magnitude, citing Delboeuf as the principal pro-
ponent of this idea:*?

there is another [principle of the relativity of space],
upon which Delbeuf [sic] has particularly insisted.
Suppose that in the night all the dimensions of the
universe become a thousand times greater: the world
will have remained similar to itself, giving to the
word similitude the same meaning as in Euclid, Book
VI. Only what was a meter long will measure thence-
forth a kilometer, what was a millimeter long will be-
come a meter. [...] When I awake to-morrow morn-
ing, what sensation shall I feel in presence of such
an astounding transformation ? Well, I shall perceive
nothing at all. [...]

Poincaré uses this idea to deny that we can have knowledge of
absolute magnitudes (Poincaré, 2015/1913, p.414), but does not
go on to discuss Delboeuf’s argument for the Euclidean nature
of space.

Poincaré’s deliberate avoidance of Delboeuf’s thesis may be
connected to his personal enthusiasm about non-Euclidean ge-
ometries as mathematical objects of study. In a well-known
anecdote, Poincaré recounts how, out of the blue, upon step-
ping onto an omnibus in Coutances, it suddenly hit him with
full clarity that “the transformations [he] had used to de-
fine the Fuchsian functions were identical with those of non-
Euclidean geometry” (Poincaré, 2015/1913, p.417). This reali-
sation would have taken place at some time before 1880 (Gray,
1997). It is plausible that Poincaré’s personal involvement with
the development of non-Euclidean geometries drove him away
from the defenders of Euclidean apriorism, who, at the time,
were largely considered to be a reactionary force, opposed to
those that were creatively driving the progress of knowledge.
This may have led him to seek out conventionalism as a mid-
way compromise between empiricism and rationalism.

23 This is a famous passage which has recently drawn attention due to its
suggestion of the possibility of scale-invariant cosmological models. See for
instance Gryb and Sloan (2021).
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Elsewhere in his writing, however, Poincaré has based his
principle of relative motion on an affirmation of the “passiv-
ity of space” (Poincaré, 2015/1913, p.83). Russell too, who,
even more than Poincaré, defended non-Euclidean geometries
of constant curvature, affirmed that space is passive. But what
is the root of this intuition of space’s passivity?

We have seen above that if we base some notion of the passiv-
ity of space on the invariance of bodies when they are moved
with respect to one another, we will only have learned of the
(approximate) passivity of a physical space (see section 3.1).
This physical space does not permit the dilations of individ-
ual bodies, therefore it may be non-Euclidean. But who are
we to say that this physical space is passive? Why should
physical space allow for the possibility and mobility of rigid
bodies? Surely, the question of whether a natural solid retains
the same relations among its parts when it is moved with re-
spect to other physical bodies is one that should be answered
by empirical science. Indeed this is what was done, by the ap-
plication of the equivalence principle—which, in the division
between force and inertia, places gravity on the side of inertia
and (chrono-)metricity—FEinstein fulfilled Riemann’s ideas and
showed once and for all that the physical space which governs
those motions which have traditionally been called “inertial” is
not passive, but dynamical.

But what then of our intuition of the passivity of space, and
the corollary relativity of motion? This law, and the intuition un-
derlying it, can only be based in a truly Kantian conception of
space, a space abstracted from all contingent phenomena. No-
tions of space’s passivity, the relativity of magnitudes, and the
relativity of motion are pervasive in Poincaré’s works. Poincaré
often justifies these ideas on the basis that contrary hypotheses
would be “repugnant to the mind” (Poincaré, 2015/1913, p.107-
109), but he does not discuss why we feel this repugnance. 1
submit that these intuitions we have of space, and of the rel-
ativity of motions and magnitudes, may be founded on what
Delboeuf calls the intuition of homogeneity.

Quite apart from space and its geometry, we saw in section
1.1 that for Poincaré, the inductive method, which allows a for-
mula to generalise over an infinity of cases, is the “veritable
type of the synthetic a priori judgment” since it is “inacces-
sible to analytic demonstration and to experience” (Poincaré,
2015/1913, p.39). But what is it that makes this generalisation
possible? Is it the mathematical concept of infinity? An infinite
set which is not ordered, which is not in some respect homoge-
neous, does not permit of generalisations. It is not the notion
of infinity that allows for reasoning by recurrence, rather, it is
the intuition of homogeneity. It is because the number line is,
in some respect, homogeneous, it is on account of its symme-
try properties, that inductive generalisations are possible. The
mathematical notion of infinite extent, of infinite iterability, is
but a consequence of the idea of pure homogeneity, which, as
Delboeuf has shown, contradicts boundedness. It is this homo-
geneity that allows one to generalise across an infinity of cases.
Space is that which is homogeneous in every aspect. In this
respect, we may regard it as the basic intuition upon which all
synthetic a priori knowledge is based.

As Friedman (2009) describes, the mathematical sciences,



for Poincaré, are organised hierarchically, with arithmetic at
the top, followed by analysis, then geometry, then mechan-
ics and the other physical sciences. With each step down we
move further away from a priori reasoning and become more
receptive to empirical results, so that geometry, while still a
branch of mathematics, depends upon some conventions, the
choice of which may be informed by experience. Arithmetic,
for Poincaré, is therefore a more general science than geometry.
However, the synthetic reasoning upon which it is based is not
accounted for in detail by Poincaré beyond the observation that
it permits the possibility of inductive generalisations. From a
Delboeufian perspective, on the other hand, synthetic reasoning
would consist of nothing other than the analytic decomposition
of our pure intuitions of homogeneity; and from it the sciences
of arithmetic and Euclidean geometry would be deduced. Arith-
metic and Euclidean geometry would therefore stand on equal
footing, while further conventions would be needed to spec-
ify non-Euclidean geometries. I propose, therefore, that we re-
structure this hierarchy, by placing at one pole Delboeuf’s pure
intuition of homogeneity, upon which all mathematical reason-
ing is based, while at the other pole, we place sense-experience,
which is inherently heterogeneous, diverse and resistant to gen-
eralisations.

4. Morals for scientific methodology

As we have seen, unlike other neo-Kantian influences on con-
temporary philosophy of space and time, that of Cassirer and
those of Helmholtz and Poincaré, Delboeuf’s neo-Kantianism
affirms the apriority of Euclidean geometry. It may be argued
that Delboeuf’s ideas, though perhaps interesting, have little
relevance to present-day physics and philosophy of physics,
since, after all, Delboeuf did not work directly in sphysics, his
ideas had little or no influence on the development of Einstein’s
theories, and, unlike Cassirer, his philosophy was not developed
in response to these paradigm-shifting ideas. In what respect,
then, should we take this account seriously?

We have seen throughout this essay that the central insight
upon which Delboeuf grounds his philosophy of geometry—
that is, of the relativity of magnitude—was not unique to him.
This insight dates back at least to Wallis in 1663, and was recog-
nised by a variety of significant physicists and philosophers
over the centuries. We even saw that Leibniz embarked upon
a project very similar to Delboeuf’s in his attempt to find stable
foundations for geometry. Moreover, we have seen that Del-
boeuf’s account is defensible in the context of the philosophies
of geometry that were present at the time, it stands up to Russell
and Poincaré’s fallacious relative angles objection (sec.3.2), it
is both more Kantian and more self-consistent than Hemlholtz’s
allegedly neo-Kantian approach (sec.3.1), and it even resolves
certain problems in the foundations of Poincaré’s philosophy of
mathematics (sec.3.3).

Concerning the applications of these ideas to physics, it is
clear that Delboeuf can only contribute on the methodological
or formal side of things. We may propose a strict distinction
between geometrical space, conceived as a form, and physical
space (or space-time), conceived as part of the content of this
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form. This is, to a high degree, consistent with many of Ein-
stein’s own statements, for instance in his review of Meyerson’s
La déduction relativiste, Einstein writes (Lehmkuhl, 2014; Ein-
stein and Metz, 1928):

The fact that the metric tensor is denoted as “geomet-
rical” is simply connected to the fact that this formal
structure first appeared in the area of study denoted as
“geometry”’. However, this is by no means a justifica-
tion for denoting as “geometry” every area of study
in which this formal structure plays a role, not even if
for the sake of illustration one makes use of notions
which one knows from geometry.

Indeed the distinction between geometrical space and physi-
cal space was even proposed by Riemann amid some of his
most visionary remarks (see sec. 2.3.3). Since the advent of
general relativity, a vast literature of flat space alternatives or
subtle modifications has been proposed.?* This literature raises
a wide array of methodological advantages of working in flat
space, including: (1) the recovery of a well-defined local gravi-
tational energy and of global energy conservation laws (Rosen,
1940a,b; Logunov and Mestvirishvili, 1985),% (2) greater con-
sistency with the methods in particle physics (Lasenby et al.,
1998), (3) avenues towards unification with particle physics and
prospects of developing a theory of quantum gravity (Dicke,
1957; Lasenby et al., 1998; Pitts and Schieve, 2001), (4) the
possibility of implementing various interpretations of Mach’s
principle (Sciama, 1953; Dicke, 1957). Many of these models
explicitly appeal to Poincaré’s notion of the conventionality of
geometry to justify their methods, however, given the findings
of the present essay, we suggest that Delboeuf’s forgotten argu-
ments may help to provide a philosophical grounding for these
flat space approaches.

The topics that Delboeuf’s writings raise, however, are most
relevant to certain recent developments in the physics and phi-
losophy of cosmology. In recent years, Julian Barbour has
been attempting to extend the Machian research program to en-
compass a requirement for the scale-invariance of cosmological
models (Barbour, 2010). If we refuse to accept the existence
of epistemically inaccessible absolutes, then the universe must
consist only in the relative configuration of its parts—i.e., its
shape. This way of thinking has led to the developement of the
theory of Shape Dynamics (Barbour, 2012; Mercati, 2018). If
we recognise that the shape of a body consists of the internal
relations amongst its parts, while its size is an external rela-
tion to other bodies, then the universe as a whole, which has
no external reference possesses only a shape. The central in-
sight discussed in this essay—which was recognised by Wallis
and Delboeuf—is that the reciprocal independence of shape and
size implies the Euclidean nature of space. This essay may help
provide grounds for Barbour et al.’s use of Euclidean space as
a background for their models.

24 A list of references was given in the introduction.
251n such theories, the principle of conservation of energy would appear, not
as a contingent empirical fact, but as a guiding methodological principle.



It is only in the context of cosmological models, rather than
in the study of subsystems of the cosmos, that transformations
of all bodies with respect to space, i.e. Leibniz shifts or trans-
formations by similarity, can be considered. Outside of shape
dynamics, the requirement for the invariance of dynamics under
similarity transformations in cosmology has been called “dy-
namical similarity”, and it is a growing area of research in cos-
mology (Sloan, 2018; Gryb and Sloan, 2021; Bravetti et al.,
2022). We hope that the ideas discussed in the present paper
will help to provide some philosophical context and justifica-
tion for these cosmological speculations.
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