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Abstract

This study critically reevaluates the Harlow-Hayden (HH) solution to
the black hole information paradox and its articulation in the firewall
paradox. The exploration recognizes the HH solution as a revolutionary
approach in black hole physics, steering away from traditional constraints
to depict the event horizon as a computational rather than a physical bar-
rier. The paper first maps the initial physical dilemma that instigated the
HH journey, introducing Alice, an observer facing intricate computational
challenges as she approaches the black hole. I then depict the evolution
of the narrative, describing how Alice was facilitated with a quantum
computer to surmount the computational challenges and further detailing
the augmented complexities arising from the integration of the physical
dynamics of the black hole. Yet, HH’s research applies the AdS/CFT
correspondence to explore the dynamic unitary transformation in solving
the firewall paradox through decoding Hawking radiation. However, it
identifies a contradiction; the eternal perspective of black holes from the
AdS/CFT theory challenges the firewall paradox’s foundation. Finally, I
narrate a paradigm shift as HH reframes Alice’s task within the realms of
error-correcting codes, illustrating a remarkable transition from a physical
problem in black hole physics to a computational predicament in computer
science. The study revisits pivotal moments in understanding black hole
physics ten years later through this reexamination.

1 Introduction

In this study, I re-examine the Harlow-Hayden (HH) solution [Har-Hay] to the
black hole information paradox and its manifestation in the firewall paradox
[AMPS]. The initiation of the HH solution heralded a pivotal moment in study-
ing black hole physics. It deviated from the traditional analysis confined by
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spatial and temporal borders, proposing a fresh perspective wherein the event
horizon is perceived more as a barrier dictated by computational hurdles rather
than mere physical limits.

I initiate in section 2 with a concise historical introduction where I elucidate
the concepts of Hawking radiation, the monogamy of entanglement, and the
firewall paradox, setting a firm foundation for the ensuing discussion. Following
this, I delve into a detailed re-evaluation of the HH solution to the firewall
paradox.

The initial approach of HH was grounded in addressing a physical dilemma,
a prevalent strategy to untangle the intricacies of the Hawking information
paradox during that period, explored in detail in section 3. Alice, the observer
descending into the black hole, faces a computationally daunting challenge. To
navigate this, HH empowered Alice with a quantum computer; a development
unfolded in section 4. The narrative evolves by integrating physical insights
concerning black hole dynamics in section 5, yet Alice encounters additional
complexities.

Adapting to the unfolding scenario, HH redefined Alice’s mission in the con-
text of error-correcting codes, elucidated in section 6. Epistemically, this trans-
formative journey took us from grappling with a physical conundrum rooted in
black hole physics to ultimately contending with a computational issue in the
domain of computer science.

2 Hawking radiation and the firewall paradox

According to classical general relativity, nothing can escape from the event
horizon of a black hole. However, in 1974, Hawking penned a letter to Nature,
provocatively titled ”A Black Hole Explosion?”. In this letter, Hawking intended
to demonstrate that significant quantum effects might be associated with black
holes [Haw74]. In a reflection three years later, Hawking detailed the initial
realization that catalyzed his novel hypothesis, stating, ”To my great surprise, I
found,” back in 1974, ”that the black hole seemed to emit particles at a steady
rate. Like everyone else at that time, I accepted the dictum that a black hole
could not emit anything. I therefore invested substantial effort into dismissing
this unsettling result, but it persistently refused to disappear, forcing me to
eventually accept it” [Haw77].

Crucially, this hypothetical radiation arises due to how observers at infinity
categorize scalar field modes. This classification is discontinuous at the black
hole’s horizon and disregards all information about the modes within the hori-
zon. Contrarily, an observer plunging into the black hole wouldn’t perceive
any particle creation, as they wouldn’t employ such a discontinuous division
but rather analyze the field through modes continuous at the event horizon
[Haw76].

Hawking radiation can be conceptualized as follows: Near the event horizon
of a black hole, a particle-antiparticle pair spontaneously forms due to quantum
fluctuations. One particle, which we will denote as A, falls into the black hole
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possessing negative energy, while the other particle, B, escapes with positive
energy. Despite being separated, particles A and B remain entangled, ensuring
energy conservation in the system. Over time, this process leads to continu-
ous emission of particles (B) away from the black hole, a phenomenon termed
Hawking radiation. Meanwhile, the absorption of negative energy particles (A)
gradually decreases the black hole’s mass and energy, eventually leading to its
complete evaporation.

We face a perplexing question when we consider what happens to the in-
formation that enters a black hole. According to the no-hair theorem, a black
hole is characterized solely by three parameters: mass, angular momentum, and
electric charge. It ostensibly retains no other details about the matter it engulfs,
suggesting that a vast amount of information becomes irrevocably lost during
the process of gravitational collapse. This proposition seems to violate the sec-
ond law of thermodynamics, which would imply that the black hole should have
zero entropy as all the information (with high entropy) is eradicated.

However, this theory confronts a significant challenge from quantum me-
chanics, specifically the principles articulated in quantum field theory and the
principle of unitarity. The latter insists on the conservation of information,
which contests the assertion that information entering a black hole is irretriev-
ably lost. Moreover, if information is preserved, the black hole would have
non-zero entropy, giving it a finite temperature and leading it to emit thermal
Hawking radiation. This process would theoretically result in the black hole
gradually losing mass until it evaporates entirely, leaving only Hawking radi-
ation composed of certain particles behind. This conservation of information
gives rise to what is known as the black hole information paradox, a fundamen-
tal conflict between quantum mechanics and the theory of general relativity.
This paradox underlines a critical discrepancy in our understanding of modern
physics: if the information is indeed lost in a black hole, it undermines the
foundations of quantum mechanics; conversely, if the information is conserved,
it challenges the principles of classical general relativity.

In 1993, Leonard Susskind, Lárus Thorlacius, and John Uglum introduced
a solution to the black hole information paradox known as ”black hole com-
plementarity.” This principle hinges on the experiences of two observers: Alice,
who falls into the black hole, and Bob, who remains outside of it. According to
this proposal, the conflicting descriptions of the black hole interior, as observed
by Alice and Bob, are not contradictory but rather complementary, hence the
term ”black hole complementarity” [STU]; [LPSTU].

From Bob’s perspective, observing from a safe distance outside the event
horizon, the horizon acts as a physical membrane, becoming a hot layer just
above the black hole’s horizon, termed the ”stretched horizon.” In this perspec-
tive, Alice appears to become increasingly red-shifted as she approaches the
event horizon, effectively getting ”frozen” at the horizon. Alice would never
seem to cross the event horizon; instead, she would get incinerated due to the
extremely high temperatures. The black hole then re-emits her mass energy in
the form of Hawking radiation, which carries the information about Alice, allow-
ing Bob to theoretically reconstruct her from the information contained in the
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radiation, thereby preserving the principle of unitarity in quantum mechanics.
Conversely, from Alice’s vantage point, as she falls towards the black hole,

due to the equivalence principle, she doesn’t notice anything unusual at the
moment she crosses the event horizon, experiencing a ”no drama” scenario.
Contrary to Bob’s observations, she wouldn’t see herself getting stuck at the
horizon or getting incinerated but would smoothly pass the event horizon and
eventually meet her fate at the singularity at the black hole’s core, seemingly
violating the principle of unitarity due to the apparent loss of information as
she crosses the event horizon.

Black hole complementarity proposes a dual reality where Alice’s and Bob’s
descriptions are correct in their respective frames of reference. However, they
cannot communicate and compare notes after Alice crosses the horizon. This
approach offers a potential resolution to the black hole information paradox, al-
beit at the cost of introducing a vexing puzzle tied to the nature of entanglement
and the very principles of quantum mechanics.

In this paradox, we envisage three particles: A, B, and C, where A and B are
a pair of entangled particles and particle C shares information with B. Particle
A is swallowed by the black hole, B is emitted as Hawking radiation, and particle
C is another piece of radiation emitted before B, creating a mixed state of A,
B, and C. Imagine a scenario involving Alice, an observer who first measures
early radiation from particle C, then does the same for the later radiation from
particleB before crossing the event horizon to encounter particleA, which shares
entanglement with particle B, and through it, with particle C. This scenario
raises critical questions grounded in the concept of monogamy of entanglement
(the principle that a quantum system can only be entangled with one system at
a time), hinting at a violation of the no-cloning theorem of quantum mechanics.
Having measured both B and C, Alice carries this information into the black
hole where she measures A, suggesting the duplication of information, a direct
contradiction to the no-cloning theorem prohibiting the exact replication of
arbitrary unknown quantum states.

Seeking to resolve this deep-seated paradox, Ahmed Almheiri, Donald Marolf,
Joseph Polchinski, and James Sully (AMPS) reformulated the black hole in-
formation paradox, presenting a new paradox, the “firewall paradox.” AMPS
brought the information paradox to a more concrete footing by arguing that
if the information about the in-falling matter is to be preserved and able to
be retrieved from a black hole, as suggested by unitary evolution in quantum
mechanics, then there must be a highly energetic Planck-scale firewall at the
event horizon, which would effectively destroy anything falling in, thus preserv-
ing the information. This conclusion, however, starkly contradicts the general
relativistic prediction of a smooth event horizon, as well as the equivalence prin-
ciple (“absence of drama for the infalling observer”), which states that falling
through a horizon should be uneventful for an in-falling observer [AMPS].

In 2013, Daniel Harlow and Patrick Hayden (HH) proposed an innovative
approach to address the firewall paradox’s contentious issues. In this approach,
they suggested that Alice could theoretically verify the transmission of quan-
tum information emanating from the interior of a black hole, but to do this
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successfully, she would require a quantum computer equipped with an error-
correcting code potent enough to handle computations of extraordinary com-
plexity [Har-Hay].

In the subsequent discussion, I will demonstrate that, from an epistemic
standpoint, the HH paper fundamentally altered the framework and tenor of
the existing discourse and forged a novel pathway for engagement with the
firewall paradox. Leveraging insights from computational theory unveiled new
pathways for understanding and possibly resolving the firewall paradox.

3 HH begin with a physical problem

3.1 Monogamy of entanglement and the Firewall paradox

HH consider the quantum description of a Schwarzschild black hole in 3 + 1
dimensions from the points of view of an external observer, Charlie, and an
infalling observer, Alice. The entropy of the black hole is proportional to M2

in Planck units, where M is the mass of the black hole. The time it takes
for the black hole to evaporate is proportional to M3. Alice has a task at
hand to extract information from around n ∼ M2 bits of Hawking radiation
within a time frame T ∼ n3/2 before the black hole evaporates completely.
Alice needs to apply a unitary transformation to the Hawking radiation to
extract the desired information. This process effectively unscrambles the desired
information, making it accessible in a specific subfactor of the Hilbert space.
Charlie is positioned far from the black hole, at infinity. This position gives him
ample time and memory resources to measure the Hawking radiation emitted
by the black hole with great precision.

Let us start by considering Charlie’s perspective. Charlie’s description is
based on the following three postulates [Har-Hay]:

1) Charlie postulates that the black hole’s formation and subsequent evap-
oration can be described as a unitary process.

2) Furthermore, we can conceptualize the system as undergoing either con-
tinuous or discrete time evolution, wherein at any individual moment, it is in a
pure quantum state |ψ〉, which lives in a specified Hilbert space labeled Houtside.
Charlie breaks down Houtside into three subspaces: Houtside = HH ⊗HB ⊗HR,
where HH represents the degrees of freedom inside or close to the black hole.
Heuristically associated with the ”stretched horizon” at a Schwarzschild coor-
dinate radius given by r = 2GM + ǫ, G is the gravitational constant, M is
the black hole’s mass, and ǫ is some ultraviolet cutoff. HB represents the field
theory modes in the near-horizon region of the black hole. This region has a
Schwarzschild coordinate radius in the range 2GM + ǫ < r < 3GM , indicating
that it is close to the black hole but outside the stretched horizon described
in HH . The geometry in this region is close to that of Rindler space. It will
include modes with Schwarzschild energy less than the black hole temperature
T = 1

4πGM . Modes with higher energy are not confined to this near-horizon
region and are considered part of HR. HR represents the Hawking radiation
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field, the modes of the radiation field outside the black hole, with Schwarzschild
coordinate radius r > 3GM . HR includes higher energy modes that are not
confined to the near-horizon region described in HB.

We can relabel the different regions associated with a black hole and the
surrounding environment as B, R, and H . B is the zone just outside the event
horizon of the black hole. B is where one can theoretically observe phenomena
related to the near-horizon dynamics of the black hole, including the effects
of Hawking radiation and other quantum gravitational effects. Subscript B
ties it to phenomena and quantum information related to B. H refers to the
black hole’s horizon, and R represents the radiation field outside the black hole,
in a region farther from the black hole, where one can observe the radiation
emitted by the black hole, including the Hawking radiation that has escaped
the gravitational pull of the black hole. Subscript R ties it to the phenomena
and quantum information associated with this region.

The dimensionalities of H and B are denoted by |H | and |B|, which are
related to the area of the black hole’s horizon measured in Planck units. The
logarithms of these dimensionalities (i.e., log |H | and log |B|) are proportional
to the black hole’s horizon area when we study the pure quantum state |ψ〉.
Over time, the sizes of |H | and |B| decrease, illustrating the changes in the
black hole dynamics as it ages. HR starts restricted to a subset involved with
the black hole dynamics, but the size of HR, denoted as |H |, increases over
time, indicating that more states become relevant to the black hole’s dynamics
as time goes on.

3) The third postulate involves the changes over time in the degrees of free-
dom or the ”size” of HH and HB. These changes in size are proportional to
the area of the black hole’s horizon, and as the black hole evolves, these values
change. In other words, the behavior and properties of the black hole differ
depending on whether |R| is larger or smaller than the product |H ||B|, giving
rise to the distinction between ”young” and ”old” black holes. As a black hole
ages, |R| expands, altering the entanglement dynamics between B and H within
the broader Houtside. B and H are highly entangled when a black hole is young.
As the black hole ages, B and H become a small part of a much larger system
described in Hilbert space. After a certain time, known as Page time, HH show
that the combined system of B and H reaches a state that can be described
using a simple mathematical expression involving the identity operator, which
basically means the system has become uniform [Har-Hay].

As time passes, the system reaches a state of maximal entanglement, where
BH (the combination of B and H) is maximally entangled with R. HH de-
compose HR into a direct sum of subspaces, HRH

and HRB
, and another space

termed as Hother (which does not contribute to the described entangled state):
HR = (HRH

⊗HRB
) ⊗Hother. HRH

= |H | (or HRH
= |RH |) and HRB

= |RB|
are their dimensions which are set equal to |H | and |B| respectively for the
entanglement to hold [Har-Hay]. RB represents a portion of the surrounding
space farther away from the black hole, where the Hawking radiation emitted
from the vicinity of the black hole (including B) can be observed. B and RB

are maximally entangled, describing a high degree of scrambling.
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Let us keep in mind that we are still examining Charlie’s perspective. Recall
that the entire system (which encompasses both the black hole and the associ-
ated Hawking radiation, HR) is represented by a pure quantum state, denoted
|ψ〉, within Houtside. |ψ〉 is in a superposition of product states from the H , B,
RH , and RB Hilbert spaces:

|ψ〉 =

(

1
√

|H |

∑

h

|h〉H |h〉RH

)

⊗

(

1
√

|B|

∑

b

|b〉B |b〉RB

)

, (1)

where the terms |h〉H and |b〉B represent basis states in the spaces associated
with the black hole and B, respectively, |h〉RH

and |b〉RB
represent basis states

in the radiation Hilbert space corresponding to the states in the black hole and
B.

Equation (1) represents the state of an old black hole, written using Schmidt
decomposition. It is factorized into two independent subsystems: one associ-
ated with H and one associated with B. The fundamental argument of HH is
grounded on equation (1).

The state in the equation is built such that each basis state in H is entangled
with a corresponding state in RH and similarly for B and RB. In other words,
this structure reveals a deep and complex entanglement pattern: the states in
H are entangled with specific states in RH , and those in B are entangled with
specific states in RB. By setting up an entanglement between H and RH , and
B and RB, we ensure the full state |ψ〉 is pure despite the subsystems H and B
individually being in mixed states.

Now consider the perspective of Alice, falling into a black hole, and compare
her observations with those of Charlie, who is observing from outside the black
hole. Here are the key points and steps of her argument: before reaching the
singularity of the black hole, Alice also perceives her surroundings through a
description based on a Hilbert space, Hinside, divided into several subspaces:
Hinside = HA⊗HB ⊗HR⊗HH′ , where, HA represents the Hilbert space associ-
ated with A, which encompasses the field theory modes inside the black hole’s
event horizon from Alice’s perspective. A is just inside the event horizon of
the black hole; HB and HR are outside the black hole and accessible to both
Alice and Charlie; HH′ is related to Alice’s horizon, distinct from the black
hole’s horizon. From Alice’s perspective, HH is absent. The region associated
with HH is crossed by Alice in an extremely short time, meaning it has no
operational significance to her; she wouldn’t be able to conduct any meaningful
measurements in such a short time frame.

To avoid contradictions in Alice and Charlie’s observations, an ”overlap rule”
ensures that both agree on the experiments’ results they can communicate.
Charlie and Alice, despite potentially having different perspectives, must come
to the same conclusion regarding the density matrix of HB ⊗HR.

Alice would normally expect to see a smooth vacuum at the black hole
horizon based on general relativity, with specific modes in HB and HA being
closely entangled, reflecting a smooth vacuum at the horizon. However, this idea
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faces a significant problem due to the assumptions about what Charlie perceives
at the black hole stage (specifically, being an old black hole).

A, B, and R would each have its associated Hilbert space representing all
possible quantum states. B is almost maximally entangled with RB, which is
perceivable by Charlie. Even though Alice cannot directly perceive RB (and
Charlie cannot directly perceive A), the high degree of entanglement between
B and RB means that observing a part of the entangled system (i.e., B) gives
information about the other part of the system (RB). By the overlap rule, what
Charlie perceives about the entanglement between B and RB must also be true
for Alice when she observes B.

However, because of the monogamy of entanglement, B cannot be maximally
entangled with A and RB simultaneously. This contradicts the expectation of a
smooth vacuum on the horizon for Alice. Recall from section 2 that to resolve
this contradiction, the AMPS argument posits that instead of a smooth vacuum,
there is a firewall — a region of high-energy particles — at the horizon of an
old black hole, which effectively annihilates anything or anyone, including Alice,
that falls into it [AMPS]; [Har-Hay].

3.2 Strong and standard complementarity

To navigate this problem, one can choose two potential directions [Har-Hay]:
1) Strong complementarity: HH have defined Alice’s and Charlie’s theoretical

frameworks. Alice’s theory doesn’t directly relate to Charlie’s in this approach.
They only need to agree on the experimental results visible to both.

The event horizon serves as a barrier, making direct access to information in
RB inherently impossible from Alice’s localized perspective near the black hole.
The states in RB are maximally entangled with those in B, i.e., knowing the
state in B allows one to predict the state in RB perfectly, and vice versa. Over
time, the information about the black hole gets scrambled and distributed over
a very wide area, including RB. In Charlie’s theory, B and RB are significantly
entangled due to the dynamics of black hole evaporation. This entanglement
ties up B, preventing it from being highly entangled with A. But Alice cannot
access quantum states in the Hilbert space HRB

associated with RB. So, in
Alice’s theory, there are two potential solutions to address this problem:

1. Disentangle HRB
from HB: This would involve creating a theory where

the states in RB are no longer entangled with those in B. This freeing up of B
would entangle it with A.

2. Remove HRB
from her theory entirely. Alice’s theory would ignore the

states in RB , treating them as irrelevant. This would again free up B to become
entangled with A. This would grant Alice a smooth journey across the horizon.

Thus, according to strong complementarity in Alice’s frame, certain manip-
ulations or neglect of HRB

are postulated to allow a self-consistent description
of a smooth horizon, harmonizing the dual descriptions by Charlie and Alice.
Strong complementarity basically advocates for a kind of duality in the descrip-
tions, where both are valid in their respective domains. Still, neither description
can be globally valid, thereby complementing each other.
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2) Standard complementarity: While described using different theoretical
frameworks, Alice’s and Charlie’s observations can be compatible because Al-
ice’s theory can be seen as a subset embedded in Charlie’s more encompassing
theory. A theoretical framework is developed where Alice’s interior operators
to describe phenomena in HA are formulated using the exterior operators that
Charlie would use to describe HRB

. This attempt is made to avert the problem
of firewalls and maintain the notion of a smooth space at the horizon, referring
to it as A = RB [Bousso].

This equality symbolizes an effort to harmonize the two perspectives (Al-
ice’s and Charlie’s) by identifying the region described by Alice (A) with RB

in Charlie’s description. By developing a theory where Alice’s interior descrip-
tion (on HA) is formulated using exterior operators that Charlie would use to
describe HRB

, standard complementarity aims to avoid the problem of firewalls
and uphold the idea of a smooth transition at the event horizon [STU]; [LPSTU].

However, identifying Alice’s A with Charlie’s RB introduces a notable prob-
lem. It doesn’t restrict Alice from making direct measurements in RB, which,
according to the broader theory (Charlie’s perspective), she shouldn’t be able
to access directly. This results in a paradox where Alice, while theoretically
unable to access RB, finds herself able to do so according to this approach,
thereby contravening the theory that posits complementarity.

3.3 The unitary transformation and its inverse

In what follows, I show that HH introduce a new perspective that involves com-
putational complexity to help address the issues raised by the AMPS paradox.
They bring a different angle to this discussion, focusing on the computational
complexity involved in reconstructing the interior of a black hole (Alice’s point
of view) from the information outside of it (Charlie’s point of view). They ar-
gue that the task of Charlie reconstructing what is inside (and thus detecting a
firewall) would involve an intractable computational task. I demonstrate that
HH bring a fresh perspective that adds a nuanced layer to the standard comple-
mentarity, but they navigate around the standard complementarity rather than
extend it.

Initially, HH phrase the discussion in terms of Charlie’s Hilbert space. Since
both Charlie and Alice are required to agree on the density matrix that describes
the system in terms of HB and HR, it implies that a consistent representation
of |ψ〉 can be achieved from the perspective of Charlie’s Hilbert space. Hence,
despite potentially different vantage points, Alice and Charlie will converge on
a shared description, abiding by the constraints of the overlap rule.

First, HH specify that in the Schmidt decomposition, one describes the state
of the old black hole in terms of a basis that effectively separates the early
and late-time radiations, see equation (1). However, HH will use a particular
basis (denoted as ”computational basis”) to describe the radiation field HR,
which will be convenient for Alice to work with. They write an equation that
denotes the specific computational basis state (|bhr〉R) in HR using n, k, and
m that describe various aspects of that state. Working exclusively with this
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basis is intended to simplify calculations for Alice as she tries to work through
the decoding problem with a basis where the mathematical expressions become
more tractable. Alice uses n, k, and m to represent different quantities related
to her problem of decoding information from the black hole’s Hawking radiation:
n represents the total number of qubits involved in the problem. This is related
to the logarithm to base 2 of the dimension of R: n ≡ log2 |R|; k represents the
number of qubits associated with HB; and m represents the number of qubits
associated with HH . We can think of k+m as the number of qubits remaining
in the black hole. HH , along with HB , forms the entirety of the black hole’s
state that Alice is interested in for her problem.

Second, HH define UR as a particular (scrambling) unitary transformation
on HR and write |ψ〉 [equation (1)] in the computational basis:

|ψ〉 =
1

√

|B||H |

∑

b,h

|b〉B |h〉H UR |bh0〉R . (2)

UR’s exact form or structure depends on the details of the black hole’s initial
state and the quantum gravity, a yet-to-be-realized theory. The discussion here
pertains to Schwarzschild black holes instead of AdS eternal black holes that
do not evaporate and maintain a dynamic equilibrium with Hawking radiation.
This dynamic equilibrium significantly changes the conditions and assumptions
on which the HH decoding task and the UR are defined. HH note that ”Big
AdS black holes do not evaporate at all, so the AMPS argument does not
directly apply to them, but arguments have been put forward suggesting that
they nonetheless have firewalls” [Har-Hay].

Alice’s challenge is applying the inverse of UR, denoted U
†
R, to the Hawking

radiation. This allows her to confirm the entanglement between HB and HRB
.

Applying U †
R reverses the transformation effected by UR, decoding the informa-

tion encoded in the Hawking radiation. The goal is to retrieve the information
encoded in the entangled states between HB and HRB

from the Hawking radi-
ation. Through decoding, Alice can confirm the entanglement between HB and
HRB

, gaining insight into the states and dynamics occurring in RB through her
operations on the radiation emitted by the black hole without directly accessing
RB. By utilizing the decoded information from the Hawking radiation, Alice can
avoid the need for direct measurement in RB, thus avoiding the paradox arising
from her ability to access information in RB directly according to the standard
complementarity approach. In other words, Alice can bypass the complications
brought about by the firewall argument while upholding the principles inherent
in the black hole complementarity.

However, the time Alice would need to decode the information is exponential
and proportional to 2k+m+n. This time complexity is extremely large, indicating
a computational task of astronomical proportions. Since the black hole is old,
it implies that n (representing the age parameter) is significantly larger than
the sum of k and m. This condition allows us to derive a lower bound for
the reduced time complexity expression: n > k + m. Using this condition in
2k+m+n, we can establish a lower bound on the reduced time complexity as at
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least 22(k+m). But this expression also involves an exponential function and,
therefore, would be extremely large for non-trivial values of k and m.

Thus, reversing UR exactly would be practically impossible for Alice. Hence,
a framework is required to quantify how close Alice can reach the perfect task.
HH use a concept of ”trace norm,” which allows them to define a notion of
”closeness,” how close Alice needs to get to test the entanglement accurately
[Har-Hay]. In other words, they aim to find a unitary operation close enough

to the ideal operation U †
R such that the error in the subsequent measurements

is within acceptable bounds. Defining a threshold for the closeness using trace
norm would define how accurately Alice needs to perform the unitary trans-
formation to test the entanglement reliably. It establishes a criterion for the
allowable error in Alice’s operation, such that she can still validate the entan-
glement through her measurements. By working within this framework, Alice
aims to construct a unitary transformation that, while not the same as the ideal
U

†
R, is close enough according to this defined metric to allow her to verify the

entanglement adequately. This approach acknowledges the practical difficulties
and uncertainties in constructing the exact unitary transformation and provides
a pathway to achieve Alice’s goal within tolerable error margins.

By allowing for a non-ideal transformation, where Alice tries to get close
enough through trace norms, there might be a reduction in the complexity of
the task at hand. However, even when settling for a non-ideal transformation,
Alice still faces an enormously complex computational task. Though the require-
ment is somewhat relaxed compared to achieving the ideal transformation, the
task remains a high-order polynomial time problem, implying a computational
duration that vastly exceeds the black hole’s lifespan.

4 HH provide Alice with a quantum computer

4.1 Alice is distilling the radiation with a quantum com-

puter

Alice is on a mission to decode the entanglement between R and B, aiming to
transform it into a format that is easier to analyze. To accomplish this, Alice
uses a quantum computer whose initial state is defined in a new Hilbert space
HC . This computer interacts with the radiation Hilbert space HR, undergoing
a unitary evolution described by Ucomp. In other words, Ucomp operates on
a larger Hilbert space that includes HR and HC : HR ⊗ HC . Alice employs
Ucomp (similar to U †

R) to reverse the effects implemented by UR to distill RB.
This intends to decode the information entangled with B during the evolution
governed by UR.

However, Alice’s major challenge is finding the appropriate initial state for
her computer:

Ucomp : UR|bh0〉R ⊗ |ψ〉C → |something〉 ⊗ |b〉mem. (3)
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Alice is looking for a particular initial state for her computer, denoted |ψ〉C ,
such that under Ucomp, this state interacts with the states from the radiation
field UR |bh0〉R to produce a final state where the qubits representing |b〉 (which
are associated with the B basis) are stored in the first k qubits of the memory
of her computer, separated from the other parts of the system described by
|something〉. In other words, Alice is trying to isolate information about B into
her computer’s memory [Har-Hay].

However, finding the initial state |ψ〉C for the computer to start the compu-
tation is extremely challenging. Even if Alice finds one, the probability that it
successfully facilitates the computation is minuscule, being exponentially small
in terms of the dimensions of the Hilbert space. To estimate the likelihood of
finding a successful initial state, HH use the trace norm to create a set close to
which every pure state in the Hilbert space can be found. Even after considering
various potential unitary evolutions, the probability of finding a successful initial
state remains extraordinarily small. The time required to find a suitable Ucomp

by random chance is identified as the quantum recurrence time, the time scale
over which a quantum system revisits a particular state it was in at some ear-
lier time, due to its natural dynamics. The recurrence time is immensely long,
reaching up to 1010

40

years. The recurrence time in which a quantum system
revisits near an initial state by pure chance is especially long for the complex
system Alice is dealing with, involving a black hole and Hawking radiation. This
time scale is doubly exponential in terms of the entropy of the whole system,
i.e., it increases extremely fast as the system’s complexity increases. Thus, the
recurrence time is potentially longer than the lifespan of a Schwarzschild or an
astrophysical black hole.

Despite the immense challenge posed by the quantum recurrence time, Alice
has another strategy up her sleeve. Instead of the brute force approach, waiting
for the right Ucomp to occur by chance, she aims to actively find it by exploiting
patterns in how Ucomp evolves. If there are any predictable structures in its
evolution, she can use this information to guide her search, significantly reducing
the time it would take to find the right Ucomp. By leveraging the structures in
Ucomp’s evolution, Alice can potentially reduce the computational time from
a double exponential dependency on the entropy of the radiation to a single
exponential dependency. This is a very long time since single exponential growth
is very fast. But it is much more manageable compared to a double exponential
growth. So, this strategy offers a glimmer of hope; despite the initially grim
prognosis suggested by the quantum recurrence time, if Alice can understand
and leverage the underlying physics and mathematical properties of her system
well enough, she might be able to achieve her goal in a ”reasonable” amount of
time, though still astronomically long from a human perspective [Har-Hay].

4.2 The Solovay-Kitaev theorem

HH then ask [Har-Hay]: how many quantum gates would be necessary to im-
plement a unitary transformation as complicated as UR? They show that the
number of gates required scales with a single exponential function of the number
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of qubits (n), 22n times a logarithm of a parameter (ǫ): 22n log
(

1
ǫ

)

.
This is a significant result because it means the computational time is a lot

less than previously assumed based on a crude double exponential scaling (for
instance, 22

n

). This improvement is partly credited to the Solovay-Kitaev theo-
rem, which suggests that an efficient sequence of gates can be found to perform
any unitary operation to a high degree of precision. Despite this improvement,
reducing the computational time further seems unlikely, indicating that UR and
U

†
R are still highly non-trivial tasks even under optimal conditions. Adjusting

the model, such as using different gates or more complex quantum entities like
qutrits (which have three basis states) instead of qubits, doesn’t fundamentally
change the 22n scaling of the problem.

We can speed up computations significantly compared to initial expecta-
tions. However, we are still looking at a process that requires a time that scales
exponentially with the number of qubits, which indicates extremely long compu-
tation times for complex operations involving many qubits. This makes Alice’s
task of implementing UR within a reasonable time frame highly unlikely.

5 HH combine black hole physics and comput-

ing

5.1 Taking into consideration the dynamics of the black

hole

HH then suggest that the dynamics of a black hole constrain UR in a way
that could help Alice implement it faster. A transformation Udyn is defined
as a unitary transformation that operates on different microstates of a black
hole, and “it seems quite reasonable to assume that Udyn can be generated by
a polynomial number of gates,” i.e., a computational operation that doesn’t
require an astronomical number of quantum gates to perform [Har-Hay]. I
am quoting this phrase because I find it problematic from a conceptual and
philosophical standpoint. I elaborate on this perspective below.

HH define the state |ψ〉 as arising from the action of the polynomial size
circuit Udyn:

Udyn|0〉BHR =
1

√

|B||H |

∑

bh

|b〉B |h〉H UR |bh0〉R . (4)

They provide a more comprehensive explanation of this matter. Alice wants
to determine if a small circuit for Udyn implies a small circuit for UR. If such
a circuit exists, she could more easily decode RB from the Hawking radiation.
The matrix UR is derived from Udyn, which, unlike Udyn, is sensitive to the
system’s initial state. For the sake of simplicity, an initial state is chosen with
all bits set to zero. HH write an expression for Udyn acting on this initial state,
intending to learn more about UR:
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Udyn |00000〉init ≈
1

√

|B||H |

∑

b,h

|b〉B |h〉H UR |bh0〉R . (5)

Some physical assumptions about Udyn are necessary to further this explo-
ration. While the precise dynamics of quantum gravity remain undefined, HH
refer to theories like AdS/CFT and matrix theory, which give ground to assume
that Udyn can be generated through polynomial numbers of gates in a small cir-
cuit [Har-Hay]. So, the core search then revolves around whether there is a small
circuit for Udyn that ensures a small circuit for UR. This would imply that if
affirmed, Alice could feasibly decode RB from the Hawking radiation. However,
it seems like there is a challenge here, citing the eternal nature of black holes as
posited by AdS/CFT theory, which ostensibly disputes the presence of a firewall
paradox. This presents a theoretical contradiction, introducing complexity and
potential disagreement in integrating these theories with the problem at hand.

Next, disregarding the complication, HH proceed to articulate their argu-
ment: Udyn can be expressed as a product of UR and another operation called
Umix. Umix is a unitary operation that creates entanglement between differ-
ent subsystems, mixing or scrambling the information within them to create a
highly entangled state.

Here, Umix is conceptualized as a straightforward circuit that entangles the
initial four subfactors in the chosen initial state. HH emphasize the simplicity
of implementing Umix, noting that a universal circuit would suffice:

Umix |00000〉init =
1

√

|B||H |

∑

b,h

|b〉B |h〉H UR |bh0〉R . (6)

HH then define a new operator ŨR as: ŨR = UdynU
†
mix, which has the

property:

ŨR
1

√

|B||H |

∑

b,h

|b〉B |h〉H |bh0〉R =
1

√

|B||H |

∑

b,h

|b〉B |h〉H UR |bh0〉R . (7)

HH argue that a small circuit can implement ŨR. It undoes the effects of UR

when applied to a specific superposed state, a complex combination of states
from B and H [Har-Hay].

5.2 Alice again confronts complications

The above process is highly non-trivial because, as seen in the previous section,
the new inverse operator ŨR is intricately dependent on the precise initial states
of the qubits in B and H , which are part of an entangled system associated with
a black hole. Applying ŨR ideally would unscramble the quantum information,
extracting it from the entangled state and converting it into a format that can
be more straightforwardly accessed and analyzed. Although it seems that ŨR

could be utilized to decode the information, it encounters a pivotal issue; the
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operation of ŨR involves all qubits, including those in B and H , to which Alice
doesn’t have access. Hence, implementing ŨR as is would be infeasible. Alice,
therefore, considers a strategy where she replaces the unavailable qubits from
B and H with some ancillary qubits in a random state, hoping this would allow
her to use ŨR to undo UR. The difficulty remains as ŨR is fundamentally tied
to the initial states of the B and H .

Ultimately, it is highly unlikely for Alice to find a simple, small circuit to
implement UR due to the constraints imposed by Udyn and the complexity aris-

ing from U
†
R. Because Alice doesn’t have access to all the qubits she needs, she

can’t directly apply U
†
R to reverse the dynamics and extract the information

encoded in RB. The transformations she would like to apply, including ŨR,
are sensitive to the states of all the zones, including B and H , which she can’t
access. Therefore, Alice can’t take a straightforward approach to reverse the
dynamics in a manageable amount of time, i.e., in a time that is a polynomial
entropy function. So, Alice is stuck with having to try a brute force strategy,
where she uses a tremendous number of operations (2n+k+m gates, which indi-

cates a huge, potentially impractical number) to construct U †
R. HH, therefore,

suggest a kind of pessimism or skepticism that there would be an easy solution
to Alice’s problem [Har-Hay].

6 HH transform a physical problem into a quan-

tum coding problem

6.1 Alice is utilizing an error-correcting code

HH then hint toward the possibility of exploring the problem further through
the lens of error-correcting codes and complexity theory, albeit acknowledging
the sheer challenge posed by the exponential increase in complexity [Har-Hay].
They recast Alice’s task as a quantum coding problem.

Alice’s main difficulty is retrieving information, especially when dealing with
errors introduced by the black hole environment, which causes erasures in B and
H (which define the state of the black hole). Recall that Alice has no access to
B and H . This lack of access is represented mathematically as erasures in these
systems. These erasures pose a significant challenge to Alice’s task, as they
take away information that is vital for her to be able to successfully decode the
information about the black hole’s initial state. Alice uses the error-correcting
code to recover information that has been erased and affected by the interaction
of the black hole with its environment.

HH write equation (2) in an equivalent way:

|ψ〉 =
1

√

|B|

∑

|b〉B
∣

∣b
〉

,
∣

∣b
〉

≡
1

√

|H |
|h〉H UR |bh0〉R . (8)

The state |ψ〉 is expressed as a superposition of |b〉B and
∣

∣b
〉

, where
∣

∣b
〉

is defined
in terms of |b〉B and UR. HH are trying to simplify the problem by focusing
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on a smaller Hilbert space, where
∣

∣b
〉

is a basis for a k dimensional subspace
of HH ⊗HR. But they also underscore the intertwined nature of the state |ψ〉
in the black hole and the Hawking radiation system, with its behavior being
determined by interactions between multiple different Hilbert spaces.

Alice creates a quantum code using Uenc, which is built from UR and Umix,H:
Uenc ≡ URUmix,H. Umix,H is a simple entangling transformation analogous to
Umix, which is applied to a subset of the qubits representing a part of the
radiation emitted. It affects the m qubits of H and the n+1 to n+mth qubits
of R. This encoded information involves entangling pairs of qubits from H and
R to produce new states. Up to this point in their discussion, HH have focused
on the errors that arise from the fact that Alice does not have direct access to all
the necessary information from B and H to decode the information she seeks
straightforwardly. However, they point out that this isn’t Alice’s task’s only
source of potential errors. They bring attention to another substantial challenge.
For instance, the black hole emits Hawking radiation, including hard-to-detect
gravitons, let alone coherently manipulate. Thus, information about the black
hole’s state is carried away with that radiation, and some of it is lost.

When Alice applies Uenc, she identifies a subset of states (subspace) of the
total Hilbert space within the larger Hilbert space. By narrowing it down to a
specific subspace, Alice is reducing the computational complexity and resource
requirements of the task at hand. Operating in a smaller subspace allows a
more streamlined approach to information retrieval, bypassing the need to deal
with a prohibitively large set of all possible quantum states in the full Hilbert
space. This subspace effectively helps in encoding the information about the
black hole state and aids in protecting and retrieving the information even after
some amount of information loss and erasure. Moreover, the universe of all
possible quantum states in the Hilbert space is vast, and working with it directly
would be computationally prohibitive. By identifying a subspace through the
Uenc transformation where the black hole information is encoded, Alice can work
with a reduced, more manageable set of states, facilitating the decoding process.

When Alice wants to retrieve the information, she is looking to decode the
information stored in this subspace. This decoding process reverses Uenc to re-
trieve the original information, or at least the pertinent part of it, even after
parts of the system have been erased. However, reversing Uenc to decode the
information isn’t straightforward. Alice uses a set of quantum operations, a uni-
versal gate (CNOT gates and Hadamard transformations), to develop Uenc, and
she tries to identify a suitable decoding process that can retrieve the original
information from the encoded state. To do this, Alice introduces an additional
system denoted as B′, with the same number of qubits as B, and forms a new,
more extensive set of encodings. The crucial part of the decoding process in-
volves a complex unscrambling of the entanglements between B′ and R through
another set of transformations Uenc, which is constructed from Udyn and the
transformation that involves the new system B′, Umix, B’.

More specifically, HH want to establish Udyn as the encoding transformation
Uenc and UR as a correction operation. However, there is an issue with the
dimensionality of the code space, which they address by introducing an addi-
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tional system B′ with the same number of qubits as B. They then apply a
transformation Umix,B′ to entangle B′ with B, thereby creating a k-qubit code
subspace within a larger 2k + m + n qubit Hilbert space using Uenc. Uenc is
defined by applying Umix,B′ followed by Udyn. Uenc operates on initial states to
generate a new state that incorporates B, B′, H , and R, such that:

Uenc |b
′〉B′ |0〉BHR =

1
√

|B||H |

∑

bh

Umix,B′ |b′b〉B′B |h〉H UR |bh0〉R . (9)

HH acknowledge the presence of errors introduced by the environment, con-
ceptualized as erasures affecting both B and H . To restore the initial state
by unscrambling the entanglement between B′ and R, one needs to implement
U

†
R. By applying U †

R on the newly defined state, and subsequently acting with
Umix,B′ , the information b′ is recovered. This process involves replacing the
second element of each pair of qubits from the first k qubits of R instead of
from B, which isn’t accessible anymore. This produces a state:

|b′〉
1

√

|B||H |

∑

bh

|b〉B |h〉H |bh0〉R , (10)

Following the recovery of b′, the initial state can be restored in polynomial
time using ancillary qubits to reset BHR to the state |0〉BHR and then utilizing
Uenc to revert to the desirable state formed by the encoding transformation
involving B′ and BHR [Har-Hay].

By introducing a new system B′, Alice adds a new set of variables. B′

interacts with the radiation (R); a new set of entangled states between B′ and
R are formed through this interaction. These entangled states have information
about the black hole. Uenc is a set of operations designed to unscramble the
entangled states formed by interactions between B′ and R. It uses the dynamics
of the black hole and the transformations involving B′ to create a scenario
where the entangled information can be unscrambled, running some processes
in reverse to recover the original data. Alice uses Uenc to recover the original data
encoded in the entangled states of the black hole information. This is trying to
reverse the effects of the black hole dynamics on the information by decoding the
previously encoded information in the scrambled, entangled states. By utilizing
a more comprehensive set of encodings involving the additional system B′ and
implementing a complex transformation to unscramble the entanglements, Alice
aims to recover the original data and thereby solve the problem of decoding
the information about the state of the black hole, circumventing the issues
encountered with not having access to all the required qubits in the previous
setup. This strategy is grounded on the hope that by properly configuring the
new system B′ and skillfully using Uenc, Alice can create a pathway through the
entanglement structure that allows her to access the information she is after,
even without direct access to all parts of the system.

17



6.2 A beacon of hope amidst lingering challenges

For the channel just constructed, n is the total number of bits that can theo-
retically be lost due to various errors or complications while still retaining the
ability to correct those errors and successfully decode the information. 2k+m+n
breaks down this n into components corresponding to different aspects or pa-
rameters of the black hole model. So, k+m bits have already been unavoidably
lost because Alice doesn’t have access to B and H . n−k−m

2 is the remaining
number of bits Alice can afford to lose due to other errors and still maintain
the possibility of successful error correction. α represents the fraction of the
radiation that consists of gravitons. HH then make a critical point: even if all
the gravitons (which constitute less than half of the radiation) are lost, Alice
could theoretically still extract the necessary entanglement information accu-
rately because she still has room for error correction — she can still lose up to
n−k−m

2 bits and remain within the bounds for successful error correction. Even
if Alice cannot control and measure the gravitons, she can wait until enough
radiation has been emitted such that the information about the interior of the
black hole becomes accessible in the radiation. She can still successfully decode
the necessary information to solve the task.

However, HH note two important complications [Har-Hay]
1) Computational complexity comes into play here as a significant roadblock.

Extracting the information from the radiation is an immensely complex com-
putational task. This complexity grows with the size of the black hole and the
amount of information to be retrieved.

2) The task must be done before the black hole fully evaporates, setting a
strict time limit on the procedure. Thus, while theoretically possible, practi-
cally carrying out the AMPS experiment to solve the black hole information
problem without considering computational complexity would be extraordinar-
ily challenging and likely unfeasible due to the computational resources required.
Thus, Alice might not have enough time to complete her task before the black
hole evaporates, hence not being able to rule out the presence of a firewall
definitively.

7 A physics problem becomes a quantum com-

puting problem

7.1 HH’s Error Correctability problem

HH introduce a computational problem termed Error Correctability [Har-Hay].
This problem arises in the context of B, H , and R. The state of this system is
transformed by Udyn acting on an initial state, resulting in a new state |ψ〉BHR,
which exhibits maximal entanglement between B and HR.

|ψ〉BHR = Udyn |000〉BHR , (11)
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The crux of the Error Correctability problem is to ascertain whether it is pos-
sible to decode the maximal entanglement with B by only using information
from R. This problem has a QSZK proof, which is characterized by a verifier
checking the results after a prover implements a quantum error correction oper-
ation on R, despite the potential for this process to take an exponentially long
time.

HH replicate the kind of maximal entanglement generated during the dy-
namical evolution governed by Udyn using a different strategy involving a noise
operator Unoise. In the strategy:

|ψ〉BHR = Unoise |000〉BHR , (12)

is utilized to create a state where the BH and R systems become maximally
entangled. By applying Unoise repeatedly (i.e., working with k copies of |ψ〉,

noted as |ψ〉
⊗k

) one converges towards a state with near-maximal entropy con-
centrated in a typical subspace of the tensor product of k copies of the B and H
Hilbert spaces. However, HH mention that this approach, while similar to the
true maximal entanglement generated by Udyn, might be slightly weaker. This
suggests that while this strategy can approach the maximal entanglement that
Udyn would generate, it might not fully replicate it, potentially missing some
correlations or not fully reaching the maximal entropy that would signify truly
maximal entanglement. Hence, although this strategy involving Unoise can yield
a state with a high degree of entanglement between the BH and R subsystems,
it seems it might not exactly reproduce Udyn.

7.2 Evaluating Alice’s task through the lens of QSZK and

BQP complexity classes

HH refer to the following complexity classes [Har-Hay]: the BQP complexity
class, which contains decision problems that can be solved by a quantum com-
puter in polynomial time, with an allowable error probability. The SZK com-
plexity class: a class of problems where solutions can be verified using classical
computers, and where the ”yes” instances can be proven with zero-knowledge
proofs, where the verifier learns nothing other than the fact that the statement
is true. QSZK (Quantum Statistical Zero Knowledge), a quantum analog of the
SZK complexity class. This complexity class contains BQP. QSZK is a complex-
ity class that refers to the set of computational problems with yes/no answers
where a (potentially dishonest) prover can always convince a verifier of the yes
instances but will fail with high probability to convince them of the no instances
using quantum computations.

HH identify the Error Correctability problem as a QSZK-complete problem
[Har-Hay]. A problem that is QSZK-complete represents the hardest problems
in the QSZK class. If there is a polynomial time solution for one QSZK-complete
problem, then there are polynomial time solutions for all problems in the QSZK
class. In other words, if Error Correctability is identified as a QSZK-complete,
then it has two properties:

19



1) It is in QSZK and can be solved using a quantum computer with the help
of an all-powerful, though potentially dishonest, prover.

2) Any problem in QSZK can be reduced to the Error Correctability problem
through a polynomial-time algorithm.

Solving the Error Correctability problem would imply a solution for every
problem in the QSZK class.

HH argue that if QSZK were equal to BQP, then all the problems that can
be solved with a quantum verifier and a prover (QSZK) can also be solved with
just a quantum computer operating in polynomial time (BQP). In other words,
the prover does not add any computational power; a quantum computer alone
is sufficient to solve these problems. If this decoding can be done on a quantum
computer in polynomial time, it would mean that all QSZK problems can be
solved in BQP, implying QSZK = BQP [Har-Hay]. HH are asking whether the
decoding process required to solve the Error Correctability problem can be done
in polynomial time with the size of the circuit used to represent correctable
noise denoted by Udyn. They reiterate that finding a polynomial-time solution
to the decoding problem (concerning the size of the Udyn) would mean that the
Error Correctability problem (and hence all problems in QSZK) can be solved in
BQP time. This would establish that QSZK = BQP, showing that a quantum
computer, without the help of a prover, can solve all problems in QSZK.

HH conclude the discussion by providing the following evaluation [Har-Hay]:

[. . . ] by recasting Alice’s problem as quantum error correction, we
have set it into a framework where there are general arguments that
such problems likely take exponential time to solve. Moreover the
practical difficulties of doing the experiment, in particular the prob-
lems associated with measuring gravitons, further increase the diffi-
culty of this computational task. We did not quite manage to prove
that her task is NP-hard at fixed k, but it is almost certainly at least
QSZK-hard and there are strong reasons to believe that such prob-
lems can’t be solved in polynomial time on a quantum computer.
From the computer science point of view, it would be extremely
surprising if implementing U †

R did not require exponential time.

7.3 Aaronson’s improvements to the complexity assump-

tions underlying HH’s task

Scott Aaronson suggested improvements to HH’s decoding task [Aar]. He pro-
posed improvements to the complexity assumptions underlying HH’s decoding
task. Instead of working directly within the framework of complexity theory
classes, he ground the problem’s difficulty in established cryptographic concepts,
leveraging the one-way functions (OWF)s and introducing hardcore predicates
to argue the hardness of the decoding task [Aar].

Aaronson endeavors to demonstrate that if there are injective OWFs, func-
tions that are easy to compute in the forward direction but hard to invert even
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by quantum computers, then the HH decoding task is indeed hard. This ap-
proach aims to ground the decoding task in more widely accepted theoretical
foundations, thereby enhancing the robustness of the argument concerning the
inherent difficulty of the HH decoding task by rooting it in established crypto-
graphic principles based on OWFs. Information is encoded using these OWFs.
To decode information from a portion of these states (i.e., from the Hawking
radiation part), one needs to find the inverse of the OWF on the encoded infor-
mation – which is assumed to be computationally hard because of the property
of OWFs. Therefore, if someone could solve the HH decoding task, it would
mean they have a method to invert OWFs. This has far-reaching implications,
including breaking the widely accepted cryptographic systems that rely on the
hardness of inverting OWFs.

Aaronson further argues that solving the HH decoding problem would re-
quire at least as much computational resource as the hardest problems in the
collision problem class. He connects the ability to invert OWFs and the ability
to find collisions. If one could efficiently invert an OWF, one could find colli-
sions, undermining the security assumptions of cryptographic systems based on
these functions. Aaronson’s statement emphasizes the fundamental difficulty in
decoding the Hawking radiation as it would imply being able to solve other hard
problems in computer science and cryptography.

Aaronson is tying the hardness of a physics problem – decoding Hawking
radiation and the firewall paradox – to established hard problems in computer
science, grounding the task’s believed difficulty in well-established complexity
theory [Aar]. Through his improvements to the HH decoding task, Aaronson
brought a deeper computer science perspective into the discussion surrounding
the firewall paradox, specifically leveraging concepts from the computational
complexity theory and cryptography. By framing the HH decoding task as a
problem in computer science and showing that it’s at least as hard as inverting
one-way functions, Aaronson translated a physics problem into the language
and framework of computer science. This approach not only allows for a more
robust argument regarding the complexity of the problem but also facilitates
interdisciplinary dialogue and understanding by linking the physical scenario to
well-established concepts in the computer science domain.
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