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Abstract

It is the prevailing paradigm in contemporary physics to model the dynamical evolution
of physical systems in terms of a real parameter conventionally denoted as ‘t’ (‘little tee’).
We typically call such dynamical models ‘laws of nature’ and t we call ‘physical time’. It is
common in the philosophy of time to regard t as time itself, and to take the global structure of
general relativity as the ultimate guide to physical time, and so consequently the true nature
of time. In this paper we defend the idea that physical time, t, is rather better defined as an
operational modelling parameter: we measure relations between changing physical quantities
using bespoke physical systems—i.e. clocks—that coordinate local coincidences. We argue
that the sorts of physical systems that make good clocks—what we call precision clocks—
are those that exhibit self-sustained oscillations known as limit cycles, which are ubiquitous
in open, driven, stable, dissipative systems. We develop the physical and philosophical
ramifications of this conception of physical time, particularly the notion that physical time
does not track something ‘out there’ in the world. As a result, we speculate that physical
time is perhaps not as different from manifest time as many philosophers of time (and
apparently general relativity) seem to suggest.

1 Introduction

Fourteen years after Galileo’s death, his former student, Vincenzo Viviani, recounted in his
biography of Galileo a story which has become legend in the history of science (Gattei, 2019,
p.9). When Galileo was about twenty, he was sat in Pisa Cathedral lost in his own thought,
observing an oil lamp hanging at the centre of the nave, gently swinging from side to side in the
breeze. According to the legend, by closely observing the time it took for the lamp to complete
one trip back and forth Galileo was able to build a hypothesis (which later experiments would
confirm) that the period of oscillation of a pendulum is independent of its amplitude.
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If Viviani is right about his account of this episode, then this moment marks a significant
revolution in the history of science. To see why, consider how Galileo is supposed to have made
the observation of the period of the lamp’s oscillation. Ascertaining the period requires a precise
measurement of time, but at the end of the 16th century there was very little possibility of finding
such a precise clock. As is well known, Galileo’s genius was to use his pulse as a clock with which
to measure the period of oscillation of the lamp, and so develop his hypothesis concerning the
dynamical behaviour of the pendulum.

What was revolutionary about this episode was that it marked the very first use in the history
of science of what we will describe below as a precision clock—a physical system whose dynamics
is described by a limit cycle—to formally parameterise the dynamics of a distinct physical system.
To be sure, timekeeping devices and practices have existed in a variety of human societies for
many millennia, and mechanical clocks predate Galileo’s measurement by about 300 years. But
while such mechanical clocks were used to mark, for instance, Christian prayer times throughout
the day, and so enabled a kind of highly coarse-grained informal parameterisation of a sub-
dynamics of the Earth-Sun system, it was the application of such clocks by Galileo to investigate
dynamics that marked a watershed moment in science.

As inaccurate as we might today take a human pulse to be as a timekeeping device, not to
mention the water clocks and song rhymes variously used by Galileo in his experiments, it is by
exploring harmonic systems through such means that ultimately led to the use of such harmonic
systems as more precise clocks themselves. Indeed, it was the development of the pendulum as
a clock by Christian Huygens in the late 1650s, based on Galileo’s pioneering work, that really
marked a transformation in precision timing instruments (Glennie and Thrift, 2009, p.1).

1.1 What philosophers say about physical time

The standard means in the physical sciences of formally describing the physical world is through
dynamical laws: theories and models parameterising dynamical processes in nature. By defini-
tion, such ‘dynamical’ laws are ‘in time’: the laws are formulated in terms of a real parameter
conventionally denoted as t, or ‘little tee’. It is overwhelmingly the case in physics (although not
without exception) that our dynamical laws are formulated as second-order partial differential
equations (PDEs), which can be characterised as taking data specifying the state of some physical
system at a fixed value of the parameter t (conventionally t = 0) and exhaustively generating the
states of that system for values t < 0 and t > 0. The parameter little tee we refer to as physical
time, and we call our antecedent data specifying the state of the system at a fixed t the initial
conditions, and the states for t < 0 and t > 0 the past and future of the system, respectively.

Our goal in this work is to explore the notion of physical time. It is common in both
physics and the philosophy of time to regard little tee as time itself. With regard to philosophy
in particular, there is a broad, though perhaps not exhaustive, consensus in the naturalised
approach to contemporary philosophy of time that insight on the metaphysics of time will come
from establishing the nature of physical time. In the service of this goal, the overwhelming
orthodoxy in this approach is to take our best physical theories of reality to be the ultimate
guide to the nature of physical time. The common map of the terrain is as follows.
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The contemporary philosophical debate about time continues to be generally formulated in
terms of the delineation between dynamic and static conceptions of time, which has passed
down from the Ancient Greeks. Indeed, much of the debate today remains stalled in an early
twentieth century delineation between the so-called A-theory of time, according to which the
present moment is in some sense privileged and time flows (and so has a direction), and the
B-theory of time, according to which all the events in spacetime form a four-dimensional block,
there is no privileged present, and no flow of time. It is typically accepted that the features of
time in the B-theory characterise physical time, whereas the features of time in the A-theory
characterise what we know as ‘manifest time’—time as we experience it.1 Whilst the sort of
evidence that philosophers of time marshal to argue for or against these differing metaphysical
conceptions of time includes appeals to our experience of time or the nature of our temporal
language, the evidence that typically carries the greatest dialectical weight in the debate are
claims concerning the structure of physical time.

The most common source of evidence for the structure of physical time comes from special
relativity and what it entails for simultaneity. The logic goes that if special relativity is a reliable
guide to the structure of physical time, then as a consequence of the relativity of simultaneity
physical time does not support a privileged frame of reference, and so cannot support a privileged
present. Moreover, the conformal structure of Minkowski spacetime suggests that all past and
future times are equally real, supporting a four-dimensional block picture of time.2 Perhaps it
is due to a combination of the contour of the tradition concerning the philosophy of time, and
the accessibility of the relativity of simultaneity as a transparent assumption of special relativity,
that this has become the conventional battleground for metaphysicians.3

One might suspect, however, that a more complete characterisation of physical time could be
drawn from general relativity, but this is not nearly so common in philosophical debates about
time. One notable exception to this is Callender (2017), who provides perhaps the most clear,
most thorough, and most advanced treatment of the physics of time, including the extension from
special relativity to general relativity, and then the consequences for physical time as a result
of any physical theory that utilises second-order PDEs to describe reality.4 As such, Callender
provides an excellent exemplar of the current thinking on physical time, and thus it is worth here
very briefly surveying some of Callender’s analysis.

After reviewing much of the well-known debate concerning special relativity, simultaneity,
1This terminology and concept plays a key role in Callender’s (2017) arguments, and is derived from the

‘manifest image’ of Sellars (1963).
2The literature on this is vast; too large to do it justice in one footnote. Popular sources for these main

claims include (Rietdijk, 1966; Putnam, 1967; Malament, 1977). For more on the viability of temporal becoming
(and thus flow), see (Dieks, 1991, 2006; Ellis, 2007). For an indication of the basic outline of the debate in the
contemporary setting, see (Dainton, 2001; Bardon, 2013; Baron and Miller, 2018).

3There is, of course, also a sub-strand of naturalised philosophy of time that focuses on the statistical mechanical
tradition of Boltzmann, and its consequences for specific questions relevant to the asymmetry of physical time
(Albert, 2003; Duplantier, 2013). Whilst we do not say anything explicit here about this tradition, we see
our project to be one that reengages philosophical discussions concerning the nature of physical time with the
statistical mechanical tradition.

4While we will not go into any detail concerning this latter point, one of us (Baron and Evans, 2021) has argued
that Callender misses the opportunity to draw the consequence from his analysis concerning the agent-centricity
of the direction of time.
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temporal becoming, and the block universe, Callender points out that the argument from the
relativity of simultaneity is not so straightforward in general relativity. The general reason for this
is that not all solutions to the Einstein field equations (EFEs) are globally hyperbolic (Gödel’s
solution is one famous example of this). In short, solutions that are not globally hyperbolic cannot
be formulated in terms of second-order PDE, which as we saw above are essentially ‘ground zero’
for establishing the properties of little tee. But general relativity can be reformulated as a ‘3 + 1’
(or Hamiltonian) theory (Arnowitt et al., 1962), formally equivalent to its original Lagrangian
formulation, such that all solutions of this reformulation are indeed globally hyperbolic. Taking
this fact as his starting point, Callender then goes on to provide a masterly appraisal of the
possibility of finding evidence for dynamic time—or, more precisely, manifest time—in a range
of classes of solution to the EFEs. Callender’s conclusion is that the features of manifest time
are incompatible with the constraints of relativity (Callender, 2017, p.80).

We wish to set our approach to physical time in contrast to this narrative. While we would
certainly agree that the ultimate guide to the nature of time must be the structure of physical
time, we contend that the philosophy of time finds itself on a misguided errand chasing physical
time in the global structure of general relativity. Of course physical time must be consistent with
general covariance, but we wish to emphasise the point here—and this is not a novel point—that
general relativity is fundamentally a local theory, about local clocks, rulers, and light signals.
Thus, in a sense then, it need not matter whether general relativity is formulated as a 3 + 1
theory, or in its original Einstein-Hilbert form, diffeomorphism invariance renders any arbitrary
coordinatisation of the manifold as simply unphysical.5 This is a well-appreciated detail amongst
physicists working with relativity, where coordinate time is often referred to as ‘bookkeeper’ time.
Indeed, recognising that at its heart general relativity relies on local clocks and rulers goes back
to Einstein (1970, p.58) himself:

First, a critical remark on the theory as characterised above. It was noticeable that the theory
introduces (besides four-dimensional space) two kinds of physical things, namely 1) rods and
clocks, 2) all other things, e.g. the electromagnetic field, the material point, etc. This is in
a sense inconsistent; rods and clocks should actually be presented as solutions to the basic
equations (objects consisting of moving atomic structures), not as so to speak theoretically
self-sufficient beings. However, the procedure is justified by the fact that it was clear from the
beginning that the postulates of the theory are not strong enough to deduce from it sufficiently
complete equations for physical events sufficiently free of arbitrariness to base a theory of rods
and clocks on such a foundation. Unless one wanted to do without a physical interpretation
of the coordinates altogether (which in itself would be possible), it was better to allow such
inconsistencies—albeit with the obligation to eliminate them at a later stage of the theory.
However, one must not legitimise the aforementioned sin to such an extent that one imagines
that distances are physical beings of a special kind, essentially different from other physical
quantities (“reducing physics to geometry,” etc.).

The point Einstein is making here is that it is inconsistent that rods and clocks should be
considered primitive entities that are somehow antecedent to the theory of relativity: rods and

5Callender (2017, p.74) points out that for some FLRW solutions, a class of ‘fundamental observers’ will
define coordinate time as proper time, which we agree is certainly physical. We maintain that such fundamental
observers are themselves unphysical, and so do not think that these cases alter our overall assessment of the utility
of general relativity in the philosophy of time.
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clocks are physical entities along with “all other things”, and spatial and temporal distances are
constructed as part of the theory, and so are not “physical beings of a special kind” that can
precede the theory. Given this, what then is physical time? This work addresses this question
in the context of Einstein’s insight into the relationship between clocks, the measurement of
temporal distances, and the nature of time. We claim in this work that it is the measurement of
time that is the key to physical time, and we take the measurement of time to be the exclusive
remit of clocks; in other words, in so far as the measurement of temporal distance is achieved by
clocks, the nature of time is intimately connected to the nature of clocks.

1.2 Outline of the argument

We argue that it is clocks that define physical time. We mean this in the very literal sense
that physical time—i.e. little tee that appears in our dynamical laws—is a representation of
the way in which precision clocks are used to parameterise the behaviour of physical systems in
the service of scientific modelling. We characterise a precision clock as a physical system whose
dynamics permits a phase space description in terms of a limit cycle: a closed periodic trajectory
that acts as an attractor to neighbouring phase space trajectories. Only open, driven, nonlinear,
dissipative dynamical systems can be described by limit cycles, and thus be stable oscillators,
and so precision clocks; nevertheless, there is nothing exotic about a limit cycle: they are generic
in nonlinear, dissipative dynamical systems. Such precision clocks are able to discriminate little
tee with sufficient fine-grain for the purposes of constructing dynamical laws, and so allow the
parameterisation of dynamical processes in nature.6

We begin in §2 by motivating the relational nature of the measurement of time. In §3 we
consider the physics of limit cycles and what this implies for the nature of clocks. In §4 we draw
on the expert analysis of Tal (2016) on the use of clocks to measure time to illustrate the features
of clocks we emphasise in the preceding sections. The implicit point that we are targeting with
our argument is that the measurement of physical time is not tracking some objective feature
of the world. In §5 we briefly discuss the process of ‘reading out’ the time on a precision clock,
before concluding in §6 with the speculative thought that physical time and manifest time may
not be so different after all.

2 The measurement of time is relational

Our focus in this work on the measurement of time using clocks amounts to an explicit commit-
ment to relationalism about time, of which there is a considerable tradition across the history of
the physics and philosophy of time. In this tradition, little tee is taken to be a kind of surrogate
parameter for a relation between changes in values of physical (typically spatial) variables. Here
is Mach (1911) making this point:

We can eliminate time from every law of nature by putting in its place a phenomenon dependent
6Subsequently, not every physical system can be used as such a clock, as Frank Wilczek has suggested (Harris,

2021).
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Figure 1: The displacement of a simple harmonic oscillator is monitored using a laser beam.
When the particle blocks the beam, an alarm goes off—a local event—and, simultaneously, an
observer notes the angular displacement of the clock hands as an integer count (mod 12) or
(mod 60). On the right is a data table representing the function ν(n).

on the earth’s angle of rotation. . . If, now, we imagine the. . . temporal positions replaced in the
above manner, in the equations in question, we obtain simply every phenomenon as [a] function
of other phenomena. (p.60, emphasis in original)

Physics sets out to represent every phenomenon as a function of time. The motion of a pendulum
serves as the measure of time. Thus, physics really expresses every phenomenon as a function
of the length of the pendulum. . . If one were to succeed in expressing every phenomenon. . . as a
function of the phenomenon of pendulum motion, this would only prove that all phenomena are
so connected that any one of them can be represented as a function of any other. Physically,
then, time is the representability of any phenomenon as a function of any other one. (p.90)

As such, it seems reasonably clear that when we ‘measure time’, we are really measuring some
other, perhaps arbitrary, relation between phenomena.

To make this further apparent, consider a rudimentary account of a clock as essentially a
counter that coordinates coincidences between local events: we observe a clock, at the location
of some event here and now, and record a natural number, n, as the count. Suppose we observe
a recurring physical event (Fig.(1)). The simplest coincidence we can define is the count on a
nearby clock when the event occurs. We can represent the occurrence of the event by a single
binary number ν = {0, 1} that takes the value 1 if the event occurs, and 0 otherwise at each count
of the clock. The coincidences are then represented by a binary function ν = ν(n). Despite the
fact that n represents the reading on the clock, and so provides in a sense a ‘temporal’ description
of the physical event, the coincidence is essentially between two physical phenomena: the event
ν and the count on the clock n.

Typically in classical mechanics, however, it is generally mathematically simpler and more
tractable to specify the correlation between ν and n in parametric form, (ν(t), n(t)), where
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t is some real number little tee.7 This process of parameterisation is essentially the reverse
of the process outlined by Mach in the quotes above: we introduce a real parameter. The
changing physical phenemenon, ν, is now described by a continuous function of t. The common
interpretation of this process is that little tee represents the evolution of the system ‘in time’.
But it is important to remember that introducing little tee in this way is nothing more than a
mathematical convenience. The physical facts are already fully described by ν(n).

To see why, consider briefly the typical significance of parameterisation. Ordinarily, upon
discovering a correlation between two variables, we often look to find a causal connection of
some sort between them; in effect, we look to find which of the two is the dependent and which
the independent variable. We can consider the process of parameterisation as introducing a third
factor—the parameter—to play the role of the independent variable, and in doing so we ‘uncover’
a hidden cause of the observed correlation.

However tempting it might be to do so, it is a metaphysical trap to fall into this way of
thinking when it comes to the parameterisation of dynamical systems using little tee, which
simply cannot be the ‘cause’ of the dynamics any more than our count n above can be the cause
of ν(n). What is more, a good clock must not interact with the system it is coordinating, and
so intervening on a clock to change the count can have no causal effect on the phenomenon that
one intends to coordinate. We simply cannot manipulate the value of little tee. Thus, rather
than introducing a new independent variable, the parameterisation of dynamical systems using
little tee provides nothing more than a surrogate parameter that stands in for whichever local
physical system is employed to count coincidences.

3 Precision clocks and limit cycles

Thus far we have yet to articulate anything more than a reminder of time’s relational properties.
In this section we develop an account of precision clocks as a particular type of physical system,
one whose dynamics exhibits a limit cycle. The key take-away from this account is that precision
clocks are inescapably subject to the laws of thermodynamics. In this context, we make explicit
that the precision of a clock is proportional to the energy it dissipates as heat, and as a result of
this, that clocks are ostensibly irreversible.

A precise clock is a physical dynamical system driven far from thermal equilibrium that
maintains a stable and periodic oscillation (and coupled to an auxiliary system to count the
oscillation, of course (Jespersen and Fitz-Randolph, 2011)). This is achieved when the phase
space description of its dynamics exhibits a stable and periodic trajectory, i.e. a limit cycle.
The stability of a limit cycle is formally underpinned by the fact that the periodic trajectory
acts as an attractor to neighbouring phase space trajectories: if a small external impulse to an
oscillatory mechanism pushes the system off the limit-cycle trajectory in phase space, then the
trajectory quickly decays back onto the limit cycle. Physically, this implies that the clock system
must be driven to overcome friction, and so the system must have a constant supply from a

7The mathematical structure of a real parameterisation of integer valued functions is discussed in (Kàrolyi
et al., 2008).
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source of external energy. As a result, the requirement that precision clocks exhibit limit cycles
thus implies that, as dynamical systems, such clocks must be open, driven, nonlinear, dissipative
physical systems, and consequently must also be subject to noise. Galileo’s clock above—his
pulse—can be modelled as just such an electro-chemical limit cycle (Zeeman, 1972).

Let us consider the physical requirements for stability in a bit more detail. Not just any
oscillatory phenomenon—for instance, the oil lamp swinging in Pisa Cathedral—can form the
basis of a precision clock. Such clocks simply ‘wind down’ to a stop in the long run due to
friction. While some form of energy input, some impulse, is required for the oscillatory system
to remain periodic, this is a nontrivial problem in practice. The escapement clock is a good
illustration of exactly how this can be achieved: the force of a falling mass transmitted through
an escapement provides a consistent input of work which drives a good clock. The escapement
mechanism integrates an element of nonlinearity to the linear dynamics of the pendulum, to which
the escapement is strongly coupled, and this enables the whole dynamical system to exhibit a
limit cycle (Milburn, 2020).

However, there is no such thing as a perfectly precise, perfectly stable clock. Crucial in the
formation of a limit cycle is that the work done by the driving force on the oscillatory system is
dissipated as heat over one cycle. This means that all precision clocks exhibiting a limit cycle
must be dissipative and so, by the fluctuation-dissipation theorem, there is always noise that
accompanies the operation of the clock. Due to the stochastic nature of open systems, it is the
heat dissipated over one cycle where fluctuations appear, and this results in phase diffusion on
the limit cycle and so fluctuations in the clock’s period, which consequently becomes a stochastic
variable. As such, the time taken to complete a single cycle of the phase-space trajectory will
vary from one oscillation to the next. While the average period on a limit cycle is well defined,
the variance of the period is nonzero. Good clocks will have a small variance relative to the
average period, and this can be decreased further by driving the clock harder, which results in
more energy dissipated as heat. It is for this reason that the precision of a clock is proportional
to the energy it dissipates as heat. In so far as heat dissipation is the signature of irreversibility,
precision clocks are irreversible dynamical systems, and their irreversibility is embodied in the
randomness of the period of oscillation of the limit cycle.

It is true that not all clocks are precision clocks; indeed, some clocks are simply not even
periodic, such as an hour glass or radio-carbon dating. It is interesting to note that the most
important clock of all in the history of humanity—the solar system—is not in fact a precision
clock. Despite the fact that we consider the solar system to be an exemplar of the Newtonian
‘clockwork universe’, describing a deterministic and reversible dynamical world, the solar system
is in reality an open dissipative system. The source of this dissipation is the heat generated in
each of the planets by tidal forces as they rotate and orbit through the Sun’s gravitational field.
Unfortunately for Newton’s picture, the planets are not point masses and so celestial dynamics
is not reversible.

This dissipation notwithstanding, the solar system does indeed appear to be very stable.
Definitive proof for this has traditionally been elusive as gravitational dynamics is highly nonlin-
ear, and finding a dynamical solution for more than two bodies interacting only through gravity
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is nontrivial. Confirmation that the solar system is not stable, and so not evolving on a stable
limit cycle, came only with insight into deterministic chaos in the twentieth century (Laskar,
1994). The reason that the solar system can be used as a relatively good clock is that, for quo-
tidian human affairs, the unstable nature of the solar system is negligible. This suggests that the
quality of a clock is always relative to the nature of the changing events it is used to coordinate.
For the purposes of describing the dynamical behaviour of the sorts of physical system we take
to comprise the domain of terrestrial physics, only precision clocks as we have described them
above provide a sufficiently fine grain for this task.

In summary, then, a clock is a stable oscillator equipped with a period counter. Stability
requires an open, nonlinear, dissipative system driven far from thermal equilibrium by access
to a low entropy source of energy. Like all physical systems, clocks are subject to the laws of
thermodynamics (Milburn, 2020). As such, clocks necessarily generate heat and entropy, and
depend on the local thermodynamic environment; a clock is not a reversible and deterministic
dynamical system. If time is what clocks measure, then the irreversibility of clocks influences
our conception of physical time.

4 Case study: UTC

In the preceding sections, we have claimed that the measurement of time is relational, and we
have argued that clocks are subject to the laws of thermodynamics and that, to this end, it is in
the period of oscillation that we see noise appear. To demonstrate what this means in practice,
and connect these features of the measurement of time to the claim that physical time is not
tracking something out there in the world, in this section we consider a case study due to Tal
(2016) of the determination of coordinated universal time (UTC).

In his paper “Making Time: A Study in the Epistemology of Measurement”, Tal develops a
model-based approach to the standardisation of measurement. As his case study on measurement,
he chooses the measurement of time, and UTC in particular. This is of great benefit for current
purposes, as we employ Tal’s analysis here as an illustration of the features of clocks we outline
above.

The essential problem with the measurement of time is that any assessment of the stability
of the period of oscillation of a clock must be made by way of measurement with another clock,
whose own stability would be in need of verification. (In the Appendix we given an example of
how to use two limit-cycle clocks, of identical design, to establish stability.) As we have seen
above, since all clocks are physical systems that obey the laws of thermodynamics, every clock
will be subject to noise in the period of oscillation, thus in practice there is no such thing as
a perfectly stable clock to play the role of an archetypal standard. In principle, however, an
idealised stable period of oscillation has been stipulated as part of the definition of the standard
second, which employs a particular transition of the ground state of a caesium atom. As Tal
(2016, p.301) points out, this essentially specifies that every period of oscillation of the radiation
from this transition is equal to any other from any caesium atom.

In short, UTC is a highly abstract and idealised measure of time built upon a multitude of
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actual physical clocks and a hierarchy of bespoke algorithms aimed at coordinating the various
measures into a single unified representation of time on Earth. The physical clocks come in two
classes, which each make the unavoidable trade-off between stability and accuracy in different
ways. The primary frequency standards are designed for optimal accuracy. As of the end of
2021, there were sixteen different primary frequency standards operating in eleven labs around
the world (BIPM, 2021). Most of these primary standards are so-called ‘caesium fountains’,
where caesium atoms are released to fall freely in a vacuum to remove the influence of any
gravitational redshift from the Earth.8 However, the technical challenges of operating a caesium
fountain render them unsuitable for the task of the ongoing measurement of time (Tal, 2016,
p.301).

Secondary frequency standards favour stability over accuracy relative to primary standards.
This means that they can operate for much longer stretches, but need to be calibrated against
the primary standards from time to time. Secondary standards are typically atomic caesium or
rubidium clocks, or hydrogen maser atomic clocks; there are currently more than 450 atomic
clocks that contribute to the stability of the measurement of time (BIPM, 2021). But just as
with any set of physical clocks, the period of oscillation of each of these secondary standards,
as well as the primary standards, will be subject to noise and, as such, together comprise a
gradually diverging set of clocks.

It is at this point that we require a specific set of operational procedures on the secondary
standards to calculate the abstract measure of time that is UTC. To begin with, a stability-
weighted average clock time is established. Since an assessment of the stability of any clock is a
function of this calculated average, the weights of each clock themselves are updated based on
their past performance in predicting the weighted average. Given our analysis above, clocks with
higher than average noise will clearly fail to reach a threshold of stability relative to the average.
Such clocks are discarded, which then results in a set of clocks whose periods of oscillation are
highly consistent throughout the set.

To this process is added a series of constraints and damping measures on the values of the
weights to ensure that abrupt changes in the measure of stability are not brought about by too
large changes in the set of weights (Tal, 2016, p.304). And then all of this is coordinated in
Paris between participating national laboratories all over the world, who need to transmit their
respective measures via GPS satellite. Such transmissions need to be corrected for GPS time,
which itself is a derivative of UTC. This whole procedure is directed towards maintaining the
stability of UTC.

The next piece of the puzzle is that secondary standards gradually drift against primary stan-
dards. As a result, metrologists need to ‘steer’ the weighted average of secondary standards back
towards the official standard of the second set by the primary standards. The steering algorithm
employs periodic calibrations with the primary standards, each of which is weighted based on
the quality of the calibration, and is then extrapolated to the times in between calibration using

8The other primary standards include a rubidium fountain, a pair of legacy caesium beams operating in
Germany, and two optical clocks. As of the end of 2021, optical clocks look set to overtake caesium fountains in
accuracy (more on which in §5 below), which would eventually relegate caesium fountains to secondary standards
(BIPM, 2021)
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statistical models (Tal, 2016, p.306). The final part of the calculation of UTC is to adjust this
steered weighted average to match the solar day. Any added seconds are referred to as ‘leap
seconds’.

What is remarkable about this calculation of UTC is the sheer number of modelling assump-
tions that are employed to generate this idealised measure of time. Moreover, the modelling
assumptions are conspicuously dependent upon the outcome of the previous round of modelling.
But what is most obvious in this narrative, and hence the reason that we think it is a nice
illustration of the arguments in the preceding sections, is how prominent a role that noise plays
in the search for a universal measure of time. It is not beyond exaggeration to say that the entire
operational procedure is directed towards mitigating the influence of noise on the stability of the
period of oscillation of clocks.

However, we wish to make it abundantly clear that at no point in the calculation of UTC
is there an objective standard of time that is being tracked. In fact, the entire algorithm for
establishing UTC is required simply because there is no such objective time that can be tracked.
Moreover, it should also be abundantly clear that UTC illustrates the relational nature of time:
UTC is established solely through measurements carried out by precision clocks.

So what does this mean for physical time? We think that the calculation of UTC is simply
writ large the same process that all physical modelling of time (or dynamical behaviour in time)
must go through: time is essentially relational, and the thermodynamics of clocks renders the
concept of a perfectly stable periodic oscillator illusory. Consequently, there simply is no objective
property of the world that physical time—the little tee of our dynamical laws—is tracking.

5 Reading out a clock

Before we conclude our argument, we wish to say a few words concerning the nature of ‘reading
out’ the time on, and so interacting with, a precision clock. Consider how this is achieved for the
caesium fountains we discussed above. The process begins by applying a DC voltage to a ‘Gunn
diode’ to create a nonlinear electronic oscillator at microwave frequency, driving a limit cycle
in the system. The diode is then used to form an electronic resonator mounted in a microwave
cavity to create a ‘maser’ (like a laser with microwaves). Caesium atoms are then dropped
into a high vacuum and passed through the microwave resonator, and used to feedback-lock the
phase noise of the microwave source to an atomic transition frequency that is, as we saw above,
stipulated to be the same for every caesium atom. The entire system, maser plus atoms, now
gives a dynamical limit cycle that has much less phase noise than the microwave source by itself.
The locked maser frequency can then be used to generate ‘ticks’ one per second as a primary
frequency standard as above. In an abstract sense, one could think of the maser as like the
escapement mechanism and the atom as the pendulum in a driven nonlinear pendulum clock.

This atomic clock system is typically considered a classical clock. The reason that such mi-
crowave frequency cavities are classical (as opposed to optical cavities, discussed below, which
are quantum) are largely because the energy of a microwave photon is many orders of magnitude
less than an optical photon, and so single photon detectors for microwave photons are imprac-
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ticable. As such, the electric field itself must be measured, which requires measuring currents
and voltages in the circuit carrying the microwaves. These properties can be described entirely
classically in so far as the phase noise is determined by classical circuit parameters (rather than
spontaneous emission, as for higher energy photons). As a result, ‘reading out’ the time on such
a clock does not affect the operation or the precision of the clock.

In recent times, the accuracy with which caesium fountains keep time is increasingly being
challenged by optical clocks. Optical clocks operate essentially the same as caesium atomic clocks,
except instead of a maser at microwave frequencies a laser at optical frequencies is used. It should
be no surprise that a laser is a driven, nonlinear, dissipative system that can be described by a
limit cycle, and so is a stable oscillator. Moreover, a laser is subject to noise, but in this case
quantum noise arises from spontaneous emission (which is the fundamental quantum mechanism
for energy loss, and so renders the laser dissipative). This noise still results in phase diffusion
of the field emitted from the cavity. To reduce the phase noise, as above, the laser is then
feedback-locked to a stable atomic oscillation, this time to an optical transition in some suitable
ion held in an ion trap (typically ytterbium or strontium, although a variety of other transitions
have been explored). Again, as above, one can then think of the laser as like the escapement
mechanism and the atom as the pendulum in a driven nonlinear pendulum clock.

Since optical laser frequencies are in the hundreds of THz range, and the very best electronic
counters can only handle hundreds of GHz, counting the cycles in the laser limit cycle poses
a challenge. Sophisticated methods have been developed (using so-called ‘frequency combs’) to
generate beat patterns in the carrier frequency of the laser emission so that the beat frequency
is in the realm of electronic counters, but we refrain from going into details here. In short,
though, in an optical clock we see all the principles of physical clocks operating in a quantum
system: far-from-thermal equilibrium, dissipative steady-state oscillations on a limit cycle, phase
diffusion, feedback phase stabilisation using atoms, and an explicit counting mechanism in terms
of a frequency comb.

However, the significance of optical clocks that we wish to emphasise here arises from their
fundamental quantum nature. Above the threshold where stimulated emission dominates spon-
taneous emission, the intensity of a laser fluctuates very little. Indeed the photon emission rate
is very close to a Poisson process, where the average time between emission events is stable. It
would be pointless to measure the intensity of the laser to make a clock, as it does not oscillate
at all. Instead, a direct measurement of the electric field emitted by the laser is required. In this
case, however, there is a direct noise price to pay: the measurement itself leads to phase noise
arising purely from the Heisenberg uncertainty principle. In quantum clocks, then, such as laser
driven optical clocks, the measurement used to generate the count provides a critical point of
difference to classical clocks. We leave the exploration of quantum clocks to future work.

6 Conclusion

Let us finish now where we began, sitting with Galileo in the late 16th century in Pisa Cathedral,
lost in thought, watching an oil lamp swinging back and forth. Galileo’s insight to employ his
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pulse as a relational clock with which to measure the period of oscillation of the lamp now echos
quite loudly to us through the intervening centuries. There is a sense in which, one might argue,
this was the revolution in science. Whether Galileo was aware of it or not, the human pulse
is an example of a physical dynamical system that exhibits a limit cycle, and so is a stable
oscillator, and thus a precision clock.9 Such precision clocks are critical to providing the sorts
of fine-grained formal parameterisations of the dynamics of physical systems that underpin our
scientific descriptions of the world; in short, precision clocks define physical time.

In so far as a naturalised approach to the philosophy of time takes physical time to provide a
good guide to the metaphysical nature of time, then we claim that the physics of precision clocks
can provide insight into the nature of time. We take our paper to be the first step in exploring
the physics of precision clocks and the corresponding philosophical ramifications. We started
off setting our approach in contrast to the narrative that general relativity provides the most
complete characterisation of physical time. However, we think that so long as we can understand
general relativity as a fundamentally local theory, constructed out of local interactions and
measurements employing rods and clocks, and where the global spacetime geometry of general
relativity is an abstraction from these local interactions, then our characterisation of physical
time in this paper will be consistent with that of general relativity.

As a result of this, and as a final thought to point towards future work, we speculate that
this characterisation of physical time shows us that at least some parts of what we take to be
manifest time are not so foreign to our best physical description of the world. In particular, the
thermodynamic irreversibility of clocks points strongly towards physical time having a definite
direction. One might also argue that the synchronisation of local coincidences by a relational
clock, when combined with the interminable nature of a physical clock’s phase diffusion, shows
that the future ticks of a clock will almost never resemble its past ticks, and so render local
coincidences a special point of reference between past and future. We suspect that supporting
such an argument will require the introduction of a physical agent making use of the clock, and
as such is beyond the goal of the present work.10 In so far as introducing the notion of a physical
agent might also provide insight into the nature of temporal flow, we see this as an exciting
direction for future work.

Appendix

In this appendix we summarise some essential mathematical facts about clocks built from systems
exhibiting limit cycles. We will follow the presentation of Aminzare et al. (2019). The normal
form dynamics of a super-critical Hopf bifurcation leading to a limit cycle, including thermal

9Of course, the period of oscillation of the human pulse varies as a result of a highly changeable set of physical
parameters characterising the complex dynamical behaviour of the human cardiovascular system. So long as these
are stable, however, the oscillation is stable.

10Although see (Evans et al., 2021; Milburn et al., 2023) for work in this direction.
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noise, are given by the Ito stochastic differential equations.

dx1 = (µx1 − ωx2 − (x2
1 + x2

2)x1)dt + σdW1(t) (1)
dx2 = (µx2 − ωx1 − (x2

1 + x2
2)x2)dt + σdW2(t) , (2)

where µ is a linear gain parameter, ω is a linear oscillator frequency, σ2 is a diffusion constant
proportional to temperature, and dWk(t) are independent Weiner stochastic increments. The
nonlinear term describes a nonlinear dissipation process. Without noise this system has a limit
cycle centred on the origin with radius r = √

µ and frequency ω.
On the limit cycle (x1(t), x2(t)) =

(√
µ cos θ(t), √

µ sin θ(t)
)
, where the phase on the limit

cycle satisfies the Ito stochastic differential equation

dθ = ωdt + σ
√

µ
dW (t) , (3)

where dW is a Weiner stochastic increment. The most important feature of this reduction is
that the phase diffusion rate gets smaller as the size of the limit cycle gets bigger, i.e as the gain
rate µ >> σ2.

The period T is defined as the time taken for the phase to change by θ(0) − θ(T ) = 2π.
However as the phase is a stochastic variable, the period must be a random variable. Sometimes
the noise ensures that it gets there sooner rather than later. This is in instance of the first
passage time problem: finding the time taken for the phase to hit 2π for the first time. It is also
know as the inverse diffusion process. The distribution of periods is then given by the Wald or
inverse Gaussian distribution that takes the generic form

W (t, α, λ) =
√

λ

2π
t−3/2 exp

[
− λ

2µ2t
(t − α)2

]
t ≥ 0 , (4)

where α, λ are positive real parameters (λ is called the spread paramter). The Wald distribution
is completely determined by the mean and variance as

T = α (5)

∆T 2 = α3

λ
. (6)

In the case of the dynamical model considered here we find that

T = 2π

ω
(7)

∆T 2 = 2πσ2

ω3µ
. (8)

As expected, the variance in the period decreases inversely proportional to the energy pumping
rate µ that determines the size of the limit cycle. As the limit cycle forms when the work done
on each cycle equals the energy dissipated on each cycle, the bigger µ becomes the more energy
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Figure 2: The Wald distribution with a mean period T̄ = 1 and three different values of the
spread parameter, λ. Increasing λ is decreasing noise.

is dissipated. Good clocks are highly dissipative. This is why limit cycles are so important for
clock design.

In what follows we choose the units of time such that ω = 2π, making the mean period equal
to unity. We also define the spread parameter

λ = 4π2µ

σ2 , (9)

which gets larger as the noise (i.e. the temperature) is decreased. The variance can then be
written as

∆T 2 = µ3

λ
. (10)

We plot some examples in Fig.(2).
An important feature of the Wald distribution is that each sample period Tk in a ticking

clock is independent. This is reflected in the property of divisibility. If T is a random variable
with a Wald distribution with mean T̄ = α and spread parameter λ, then there exist n pieces
of independent and identically distributed random variable T1, T2, . . . , Tn each from the Wald
distribution with mean α

n and spread parameter λ
n such that T ≡ T1 + T2 + . . . + Tn.

The stochastic history of a particular clock is given by the total count N and the list of
periods T1, T2, . . . , TN . The total elapsed parametric time is

tN =
N∑

k=1
Tk , (11)

where α, λ are the mean and spread parameters for each Tk. By the property of divisibility, the
statistics of TN is the Wald distribution with mean and spread Nα, Nλ. The mean of TN is Nα

and the variance is
∆T 2

N = N2 α3

λ
. (12)

If we define the signal to noise ratio as the ratio of the mean to the standard deviation we find
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that the signal to noise ratio is

SNR =
√

λ

α
, (13)

and is independent of the total count, N .
Let us compare two independent clocks, A and B, with the same values of α, λ. We regard

clock A as the relational clock for coordinating the tick events in clock B. Obviously, we could
equally well do it the other way around. Due to the noise in each clock, when A records a count
of N , the number of events, M , recorded in clock B is not necessarily the same. Define the
error function as ϵ(M) = (1 − M/N)2. The integer M is a random variable making ϵ a random
variable.

Let the parametric representation of the count in each clock be (NA(t), NB(t)). Given a
particular time tN such that NA(tN ) = N , the probability density for this value of tN is the Wald
distribution with mean and spread parameter Nα, Nλ respectively. The probability density that
clock B records M counts in the same time is the Wald distribution function W (tN , Mα, Mλ).

We now define the integer valued function NA(t) as

NA(t) =
⌊

t

α

⌋
, (14)

where ⌊x⌋ is the integer part of x. If NA(tN ) = N then we can write tN = Nα. The probability
that M = N is given by

P (M = N) =
∫ (N+1)/µ

0
dt W (t, Mα, Mλ) −

∫ (N−1)/µ

0
dt W (t, Mα, Mλ) . (15)

In Fig.(3) we plot this probability versus M for three values of λ and α = 1.0, N = 10. We
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Figure 3: The probability that clock B counts M when clock A has a count of N = 50, and
various values of the spread parameter. We set α = 1.
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assume that both clocks are identical, i.e. they have the same Wald distribution. The average
error, when α = 1 is found to be

ϵ̄ = 1
λ

, (16)

which decreases as the spread parameter increases; that is to say, the average error decreases as
thermal noise decreases.
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Einstein, A. (1970). Autobiographical Notes. In P. A. Schilpp (ed.), Albert Einstein: Philosopher-
Scientist, Harper & Row Publishers, New York, pp. 1–94.

Ellis, G. F. R. (2007). Physics in the Real Universe: Time and Spacetime. In V. Petkov (ed.),
Relativity and the Dimensionality of the World, Springer, Netherlands, volume 153, pp. 49–79.
doi:10.1007/978-1-4020-6318-3 4.

Evans, P. W., Milburn, G. J. and Shrapnel, S. (2021). Causal asymmetry from the perspective
of a causal agent. philsci-archive.pitt.edu/18844/.

Gattei, S. (2019). On the Life of Galileo: Viviani’s Historical Account and Other Early Biogra-
phies. Princeton University Press.

18

http://dx.doi.org/10.1093/bjps/axy077
https://www.bipm.org/en/-/2021-12-21-record-tai
http://dx.doi.org/10.1088/0143-0807/12/6/002
http://dx.doi.org/10.1016/S1871-1774(06)01008-4
http://dx.doi.org/10.1007/978-1-4020-6318-3_4
http://philsci-archive.pitt.edu/18844/


Glennie, P. and Thrift, N. (2009). Shaping the Day: A History of Timekeeping in England and
Wales 1300-1800. Oxford University Press.

Harris, S. (2021). How to Build a Universe: A Conversation with Frank Wilczek. [Podcast].
www.samharris.org/podcasts/making-sense-episodes/238-how-to-build-a-universe.

Jespersen, J. and Fitz-Randolph, J. (2011). From Sundials to Atomic Clocks: Understanding
Time and Frequency. Dover, New York.

Kàrolyi, G., Keleti, T., Kòsz, G. and Ruzsa, I. Z. (2008). Periodic composition of integer valued
functions. Acta Math. Hungar. p. 227. doi:10.1007/s10474-007-6217-0.

Laskar, J. (1994). Large-scale chaos in the solar system. Astronomy and Astrophysics 287: L9.

Mach, E. (1911). The history and the root of the principle of conservation of energy. The Open
Court Publishing Co., Chicago. Translated by Philip E. B. Jourdain.

Malament, D. B. (1977). Causal Theories of Time and the Conventionality of Simultaneity. Noûs
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