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Abstract

It is a received view that superluminal signaling is prohibited in
collapse theories of quantum mechanics. In this paper, I argue that
this may be not the case. I propose two possible mechanisms of su-
perluminal signaling in collapse theories. The first one is based on
the well-accepted solution to the tails problem, and the second one
is based on certain assumptions about the minds of observers. Fi-
nally, I also discuss how collapse theories can avoid such superluminal
signaling.

1 Introduction

In standard quantum mechanics, it is postulated that when a quantum sys-
tem is measured by a measuring device, its wave function no longer follows the
linear Schrodinger equation, but instantaneously collapses to one of the wave
functions that correspond to definite measurement results. As a result, there
are no measuring devices and observers being in a superposition of different
result states. However, such special superpositions exist in collapse theories
of quantum mechanics (Ghirardi and Bassi, 2020). In collapse theories, due
to the imperfectness of wave-function collapse, the post-measurement state
is a superposition of all possible result states, although the modulus squared
of the amplitude of one result branch is close to one typically. Besides, since
the collapse time of a single superposed state is a random variable, whose
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value can range between zero and infinity, there always exist certain measure-
ments with a small probability, for which the collapse time is much longer
than the normal measuring time so that the post-measurement state is a
general superposition of result states (Ghirardi et al, 1993). In this paper, I
will argue that the existence of these special superpositions in collapse theo-
ries permits superluminal signaling. Concretely speaking, I will propose two
possible mechanisms of superluminal signaling, one of which is based on the
well-accepted solution to the tails problem, and the other of which is based
on certain assumptions about the minds of observers. I will also discuss how
collapse theories can avoid such superluminal signaling.

2 Superluminal signaling: First mechanism

In collapse theories, the post-measurement state of a measuring device or an
observer is a superposition of different result branches, although the mod-
ulus squared of the amplitude of one result branch is close to one typically
(Ghirardi and Bassi, 2020). This leads to the well-known tails problem (for
a recent review see McQueen, 2015). In order to solve this problem, collapse
theories assume that a measuring device or an observer being in such a su-
perposition already obtains a definite result. This may be via a fuzzy-link
principle (Albert and Loewer, 1996), or a principle of inaccessibility (Ghirardi
et al, 1995), or a certain psychophysical principle (Monton, 2004; Gao, 2018).
In the following, I will argue that collapse theories with this well-accepted
solution to the tails problem permit superluminal signaling.

Consider two ensembles of identically prepared measuring devices and
measured systems at a given instant. In the first ensemble, the wave function
of each composite system is random, being |0)4 |0),, with probability py or
1) |1),, with probability p;, where |0)y and |1)4 are two different states
of the measured system, |0),, and |1),, are two different result states of
the measuring device, and py + p; = 1. In the second ensemble, the wave
function of each composite system is also random, being /pg|0)¢[0),, +
e /b1 1) g 1), 0r /Do |0) 5 0) y,—€"\ /D1 [1) g 1), with the same probability
1/2, where ¢ is an arbitrary relative phase. These two ensembles have the
same statistical density matrix p = po|0g,0rr) (Os, Onr| 4+ p1lls, 1ar) (1, L]
In quantum mechanics, it is impossible to distinguish between these two
ensembles.

However, when pg is small enough, the two ensembles can be distinguished
in collapse theories. For example, according to the fuzzy-link principle (Al-
bert and Loewer, 1996), when py is small enough, a device being in the super-
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already obtains the definite result “1”. Then, the above two ensembles can
be distinguished; for the first ensemble, the result of each device is not always
“17, and it may be “0” with a nonzero probability py, while for the second
ensemble, the result of each device is always “17.

When the measuring devices are replaced by observers, the analysis is
similar. For example, according to the principle of inaccessibility (Ghirardi
et al, 1995), when py is small enough, an observer being in the superposition
VD010 10) 3 + €24 /D1 (1) 11) 5 0 /D0 ]0) 5 [0),, — €/P1|1)g[1),, already
obtains the definite result “1”, since the low-density matter in the tail branch
10)4|0),, is inaccessible to the observer. Then, the two ensembles can also
be distinguished in collapse theories; for the first ensemble, an observer does
not always obtain the result “1”, and she may obtain the result “0” with a
nonzero probability pg, while for the second ensemble, every observer obtains
the result “1”.

It is worth noting that a measuring device or an observer is always entan-
gled with the measured system (and the environment) after a measurement
due to the existence of tails in collapse theories. And when a measuring
device or an observer is in an entangled superposition with tails such as
VD0 [0)410)y,+€/p1|1) g [1),,, collapse theories require that the measuring
device or the observer already obtains a definite result; otherwise these the-
ories would not agree with experience. Moreover, these theories also permit
that the result obtained by a measuring device or an observer can be veri-
fied by other devices or observers. When verifying the result obtained by a
measuring device or an observer being in a post-measurement superposition,
the state of another device or observer is entangled with this superposition,
and this device or observer will also record the same result by the fuzzy-link
principle or the principle of inaccessibility.

The distinguishability of two ensembles with the same density matrix
can be used to realize superluminal signaling. Suppose there is an ensem-
ble of random entangled states of a particle and a measuring device (as
resources for signaling), each of which is \/pg [0)4[0),, + €*/P1 |1)g|1),, or
VD0 10)4|0),, — € /D1 |1)g|1),, with the same probability 1/2, where |0)4
and |1) 4 are two different states of the particle, |0),, and |1),, are two differ-
ent result states of the measuring device, pg+p; = 1, and pg is small enough
so that the measuring device already records the result “17. The particles
are in Alice’s lab, and the devices are in Bob’s lab. Alice may send a signal
to Bob’s lab by measuring the particles on her side in the {|0),|1)4} basis
with her measuring device. It is required that Alice’s measurement makes the
dynamical collapse of each entangled state so fast that the post-measurement
state is almost |0)4 |0),, or |1)4|1),, (i.e. the sum of the amplitudes of the
tails is much smaller than py so that these tails can be omitted relative to



the original state). Then after Alice makes her measurements, there is an-
other different ensemble of random states, each of which is |0)4|0),, with
probability py or [1)4|1),, with probability p;. As argued above, the two
ensembles before and after Alice’s measurements, which have the same sta-
tistical density matrix, can be distinguished in collapse theories. For the first
ensemble, all devices obtain the result “1”, while for the second ensemble,
some devices obtain the result “0”, and the probability is py. Then the sig-
nal sent by Alice can be received by the devices that obtain the result “0”
in Bob’s lab.EI In a preferred Lorentz frame (where the collapse of the wave
function is simultaneous in different regions of space), the signaling is instan-
taneous, while in other Lorentz frames the signaling is not instantaneous but
still superluminal.

Similarly, one can also use an ensemble of random entangled states of a
particle and an observer to realize superluminal signaling. The particles are
in Alice’s lab, and the observers are in Bob’s lab. In this case, if Alice does
not make her measurements, all observers will obtain the result “1”, while
if Alice makes her measurements, some observers will obtain the result “0”,
and the probability is py. Then the superluminal signal sent by Alice can be
received by the observers who obtain the result “0” in Bob’s lab.

3 Superluminal signaling: Second mechanism

The above mechanism of superluminal signaling uses special superpositions
with tails. In this section, I will further argue that superluminal signaling
may be also realized using general superpositions, which, as noted before,
exist after certain measurements with a small probability. The mechanism
does not rely on the solution to the tails problem, and it is based on certain
assumptions about the minds of observers.

Consider an observer M being in a general entangled superposition:

alD)p 1)y +B812)p12) 4 (1)

1Bob can also receive the superluminal signal by looking at the devices in his lab if his
observation of the result of a device does not further collapse the entangled superposition
of the device significantly so that the superposition is still a result “1” state with the
tail being the result “0” state, namely immediately after Bob’s observation of the result
of a device the state of the whole composite system including Bob is close to the state
VP010)510) 5, 10) 5 + € /b1 (1) g [1) 0 [1) 5 o8 /B0 [0)510) 4 10) 5 — €% /p1 1) g [1) 5 11) -
In this case, if Alice does not make her measurements, Bob will observe the result “1”
for all devices, while if Alice makes her measurements, Bob will observe the result “0” for
some devices.




where |1), and |2), are the wave functions of the pointer of a measuring
device being centered in positions z; and z,, respectively, [1),, and |2),,
are the wave functions of the observer M who observes the pointer being in
positions z; and x5, respectively, and « and 3, each of which is nonzero and
not necessarily small enough, satisfy the normalization condition |a|?+|3]? =
1.

We first assume that the observer M being in this superposition still has a
well-defined mental state. The question then is: what is her mental content?
There are two possibilities. The first one is that the mental content of M
is related to the values of o and # (Gao, 2019). The second one is that the
mental content of M is constant for all (nonzero) values of o and . There
are three further possibilities for the second case: (1) The mental content of
M is “observing the pointer being in position x;”; (2) The mental content of
M is “observing the pointer being in position z5”; (3) The mental content of
M is constant for all nonzero values of a and 3, but it is neither “observing
the pointer being in position x;” nor “observing the pointer being in position
9",

We further assume that M can report her mental content about the
measurement result. Then, for the first possibility, the output of M will
contain the information about (nonzero) a and 5. As a result, some non-
orthogonal states such as 1) [1),, or |2) 5 |2),, and a|1) 5 |1) 1, +512) 5 |2) 5,
or a|l)p[1),, — B 12)p|2),, can be distinguished. For the former, the output
of M does not contain the information about « and /3, while for the latter,
the output of M contains the information about o and . Similarly, for
the second possibility, the above non-orthogonal states can also be distin-
guished. For example, for the third sub-possibility in this case, the output
of M for |1),]1),, or |2)5]2),, is “observing the pointer being in position
x1” or “observing the pointer being in position x5”, while the output of M
for a|1)p 1)1, +512)p 12),, or 1) p |1) 1, — 5 12) p |2) 5, 1S neither “observing
the pointer being in position x;” nor “observing the pointer being in position
o .

Once the non-orthogonal states |1),|1),, or |2)5|2),, and «a|1) 5 |1),, +
B12)p|2), or a|l)p|1),, — B12)p|2),, can be distinguished, we can realize
superluminal signaling using the same method as given in the last section. In
fact, we may use only one system, not an ensemble of many systems, to realize
superluminal signaling this time. Suppose an observer and the pointer of a
measuring device are in the entangled state «|1),[1),, + 5 12)p[2),,. The
pointer is in Alice’s lab, and the observer is in Bob’s lab. Then, Alice may
send a superluminal signal to Bob’s lab by measuring the pointer on her side
with her measuring device. Before Alice’s measurement, the observer is in a
superposed state o |1), |1),, + £ 12)p |2),,, while after Alice’s measurement,
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the superposed state collapses to |1),[1),, or |2)5|2),,. Since the observer
can distinguish between these two non-orthogonal states, she can receive the
superluminal signal sent by Alice.

4 Further discussion

It has been demonstrated that collapse theories prohibit superluminal signal-
ing (see, e.g. Ghirardi et al, 1993). The above result is not inconsistent with
the existing proofs. These proofs implicitly assume that the same density
matrix that describe two different ensembles always gives the same empirical
predictions. As argued above, however, this assumption may be not univer-
sally true in collapse theories. Once two ensembles with the same density
matrix can be empirically distinguished, superluminal signaling is possible.

There is a reason why two ensembles with the same density matrix may
be distinguishable in the two mechanisms of superluminal signaling. It is that
they both violate the strict Born rule for some statesE] In the first mech-
anism of superluminal signaling, the solution to the tails problem assumes
that a measuring device or an observer being in a typical post-measurement
superposition with tails already obtains a definite result. This violates the
Born rule, according to which a measuring device or an observer being in
a post-measurement superposition such as /pg |0)4]0),, + € %/P1|1)g 1),
(where pg is small enough) should not obtain the result “1” with certainty,
but obtain the result “1” with probability p; < 1.

Similarly, in the second mechanism of superluminal signaling, an observer
being in a general superposition such as \/pg |0)g[0),, + €“/p1|1)g 1)y,
already obtains a definite result (no matter what the result is), while this
also violates the Born rule, according to which the observer being in this
superposition should not obtain a definite result with certainty, but obtain
the result “0” with probability py and obtain the result “1” with probability
p1. If the Born rule is violated for some states, the same density matrix
that describe two different ensembles will not always give the same empirical
predictions, and thus superluminal signaling is possible.

The final question is: can we avoid superluminal signaling in collapse
theories? This seems possible for the second mechanism of superluminal
signaling. This mechanism is based on two key assumptions about the minds

2This means that these two mechanisms of superluminal signaling are different from the
mechanism of superluminal signaling in nonlinear quantum mechanics (Gisin, 1989, 1990;
Polchinski, 1991; Czachor 1991). Note also that such superluminal signaling is practically
unrealizable due to either the extremely small tails or the extremely small possibility of
the existence of general superpositions of different result states.



of observers. One is that an observer being in a general superposition of
different result states has a well-defined mental state, and the other is that
the observer being in this superposition can report her mental content about
the result. If an observer being in such a superposition cannot report her
mental content, then this mechanism of superluminal signaling will not work.

It seems more difficult to avoid superluminal signaling for the first mech-
anism, since it is based on the well-accepted solution to the tails problem. If
the post-measurement states have tails, then it seems that one must assume
that a measuring device or an observer being in such a post-measurement su-
perposition already obtains a definite result; otherwise collapse theories will
be inconsistent with experience. We obtain a definite result after each mea-
surement after all. It seems to me that the only way out is to use the compact
support collapse functions in collapse models so that the post-measurement
state has no structured tails, although these models are plagued by other
relativistic problems (see Mcqueen, 2015). This solution will also invalidate
the second mechanism of superluminal signaling.

To sum up, I have argued that superluminal signaling is possible in col-
lapse theories of quantum mechanics. In particular, the well-accepted solu-
tion to the tails problem in principle permits the distinguishability of two
ensembles with the same density matrix and the existence of superluminal
signaling. It remains to be seen if one can formulate a collapse theory which
solves the tails problem and also avoids superluminal signaling.
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