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1 Introduction

1.1 Mathematical determinacy

Some mathematical concepts (such as “natural number” or “real number”) are
commonly understood to be about a single mathematical domain (the natural
numbers, the real numbers). In contrast, a mathematical concept such as
that of “group” is not intended to be about one particular mathematical
domain, but rather to describe a class of different structures which share
certain properties but also exhibit important differences (some groups are
finite, some infinite, some abelian, some non-abelian etc.). The mathematical
concept of “set” has a more controversial status, with some mathematicians
believing that the set concept determines a unique universe of sets, while
others believe that the set concept delineates a range of different set universes
(a set-theoretic “multiverse”).1

1See D.A. Martin, “Multiple Universes of Sets and Indeterminate Truth Values,” Topoi
20 (2001): 5–16; Joel David Hamkins, “The Set-Theoretic Multiverse,” The Review of
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In general terms, the issue of mathematical determinacy may be stated as
follows: do certain of our mathematical concepts (such as number and set)
manage to define a unique mathematical structure, and if so, how? More
specifically, we may state the issue of the determinacy of arithmetic as follows:
does our concept of natural number define a unique mathematical structure
(the natural numbers) and, if so, how? The issue of set-theoretic determinacy
may be stated as: does our concept of set define a unique mathematical
structure (the universe of sets) and, if so, how?

In recent work, Tim Button and Sean Walsh have argued that arithmeti-
cal and set-theoretic determinacy follow from certain “internal categoricity”
results proved in second-order logic.2 In this paper I critically evaluate this
claim and argue that such internal categoricity results fail to entail determi-
nacy as claimed. In order to concentrate on the key issues in some depth,
I focus on arithmetical determinacy. The rest of this introduction gives a
high-level overview of the material covered in this paper.

1.2 Referential determinacy and truth-value determi-
nacy

We can identify two distinct but closely related concepts of mathematical
determinacy: referential determinacy and truth-value determinacy.3A math-
ematical concept is taken to be referentially determinate if it manages to
somehow define (“pick-out” or “pin-down”) a unique mathematical domain.
For example, the concept of the natural numbers is referentially determinate
if it manages in some sense to “pin-down” a unique natural-number domain.
The notions of “domain” and “pinning-down” here are pretty vague — ways
in which they can be made more precise using the notion of categoricity are
discussed in section 3.3 below.

Symbolic Logic, Volume 5, Number 3 (September 2012): 416-449. Note that Hamkins
suggests that the variety of different set structures in a multiverse of sets may also imply a
variety of different natural number structures within that multiverse – see Hamkins, “The
Set-Theoretic Multiverse”: 427-8.

2Tim Button and Sean Walsh, Philosophy and Model Theory (Oxford : Oxford Uni-
versity Press, 2018); Tim Button, “Mathematical Internal Realism,” in J. Conant and S.
Chakraborty (eds), Engaging Putnam, Harvard University Press, forthcoming.

3See Tim Button and Sean Walsh, “Structure and Categoricity: Determinacy of Refer-
ence and Truth Value in the Philosophy of Mathematics,” Philosophia Mathematica Vol.
24 No. 3 (2016): 283-307.
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A mathematical concept is taken to be truth-value determinate if it de-
termines answers to all mathematical questions pertaining to the concept.
For example, the truth-value determinacy of the natural number concept
would imply that Goldbach’s conjecture (that every even number greater
than two is the sum of two primes), which has to-date been neither proved
nor disproved, nevertheless is either true or false: there is a “fact of the mat-
ter” about it which obtains whether we know the answer or not. Similarly,
the truth-value determinacy of the set concept would imply that there is a
“fact of the matter” about the Continuum Hypothesis (that there is no set
whose cardinality is strictly between that of the natural numbers and the
real numbers) even though we do not currently know what that fact is; even
though, indeed, the Continuum Hypothesis is known to be independent of the
standardly accepted axioms of set theory. As noted above, referential deter-
minacy and truth-value determinacy are related: if a mathematical concept
is referentially determinate then we might expect that it is also truth-value
determinate, since if the concept defines a unique mathematical domain, then
we would expect questions about that unique domain to have uniquely de-
fined answers. On the other hand, if a mathematical concept is truth-value
determinate then we would expect it to define at least an equivalence class
of mathematical domains which respect those truth-values.

1.3 Categoricity and determinacy

Very broadly understood, a mathematical theory is “categorical” if all in-
terpretations (models) of the theory have the same mathematical structure.
A categorical theory of arithmetic can be seen as implying both referential
and truth-value determinacy since the theory defines a single mathematical
structure, and all arithmetical statements have a determinate truth-value in
that structure. Unfortunately the mathematical theories in which we are
interested (such as theories of arithmetic and sets) are not categorical when
expressed in first-order logic.

These failures of categoricity motivate a move to second-order logic, since
the second-order theory of arithmetic is categorical (when second-order logic
is given its “standard semantics”) and second-order set theory is “quasi-
categorical” (again given the standard semantics). However the standard
semantics for second-order logic relies on a very powerful concept – the power-
set (set of all subsets) of a given domain (for example, the set of all subsets
of the natural numbers). This casts doubt on whether second-order theo-
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ries can really show mathematical determinacy, since the determinacy of the
natural-number concept then depends on a much stronger concept – the set
of all subsets of the natural numbers. As Button and Walsh put it, we are
“out of the frying pan into another frying pan.”4 I term this the “determinacy
regress” problem. Furthermore, the standard semantics for second-order logic
is so strong that no deductive system of logic can capture that semantics.
Reliance on the standard semantics to ensure determinacy thus violates what
I call “the naturalistic constraint”, which I discuss in detail in section 2 below.
The naturalistic constraint (“moderation” in Button and Walsh’s terminol-
ogy) requires that mathematical determinacy must be understood as arising
through characteristics of publicly articulable and communicable practices,
such as an explicit deductive theory.

1.4 Internal categoricity and determinacy

Both the determinacy regress and violation of the naturalistic constraint mo-
tivate Button and Walsh’s moving to a different type of categoricity – internal
categoricity – as a basis for determinacy. Internal categoricity is a version of
categoricity in which the models in question are in a certain sense “internal”
to a theory, in this case second-order logic. Internal categoricity of second-
order arithmetic can be proved within second-order logic itself and does not
require any explicit reference to the semantics of second-order arithmetic.
Button and Walsh’s proposal is that the internal categoricity of second-order
arithmetic can be used to show the determinacy of arithmetic, while avoiding
both the determinacy regress and violation of the naturalistic constraint.

I argue, contrary to Button and Walsh, that internal categoricity of
second-order arithmetic does not entail the determinacy of arithmetic in a
way which satisfies the naturalistic constraint. To satisfy that constraint,
Button and Walsh rely on characterising arithmetical practice as deduction
in second-order arithmetic. However, I show that their argument that arith-
metical determinacy follows from internal categoricity depends on an addi-
tional assumption which does not itself follow from that characterisation of
arithmetical practice.

4Button and Walsh, Philosophy and Model Theory : 160.
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1.5 Outline of this paper

Section 2 motivates the naturalistic constraint as a constraint on possible
explanations of mathematical determinacy. Section 3 reviews basic defini-
tions and results concerning first-order theories, their models, and failures
of categoricity for first-order theories of arithmetic and set-theory. Section 4
provides an overview of second-order logic, its semantics and the relevant cat-
egoricity and incompleteness results, and discusses in detail the determinacy
regress and the failure of the naturalistic constraint in relation to second-
order logic. Section 5 sets out the basic definitions and results concerning
internal categoricity and the way in which internal categoricity overcomes
the determinacy regress and satisfies the naturalistic constraint. Finally,
section 6 sets out in detail my argument that the internal categoricity of
second-order arithmetic does not entail the determinacy of arithmetic, and
considers a number of possible objections and replies.

With regard to mathematical prerequisites, this paper assumes only fa-
miliarity with first-order logic. Further mathematical definitions and results
are introduced as required. No proofs are included, but references to where
they may be found are provided.

2 Mathematical determinacy and the natural-
istic constraint

The problem of mathematical determinacy includes a “how” component. If
some of our mathematical concepts achieve either referential or truth-value
determinacy, we seek to understand how that is achieved. As McGee puts
it, in discussing truth-value determinacy:

there must be something we think, do, or say that fixes the in-
tended meaning of mathematical terms. How are we able to do
this?

... The problem before us is to understand how our thoughts
and practices can fix the meanings of mathematical terms with
sufficient precision to ensure that each sentence has a determinate
truth value.5

5Vann McGee, “How we learn mathematical language,” Philosophical Review, Vol. 106
No. 1 (1997): 36.
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One possible explanation of how a mathematical concept achieves determi-
nacy is that we can just “see” or “intuit” that the concept determines a unique
mathematical domain, or can just “see” or “apprehend” the unique mathemat-
ical domain defined by the concept.6 However, such an explanation does not
shed much light on how the concept achieves that determination. Further,
if there is controversy over whether a mathematical concept is determinate,
then one party to the controversy simply claiming to be able to “see” or “in-
tuit” its determinacy is not likely to advance the debate. Consequently, it is
usual to seek explanations of mathematical determinacy which eschew such
explanations based on insight or intuition. Hilary Putnam, for example, rules
out explanations of mathematical determinacy based on “mysterious facul-
ties of ‘grasping concepts’ (or ‘perceiving mathematical objects’)” which he
sees as not capable of naturalistic explanation.7 In like vein, Warren and
Waxman reject “platonistic and heavily metaphysical explanations of mathe-
matical determinacy”, which are based on “an explanatorily freestanding and
fully determinate mathematical realm.”8

Drawing on the views of Putnam, Button and Walsh introduce the idea
of moderation as a particular kind of naturalistic constraint on explanations
of mathematical determinacy. The “moderate”, they say

accepts that we cannot fix reference to mathematical entities by
seeing them, pointing to them, or interacting with them in any
way ...

A better thought is that we come to refer to mathematical en-
tities after some process of mathematical education. But, for a
moderate, ... if learning some mathematical theory is what allows
us to refer to specific mathematical entities, then ... the theories
themselves must precisely pin down the mathematical entities. In
a brief slogan: for the moderate ... there can be no ‘reference by
acquaintance’ to mathematical objects; ‘reference by description’

6For example, Kurt Gödel argues for a form of “perception” of mathematical objects;
see Kurt Gödel, “What is Cantor’s Continuum Problem?” in: Paul Benacerraf and Hilary
Putnam (eds.) Philosophy of Mathematics, Selected Readings, Second Edition (Cambridge:
Cambridge University Press, 1983): 483-4.

7Hilary Putnam, “Models and Reality,” The Journal of Symbolic Logic, Vol. 45, No. 3
(Sep., 1980): 466.

8Jared Warren and Daniel Waxman, “A metasemantic challenge for mathematical de-
terminacy,” Synthese 197 (2020): 486.
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is her only hope.9

In essence, this naturalistic constraint rules out an explanation of determi-
nacy by some kind of direct apprehension of an already-determinate math-
ematical reality. Button emphasizes the importance of the acquisition and
manifestation of mathematical concepts:

We have to acquire our mathematical concepts. Even if we are
born with the capacity to acquire mathematical concepts, we are
not born with the concepts themselves ...

Equally, we must be able to manifest our mathematical con-
cepts. Whilst mathematicians sometimes work alone, mathemati-
cal practice is fundamentally communal. Mathematicians present
each other with proofs and projects, ...

In our early steps towards acquiring the number concept , we
learn how to recite sequences like “1, 2, 3, 4 , 5 ” , ... Later, we
master algorithms for adding and multiplying numbers in deci-
mal notation. And so it goes. But my interest here is ... in the
number concept itself, as used in serious mathematics. And, ...
we qualify as having acquired it fully, only when we have grasped
some full-blown arithmetical theory, such as Peano Arithmetic.
Equally, we fully manifest our grasp of the concept, only by ar-
ticulating and using some such theory.10

We are seeking explanations of mathematical determinacy which satisfy a
naturalistic constraint (moderation in Button and Walsh’s terminology): de-
terminacy must be understood as arising through characteristics of publicly
articulable and communicable practices.

9Button and Walsh, Philosophy and Model Theory : 43.
10Button, “Mathematical Internal Realism”: 1-2. See also Warren and Waxman’s “cog-

nitive constraint” in “A metasemantic challenge for mathematical determinacy”: 485.
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3 Model Theory, mathematical determinacy and
external categoricity

3.1 The role of mathematical logic and model theory

The naturalistic constraint leads to the idea that if mathematical determi-
nacy can be achieved at all, it can only be through the adoption and articula-
tion of a mathematical theory. Such a theory may be, and indeed commonly
is, informally expressed (that is, without the explicit use of a formal logical
language and inference rules). However, it is commonly believed by mathe-
maticians that informal mathematical theories can be fully formalised. Fur-
ther, mathematical logic provides a framework within which mathematical
languages, theories and their interpretations (models) can be understood in a
precise way. Consequently many explorations of mathematical determinacy,
including those discussed in this paper, are couched in the framework of for-
mal logical languages and their models. I turn now to review that framework
and its role in discussions of mathematical determinacy.

In the next section I first review some of the basic terminology and results
concerning mathematical theories expressed in first-order logic and models
of those theories. While I assume that the reader is familiar with the basic
concepts of first-order logic, this review serves to fix some terminology and
notation as a basis for further discussion.

3.2 First-order mathematical theories and their models

Recall that the language of first order logic consists of three kinds of symbols:

1. logical symbols : ¬,∧,∨,→,↔,∀,∃, ( and );

2. non-logical symbols, which come in three types

(a) constant symbols - a; b; c; ...

(b) relation symbols - P; Q;R; ...

(c) function symbols : f; g; h; ...; and

3. individual variables : v1,v2,..

The relation and function symbols each have an arity which defines how
many arguments they take.

9



Definition 1. A language L within first-order logic is defined by a set of
non-logical symbols L = {a, b, c,..., P,Q,R, ..., f, g, h}.

Definition 2. A model M for a language L consists of

• a set M which is the underlying domain of individuals for the model
M

• an element cM ∈M for each constant symbol c of L

• a function f M : M n→ M for each n-place function symbol f of L

• a relation RM ⊆Mn for each n-place relation symbol R of L .

Intuitively, a model of a language provides a particular interpretation of
the language. Note that generally a language may admit many different
interpretations (models).

Given these definitions, it is possible to formally define the relation of
satisfaction between a model of a language and a sentence of the language.
The formal definition, which goes back to Tarski, is not given here.11 The
intuitive idea is that a model M of L satisfies (alternatively, is a model
of ) a sentence φ of L , denoted M |=φ, if φ is true in the model.

If Γ is a set of sentences, we say that M is a model of Γ if M is a model
of every sentence φ ∈ Γ. We also write Γ ⊨ φ (Γ entails φ, or φ is a logical
consequence of Γ) if every model of Γ is also a model of φ.

We are interested in theories expressed in a particular language, which
specify a set of sentences required to be true in all models of the theory.
To specify a theory in practice, we write down a set of sentences which are
the axioms of the theory. The resulting theory is defined by the deductive
closure of the set of axioms, that is, the set of all sentences which are logical
consequences of the axioms. For example, to specify the first-order theory of
Peano Arithmetic we write down a set of axioms such as the following.

Definition 3. First-order Peano Arithmetic is defined by the following ax-
ioms:

∀x (S(x) ̸= 0)
∀x∀y (S(x) = S(y)→ x = y)
∀x(x + 0 = x)

11See, for example, Button and Walsh, Philosophy and Model Theory : 12-13.
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∀x∀y (x + S(y) = S(x + y))
∀x(x × 0 = 0)
∀x∀y (x × S(y) = (x × y) + x)
[φ(0) ∧ ∀y(φ(y) → φ(S(y)))] → ∀yφ(y)

The last axiom (the induction axiom) is actually an axiom schema, defining
an axiom for every formula φ of the language in which the variable y occurs
free.

The resulting theory of arithmetic consist of all sentences in the language
which are logical consequences of the axioms.

First-order logic has a number of well-known deductive systems (for ex-
ample, natural deduction or tableau). We write Γ ⊢ φ if the sentence φ can
be deduced from the set of sentences Γ in one of those systems of deduc-
tion. The standard deductive systems are known to be both sound (Γ ⊢ φ
⇒Γ ⊨ φ) and complete (Γ ⊨ φ ⇒ Γ ⊢ φ). As a result of these soundness
and completeness properties, the set of sentences which are logical conse-
quences of a set of sentences Γ is the same as the set of sentences which can
be deduced from Γ in a suitable system of deduction for first-order logic.
This means that in first-order logic, logical consequence is equivalent to de-
ductive consequence. As we will see below, this is not necessarily the case
for stronger systems of logic.

3.3 “Pinning-down” a unique structure – categoricity

We are interested in whether a theory can “pick-out” or “pin-down” a unique
mathematical domain. We could try to make this idea precise through the
requirement that a theory has just one model. However this is too strong.
Two models of a language (such as the language of arithmetic) may differ
from each other in ways which make no difference from the point of view of
the language.

It is well known, for example, that the natural numbers can be represented
within set theory in a number of different ways. The two most common are
the representations by the von Neumann ordinals (in which the sequence 0,
1, 2, ... is represented by the sequence ∅,{∅}, {∅,{∅}},... ) and the Zermelo
ordinals (in which the sequence 0,1,2, ... is represented by the sequence
∅, {∅}, {{∅}}, ...). However, when doing arithmetic it makes no difference
which particular representation is used.12

12Paul Benacerraf, “What Numbers Could not Be,” The Philosophical Review, Vol. 74,
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The idea that two different models of a language may differ in ways which
make no difference from the point of view of the language can be captured
in the notion of an isomorphism between models, as follows.

Definition 4. Two models M and N of a language L are said to be iso-
morphic (M ∼= N) if there is a mapping σ between M and N such that

• σ is bijective (one-to-one and onto)

• for every constant symbol c of L , σ(cM ) = cN

• for every n-ary relation R in L and any m1,..., mn from M

<m1,..., mn> ∈RM ⇔< σ(m1),..., σ(mn) > ∈RN

• for every n-ary function symbol f of L and any m1,..., mn from M

σ(fM(m1, ...,mn)) = fN (σ(m1), ..., σ(mn)).

Two isomorphic models are the same from the point of view of the lan-
guage L : they have exactly the same structure with respect to the functions
and relations of the language.

Definition 5. A theory is categorical if all of its models are isomorphic.

The notion of categoricity of a theory seems to provide a good formalisa-
tion of the referential determinacy of a theory, since there is a sense in which
a categorical theory “pins down” a unique mathematical structure, namely
the structure shared by all its (isomorphic) models.

Furthermore, if a theory is categorical then it is also semantically complete
in the following sense.

Definition 6. A theory Σ of a language L is semantically complete if for
every sentence σ of L either Σ |= σ or Σ |= ¬σ.

Semantic completeness can be seen as a formalisation of the idea of truth-
value determinacy, since in a sense the theory itself determines that each
sentence is either true or false (the truth or falsity of the sentence does
not vary from model to model). Further, the completeness of first order
logic means that a first-order theory which is semantically complete is also
deductively complete – that is, for every sentence σ either Σ ⊢ σ or Σ ⊢ ¬σ.

No. 1 (Jan., 1965): 47-73.
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3.4 Failures of categoricity and completeness for first
order theories

Unfortunately, the first order theories in which we are interested, such as
Peano Arithmetic and Zermelo-Frankel set theory are known not to be cat-
egorical. The Löwenheim-Skolem Theorem shows that any (countable) first-
order theory with an infinite model has a model of every infinite size.13 Con-
sequently theories of arithmetic and set theory, which have infinite models,
cannot be categorical.

In addition, Gödel’s incompleteness theorems show that first-order Peano
Arithmetic and Zermelo-Frankel set theory are each both semantically and
deductively incomplete (provided they are consistent). Furthermore this in-
completeness cannot be remedied by adding additional axioms (provided the
resulting systems continue to be consistent).14

Consequently, in the context of first-order theories we are unable to
demonstrate either the referential or truth-value determinacy of our theo-
ries of arithmetic and sets by relying on the formal properties of categoricity
or completeness. In fact, if we were to take our concepts of number or set
to be fully captured by our standard first-order theories, the failures of cat-
egoricity and completeness give us reason to doubt both the referential and
truth-value determinacy of those concepts.

4 The move to second-order logic
The situation just outlined has motivated a number of mathematicians and
philosophers to move to a stronger-logic, specifically second-order logic, in
a bid to formulate mathematical theories of numbers and sets which are
categorical and/or complete, and so vindicate the referential or truth-value
determinacy of those theories. I turn now to briefly review second-order
logic and its properties before going on to consider whether it can deliver the
hoped-for determinacy results.

13Button and Walsh, Philosophy and Model Theory : 154; Dirk van Dalen, Logic and
Structure (London: Springer-Verlag, 2013): 105-6.

14Button and Walsh, Philosophy and Model Theory : 130-2; Peter Smith, An Introduction
to Gödel’s Theorems (Cambridge: Cambridge University Press, 2007).
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4.1 Second-order logic

Second-order logic extends first-order logic by allowing quantification over
relations and functions. As a simple example, first-order logic can express the
statement ∃x(P (x)→ ∀xP (x)) whereas second-order logic permits in addition
quantification over the predicate P, as in ∀P∃x(P (x)→ ∀xP (x)).15

Second-order logic introduces variables which can range over n-ary rela-
tions and functions (for any n) and permits quantification over those vari-
ables. The arity of the function and relation variables is typically indicated
by superscripts. For example Xn is used as an n-place relation variable which
can appear in quantifiers as in ∃Xnφ or ∀Xnφ where φ is second-order for-
mula.

A deductive system for second-order logic is defined by extending the rules
for first order quantifiers with analogous rules for second-order quantifiers.
In addition, deductive systems for second-order logic typically include two
additional axiom schemes as follows.16

Definition 7. Comprehension Schema. ∃Xn∀v⃗(φ(v⃗ ) ↔ Xn(v⃗ )), for
every formula φ(v⃗ ) which does not contain Xn free.

This axiom schema requires that for each n-ary relation definable by a
formula φ in the language, there exists an n-ary relation which is equivalent
to that relation. For example, given a two-place relation symbol R in a
language L , an instance of the Comprehension Schema yields an axiom
∃X2∀v1∀v2(¬R(v1, v2) ↔ X2(v1, v2)). This requires that in any model M
satisfying the axiom, there must exist a relation consisting of the set of all
pairs not in RM.

Definition 8. Choice Schema. This axiom schema requires that whenever
there is a relation which ensures the existence of an element standing in that
relation, there is a function which picks such an element out. Formally:
∀Xn+1(∀v⃗ ∃yXn+1(v⃗ , y) → ∃fn∀v⃗ Xn+1(v⃗, fn(v⃗ )).

15For details on the syntax, semantics and deductive systems for second-order logic see
Button and Walsh, Philosophy and Model Theory : 21-33; Stewart Shapiro, Foundations
Without Foundationalism (Oxford: Oxford University Press, 1991): 61-96; van Dalen,
Logic and Structure: 145-153.

16See Button and Walsh, Philosophy and Model Theory : 25-6; Shapiro, Foundations
Without Foundationalism: 66-7.
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For example, if S is a two-place relation such that for any x there is a y
such that S(x,y) then the choice axiom requires that in any model satisfy-
ing the schema there must be a one-place function f such that for each x,
S(x,f(x)).

A second-order axiomatisation of Peano Arithmetic is given as follows.

Definition 9. Second-Order Arithmetic (PA2) is defined by the following
axioms.

∀x (S(x) ̸= 0)
(∀x, y(S(x) = S(y) → x = y)
∀X[(X(0) ∧ (∀x[X(x) → X(S(x)]) → (∀xX(x)]

Note that in the second-order setting addition and multiplication are
explicitly definable,17 and, for simplicity, we omit those definitions from the
axioms.

Unlike the situation in first-order logic, two possible semantics can be
given for second-order logic: full (or standard) semantics on the one hand and
general (or Henkin) semantics on the other. Because second-order logic per-
mits quantification over relation and function variables, the semantics must
specify the set of possible relations and functions which such quantifications
range over. The full and Henkin semantics specify those sets differently.

The more general semantics is the Henkin semantics, defined as follows
(for simplicity this definition deals with relation symbols and variables only:
it can be readily extended to include functions).

Definition 10. A Henkin model M for a second-order language L consists
of

• a set M which is the underlying domain of individuals for the model
M

• an element cM ∈M for each constant symbol c of L

• a relation RM ⊆Mn for each n-place relation symbol R of L

• a set M rel
n ⊆P(Mn) for each n.

17See Shapiro, Foundations Without Foundationalism: 120.
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The first three components of this definition are the same as those for first-
order models. The set M rel

n defines the domain of quantification for the
n-place relation variables. It is a subset of P(Mn), the set of all subsets of
Mn, the n-fold cartesian product of M. That is, M rel

n is a subset of all the
n-place relations on M.

An admissible Henkin Model is a Henkin model which satisfies the axiom
schemas of Comprehension and Choice

Definition 11. A full model is a Henkin Model in which M rel
n = P(Mn),

that is, the domain of quantification for the n-place relation variables is the
set of all n-place relations on M.

Definition 12. The Henkin semantics for a second-order language admits
all admissible Henkin models, including those in which the domain of quan-
tification for the n-place relation variables is a restricted subset of the n-place
relations on M.

In contrast, the full semantics restricts the possible models to the full
models, in which n-place relation variables always range over all n-place
relations on M.

Note that the standard deductive systems for second-order logic are the
same for both full and Henkin semantics.

4.2 Categoricity and completeness in second-order logic

This section sets out important properties of second-order logic relevant to
the issue of mathematical determinacy. As we will see, the relevant properties
depend critically on whether the full or Henkin semantics is chosen for the
logic.

Proposition 13. Second-order Peano Arithmetic (PA2) is categorical and
semantically complete with respect to the full semantics,18 but fails to be either
categorical or semantically complete with respect to the Henkin semantics.19

18Button and Walsh, Philosophy and Model Theory: 155; Shapiro, Foundations Without
Foundationalism: 82-3. Corresponding “quasi-categoricity” results hold for second-order
versions of set theory, see Button and Walsh, Philosophy and Model Theory : 192; Shapiro,
Foundations Without Foundationalism: 86.

19Shapiro, Foundations Without Foundationalism, 92-5.
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Proposition 14. The standard deductive systems for second-order logic are
not complete with respect to the full semantics but are complete with respect to
the Henkin semantics. Further, there is no deductive system for second-order
logic which is complete with respect to the full semantics.20

Proposition 15. PA2 is not deductively complete provided it is consistent.
Further, no strengthening of PA2 by the addition of further axioms is deduc-
tively complete (provided that the strengthened system remains consistent).21

Note that the last result concerns only the deductive consequences of
second-order PA2 and holds whether the full or the Henkin semantics is
adopted.

4.3 Second-order logic and determinacy

What implications do these properties of second-order logic have for the
mathematical determinacy of second-order theories?

The categoricity and semantical completeness of PA2 (with respect to
the full semantics) at first sight look like good news for the mathematical
determinacy of arithmetic. These results appear to imply that second-order
PA2 “pins down” a unique mathematical structure (up to isomorphism) and
also determines the truth or falsity of all arithmetical propositions. However,
these results rely on adoption of the full semantics, which raises problems for
the claim that they can secure arithmetical determinacy, as we now discuss.22

4.3.1 The determinacy regress

The first problem may be termed a determinacy regress.23 Categoricity (and
semantical completeness) only hold for PA2 with the full semantics. That is,

20Shapiro, Foundations Without Foundationalism: 87, 89.
21Smith, An Introduction to Gödel’s Theorems, in particular pages 186-197. Second-

order versions of set theory are likewise not deductively complete
22Again, similar considerations apply in relation to second-order set theory.
23This determinacy regress have been discussed in a variety of guises by a number of

authors including Thomas Weston, “Kreisel, the Continuum Hypothesis and Second Order
Set Theory,” Journal of Philosophical Logic, Vol. 5, No. 2 (May, 1976): 288; Button and
Walsh, Philosophy and Model Theory : 158-160; Toby Meadows, “What can a categoricity
theorem tell us?” The Review of Symbolic Logic, Volume 6, Number 3 (September 2013):
537; Warren and Waxman, “A metasemantic challenge for mathematical determinacy”:
488.
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categoricity only holds when variables for relations on numbers range over the
full set of all possible relations on the numbers. In particular, variables for
number predicates range over all possible subsets of the numbers, that is, the
full powerset of the numbers. This introduces a regress, since to ensure the
categoricity of PA2 we need to assume the determinacy of the full powerset
of the natural numbers. If the powerset is not itself determinate then we
cannot conclude the determinacy of the natural numbers.

As Toby Meadows points out, we are trying to show that there is a unique
(up to isomorphism) structure corresponding to our arithmetic practice, but
in relying on the full semantics of second-order logic to do so, we are relying
on the uniqueness (again up to isomorphism) of the structure of all subsets
of the natural numbers, a vastly more complex structure than the structure
of the natural numbers. As Meadows puts it “we are using the uniqueness
claim about a complex structure to lever a result about a comparatively
simple one.”24

Button and Walsh make a similar point, noting that categoricity depends
on reference to the full powerset of the underlying domain of numbers. But,
as they point out

the full powerset of this domain has the same cardinality as the
real numbers. Moreover, via familiar coding mechanisms, we can
view each real number as a certain subset of natural numbers. So,
to explain how [we] can pick out the natural numbers (up to iso-
morphism), it seems [we] must first explain how [we] can pick out
the real numbers (up to isomorphism). [Our] problems have only
worsened: whatever problems arise in referring to the naturals
will pale in comparison to the problems which arise in referring
to the reals. Either way, then, in appealing to full second-order
logic, [we are] simply out of the frying pan, and into another fry-
ing pan. And, if anything, the second frying pan is slightly larger
and hotter than the first.25

24Meadows, “What can a categoricity theorem tell us?”: 537.
25Button and Walsh, Philosophy and Model Theory : 159-160.
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4.3.2 Failure of the naturalistic constraint

The second, related problem is a failure of the naturalistic constraint.26 Re-
liance on the full semantics means that the full powerset concept (the set of
all subsets of the natural numbers) is “hard-wired” into the logic. However,
nothing in our explicit (publicly articulable and communicable) practice of
second-order logic manifests that concept. Our explicit practice of second-
order logic is captured by the deductive system for second-order logic. How-
ever, this deductive system also admits the Henkin semantics, and categoric-
ity (and semantical completeness) of PA2 does not hold in that semantics. As
Putnam puts the problem, the “intended” (full) interpretation of the second-
order formalism:

is not fixed by the use of the formalism (the formalism itself
admits “Henkin models”, i.e., models in which the second-order
variables fail to range over the full power set of the universe of
individuals), and it becomes necessary to attribute to the mind
special powers of “grasping second-order notions”.27

Button and Walsh further elaborate on the issue as follows:

There are sound and complete inference rules for first-order logic
and for second order logic with a Henkin semantics. So the mod-
erate can plausibly demonstrate her grasp of those logical ideas,
just by demonstrating her mastery of the inference rules. By con-
trast, full second-order logic has no sound and complete deductive
system. Consequently, to claim a grasp of [the] supposedly cate-
gorical theory [PA2], we must claim to grasp either a theory or
a semantics which cannot be laid down in any finitary fashion.
Given the [moderate’s] self-conscious naturalism, it is hard to see
how she could sustain such a claim.28

These problems have lead to a focus in recent literature on internal cate-
goricity results which some argue are able to deliver determinacy without

26This problem has also been discussed in a variety of guises by a number of authors
including Button and Walsh, Philosophy and Model Theory : 158-60; Warren and Waxman,
“A metasemantic challenge for mathematical determinacy”: 485, 488.

27Putnam, “Models and Reality”: 481.
28Tim Button and Sean Walsh, “Ideas and Results in Model Theory: Reference, Realism,

Structure and Categoricity”: 27.
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the problems outlined above. I turn now to examine these results and then
go on to critically evaluate their significance for the problem of mathematical
determinacy.

5 Internal (or relative) categoricity

5.1 Internal categoricity in second-order logic

Second-order logic permits arithmetic to be finitely axiomatised (for example,
through the axioms of PA2). Further, because it allows quantification over
predicates and functions, second-order logic can refer “internally” to “pack-
ages” of functions and relations which satisfy the axioms of PA2 and which
can be viewed as “internal” models of PA2. More specifically, we can “pack-
age up” the axioms of PA2 as a conjunction of assertions in second-order
logic as follows.29

Definition 16. Let PA(NzS) abbreviate the following conjunction, in which
the variables N (a predicate representing “is a natural number”), z (a variable
representing “zero”) and S (a function representing “successor”) occur free.

N(z) ∧ (∀x : N)(∃!y : N)S(x)= y ∧
(∀x : N)S(x) ̸= z ∧
(∀x, y : N)(S(x) = S(y) → x = y) ∧
∀X[(X(z) ∧ (∀x : N)[X(x) → X(S(x)]) → (∀x : N)X(x)]

Note that the above formula utilises the following abbreviations: (∃x :
N)ψ abbreviates ∃x(N(x) ∧ ψ); (∀x : N)ψ abbreviates ∀x(N(x) → ψ)
and ∃x!φ(x) (there is a unique x such that φ(x)) abbreviates ∃x(φ(x) ∧
∀v(φ(v) → v = x)).

Intuitively, the first conjunct says that z is a natural number, the second
that every natural number has a unique natural number successor (that is,
S is a function from N to N ), the third that zero is not the successor of
any natural number, the fourth that no two natural numbers have the same
successor, and the final conjunct states the induction axiom. Note that
PA(NzS) is effectively a parameterized version of PA2 where the underlying
domain N, the constant 0 and the successor function S are replaced by
variables.

29See Button and Walsh, Philosophy and Model Theory : 225.
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Now second-order logic can refer “internally” to multiple “copies” of the
above conjunction which refer to different variables. In that way PA(N1z1S1)
and PA(N2z2S2) can be understood as referring to two possible “internal
structures” satisfying PA2. It is then possible to define in second-order logic
the property that a relation R is an isomorphism between two such “internal
arithmetical structures” as follows.30

Definition 17. The property that a relation R is an isomorphism between
(N1z1S1) and (N2z2S2) can be defined as follows:

IsoN1▷2(R) :=
∀v∀y(R(v, y) → [N1(v) ∧N2(y)])∧
(∀v : N1)∃!yR(v, y)∧
(∀y : N2)∃!vR(v, y)∧
R(z1, z2) ∧ ∀v∀y(R(v, y) → R(S1(v), S2(y))

The first of the above conjuncts says that R maps N1 to N2, the second
that R is functional, the third that R is a bijection, and the last says that
R “preserves arithmetical structure” (R maps z1 to z2 and, if R maps v to y,
then R maps the successor of v to the successor of y).

It is now possible to prove within second-order logic that for every two “in-
ternal arithmetical structures” (N1z1S1) and (N2z2S2) satisfying PA(NzS)
there is a relation R which is an isomorphism between these internal arith-
metical structures.31 This proposition (proved deductively within second-
order logic) is referred to as the internal categoricity of PA2.

Proposition 18. Internal Categoricity of PA2 :
⊢ ∀N1z1S1N2z2S2([PA(N1z1S1) ∧ PA(N2z2S2)] → ∃RIsoN1▷2(R))

This proposition provides a kind of “internal” counterpart to the model-
theoretic categoricity result discussed in section 4.3 above.

Furthermore, it is also possible to prove the following result, which can be
understood informally as saying that for every arithmetical claim φ, either
φ holds in every internal arithmetical structure or ¬φ holds in every internal
arithmetical structure.32

30Ibid., 228.
31Button and Walsh, Philosophy and Model Theory (Chapter 10): 228, 243-5; Jouko

Väänänen and Tong Wang, “Internal categoricity in arithmetic and set theory,” Notre
Dame Journal of Formal Logic Vol. 56 No. 1 (2015): 124.

32Button and Walsh, Philosophy and Model Theory (Chapter 10): 232, 245-6.
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Proposition 19. Intolerance of PA2. For any formula φ(NzS) whose quan-
tifiers are N-restricted and whose free variables are all displayed:

⊢ ∀NzS(PA(NzS) → φ(NzS)) ∨ ∀NzS(PA(NzS) → ¬φ(NzS))

This result gives a kind of “internal” version of semantical completeness
since it shows that all internal arithmetical structures satisfying the axioms
embodied in PA(NzS) agree on the truth (or falsity) of every arithmetical
claim φ.

5.2 Internal categoricity and incompleteness

While Proposition 19 delivers a kind of “internal completeness”, it does not
imply that PA2 is deductively complete. We can define a version of PA2

which is closely related to the formula PA(NzS) as follows.33

Definition 20. Let PAint abbreviate the following conjunction.
Num(0) ∧ (∀x : Num)(∃!y : Num)Succ(x)= y ∧
(∀x : Num)Succ(x) ̸= z ∧
(∀x, y : Num)(Succ(x) = Succ(y) → x = y)∧
∀X[(X(0) ∧ (∀x : Num)[X(x) → X(Succ(x)]) → (∀x : Num)X(x)]

PAint is the theory obtained by replacing the free variables of PA(NzS)
(see Definition 16) with the constants Num, 0 and Succ. Now Godel’s in-
completeness theorems imply that PAint is arithmetically incomplete. In
particular, PAint does not prove its own consistency sentence Con(PAint).

34

At first sight the relationship between the acknowledged deductive incom-
pleteness of PAint and Proposition 19 is somewhat puzzling. Proposition 19
seems to be saying that for any arithmetical proposition φ either every in-
stantiation of the axioms of PAint must entail φ or every instantiation of
the axioms of PAint must entail ¬ φ. Thus all instantiations of the axioms
of PAint must agree on the status of φ. However, from incompleteness, we
know that there are certain arithmetical propositions φ for which neither φ
nor ¬φ can be deduced from PAint.

The initially puzzling relationship between intolerance and incomplete-
ness can be illuminated by considering the Henkin semantics for second
order logic. Väänänen and Wang provide an informal characterization of
internal categoricity in terms of Henkin models as follows: “a theory T is

33Button and Walsh, Philosophy and Model Theory : 230.
34Smith, An Introduction to Gödel’s Theorems, in particular pages 186-197.
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internally categorical if all [internal] models of T within a common Henkin
model are witnessed to be isomorphic by the model.”35 In terms of the in-
ternal structures satisfying PAint, for example, internal categoricity means
that in every Henkin model any two internal arithmetical structures (N1z1S1)
and (N2z2S2) satisfying PA(NzS) within that Henkin model are isomorphic:
there exists within that Henkin model a 1-1 mapping between N1 and N2

which preserves arithmetical structure in the sense of Definition 17. Note in
particular that in Proposition 18 (internal categoricity) the bound predicate
variable X in the induction axioms of PA(N1z1S1) and PA(N2z2S2) ranges
over the same subsets of the underlying domain of the Henkin model. Both
internal categoricity and arithmetic intolerance hold in this sense on a “per
Henkin model” basis.

Consequently, as Button and Walsh themselves point out, “although all
internal-structures are alike within a single Henkin interpretation, they need
not be alike across different Henkin interpretations.”36 As Väänänen explains,
internal categoricity is called “internal” because it is internal to each Henkin
model. Nothing is claimed about interpretations outside the Henkin model.
PAint is not categorical across Henkin models. For every fixed Henkin model
there is a unique model of PAint, but different Henkin models may give rise
to non-isomorphic models.37

Returning to the relationship between incompleteness and arithmetical
intolerance, deduction within second order logic proceeds across all Henkin
models; that is, if a proposition is deduced from PAint, it holds for all Henkin
models of PAint. Arithmetical intolerance tells us that within a common
Henkin model, all arithmetical claims are determinate (that is, have the
same truth value across internal arithmetical structures within that Henkin
model). Across Henkin models they are not, which accords with PAint being
deductively incomplete.

5.3 Internal categoricity and the naturalistic constraint

Button and Walsh argue that the internal categoricity and arithmetical in-
tolerance results can be used to show the determinacy of arithmetic, without

35Väänänen and Wang, “Internal categoricity in arithmetic and set theory”: 122.
36Button and Walsh, Philosophy and Model Theory : 230; see also Jouko Väänänen,

“Categoricity and Consistency in Second-Order Logic”, Inquiry Vol. 58, no. 1 (2015): 26;
Jouko Väänänen, “Tracing Internal Categoricity”: 8.

37Väänänen, J, “Tracing Internal Categoricity”: 8.
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the problems identified in section 4.3 above.
To see that internal categoricity does not suffer from those problems, note

firstly that the internal categoricity of PAint is not affected by a determi-
nacy regress. The internal categoricity result can be deduced in second-order
logic, but that does not depend on any prior understanding of the set of all
subsets of the natural numbers. The categoricity result depends only on the
deductive system for second-order logic, which has, in addition to the full
semantics, the Henkin semantics, which does not involve any commitment to
a particular interpretation of the range of second-order quantifiers.

Secondly, the internal categoricity of PAint does not involve a failure of
the naturalistic constraint. The internal categoricity result can be deduced
in second-order logic. In order to manifest a sufficient grasp of the internal
categoricity result, it thus suffices to manifest a grasp of the deductive rules of
second-order logic, which poses no challenges for the naturalistic constraint.

I turn now to critically examine arguments which purport to show that
the internal categoricity of PAint implies the determinacy of arithmetic.

6 What can internal categoricity show?

6.1 The argument from internal categoricity to deter-
minacy

Button and Walsh argue that Internal Categoricity of PAint ensures the
determinacy of arithmetical practice as follows.38 Imagine two agents Kurt

38This type of argument was first developed to argue that theories incorporating “open-
ended schemas” ensure the determinacy of arithmetical practice, where an open-ended
schema is a first-order induction schema in which substitutions for the schematic variable
can include formulas in any expansion of the vocabulary of the language; see Charles Par-
sons, “The Uniqueness of the Natural Numbers,” Iyyun 39 (January 1990): 35-38; Charles
Parsons, Mathematical Thought and Its Objects (Cambridge : Cambridge University Press,
2008): 283-4. Similar types of argument have been advanced for forms of set-theoretic de-
terminacy, for example, Shaughan Lavine, Understanding the Infinite (Cambridge, M.A.
: Harvard University Press, 1994): 235-7. The version presented by Button and Walsh
is based on Parsons’ argument but in the context of second-order logic rather than open-
ended schemas. In this paper I do not specifically consider the open-ended schema version
of the argument although I believe it also fails to ensure arithmetical determinacy for essen-
tially the same reasons as presented in this paper. As Warren and Waxman point out: “an
open-ended understanding of induction is naturally seen as equivalent to the Π1

1-fragment
of second-order logic, and it is hard to see how a sub-theory of second-order logic could
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and Michael who are each doing arithmetic (using the axioms of PAint):

Kurt has a predicate ‘. . . is a natural number’, which we can
symbolise as Nk, he has a name ‘zero’, which we can symbolise
as 0k, and he has a notion of function ‘the successor of . . . ’,
which we can symbolise as sk. We similarly symbolise Michael’s
arithmetical vocabulary with Nm, 0m, sm. Let us allow that Kurt
and Michael are in communication with one another to the point
that both are able to take the other’s vocabulary into his own
language (and both know this). Both can now prove [internal
categoricity] and so, since they both have access to each other’s
vocabulary, both can prove

⊢ PA(Nk0ksk) ∧ PA(Nm0msm) → ∃RIsoNk▷m(R))

Furthermore, both can presumably see that the antecedent ob-
tains: they affirm one of the conjuncts themselves, and their in-
terlocutor happily affirms the other. They therefore obtain the
consequent. And this guarantees that, for arithmetical purposes,
their languages differ only in the subscripts we have imposed.

Button and Walsh conclude:

Once Kurt and Michael have established the existence of their
second order isomorphism, they can see that if they ever disagree
(modulo subscripts) about any arithmetical sentence, then only
one of them is right.39

Button and Walsh elaborate further that the arithmetical intolerance result
(Proposition 19) shows that if the two agents were to advance contradictory
arithmetical claims then

“on pain of deductive inconsistency, both parties must hold that
one of them is right and that the other is wrong”.40

be better at securing determinacy than full second-order logic itself” (“A metasemantic
challenge for mathematical determinacy”: 489).

39Button and Walsh, “Structure and Categoricity: Determinacy of Reference and Truth
Value in the Philosophy of Mathematics”: 299-300, following the argument presented by
Parsons, but placed in the context of second-order logic. The formulation of internal
categoricity has been changed slightly for the sake of notational uniformity.

40Button and Walsh, Philosophy and Model Theory : 271.
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Button provides a similar argument and concludes that all of Kurt’s arith-
metical structure is mirrored in Michael’s numbers (and vice versa) and fur-
ther (appealing to arithmetical intolerance) that their respective number con-
cepts cannot diverge over any arithmetical claim. Button further develops
this into the claim that PAint articulates the number concept precisely.41

In particular, Button claims that the intolerance of PAint entails that every
mathematical claim φ is determinate, where he characterizes determinacy as
follows:

If we can equally well render a claim right or wrong, just by sharp-
ening up the concepts involved in the claim in different ways, then
the claim is indeterminate (prior to any sharpening of concepts).
Otherwise it is determinate.42

Button then claims that arithmetical intolerance entails that for all arith-
metical claims φ, either it is determinate that φ or it is determinate that
¬φ. In summary he says that “thanks to its intolerance PAint articulates
our natural number concept sufficiently precisely that every arithmetical
claim is determinate.” The idea here is that there is no possibility of diver-
gent sharpenings of the natural number as characterised by PAint – once
a commitment is made to PAint, then, for every mathematical claim φ, that
commitment is consistent with affirming only one of φ or ¬φ.

We can sum up the conclusion of the above argument as the No Divergence
thesis: Kurt and Michael’s commitment to the axioms and inference rules of
PAint entails that they cannot consistently diverge on any arithmetical claim
— given their commitment to the axioms and inference rules of PAint, there
is only one right answer for any arithmetical claim. Call this argument from
internal categoricity to No Divergence, the No Divergence Argument.

6.2 Analysing the No Divergence Argument

6.2.1 What the No Divergence Argument seeks to establish

Let us consider in greater depth what the No Divergence Argument is trying
to establish. We have two agents, each engaged in arithmetic, using the
same second order axioms as a basis for reasoning. The practice of the
two agents is distinguished by subscripts. Now, since Kurt and Michael

41Button, “Mathematical Internal Realism”: 11-12.
42Ibid., 12.
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are using exactly the same axioms (distinguished only by subscripts) it is
clear that they can only reach the same conclusions (modulo subscripts)
by deduction from those axioms. If we consider an arithmetical sentence
φ which is undecided by PAint then neither agent will be able to deduce
either φ or ¬φ. So, if the arithmetical practice of the two agents is assumed
to be fully captured in their explicit second-order axioms, then it is clear,
without invoking any internal categoricity results, that neither agent can
diverge over any arithmetical claim in the sense just explained. Nevertheless
there are arithmetical propositions φ whose truth values are undetermined
by both practices.

However, the No Divergence Argument seeks to establish a stronger re-
sult. It contemplates a situation in which there is some doubt that the ex-
plicit axioms of PAint fully capture one or the other of the agent’s practices
(either now or in the future). Intuitively, the concern is that each agent’s
practice may be consistent with PAint but “in the background” as it were,
the two agents may interpret them differently, or may come to interpret them
differently, or their practices may somehow evolve, so that at some point in
their practice, the two agents may adopt divergent arithmetical propositions
which are compatible with PAint but not entailed by it. The No Divergence
Argument is designed to show that this is not possible — that the explicit
commitment by each agent to the axioms of PAint means that they cannot
(consistently) adopt divergent arithmetical claims.

So what we are really interested in are two potentially diverging practices
each (perhaps partially) characterized by the axioms of PAint. The No Di-
vergence Argument purports to rule out any divergence, to show that the
practices cannot consistently diverge. Lavine describes the problem situa-
tion well (referring here to the issue of set-theoretic determinacy rather than
arithmetical determinacy):

I use the words, say, set and member and you use the words set
and member too. Our usage is similar in many respects, and in
particular let us assume that we employ the same axioms. Isn’t
there a legitimate worry about whether we are using the words
in the same way? It is, after all, possible that you could come
to believe the continuum hypothesis, while I came to believe its
negation. (I am assuming, of course, that the continuum hy-
pothesis is independent of the axioms we agree on, as will almost
certainly be the case given the present state of knowledge about
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sets.) If that were to happen, it would then be clear that we
were not using the words set and member in the same way. But
then here is the legitimate worry: is our present usage sufficiently
determinate that our present agreement guarantees future agree-
ment? So the question we are raising is whether there is more
than one way to use set and member compatible with present
commitments.43

6.2.2 What the No Divergence Argument may assume

It is important to understand that the only premise which the No Divergence
Argument is entitled to assume is that the two agents are behaving in ac-
cordance with the deductive rules of second-order arithmetic. To see this,
recall that the naturalistic constraint requires that determinacy must be un-
derstood as arising through characteristics of publicly articulable and com-
municable practices. Recall also that the naturalistic constraint was a prime
motivation for rejecting the external categoricity of second-order arithmetic
(under the full semantics) as a guarantor of determinacy. As noted above,
nothing in our explicitly (publicly articulable and communicable) practice
of second-order logic manifests the concept of the full powerset concept, on
which the full semantics depends. Our explicit practice of second-order logic
is captured by the deductive system for second-order logic. This motivated
the move by Button and Walsh to base determinacy on internal categoric-
ity, which relies only on the explicit deductive rules of second-order applied
to the axioms of PAint. Accordingly it is only on those rules that the No
Divergence Argument can rely.

6.2.3 The No Divergence Argument requires an additional premise

The No Divergence Argument assumes that the two agents are behaving in
accordance with the deductive rules of second-order arithmetic and seeks to
establish that they cannot consistently diverge on any arithmetical claim.

Now, there is prima facie reason to doubt that the No Divergence Argu-
ment can succeed. After all, if we consider any arithmetical claim φ which is
not decided by PAint and all we know is that the two agents are behaving in
conformity with the deductive rules of second-order arithmetic, then it seems

43Lavine, Understanding the Infinite: 236.
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clear that they can consistently diverge: one can adopt φ and the other ¬φ,
(suitably subscripted) without any contradiction.

I claim that this prima facie impression is correct and that the No Di-
vergence Argument can only succeed with an additional premise, beyond the
assumption that the two agents are acting in conformity with second-order
arithmetic. The additional premise may be understood in a number of ways.
Essentially it is an assumption that the two agents’ practices are tied together
in certain way.

We are interested in two (potentially diverging) arithmetical practices,
each (perhaps partially) represented by a second-order theory. The No Di-
vergence Argument assumes that two such potentially diverging arithmetical
practices can be represented by two “internal” copies of the respective theo-
ries. The situation may be illustrated informally as follows. The two (poten-
tially diverging) practices of Kurt and Michael correspond to (are partially
characterised by) two deductive systems:

PA(Nk0ksk) ⊢ PA(Nm0msm) ⊢

The No Divergence Argument represents the two practices by a single de-
ductive system:

PA(Nk0ksk) ∧ PA(Nm0msm) ⊢

Call this representation of the two practices the Common System Rep-
resentation and the assumption that it is a faithful representation of the
two practices the Common System Assumption. The Common System Rep-
resentation introduces a constraint on the deductive possibilities of the two
practices which does not follow from the mere assumption that the two agents
behave in conformity with the deductive rules of second-order arithmetic. We
can see this with reference to the Henkin semantics as follows. In consider-
ing the possible deductive consequences of the two “internal” copies of the
theories, the Common System Representation restricts attention to deduc-
tive consequences of those theories in shared Henkin models. However, if all
we know is that the two agents are behaving in conformity with the deduc-
tive rules of second-order arithmetic then the deductive practices of the two
agents may range (independently) over all Henkin models and not be tied
together in this way.

To further understand the implications of the Common System Assump-
tion, observe that each of the following follows from confining attention to
shared Henkin models:
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1. each of the agents’ arithmetical models is drawn from a common Henkin
model;

2. each agent’s second-order variables have the same range (drawn from
a common Henkin model); and

3. each agent is capable of referring to the same predicates and relations as
the other (via their second-order variables and using Comprehension).

As is the case for the Common System Assumption itself, none of these is
implied by the mere fact that the two agents act in accordance with the
deductive rules of second-order arithmetic.44

It follows that No Divergence does not follow from the mere commitment
of the agents to deductive second-order arithmetic, as the No Divergence
Argument claims. It requires an additional premise, which constrains the
deductive consequences of the two practices.

Note that the mere fact that both agents can prove the same internal
categoricity result does not preclude divergence. If Kurt and Michael were
to come to “intend” incompatible classes of Henkin models of PAint, with
Kurt affirming, say, φ and Michael affirming ¬φ (suitably subscripted), then
each of them can prove an identical internal categoricity theorem. That
theorem would show that all internal arithmetical structures within each of
their own Henkin models are isomorphic. However, the agents would not
have any Henkin models in common and neither would be able to refer to
the internal arithmetical structures of the other agent (φ holds in all of Kurt’s
internal arithmetical structures, and ¬φ in all of Michael’s).45

44This diagnosis of the No Divergence Argument is related to Hartry Field’s criticism of
Parsons’ version of the No Divergence Argument, see Hartry Field, Truth and the Absence
of Fact (Oxford: Clarendon Press, 2001): 358-360. See also Parsons’ discussion of Field’s
argument in Parsons, Mathematical Thought and Its Objects: 284. In essence, Field denies
the assumption that one of the agents, say Kurt, can refer (through the predicates and
relations of his language) to Michael’s natural numbers (Nm) and consequently denies that
induction on predicates defined in Kurt’s language can be used to prove the existence of an
isomorphism between Nm and Nk. From the point of view advanced here, this amounts to
denying the assumption that Kurt’s arithmetical practice can properly be represented by
an “internal copy” of Kurt’s theory within Michael’s theory, that is, denying the Common
System Assumption.

45More precisiely, since Kurt’s and Michael’s theories have different vocabularies, due
to the subscripts, their Henkin models are actually models of different vocabularies. In
the situation envisaged, the crucial point is that their Henkin models have no consistent
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6.2.4 The Common System Assumption begs the question

The original concern, which the No Divergence Argument was designed to ad-
dress, was that the two agents, despite both adhering to PAint, may somehow
“intend” (or come to intend) different ranges of quantification for their pred-
icates and relations. If they did, then, compatibly with PAint, they might
be led to adopt divergent arithmetical claims. The No Divergence Argument
purports to show that this is impossible, but by relying on the Common Sys-
tem Assumption, attention is restricted to circumstances in which the two
agents have the same range of quantification for their relations and predicates
(drawn from a common Henkin model). The result is that the No Divergence
Argument effectively assumes the original problem away because attention is
restricted to “internal” models which have the same range of quantification
for relations and predicates.

To be clear, this does not detract from the mathematical significance
of internal categoricity. That theorem shows that the axioms of second-
order arithmetic are sufficiently strong (assuming Comprehension) to ensure
that all arithmetical structures within a given Henkin model are isomorphic.
That is a significant mathematical property but it is not sufficient to show
No Divergence.

6.2.5 Can the Common System Assumption be justified?

The naturalistic constraint requires that determinacy be understood as aris-
ing through characteristics of publicly articulable and communicable prac-
tices. In Button and Walsh’s approach, the publicly articulable and com-
municable practices of the two agents are defined by the conformity of the
practices with the deductive rules of second-order arithmetic. And, as we
have seen above, the Common System Assumption does not follow from that
conformity. Thus the Common System Assumption cannot be justified in
accordance with the naturalistic constraint as that constraint is construed in
Button and Walsh’s approach.

It might be pressed that, if the two agents are behaving in conformity
with PAint, then it is reasonable to assume that they intend the same ranges
for their predicates and relations, at least until something they say or do

common expansion to a model of the union of the vocabularies. See Jouko Väänänen,
“Second-Order Logic or Set Theory?” The Bulletin of Symbolic Logic Vol. 18, No. 1
(2012): 98-99.
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indicates otherwise. I agree. However the No Divergence Argument seeks to
prove something much stronger: that the two agents’ conformity with PAint

precludes that they can consistently diverge, that is, that if they do so, then
“on pain of contradiction” one of them is right and the other wrong. The
Common System Assumption builds in the assumption that their predicates
and relations have the same range. It is not simply a defeasible presumption.

6.3 Objections and responses

It might be said that Kurt and Michael’s practices can only diverge if the ax-
ioms of second-order arithmetic and the deductive rules of second-order logic
are given the Henkin semantics. If instead they are given the full seman-
tics then their practices cannot diverge. This is indeed true. But of course,
the whole point of the internal categoricity approach to determinacy is to
avoid reliance on the full semantics. According to the internal categoricity
approach, divergence is supposed to be ruled out based only on the explicit
rules of second-order logic (applied to the axioms of PAint), that is, proof-
theoretically. It is the Henkin semantics which faithfully reflects the proof
theory (due to the completeness result for second-order logic with respect to
the Henkin semantics).

Button and Walsh, in the context of responding to Field’s criticisms, con-
cede certain limitations as to what internal categoricity can show but dismiss
these limitations as irrelevant to the “internalist” use of internal categoricity:

Suppose that a model theoretical sceptic has suggested that Michael
and Kurt are discussing nonisomorphic Henkin models of second-
order arithmetic. We cannot answer that sceptic by pointing out
that Kurt and Michael have produced literally the same proof
[of internal categoricity], line by line. For, if the sceptical sce-
nario obtained, then that same proof would mean different things
in their respective mouths, for it would concern nonisomorphic
models. This point is worth emphasising. But it is also worth
emphasising that it is irrelevant to our internalist’s imagined use
of internal categoricity. We stressed ... that internal categoricity
results cannot be used to pin down [semantic models], or to rule
out Henkin models, or whatever.46

46Button and Walsh. Philosophy and Model Theory : 242.
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This response is not sufficient to address the argument presented here. That
argument is that internal categoricity can only guarantee No Divergence if
the Common System Assumption is made. While the effect of the Com-
mon System Assumption can profitably be understood in terms of Henkin
models, it can also be understood purely proof-theoretically – the Common
System Assumption constrains the deductive possibilities of the two prac-
tices in a way which does not follow from their conformity with deductive
second-order arithmetic. This is a proof theoretic fact about the effect of the
Common System Assumption: there is no necessary reference to semantic
models. Thus, even if Button and Walsh are uninterested in semantic mod-
els, they cannot dismiss the fact that the Common System Assumption is
required to show No Divergence, and that this assumption does not follow
merely from conformity of arithmetical practice with deductive second-order
arithmetic. To say that the issue is irrelevant to the proposed internalist
use of internal categoricity amounts simply to a reassertion of the Common
System Assumption, without argument for that assumption.

Tim Button concedes that he cannot prove that Michael and Kurt “share
a logical language” and, moreover that if they do not share a logical language,
then in principle Michael might affirm φ and Kurt might affirm ¬φ, and each
could be “right in their own languages.” However he goes on to discount this
possibility:

Having raised this abstract possibility, though, I should immedi-
ately point out that it is hard to see how it could actually come
about. Indeed, it is not obvious that this abstract possibility is
even intelligible to internalists. After all, the logical language in
question is to be understood deductively rather than semantically,
and we can take it for granted that [Michael and Kurt] accept ex-
actly the same rules of inference. But, given this, it is hard to see
what it could even mean, to say that they do not share a logical
language.”47

There is an ambiguity here in the idea of “sharing a logical language.” In
one sense, which Button appears to invoke, it could mean simply accepting
the same rules of inference (for example those of second-order logic applied
to PAint). But we have seen above that this is perfectly compatible with
the indeterminacy of some arithmetic propositions, and indeed is compatible

47Button, “Mathematical Internal Realism”: 20.
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with potential divergence (one agent affirming φ and the other affirming ¬φ)
which can happen if the practice over time of the two agents, while conform-
ing to second-order logic applied to PAint is not exhaustively characterised
by second-order logic applied to PAint. This first sense of “sharing a logical
language” does not rule out arithmetical indeterminacy. To secure deter-
minacy Button must take “sharing a logical language” to mean something
strictly stronger – invoking the Common System Assumption. However, we
have seen that this additional assumption does not follow from the fact that
the agents accept the same rules of inference.

Button and Walsh also concede that internal categoricity cannot "guar-
antee that Kurt might not one day do something which makes Michael do
a double-take, and exclaim ‘but then your induction axiom was restricted
after all, for you have rejected this instance of induction!’" (This alludes to
the situation in which the range of the agents’ second-order variables may
differ). However they go on to claim that this “has nothing much to do with
the induction axiom” or specifically to do with mathematics or logic, taking
it to be an instance of rule-following scepticism:

Kurt and Michael might have both used the word ‘green’ to apply
to similar things for a very long time, until one day one of them
starts using the word ‘green’ where the other uses ‘red’, causing
Michael to exclaim ‘but then you did not mean greenness by
“green” after all!’ No theorem can block these sorts of concerns,
which are particular instances of a much more general worry:
scepticism about meaning, or rule-following scepticism.48

Again, however, this response misses the point in relation to the argument
presented here. Far from depending on rule-following scepticism, the argu-
ment that internal categoricity does not guarantee arithmetical determinacy
presented here assumes that the relevant arithmetical practices fully con-
form with the deductive system of second-order logic applied to the axioms
of PAint, and assumes that such conformity is a fully determinate matter.
The argument shows that such determinate conformity with the axioms of
PAint and second-order logic is insufficient on its own to guarantee arith-
metical determinacy.

48Button and Walsh. Philosophy and Model Theory : 242.
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7 Conclusion
I conclude that internal categoricity of second-order arithmetic does not en-
tail the determinacy of arithmetic in a way which satisfies the naturalistic
constraint, as that constraint is construed by Button and Walsh. To satisfy
the naturalistic constraint, Button and Walsh rely on characterising arith-
metical practice by conformity with deduction in second-order arithmetic.
However, their argument that arithmetical determinacy follows from inter-
nal categoricity depends on an additional assumption (the Common System
Assumption) which does not itself follow from that characterisation of arith-
metical practice.49 Of course, I have not set out to show that arithmeti-
cal practice is indeterminate. Other arguments may be available to show
that arithmetical practice is determinate, perhaps even arguments compati-
ble with the naturalistic constraint.
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