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Abstract

In a recent article, Halvorson and Manchak [forthcoming] claim that
there is no basis for the Hole Argument, because (in a certain sense)
hole isometries are unique. This raises two important questions: (a) does
their argument succeed?; (b) how does this mathematical-cum-formalist
response to the Hole Argument relate to other recent responses to the Hole
Argument in the same tradition—in particular, that of Weatherall [2018]?
In this article, ad (a), we argue that Halvorson and Manchak’s claim does
not go through; ad (b), we argue that although a charitable reading would
see Halvorson and Manchak as filling an important hole (no pun intended)
in Weatherall’s argument, in fact this reading is implausible; there is no
need to supplement Weatherall’s work with Halvorson and Manchak’s
results.

Contents

1 Introduction 2

2 The Hole Argument 4
2.1 Substantivalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Mathematical facts . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Pernicious indeterminism . . . . . . . . . . . . . . . . . . . . . . 10

3 Halvorson and Manchak’s reading of the Hole Argument 12
3.1 Geroch’s theorem and hole isometries . . . . . . . . . . . . . . . . 12
3.2 Reopening the Hole Argument . . . . . . . . . . . . . . . . . . . 13

1



4 Outstanding issues 16
4.1 Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 A category mistake? . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 The essentialism tension . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction

In a recent article, Halvorson and Manchak [forthcoming] argue that there is no
mathematical basis for the Hole Argument. They schematise the Hole Argument
thus:

1. Substantivalism.

2. Some mathematical facts.

C. Pernicious indeterminism.

Substantivalism is a metaphysical claim about the relationship between space-
time and matter: the former exists on (at least) the same ontological footing as
the latter.1 Right off the bat, we can identify a concern with the above schema:
substantivalism is a claim about metaphysics, in the sense that it’s a claim
about the the constituents of possible worlds. In order for any mathematical
claim to have traction in this discussion, it must be supplemented by a claim
about how that mathematical fact affects the model-world relationship. So a
slight refinement of the schema yields:

1. Substantivalism.

2a. Some mathematical facts.

2b. Some interpretational claim that the mathematical facts in (2a) affect the
relationship between models and worlds.

C. Pernicious indeterminism.

Halvorson and Manchak argue that there are two mathematical claims in
(2a) on which the conclusion of the Hole Argument (C) might plausibly be
taken to rely:2

Hole isomorphism: There exist distinct models of general relativity that are
related by hole isomorphisms.

Distinct isometry: For any two isometric Lorentzian manifolds, there is
more than one diffeomorphism relating those Lorentzian manifolds which
witnesses their being isometric.

1Of course, there is a variety of ways of spelling out this claim—see e.g. [Baker, 2021,
Dasgupta, 2011, Earman, 1977, North, 2021, Pooley, 2013]—but for now, this characterisation
is sufficient.

2The following is our attempt to regiment Halvorson and Manchak’s discussion, and is thus
our terminology, not theirs.
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Halvorson and Manchak claim that Hole isomorphism is “trivially true” (when
the isomorphism under consideration is an isometry), but concur with Weather-
all [2018] that this is not sufficient to generate the Hole Argument.3 They also
claim, however, that if Distinct isometry were true, then in principle the Hole
Argument could be generated within the framework of general relativity—but
in fact Distinct isometry is false, due to a theorem due to Geroch. Conse-
quently, they argue that discussion of the Hole Argument should be closed.4

In a sense—at least as we interpret them (to be clear, this is our most
charitable reading of Halvorson and Manchak [forthcoming]: they don’t make
the following claims explicitly in their article)—what Halvorson and Manchak
seek to achieve in their article is to plug a hole left outstanding in Weather-
all’s analysis. Roughly speaking (though the structure of [Weatherall, 2018] is
complex and requires careful unpacking: see [Pooley and Read, forthcoming]
as well as our own discussion below), Weatherall claims that for any two hole
diffeomorphic models of general relativity, those models must be compared us-
ing the map which witnesses the isometry between them (which is to say that
any interpretation must be such that if two manifold elements are related by
that isometry, then they represent the same physical spacetime point); this,
however—Weatherall claims—is not sufficient to generate the Hole Argument.
However, if there were multiple such maps relating the two models, then in
principle the Hole Argument could be generated within the framework of gen-
eral relativity. (We spell out the reasoning here in detail in §3.2.) By denying
Distinct isometry, Halvorson and Manchak take themselves to have closed
this (loop)hole.

We have two goals in this article. First : to demonstrate that Halvorson
and Manchak’s invocation of Geroch’s theorem fails on its own to close the
Hole Argument, because the theorem is a purely formal result; to have any
impact on the Hole Argument it needs to be supplemented by some claim of the
form described in (2b). When we canvass some options for this supplementary
claim, we discover that Halvorson and Manchak’s claim fails to close the Hole
Argument. And second : to argue that even to read the central purpose of
Halvorson and Manchak [forthcoming] as being to close the above-described
hole (supposedly) left by Weatherall is implausible, for whatever one makes
of Weatherall’s arguments, it is not necessary for them to be supplemented
with Halvorson and Manchak’s results. The upshot is that, as far as we can
see, Halvorson and Manchak’s central results add little to recent mathematical-
cum-formalist responses to the Hole Argument.

3For a critique of Weatherall’s arguments with which we engage further below, see [Pooley
and Read, forthcoming].

4To be fair to Halvorson and Manchak [forthcoming], in footnote 2 of their article, they
write: “Granted, there may be yet another mathematical claim upon which the Hole Argument
could be built. By eliminating two possible mathematical claims, we hope at least to clarify
the structure of the argument.”
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2 The Hole Argument

In this section, we discuss the inputs (1), (2a), (2b), and conclusion (C) of
the Hole Argument, as schematised above. Although this will be well-known
to many readers, it is very important for the purposes of later sections of this
article to be precise and explicit about all relevant moving parts.

2.1 Substantivalism

Spacetime substantivalism is generally understood to be the claim that spa-
tiotemporal structure is on (at least) the same ontological footing as matter.
Consider now a model of general relativity, (M, gab, Tab).

5 The literature dis-
cusses two options for the substantivalist:

Manifold substantivalism: M represents spacetime, which is ontologically
at least on par with the matter content whose stress-energy is represented
by Tab.

Metric manifold substantivalism: (M, gab) represents spacetime, which is
ontologically at least on par with the matter content whose stress-energy
is represented by Tab.

(Authors who hold the first view regarding how to characterise substantivalism
number among them Earman and Norton [1987]; authors who hold the second
view include Maudlin [1988].) The Hole Argument purports to raise a radical in-
determinism worry for both forms of substantivalism. For dialectical clarity, we
will discuss the Hole Argument in relation to Manifold substantivalism; all
the arguments we discuss will carry over to Metric manifold substantivalism.

The worry about indeterminism, however, does not arise solely because of
the substantivalist’s commitment to the ontological independence of spacetime
and matter. It requires also an additional commitment, which Pooley [2021]
calls ‘plurality’:

Plurality: If W is a possible world according to the theory under consid-
eration, then there is a plurality of possible worlds, W ′,W ′′..., that (i)
involve the same pattern of spatiotemporal properties instantiated in W
and contain the same material fields as W , but that (ii) differ from W
solely over which spacetime points have which properties and serve as the
locations of common material content.

As Hoefer [1996] and Pooley [2013] emphasise, substantivalism (of either of the
above stripes) needn’t entail the acceptance of Plurality. Furthermore, there
are ways of setting up a substantivalist position which deny Plurality and
are immune to the Hole Argument. So in order to set up the Hole Argument,
the substantivalist position needs to be one that accepts Plurality; call this

5Where M is a smooth 4-dimensional manifold, gab is a Lorentzian metric tensor, and Tab

is a symmetric tensor representing the stress energy of matter.
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position Pluralist substantivalism. But even this on its own is not suffi-
cient to set up the Hole Argument; to do so, we first need to introduce some
mathematical facts.

2.2 Mathematical facts

The mathematical fact about general relativity which is supposed to spell trou-
ble for the pluralist substantivalist is the so-called ‘general covariance’ of the
Einstein equation, the central dynamical equation of general relativity. To un-
derstand how this works, we begin by introducing the concept of a diffeomor-
phism and its drag-along. A diffeomorphism d : M → N is a smooth bijection
from manifolds M to N whose inverse is also smooth. Insofar as d is a function,
it simply associates (uniquely) with each element p ∈M some element p′ ∈ N .

A coordinate system on a submanifold U of a (four-dimensional) manifold
M is a map xµ : U → R4. In practice, we restrict attention to only smooth
coordinate systems. Relative to an interpretation linking models and worlds,
we can now use these coordinate systems to make location claims about certain
physical objects in regions of the world represented by U . For example, we can
talk about the magnitude of some scalar field Φ in some region of W by looking
at the value of some scalar function F , evaluated at the appropriate element
p ∈ U assigned the coordinate xµ: F (p) = f ◦xµ(p), where f : R4 → R. We can
extend the action of a diffeomorphism to both the coordinate system and the
representatives of physical fields as follows: (i) for a given coordinate system
xµ, we can define its ‘drag-along’ d∗xµ(p) = xµ(d(p)) for all p ∈ d−1(U); (ii) for
a given magnitude F (p), its drag-along defined by d is the object d∗F such that
d∗F (p′) = F (p). Following the convention in the literature, we refer to models
of the form M = (M,O1, O2, ...) and d

∗M = (d∗M =M,d∗O1, d
∗O2, ...), where

O1, O2, ... are tensorial objects, as diffeomorphically-related models.
We can now define general covariance (cf. [Pooley, 2017]):

General covariance: Let the models of a theory T be n-tuples of the form
(M,O1, O2, ...). T is generally covariant iff: if (M,O1, O2, ...) is a structure
of the relevant type and d is a diffeomorphism between M an N , then
(M,O1, O2, ...) is a solution of T iff (N, d∗O1, d

∗O2, ...) is also a solution
of T .

Standardly, we associate solutions with physically possible worlds. (Precisely
how this representation is to be achieved, and in particular how redundantly it
may be achieved, is a subtle issue whose discussion is beyond the scope of this
paper, but see e.g. [Fletcher, 2020, Pooley and Read, forthcoming] for recent
discussion.6) An important point to note is that the objects in the tuples needn’t
be independent. Indeed, Earman and Norton’s proof of the general covariance
of general relativity relies on incorporating dynamical equations into the very
structure of the models. For them, a model of general relativity is a tuple of

6Note that there are also good reasons to question whether this is indeed the most appro-
priate way of understanding what is represented by models of physical theories—see [Wallace,
2022, p. 3]—but we’ll set these concerns aside here.
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the form (M, gab, O2), where the object O2 = Gab − Tab, (where Gab is the
Einstein tensor, built out of gab and its derivatives) is constrained dynamically
to vanish. The vanishing of that object is equivalent to the satisfaction of the
Einstein equation; the fact that the equation uses only tensors means that it is
a fact that if O2 vanishes in one model, then it vanishes in all diffeomorphically-
related models. (NB: this isn’t to say that all such diffeomorphically-related
models are in fact kinematically possible, if one stipulates that some of the
tensors in question be what Pooley calls ‘fixed fields’: see [Pooley, 2013]. We
return to this below.)7

Halvorson and Manchak read Earman and Norton’s gauge theorem as fol-
lows: “[t]he idea here is that ϕ [the hole diffeomorphism] establishes an isomor-
phism between [(M,ϕ∗g)] and [(M, g)] and since the latter is a model of the
theory so is the former” [Halvorson and Manchak, forthcoming, p. 14]. This is a
mistake. First, isometry does not guarantee preservation of solutionhood: con-
sider the two isometric models (M, gab, Tab) and (M,d∗gab, Tab). In the second
model, we have not dragged along the stress-energy tensor; generically this will
mean that the second model fails to satisfy the Einstein equation, and so is not
a solution. Second, it is a property of the dynamical equations (namely their
tensorial nature), plus stipulations as to which models represent kinematical
possibilities (cf. [Pooley, 2017]) that ensures the preservation of solutionhood.
It is therefore a contingent claim that underwrites the general covariance of
general relativity, not a mathematical truism.

This setup allows us to highlight three implicit mathematical commitments
in the setup of the Hole Argument:

Tensorial dynamics: Our theory’s dynamical equations involve only tensorial
objects.

Drag-along: When the manifolds in two models are related by a diffeomor-
phism, the tensorial content of one model is related by the drag-along
construction to the tensorial content of the other.8

No fixed fields: Having fixed the mathematical objects and dynamics of the
models of one’s theory, one cannot further stipulate that certain models

7An important point to highlight is that our discussion of equivalence should take place at
the level of the full models, including all material tensorial dynamical content, as represented
by stress-energy tensors. Often, as a matter of convenience, the standard of equivalence
is taken to be the isometry of Lorentzian manifolds (we too will do this shortly). But it
is important to remember that it is not merely the preservation of metrical structure that
determines the equivalence of models; it is the further preservation of dynamical structure,
namely the fact that certain models contain tensorial objects that satisfy dynamical equations
like the Einstein equation or the Einstein-Maxwell equations. This is important because,
as we’ll see, the real physical content of general covariance is contained in the fact that
solutionhood is preserved under diffeomorphisms, not merely that some diffeomorphisms are
isometries.

8To stress, Drag-Along doesn’t hold as a matter of mathematics alone, for the reasons given
in [Halvorson and Manchak, forthcoming, §3]. It is to be taken as a restriction on the models
which one is countenancing when one considers the Hole Argument.
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represent kinematical possibilities of one’s theories while others do not.
(Doing so would spoil general covariance, and is accordingly disallowed.)9

The satisfaction by a theory T of Tensorial dynamics, Drag-along and No

fixed fields ensures that T is generally covariant. So, in particular, general
relativity is a generally covariant theory. This is to be understood as the claim
that under diffeomorphisms (and their associated drag-alongs which act on the
tensorial constituents of the models) solutions are mapped to solutions. Of
course, this is a substantive physical hypothesis (special relativity in its standard
formulation is not generally covariant in this sense, for example—see [Pooley,
2017]). But we will not quibble over nomenclature, and will continue to call this
a mathematical fact (after all, a fact being mathematical does not preclude its
having physical significance).

We are not yet in a position to level a charge of indeterminism to the pro-
ponent of Pluralist substantivalism in general relativity, even though gen-
eral relativity is generally covariant. We require a further premise according
to which the inferences we make about diffeomorphically-related models have
nontrivial consequences for the worlds deemed possible according to the theory
whose models are under consideration. After all, diffeomorphisms (and their
drag-alongs) can only be defined on models and not on possible worlds. Again
following Pooley [2021], we introduce an interpretative commitment:

Models: If M = (M, gab, Tab) can be chosen to represent a possible world W
then, relative to that choice, there is a permissible and natural interpre-
tation of the diffeomorophically-related model d∗M = (M,d∗gab, d

∗Tab)
according to which d∗M represents a distinct possible world W ′ ̸=W .

Call a pluralist substantivalist who accepts Models an acid-test substantival-
ist. But this still does not lead to an indeterminism worry; it does, however, lead
to an underdetermination worry. Two diffeomorphically-related models M and
M′ which (according to Models) can be taken to represent respective worlds W
and W ′ will prima facie correspond to two distinct possible worlds (according
to Plurality). Pooley and Read identify the undeterdetermination worry:

[S]uppose that according to M, the observer at the salient stage of
their trajectory is located at (the spacetime point represented by) p
and that d maps p to a distinct point q. According to M′, therefore,
the relevant stage of the observer’s trajectory is located at q. It
follows that no measurement that the observer might perform at
that point along their trajectory can determine whether they are
located at (the point represented by) p or at (the point represented
by) q, for the outcomes of any measurements are the same according
to M and M′. [Pooley and Read, forthcoming, p. 3]

Whether this underdetermination worry in fact goes through is a delicate
matter—see [Cheng and Read, 2022] and [Pooley and Read, forthcoming, fn. 8]

9For more on the definition of fixed fields, see [Read, 2020].
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for discussion. But in any case, in general relativity, there arises also an in-
determinism concern, when one takes the diffeomorphism relating the models
under consideration to act non-trivially only to the future of some spacelike
hypersurface. Let’s explore this in more detail. As is common in the literature,
in what follows, we focus on vacuum spacetimes, so that the only physical field
being dragged along the relevant diffemomorphisms is the metric field. In other
words, our standard of model isomorophism is now isometry.

The standard ‘angle bracket’ notation for models of general relativity gives
rise to an ambiguity regarding how to understand isometries that needs to be
ironed out before we proceed further. Consider the following definition of an
isometry from Wald:

If d : M → M is a diffeomorphism and T is a tensor field on M ,
we can compare T with d∗T . If d∗T = T , then even though we
have “moved T” via d, it has “stayed the same”. In other words, d
is a symmetry transformation for the tensor field T . In the case of
the metric gab, a symmetry transformation—i.e., a diffeomorphism d
such that (d∗g)ab = gab—is called an isometry. [Wald, 2010, p. 438]

Contrast this definition with the following characterisation of an isometry from
Weatherall (with notation adapted for consistency):

Fix a model of a relativity theory, which is a relativistic spacetime,
that is, a Lorentzian manifold (M, gab) ... We define a relativistic
spacetime (M, g̃ab), whose underlying manifold is once againM , and
whose metric is defined by g̃ab = d∗gab, where d

∗ is the [drag-along]
map determined by d. One can easily confirm that (M, gab) and
(M, g̃ab) are isometric spacetimes, with the isometry realized by d.
[Weatherall, 2018, p. 335]

The above two quotes invite, respectively, two distinct notions of isometry:

Isometry1: For all elements p ∈M , d∗gab(p) = gab(p).

Isometry2: For all elements p, q ∈M , if d(p) = q, then, d∗gab(q) = gab(p).

The fact that the angle bracket notation does not specify which elements are
assigned which values of gab means that the standard notation of (M, gab) =
(M,d∗gab) is ambiguous between the above two readings of isometry. Note that
Isometry1 is a much more stringent requirement than Isometry2. Isometry1
requires the existence of Killing vector fields, whereas Isometry2 can very
straightforwardly be defined for any generic Lorentzian manifold: every dif-
feomorphism of M can be used to generate an Isometry2, whereas only specific
diffeomorphisms will generate an Isometry1. For example, a Minkowski mani-
fold (M,ηab) is isometric2 to (M,d∗ηab) for any d ∈ Diff(M), but is isometric1
to (M,d∗ηab) only if d ∈ SO(1, 3)⋉R4.10

10Note that the notion of isometry deployed at [Malament, 2012, p. 85] is yet more general
than either Isometry1 or Isometry2—our thanks to J. B. Manchak for pointing this out to us.
(Isometry1 and Isometry2 can thus be regarded as special cases of Malament’s definition.)
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Having disambiguated the two types of isometry relevant to diffeomorphisms
from M to itself, let us divide our manifold M into two regions: (i) H ⊂ M ,
which is a compact open subset of M , and (ii) M\H, which is the complement
of H in M . Next, consider a diffeomorphism which we will call a hole isometry :
ψ̃ :M →M such that ψ̃ is the identity in M\H but differs from the identity in
H (and the two regions join up smoothly). Call this region a ‘hole’. If we drag
the tensorial content of the model along the hole diffeomorphism—in particular,
if we drag along the metric—then we construct a hole isometry. Note that in
constructing a hole isometry, we do not rely on the metric manifold having any
nontrivial Killing vector fields; all we are doing is smoothly changing which
manifold elements are associated with particular tensorial magnitudes, without
changing the lawlike relations between those tensorial magnitudes. Thus, to
the extent that General covariance is what guarantees the existence of a
hole diffeomorphism, as it is according to the standard understanding of the
Hole Argument, every hole isometry is an Isometry2, but not necessarily an
Isometry1.

We can now articulate another premise of the Hole Argument:

Hole isometry: Given a metric manifold (M, gab), there exists a distinct met-
ric manifold (M, g′ab) such that a (non-trivial) hole isometry (in the sense
of Isometry2) exists between them.11

Thus, given a metric manifold (M, gab), Hole isometry insists that one can
construct a distinct metric manifold (M,ψ∗gab), isometric to the first, where
the metrical content of the latter is dragged along with respect to that of the
former using the diffeomorphism ψ, which is (defined to be) the map which
witnesses the isometry between the former and the latter (note that Weatherall
[2018] also uses this terminology). Moreover, said isometry is a hole isom-
etry, in the sense presented above. Since isometry is the standard of isomor-
phism for Lorentzian manifolds, in accepting Hole isomorphism (with Weather-
all [2018]—recall again that this is the “trivial claim”), Halvorson and Manchak
[forthcoming] thereby accept Hole isometry.

Two points are worth stressing at this point. (a) There is (at this point, at
least) no prohibition on comparing any two isometric models of general relativity
using diffeomorphisms which do not witnesses those models’ being isometric—in
the above case, assuming that ψ is non-trivial, one could for example compare
those models using the identity map 1M , which (as we’ll return to below) does
not witness their being isometric (recall that to compare two models using a map
means to use said map as a standard of cross-model identity of what the points
related by that map represent). (b) At this point at least, nothing guarantees
that the diffeomorphism which witnesses the isometry between two metric man-
ifolds be unique: as already mentioned, such a claim amounts to the denial of
Distinct isometry, and will be discussed further below.

11Muller [1995] provides an explicit construction of such a hole isometry. Ultimately, we
take this work of Muller to establish the existence of hole isometries, and Halvorson and
Manchak’s result invoking Geroch’s theorem to establish the uniqueness of hole isometries.
(What we mean by this should be clear from the main text to follow.)
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2.3 Pernicious indeterminism

To set up the worry about indeterminism, we restrict our attention to glob-
ally hyperbolic manifolds: manifolds that are foliable into 3-dimensional spatial
hypersurfaces of constant time, denoted by Σt.

12 Now consider some globally
hyperbolic vacuum solution (M, gab). Hit this solution with a hole isometry
whose hole H is entirely to the future of some Σt. This new solution is identical
to the first solution up to time t. The acid-test substantivalist has to accept that
two worldsW andW ′, represented by these models and both possible according
to the theory, are identical up to some time slice, and non-identical thereafter.
They are thereby committed to (a pernicious form of) indeterminism.

Let us say a little more about determinism. Consider the following definition
from Pooley [2021]:

Intrinsic determinism: A theory T is intrinsically deterministic iff for any
two worlds W1 and W2 possible according to a given interpretation of T ,
if the past of W up to some timeslice in W is intrinsically identical to the
past of W ′ up to some timeslice in W ′, then W are W ′ are intrinsically
identical.

Here, we understand two sub-worlds as being intrinsically identical just in case
they agree not only on the pattern of instantiation of properties (and relations)
across particulars, but also over which particulars instantiate those properties
(and relations). We should note that Halvorson and Manchak [forthcoming]
dispute the intelligibility of this talk of intrinsic properties; we discuss this worry
in more detail in §4.1. Granting, for now, the intelligibility of talk of intrinsic
properties (Plurality, for example, assumes that such talk is intelligible when
restricted to spatiotemporal relations and material properties), we would like to
focus on a different aspect of the definition: determinism is ascribed to theories,
but only in virtue of the nature of the worlds possible according to those theories.
This is significant, because it makes the ascription of determinism depend on the
manner in which theories (i.e., collections of models) represent possible worlds.
It is not sufficient merely to look at the formalism of a theory; we need in
addition to attend to the representational conventions involved before we can
make any claims regarding determinism or a lack thereof.

Putting things together, we can set up the Hole Argument as follows:

(1) Substantivalism: Pluralist substantivalism

(2a) Mathematical claim: Tensorial dynamics ∧ Drag-along ∧ No fixed

fields ∧ Hole isometry

(2b) Interpretative claim: Models

(C) Pernicious indeterminism: ¬Intrinsic determinism

12More precisely, a globally hyperbolic metric manifold is a metric manifold (M, gab) which
possesses a Cauchy surface, i.e. a closed achronal set Σ whose domain of dependence is the
entire manifold M . For definitions of ‘achronal’ and ‘domain of dependence’, see [Wald, 2010,
p. 201].

10



Responses to the Hole Argument can be classified by which (and how many)
of the above premises they deny. How do Halvorson and Manchak [forthcom-
ing] fit into this classification? To answer this question, begin with Weatherall
[2018], who (at least focussing on his appeal to ‘mathematical structuralism’—
see [Pooley and Read, forthcoming] for discussion) argues that, when faced with
models of general relativity related by a hole diffeomorphism, one is mandated
by the formalism and/or practice of general relativity to compare those models
using a map which witnesses those models’ being isometric, in which case general
relativity per se does not generate a philosophical problem of indeterminism.
In other words, Weatherall’s appeal to mathematical structuralism underwrites
his denial of Models.

Turn now to Halvorson and Manchak [forthcoming]. The theorem proved by
these authors might (charitably) be claimed to plug a hole in Weatherall’s argu-
ments, for even on Weatherall’s own terms he requires (so the claim goes) that,
for any two models of general relativity related by a hole diffeomorphism, there
be a unique map witnessing those models’ being isometric. Non-uniqueness (the
claim continues) would imply a multiplicity of ‘legitimate’ ways of comparing
two models related by a hole diffeomorphism, some of which might correspond
to redistributing field values on manifold points, in which case the spectre of
indeterminism might re-arise. This uniqueness of isometries is (the claim ends)
assumed by Weatherall, but is only proved by Halvorson and Manchak. Thus
(in our reconstruction), Halvorson and Manchak also deny Models, but take
themselves only to be warranted in doing so having proved the results presented
in their article: in this sense, they agree with Weatherall, but (as we understand
them) take themselves to be affording him the mathematical results required to
underwrite the claims made in his article.

In brief, then: Halvorson and Manchak deny Distinct isometry, and this
is what allows them (in their view, given their commitment to ‘mathematical
structuralism’ of the kind which Weatherall also endorses) to deny Models,
thereby evading the Hole Argument. By embracing this line of reasoning, they
can be situated (with Weatherall) within a broader tradition, exemplified by
Leeds [1995] and Mundy [1992], of mathematical-cum-formalist responses to
the Hole Argument.13 To anticipate: our response to this is going to be that (a)
the denial of Distinct isometry needn’t implicate one in the denial of Models,
and (b) Weatherall’s denial of Models doesn’t rely in any significant sense upon
the results of Halvorson and Manchak in any case: in this sense, these latter
authors add nothing to prior work on mathematical/formalist responses to the
Hole Argument.

13In this broad context, our response to Halvorson and Manchak elaborated below is in
the anti-formalist tradition of Rynasiewicz [1996], who highlights (and argues against) the
implicit interpretational claims found in the formalists’ discussions. For further discussion of
mathematical/formal responses to the Hole Argument, see [Bradley and Weatherall, 2022].
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3 Halvorson and Manchak’s reading of the Hole
Argument

Halvorson and Manchak subscribe to the Hole Argument schema presented
above [Halvorson and Manchak, forthcoming, pp. 2–3]. However, they deny
Distinct isometry, which (as we have seen) they take to be sufficient to deny
Models. They base their denial of Distinct isometry upon a theorem proved
by Geroch [1969]. We begin this section in §3.1 by discussing Geroch’s result
and how Halvorson and Manchak attempt to co-opt said result for their claim
that the Hole Argument can be avoided. In §3.2, we demonstrate that Geroch’s
result cannot be used to support Halvorson and Manchak’s claim.

3.1 Geroch’s theorem and hole isometries

In a paper published in 1969, Geroch proved the following theorem [Geroch,
1969, pp. 188–9]:

Geroch’s uniqueness theorem: Let M and M ′ be connected [metric mani-
folds], and let w be an orthonormal tetrad at a[n element] p ∈ M and w′

at p′ ∈ M ′. Then there is at most one isometry d : M → M ′ which takes
w into w′.

It is worth discussing the construction that Geroch invokes in order to prove
this theorem (although we will not discuss the actual proof). Consider an n-
tuple of tangent vectors {ξa1 , . . . , ξan} at some element p. The ‘affine geodesic’
γ1 is defined to be the one whose tangent vector at p is ξa1 . We can parallel
transport the remaining (n−1) vectors {ξa2 , ...ξan} along γ1 to Tp′M , where p′ is
the element at a unit affine parameter distance of from p along γ1. We can now
repeat this procedure until we run out of vectors at some element q. The path
composed of subsets of the n geodesics γ1, . . . , γn is called a ‘broken geodesic’.
Since M is a connected manifold, every element q ∈ M is accessible via some
broken geodesic from p. We can therefore, in each tangent space, associate
uniquely an n-tuple of vectors with each element q ∈M . Let us call the n-tuple
associated with a broken geodesic its generating tuple.

Geroch’s uniqueness theorem now tells us that if we map p to d(p), and
drag along each w at p to some w′ = d∗(w) at p′, then any other isometry ψ
that does so will agree with d on the images of all other elements. In other
words, if d(p) = ψ(p) and d∗w = w′ = ψ∗w, then d(q) = ψ(q) for all q ∈ M . It
is straightforward to see why this is the case: the tetrad is a basis of the tangent
space, in terms of which each vector of the generating tuple can be expressed. If
the tetrad is preserved, then so too is the generating tuple. Following Geroch,
let us call theories of whose models the preceding property is satisfied rigid.

Considering now two models of general relativity related by a hole isometry,
Geroch’s uniqueness theorem states that there is a unique map which wit-
nesses those models’ being isometric. This is a special case of Halvorson and
Manchak’s Theorem 1:
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Theorem 1: Let (M, g) and (M ′, g′) be relativistic spacetimes. If ϕ
and ψ are isometries from (M, g) to (M ′, g′) such that ϕ|O = ψ|O
for some non-empty open subset O of M , then ϕ = ψ. [Halvorson
and Manchak, forthcoming, p. 17]

Having shown this, Halvorson and Manchak have demonstrated that Distinct
isometry is false.

Now, at this point one might be confused—for how (one might ask) can
Halvorson and Manchak’s commitment to Hole isometry be consistent with
Corollary 2 (regarding the “Non-existence of Hole Isomorphism”) to Theorem
1 as presented in their article? Here is that corollary:

Corollary 2 (Non-existence of Hole Isomorphism): Let (M, g) be a
relativistic spacetime, and let O be a subset of M such that M \O
has non-empty interior. If ϕ : (M, g) → (M, g) is an isometry that
is the identity outside of O, then ϕ is also the identity inside O.
[Halvorson and Manchak, forthcoming, p. 18]

Despite its name, Corollary 2 is consistent with Hole isometry, because the
corollary states that any isometry from (M, gab) to itself must be the identity
everywhere, so that non-trivial isometries (including hole isometries) relating
(M, gab) to itself cannot exist. However, Hole isometry states that there exist
two distinct models (M, gab) and (M,ψ∗gab) where ψ is a non-trivial map which
witnesses those models’ being isometric—and this, of course, is perfectly con-
sistent with Corollary 2. Since Corollary 2 regards maps from (M, gab) to itself,
both it, and any claims regarding the non-existence/triviality of hole isomor-
phisms with which it is associated, are—we contend—irrelevant for discussions
of the Hole Argument as standardly construed, since those discussions trade on
there being distinct models (M, gab) and (M,ψ∗gab).

3.2 Reopening the Hole Argument

It is at this point that it becomes clear that Halvorson and Manchak can be
read as plugging a gap in Weatherall’s argument about how the Hole Argument
is closed. (We have already presented this reading above, but we now elaborate
upon it in more detail.) Let us briefly recapitulate Weatherall’s argument.

Weatherall [2018] claims that the Hole Argument is blocked if one accepts
the following commitment (which he argues is to be derived from mathematical
practice):

Structuralism: The standard of cross-model sameness of points represented
by manifold elements in different isometric models is to be given by the
map which witnesses those models’ being isometric.

This is a core thesis underlying what Pooley and Read [forthcoming] refer to as
Weatherall’s ‘argument from mathematical structuralism’. As we have seen, one
might claim that Halvorson and Manchak’s central contribution to the recent
mathematical/formalist discussions of the Hole Argument is that in addition
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to highlighting that Structuralism is by itself insufficient to block the Hole
Argument, they identify (and prove) the additional claim which they take to be
required here—viz., the negation of Distinct isometry.

It is easy to see why one might think that Structuralism on its own is
insufficient to block the Hole Argument: if there were (per impossibile) multiple
distinct diffeomorphisms that witnessed the isometry between M1 and M2,
then there would be multiple legitimate (by the standards of Structuralism)
ways of associating elements between M1 and M2, including some that agree
on sameness of points represented by elements before some time t but disagree
thereafter. On this reading, Weatherall’s argument could be rendered as the
following conditional:

Structuralism ∧ ¬Distinct isometry→ ¬Models.

The claim which we are countenancing here maintains that Weatherall assumes
without proof the falsity of Distinct isometry; Halvorson and Manchak wield
Geroch’s theorem in order to establish this.

Presenting matters in this way raises three pertinent questions:

1. Does Weatherall’s argument indeed presuppose the negation of Distinct
isometry?

2. Are the commitments which Halvorson and Manchak take to dissolve
the Hole Argument (namely, Structuralism and the denial of Distinct
isometry) warranted?

3. Even if we accept said commitments, is the Hole Argument indeed thereby
closed?

Regarding (1): we in fact think that the above line—that Halvorson and
Manchak close a hole in Weatherall’s argument by proving the negation of
Distinct isometry—is too charitable to Halvorson and Manchak, and in-
sufficiently charitable to Weatherall. For in fact, the negation of Distinct

isometry is unnecessary for Weatherall’s argument (i.e., what Pooley and Read
[forthcoming] dub the ‘argument from mathematical structuralism’, as presented
in [Weatherall, 2018]) to proceed as intended (of course, whether Weatherall’s
argument is ultimately successful is another matter, to which we turn below).
For even if there were to exist multiple diffeomorphisms witnessing the isom-
etry between models M = (M, gab) and M′ = (M,ψ∗gab), these maps would
differ at most by a transformation which leaves the metric invariant (i.e., an
automorphism of the metric)—in which case, a multiplicity of such maps would
still not imply indeterminism. To see this, suppose that there are two pull-
backs of the metric which coincide: ψ∗

1gab(p) = ψ∗
2gab(p). From this, it follows

that (ψ1 ◦ ψ−1
2 )

∗
gab(p) = gab(p)—so ψ1 ◦ ψ−1

2 is an Isometry1 of gab. For a
generic metric, these isometries are just the identity, so ψ1 = ψ2. And in
the case in which gab has non-trivial isometries (in the sense of Isometry1),
ψ1 ◦ ψ−1

2 is still an automorphism of the metric, and so does not shift fields on
the manifold in such a way as to lead to the possibility of the Hole Argument
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re-arising. Given this, the above charitable reconstruction of the contribution
of Halvorson and Manchak’s results to Weatherall’s argument does not seem
compelling: Weatherall’s arguments needed nothing like such results to begin
with; the denial of Distinct isometry is not a crucial-but-implicit element of
his reasoning.14

In any case, turn now to (2): are Structuralism and the denial of Distinct
isometry warranted? Clearly, the denial of Distinct isometry is correct; af-
ter all it is a mathematical claim established by a theorem. So let us focus our
attention on Structuralism. In this case, we do not agree with the strictures
which Structuralism imposes: in our view, there is no prohibition on compar-
ing two models of a theory using any map which one pleases (after all, all such
maps are perfectly well-defined mathematically); moreover, one can articulate
the Hole Argument of general relativity by comparing hole diffeomorphic models
using exclusively the identity map 1M—a point made at length by Pooley and
Read [forthcoming] in their discussion of Weatherall’s ‘equivocation argument’.
Thus, in our view, the case for Structuralism is not compelling.

Regarding (3): suppose that we meet Halvorson and Manchak on their own
terms, and accept (if only for the sake of argument) both Structuralism and
(less controversially) the denial of Distinct isometry. Even then, we do not
think that the Hole Argument is thereby closed. The reasons here are more
delicate, but are essentially those elaborated upon in depth by Pooley and Read
[forthcoming] in their discussion of Weatherall’s ‘argument from mathematical
structuralism’. We refer the reader to that article for the details, but in brief the
point is easy to state: indeterminism is a metaphysical issue; simply insisting
upon Structuralism, or (with Weatherall [2018]) stating that isometric models
of general relativity have “the same representational capacities” does not per
se address this metaphysical issue. Insofar as one thinks that these metaphysi-
cal matters are (at least to some degree) independent of the mathematical tools
which we use to represent possibilities, then—transparently—denying Distinct
isometry does not help the advocate of Structuralism to overcome these is-
sues: if one has reason to think that there is a plurality of haecceitistically
distinct possible worlds (which is, arguably, the historically default substanti-
valist position—one which, indeed, is invited very naturally by the formalism of
general relativity: see [Pooley and Read, forthcoming, p. 22]), then supplement-
ing Structuralism with the negation of Distinct isometry will not assuage
one’s worries regarding determinism generated by the Hole Argument.

In brief, then, and in sum: Halvorson and Manchak [forthcoming] can most
charitably be read as attempting to fill a lacuna in Weatherall’s mathemati-
cal/formalist argument against the force of the Hole Argument; in fact, however,
we have seen that such a reading is too charitable to Halvorson and Manchak
and insufficiently so to Weatherall, for whom—we claim—no such results were
needed to begin with. Given this, it is unclear what Halvorson and Manchak’s
results on this front add to this class of recent responses to the Hole Argument.
But in any case, we also do not think that the combination of Structuralism

14We are very grateful to Henrique Gomes for discussion on the contents of this paragraph.
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(the central tenet of all such mathematical/formalist responses) and the de-
nial of Distinct isometry is sufficient to “close” the Hole Argument. In fact,
closing the Hole Argument, in the structuralist manner that Halvorson and
Manchak suggest, would, in addition, require either (i) a non-trivial argument
for the truth of the above conditional, or (ii) a supplementary conjunct in the
antecedent that renders the conditional true. Halvorson and Manchak provide
neither.

4 Outstanding issues

In this section, we tie up a few loose ends. We discuss three claims made by
Halvorson and Manchak in support of their view with which we disagree: the
first on determinism (§4.1), the second on the structure of the category of models
for general relativity (§4.2), and the third on essentialism (§4.3).

4.1 Determinism

Although determinism is at base a metaphysical issue—do the laws plus the
state of the universe at a particular time fix the state of the universe at some
or even all other times?—the reasons underlying why determinism is considered
problematic are principally epistemic: if we know the laws and the appropriate
boundary conditions, but are nonetheless unable to predict all other conditions,
then, in particular, knowledge of the future via knowledge of the laws and of
the past is limited to at least some degree.15 By invoking both formal as well as
metaphysical considerations, Intrinsic determinism latches onto this sense in
which indeterminism is worrisome. That being said, it is important to recognise
that Intrinsic determinism is far from being the only notion of determinism
on the table (for an extensive catalogue of plausible alternatives, see [Earman,
1986]).

One might legitimately prefer not to characterise determinism in terms
of intrinsic properties, depending upon one’s metaphysical views (Halvorson
and Manchak [forthcoming] fall into this camp). But whatever the alterna-
tive characterisation at which one arrives, it is crucial that, in order to cap-
ture the genuine epistemic worry of indeterminism, it make explicit the impor-
tance of both formal as well as representational commitments (more on this
below). After complaining that Intrinsic determinism is insufficiently pre-
cise, Halvorson and Manchak consider two alternative characterisations: (i) MLE
determinism,16 and (ii) Dynamical rigidity:

MLE determinism: A theory T is MLE deterministic iff for any two models M
and N of T , if there is an initial segment U such that M|U = N|U , then

15Assuming that we do not have other means of ascertaining the global state of the
universe—e.g., divine insight. It’s an open question whether the resources of indexicals can be
brought to bear in order to resolve these epistemological issues—see [Cheng and Read, 2022]
for discussion.

16After Montague, Lewis, and Earman: see [Halvorson and Manchak, forthcoming, p. 16].
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M = N , where an ‘initial segment’ U ⊆ I is a suborder of a linear order
I such that U is nonempty and for any j ∈ U , if i ∈ I and i ≤ j, then
i ∈ U .

Dynamical rigidity: A theory T is dynamically rigid iff for any two models
M and N of T , and any two isomorphisms f, g :M → N , if fi = gi for all
i in some initial segment U , then f = g.

Given our demand that a good definition of determinism capture the epis-
temic worry described above, we can, with Halvorson and Manchak, disregard
MLE determinism: it is a purely formal characterisation, and as such, suffers
from fairly generic worries that stem from Putnam- and Goodman-style para-
doxes of reference, according to which, broadly speaking, nothing in the struc-
ture of models fixes the ‘semantic glue’ between words and their referents. As
Halvorson and Manchak observe, “the construction ... is not very interesting: it
just uses the fact that for any set Mi, there is an isomorphic but non-identical
set Ni” [Halvorson and Manchak, forthcoming, p. 21].

Consider, then, Dynamical rigidity. In the present context, where for
dialectical clarity we focus on vacuum solutions so that the standard of isomor-
phism is isometry of Lorentzian manifolds, Dynamical rigidity is very closely
related to Geroch’s uniqueness theorem. Indeed, if the conditions of Ge-
roch’s theorem are satisfied, then general relativity turns out to be dynamically
rigid. And this is precisely what Halvorson and Manchak assume. Unsurprising,
then, that if this constitutes the standard of determinism, then general relativity
is deterministic. Here, one might charge Halvorson and Manchak with not en-
gaging sufficiently with the metaphysical issue of determinism (i.e., traditional
discussions of the notion to be found in the literature on the Hole Argument)—
recall §2.3—by defining the notion in terms of the mathematical property of
Dynamical rigidity.

4.2 A category mistake?

Following Halvorson and Manchak [forthcoming], consider three categories,Man,
Mang, and Lor. Objects of Man are differentiable manifolds; morphisms are
diffeomorphisms. Objects of Mang are pairs (M, gab) of differentiable manifolds
M and Lorentzian metric fields gab onM ; morphisms are again diffeomorphisms
between manifolds (i.e., the metrical structure of the objects is ignored). Ob-
jects of Lor are are again pairs (M, gab), but now morphisms are isometries (of
the Isometry2 type) between these pairs. There is a forgetful functor relating
Lor and Mang: although the objects in these categories are the same, the
former has fewer morphisms than the latter.17

Halvorson and Manchak point out that diffeomorphisms between differen-
tiable manifolds needn’t preserve a great many affine or geometrical features—
e.g., lengths of curves, the timelike/spacelike nature of vectors, or flatness
[Halvorson and Manchak, forthcoming, pp. 9–10]. Accordingly, they claim

17For accessible background to the relevant category theory here, see [Weatherall, 2016].
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that—historically—philosophers writing on the Hole Argument have been con-
fused insofar as they have focussed on diffeomorphisms: in their preferred lan-
guage of category theory, the claim is that authors have mistakenly focused
on Man or Mang, whereas instead authors should have recognised the correct
category as being Lor, which has a more discerning notion of equivalence.

As a statement about the correct category to consider, we can grant that
this is correct—although we find Halvorson and Manchak’s historical claim not
to be entirely fair. Indeed, as we mentioned in §2, the term ‘diffeomorphically
related’ as it applies to models is really a shorthand for models whose tensorial
contents are dragged along by a diffeomorphism; nobody ever suggested oth-
erwise. In any case, though, the claim that one should use Lor is certainly
endorsed implicitly by commentators such as Fletcher [2020] and Weatherall
[2018]. But the real question is: does using the standard of equivalence of
models afforded by Lor suffice to block the Hole Argument? For the reasons
already discussed above, we think not: even if one thinks (as, we take it, with
Weatherall, Fletcher, and Halvorson and Manchak) that using the standard of
equivalence of models afforded by Lor implies Structuralism, we have already
seen that this commitment by itself is insufficient to block the Hole Argument.

4.3 The essentialism tension

Towards the end of their article ([Halvorson and Manchak, forthcoming, §7]),
Halvorson and Manchak draw a comparison between their own work and Maudlin’s
‘metric essentialist’ response to the Hole Argument [Maudlin, 1988]. Recall
that, on metric essentialism, spacetime points have their metrical properties
essentially, so that in fact only one of the class of possible worlds represented
by models of general relativity related by a hole diffeomorphism is a genuine
metaphysical possibility. Halvorson and Manchak profess to being inspired by
Maudlin’s attendance to the metric as being important in resolutions of the
Hole Argument—although, quite rightly, they acknowledge that the details of
their response differ substantially from the details of Maudlin’s (mathematical
considerations versus heavy-duty metaphysics, respectively).

The first point to make here—continuing one point from above—is that
Halvorson and Manchak are simply incorrect in their claim that other authors
(except Maudlin) have paid insufficient heed to the significance of the metric
field in the models of general relativity when considering the Hole Argument.
But setting this aside, they also make claims about Maudlin’s views which we
find problematic. Consider a theory which Halvorson and Manchak call T ′ (see
[Halvorson and Manchak, forthcoming, p. 26]), according to which (i) there are
exactly two people, (ii) exactly one of those people has blond hair, and (iii) hair
colour is an essential property. On T ′, Halvorson and Manchak write that

if T ′ has a model where Alice has blond hair, then it cannot have a
model where Bob has blond hair; because if Alice has blond hair in
one model, then she has blond hair in all models. However, Tim is
now in an awkward position: he does not know what the models of
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his theory are until he determines which person has blond hair. So,
to the extent that knowing a theory is knowing what possibilities
it permits, Tim does not even know his own theory. In contrast, I
know exactly which possibilities my theory permits. [Halvorson and
Manchak, forthcoming, pp. 26-27]

The idea here seems to be that, if hair colour is an essential property, then
Alice and Bob cannot be represented as having different hair colours in different
models of T ′. This strikes us as confusing mathematics and metaphysics: hair
colour being an essential property is a metaphysical issue; T ′ can have models
in which Alice has blonde hair and hair colour is an essential property, and
models in which Alice has some other hair colour and hair colour is an essential
property—it’s simply that one of those models—if hair colour is indeed an es-
sential property!—will not correspond to any possible world.18 For this reason,
Maudlin’s metric essentialism is not confused in the way that Halvorson and
Manchak suggest.19
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