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Seventeenth century “chance combinatorics” was a self-contained theory. It had an
objective notion of chance derived from physical devices with chance properties,
such as die casts, combinatorics to count chances and, to interpret their significance,
a rule for converting these counts into fair wagers. It lacked a notion of chance as a
measure of belief, a precise way to connect chance counts with frequencies and a
way to compare chances across different games. These omissions were not needed
for the theory’s interpretation of chance counts: determining which are fair wagers.
The theory provided a model for how indefinitenesses could be treated with
mathematical precision in a special case and stimulated efforts to seek a broader

theory.

1. Introduction

The writing of the history of probability theory has been controlled by one question:
How close were earlier ideas to modern probability theory?

The traditional starting point is the correspondence between Fermat and Pascal in 1654 on the
problem of points, posed by the Chevalier de Méré. It asks how to divide fairly the stakes
between two gamblers in an interrupted game of dice.

The question is worth answering. Problems arise if it is the only question asked. Then we
are led to a distorted picture of the historical development of ideas of chance. In it, earlier ideas
of chance are incomplete or defective and their value lies only in fostering the views we now

hold. We should ask a different question:



What conception of chance did these earlier figures have?
My goal in this paper is to answer this second question for a conception of chance that came to
maturity in the seventeenth century.

The main elements of the theory are recounted in Sections 2 and 3. Its application was
limited to traditional games of chance that are played with simple, physical devices, such as cast
dice, shuffled cards and lottery drawings. They supply players and gamblers a discrete set of
equal chance outcomes. The theory’s chance notion was objective and secured by the physical
properties of the device realizing chance behaviors. While this notion can be subsumed by later
probabilistic accounts, it is a cogent notion in its own right. The major computational elements of
the theory were the use of combinatorics to determine the chances of compound outcomes; and a
rule for which wagers in a game are fair. This last rule was the principal means of interpreting
the chance counts. It enabled gamblers to determine which games favored them and which did
not; and it enabled a practical understanding of the significance of various counts of chances.
What might it mean that one outcome has seven chances and another five? It is that a stake of
five on the first to seven on the second is a fair wager. That understanding is conveyed without
any need actually to place wagers. The theory deserves a name and I will use “chance
combinatorics” for it. Its leading expositors were Cardano and Huygens and it was a theory
widely known and applied in the seventeenth century.

Section 4 recounts what was missing from chance combinatorics. The theory lacked a
notion of chance as a measure of belief; it had no precise connection between chances and
frequencies; and it lacked a direct means to compare chances across different games. The theory
counted equally likely chances and did not form as the fundamental quantity the later notion of
probability as the ratio of favorable to all chances. The omission of this ratio was not an
oversight. It had no foundational role. That changed when Jacob Bernoulli sought a way to use
Huygens’ analysis to assign chances to situations outside the tidy realm of games of chance. His
version of the law of large numbers provided the means to recover probabilities a posteriori from
frequencies. In the absence of this connection, frequencies were only seen to be loosely
connected with chance counts and could not be used to compare chances in different games or to
justify the rule for identifying fair wagers.

These omissions are no reason to dismiss chance combinatorics as an incomplete or

defective theory. For the theory did not need these missing components to serve its function of



assessing the relative chances of outcomes and discerning which are the fair wagers. When
Huygens’ 1656 De Ratiociniis in Ludo Aleae presented a game theoretic derivation of the rule
for fair wagers, it provided a satisfactory completion to chance combinatorics without
consideration of frequencies. It was a self-contained theory, successful in its limited goals. It was
stretched to its limits in 1693 when Samuel Pepys tasked Newton with a problem that required
chance comparisons across different outcome spaces. The inability of chance combinatorics to
make such comparisons explains the otherwise puzzling convolutions of Newton’s analysis.

Section 5 argues that it is hard to see why the 1654 correspondence of Fermat and Pascal
has such prominence in our histories. Their analysis was mathematically sophisticated, but
proceeded fully within chance combinatorics. It used known methods on a known problem and
did not add anything of foundational importance. Section 6 examines how the historical literature
came to elevate the importance of Fermat and Pascal’s correspondence and reports the later
literature’s efforts to rectify this overestimation. Since this literature has been too concerned with
finding modern probabilistic ideas in earlier writings, it left no place for chance combinatorics,
which became the theory that history forgot.

Finally, Section 7 proposes an alternative historiography for probability. The seventeenth
century theory of chance combinatorics provided a model for later theorizing. It showed how
indefinitenesses could be analyzed with mathematical precision in the narrow case of games of
chance. Its success inspired the project of extending chance combinatorics to a wider range of
indefinitenesses and eventually led to modern probabilistic analysis. The mathematical methods
of modern analysis, based on the theory of additive measures, vastly outstrips the relatively
meager powers of the mathematics of the seventeenth century. However, interpretations of
probability in the present analysis are fragmented. They have failed to provide a univocal
understanding of probability that matches the simplicity of seventeenth century chance

combinatorics. In this one aspect, modern analysis falls short of its seventeenth century model.

2. Chance Combinatorics

In the seventeenth century, a serviceable theory of chance was brought to completion. It
applied specifically to games of chance in which a physical device chose with equal favor among
a finite set of outcomes. The theory’s goal was to compute the chances of different outcomes and

to discern which bets are equally fair to all players. The notion of chance employed could later



be subsumed by that of a uniform probability measure over a finite outcome space. However,
since this modern theory was not available in the seventeenth century, it could not then be
understood in this way. In this sense, it was a non-probabilistic theory. The chance of an
outcome was assessed by counting the number of primitive, equal chance cases that comprised it.
The numerical notion of probability as the ratio of favorable to all chances was absent or merely
introduced as an intermediate in other computations.

The pertinent notion of chance could only be loosely connected with frequencies. The
precise application came in the theory’s identification of which are the fair wagers. It was the
result of practical value to gamblers. Fair wagers could be accepted knowing that no player was
advantaged. Deviations from them would be sought if they favored the player and avoided if they
did not. It also gave a meaning to chance assessments that extend beyond the confines of the
theory. A computation within the theory might tell us that one outcome arises with seven chances
and another with five. The import of that difference could be conveyed by identifying a
corresponding fair wager: a stake of five on the first to seven on the second. This import could
not be recovered precisely using frequencies, since the theory asserted no precise connection to
them. It could not interpret equal chance outcomes as those that arise equally often, near enough.
It could interpret them as those in which one could take either side of an equal stakes bet without
either gaining an advantage.

The components of the theory were:

* Setting: A finite set of primitive cases with selection among them by a physical process,
such as die casts, whose mechanical operation assured the equality of their chances.
* A mathematical component: The combinatorics of counting primitive cases. It answered
question such as “how many combinations of casts of two dice give a sum of seven?”
* An interpretive component: for a given game where equal chance outcomes are known,
which are the wagers that are equally fair to all players.
These three components will be described in greater detail in Section 3 below. While this theory
was narrower in scope than that of modern probabilistic analysis, it was self-contained and
useful. It remains as serviceable to gamblers today as it was for those in the seventeenth century.
This theory of chance combinatorics was assembled slowly from elements that had

already been present for centuries and in one case millennia. It was in wide-spread practical use,



even if it rarely appeared in academic treatises. The existence of the theory was recognized by
Laplace (1902, p. 185) as part of a remark of historical importance:
Long ago were determined, in the simplest games, the ratios of the chances which
are favorable or unfavorable to the players; the stakes and the bets were regulated
according to these ratios.
When we return to Laplace’s influential remark below, we shall see that he had little respect for

the theory.

3. What is in Chance Combinatorics

Two self-contained treatises on chances embody this theory of chance combinatorics. The
first is Girolamo Cardano’s Liber de Ludo Aleae, his Book on Games of Chance. The text was, as
reported by David (1965, p.43), written and rewritten in fragments between 1525 and 1565. It
was discovered among his papers posthumously and first printed in his collected works as
Cardano (1663). Ore (1953) gives an extended analysis of it and includes an English translation,
Cardano (1663a). It is a boisterous work, written by someone who himself gambled extensively
and also had considerable mathematical abilities. The work is a mixture of practical advice from
an experienced gambler, raucous anecdotes and the mathematical analysis of chance. It includes
all the elements of the theory of chance combinatorics and also additional constructions,
idiosyncratic to Cardano. It is a challenging work to read since it is not always internally
consistent and, for this reason, authors like Todhunter (1865, p. 3) are impatient with the text.

Christiann Huygens’ (1657) De Ratiociniis in Ludo Aleae (On Reasoning in Games of
Chance) was, by contrast, a work of disciplined analysis by a careful mathematician. Its novel
contribution was to provide a non-frequentist, game-theoretic justification of the rule that
specifies which are the fair wagers. This justification perfected the theory of chance
combinatorics. At least two translations into English were prepared within the ensuing half

century (Arbuthnot, 1692; Brown, 1714). It was an influential work.
3.1 Setting: Equal Chance Cases

3.1.1 Cardano’s Principle
The analyses of Cardano’s Liber require that the casting of dice and related devices
produces equal chance outcomes. This he makes clear in his Chapter VI (1663a, p.189):
6. The Fundamental Principle of Gambling



The most fundamental principle of all in gambling is simply equal conditions, e.g.

of opponents, of bystanders, of money, of situation, of the dice box, and of the die

itself.
The statement entangles the social with the physical conditions. Its later part shows an
understanding that the die casts must produce an equality of chances. In the next Chapter VII,
Cardano, the experienced gambler, describes how the equality can fail due to slight variations in
the physical condition. The chapter provides directions on the detection of inequalities in the
gaming board, the dice box and the dice; and even warns of various forms of dishonest fakery in
the dice themselves. (We shall return to this last concern below.)
3.1.2 The Archeology of Physical Devices with Chance Properties

Dice and other similar chancy devices have been found in virtually all eras of history,
including many centuries BCE.! Their forms can provide some indication of the concepts of
chance entertained by their users.

Since nature does not supply ready-made cubes, their ancient presence suggests that dice
makers found it worth the effort to craft a shape that guarantees equal chances for each of the six
sides in a fair cast. This presumes that they had a local concept of the chance of each face. We
have anecdotal reports of ancient successes in forming fair cubical dice. Hacking (2006, p. 4)
found dice in the Cairo Museum of Antiquities “exquisitely well balanced.” David (1955, pp. 6-
7) reported less success in her investigations: “Many dice of the classical period have been
thrown by the writer and they were nearly all biased but not all in the same way.”2

What complicates matters is that many forms of irregular dice-like devices were also
recovered from ancient sites. They are dice that visibly deviate from cubical and irregularly
shaped astragali or tali, now commonly known as knucklebones. Their popularity shows that
many users were indifferent to whether each face arose with equal chances. Norton (2022)

argues that these users would have found these irregular devices fit for their purposes if they

I Artioli et al. (2011) examined the physical properties of 91 Etruscan dice. The earliest, sample
40, was cubic and was dated to the eight century BC. Many more came from the sixth to the third
centuries BCE.

2 My chi-square test for uniformity on the data she supplies for casts of three ancient dice show

two passing and the third die, which is visually irregular, failing.



approached the chance properties of the overall system globally. In gambling, this means that the
rules of play were such that each player has equal prospects of winning, independently of the
probabilities of the individual device outcomes. In a popular ancient game, four tali are cast and
the player takes the pool with a Venus (all four tali different); or must contribute to the pool with
a “dog” (all ones).3 That the sides of the tali arise with different chances* gave no player an
advantage. They were all subject to the same rules.

What is important for our purposes is that dice makers gradually abandoned irregular
shapes. In Artioli et al.’s (2011) examination of Etrurian dice in the eighth to third centuries
BCE, 74 are described as “cube” and 17 as “parallelepiped.” Eerkens and de Voogt (2017, p.
169) examined 110 cubical dice recovered in the Netherlands and found that dice became more
regular with time in the past two millennia:

... die symmetry increases steadily over time. Nearly 90% of the dice in our

database that date before 650 CE have maximum sides that are more than 5% larger

than the minimum (max/min > 1.05). After 1450 CE, less than 40% of the dice are

similarly lopsided.
They judged that dice exceeding their 5% limit would be visibly irregular. This study shows that,
by the end of the middle ages, there was a shift towards regularity in dice. This, along with the
abandoning of knucklebones in gambling, indicates a growing concern for physical devices
whose individual outcomes have equal chances.
3.1.3 Faked Dice

Another indication of the understanding that a regular die produces equal chance
outcomes is the existence of faked dice. They outwardly resemble regular dice but have been
surreptitiously tampered with to make the chances of different outcomes unequal. That the
tampering must be surreptitious shows that it was not only the cheats who understood the effects
of deviations from regularity. David (1955, p.6) reports what might be a weighted die in Roman

times. It has an opening that can be covered with a seal. Her description matches that of ivory

3 Augustus Caesar, as quoted by Suetonius (Rolfe, 1914, p. 235), describes playing this game.
4 David (1955, p.3) found that the two broader sides numbered 3 and 4 arise each with
probability roughly 4/10. The remaining two narrower sides are numbered 1 and 6 and each arise

roughly with probability 1/10.



dice recovered from the ruins of Pompei. In a museum photo, two ivory dice with round
openings and round plate seals can be seen.>
In 16th century England, gambling was widespread and, with it, much cheating.

Aydelotte (1913, Ch. IV) is a revealing compendium of the many forms of cheating taking place.
Reproducing a list from an early salacious exposé of many forms of cheating, Anon (1555),6
Aydelotte (p. 91) lists fourteen different types of faked dice in the cheater’s outfit and decoded
the form of faking in some of them:

Fullams were dice loaded with quicksilver or lead: bristles were those with a short

hair set in one side to prevent that face lying on the table. Capell conjectures that

gourds were dice hollowed out on one side to accomplish the same result as

loading.
“Flats” are dice reduced in length on one axis, so that the faces on that axis are more likely. A
“langret” or “barred die” was elongated on the axis with faces marked three and four and thus
made a cast of three or four more difficult. A passage in Anon (1555) is reproduced” in
Aydelotte (p. 91-92):8

‘Lo here saith the chetor to this yong Nouisse, a well fauored die that semeth good

and square: yet is the forhed longer on the cater and tray, then any other way, and

therefore holdeth the name of a langret, such be also called bard cater [4] tres [3],

bicause commonly the longer end will of his owne sway draw downwards, and

turne vp to the eye sice [6] sinke [5], deuis [2] or ace [1], the principal vse of them

is at Nouem quinque. So long as a paier of bard quater tres be walking on the bord

5 Exhibit “A Day in Pompei,” Museum of Science, Boston, MA, October 2, 2011 - February 12,
2012). http://www.outandaboutinparis.com/2011/10/day-in-pompeii-at-museum-of-science-
in.html

6 An original of this rare book is in the Huntington Library, San Marino, California.

7 Correctly—1I checked against the original ms. Aydelotte dates the work to 1552. The
Huntington Library Catalog reports 1555.

8 This passage proved so enticing to contemporaries that Aydelotte (Appendix B) could

demonstrate that it was reproduced nearly verbatim in three subsequent works of the time, all by

different authors, in 1597, 1608 and 1612.



so long can ye cast neither .v. nor .ix. onles it be by a great mischance that the

roughnes of the bord, or some other stay, force them to stay and run against their

kind. For without quater trey, ye wot that, v. nor .ix. can neuer fall.’
This last passage indicates an astute understanding of just how sensitive the roll of the die is to
such issues as the perfection of the cube and the surface on which it is cast. There was a
community of cheaters whose livelihood depended at least in part on an understanding of how
well-made dice yield equal chance outcomes and how subtle tampering could affect them; and
that the tampering had to be subtle since everyone else also understood the equality of chances in

regular dice.”
3.2 The Mathematical Component: Combinatorics

The above understanding of equal chance cases is, by itself, only of limited use. Real dice
games were played with several dice. In such games, a player needs to be able to compare the
chance of, say, a pair of dice yielding a sum of two or a sum of seven. The standard approach is
to count the number of equal chance cases comprising each outcome. There is only one such case
for the sum of two, but there are six cases for the sum of seven. A novice might imagine that a
sum of three comes about only in one way: a one on one die and a two on the other. Someone
more adept at case counting would recognize that it can come about in two ways: a one on the
first die; and a two on the second; and the reverse.

3.2.1 De Vetula

There is ample evidence that this more adept understanding of the combinatorics was in
wide circulation for centuries prior to the seventeenth century. Strong evidence comes in the
Latin poem De Vetula (“Of the old lady”). It is nominally attributed to Ovid, but was most likely
written in the thirteenth century by Richard de Fournival, Chancellor of the Cathedral of Amiens.
It recounts Ovid’s disappointment in romantic engagements and how he turned to other pursuits.

Part of the narrative includes a sustained account of how to count correctly the various

9 A set of 24 doctored dice of the late fifteenth century has been recovered from the Thames
foreshores. They include dice weighted with mercury and also those with repeated pip counts.

See https://medievallondon.ace.fordham.edu/collections/show/92



combinations of die casts.10 It examines in great detail how the count should go for the casting of

three dice. The results are summarized in a table reproduced in Figure 1.

Quot pw:&ttu;é & quot cadentias B
babeat quilibet mumerorum
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18 Punflatura 1 Cadentia t
+7. Punlature.s Cadentic -3
16 Punlature 2 Cadentic 6
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12 Punlature 6. Cadentic 25
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Figure 1. Table of Combinations from de Vetula 11

My rather free translation is: 12
Each compound number has the following number of pips and ways of casting.
3 18 pips 1  casts 1
17 pips 2 casts 3
16 pips 2 casts 6

4

5

6 15 pips 3 casts 10
7 14 pips 4 casts 15
8

13 pips 5  casts 12 [21]

10 For further discussion of the manuscript, see Robathan (1957); and for discussion of the
combinatorics of dice casts in de Vetula, see Kendall (1956, p.6), David (1962, pp. 33-34) and, in
most detail, Bellhouse (2000).

Il The image matches that of the corresponding page reproduced in Bellhouse (2000, p. 130),
which is identified there as from the 1534 printing. Both include the typographical error in row 8
not found in other editions, such as the 1662 edition shown in Kendall (1956, p. 6) and David
(1962, p. 32)

12 The entry 12 in row 8 is a typographical error that has inverted the order of the digits of the

correct value of 21.
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9 12 pips casts 25
10 11 pips 6  casts 27
In all, 108 casts of all the pips.
The rows can be read as follows. For the row marked “5”:
For the casts of three dice showing a sum of 5 or of 16, if we neglect the order of the pips
on the dice, there are two different configurations (“pips”). For 5, they would be {1, 1, 3}
or {1,2,2}. For 16, they would be {5, 5, 6} or {4, 6, 6}. Each of these can be cast in 3
ways: for a sum of 5, 1-1-3, 1-3-1, 3-1-1 and 1-2-2, 2-1-2, 2-2-1, making 6 configurations
in total (“‘casts”); and similarly for a sum of 16.
This was not an obscure manuscript in its time. Bellhouse (2000, p. 126) reports that nearly sixty
copies still exist and that the poem was well cited. The earliest copies were produced manually
by scribes. There were printed versions in 1479, 1534 and 1662 and even a French adaptation.
3.2.2 Cardano
Girolamo Cardano, in his Book on Games of Chance, was adept in the combinatorics of
case counting. His presentation, however, is extended and idiosyncratic. Here is a part of his
analysis of two die casts (Cardano, 1663a, p. 198):13
In the case of two dice, the points 12 and 11 can be obtained respectively as (6,6)
and as (6,5). The point 10 consists of (5,5) and of (6,4), but the latter can occur in
two ways, so that the whole number of ways of obtaining 10 will be 1/12 of the
circuit and 1/6 of equality. Again, in the case of 9, there are (5,4) and (6,3), so that
it will be 1/9 of the circuit and 2/9 of equality. The 8 point consists of (4,4), (3,5),
and (6, 2). All 5 possibilities are thus about 1/7 of the circuit and 2/7 of equality.
The point 7 consists of (6,1), (5, 2), and (4,3). Therefore the number of ways of
getting 7 is 6 in all, 1/3 of equality and 1/6 of the circuit. The point 6 is like 8, 5 like
9, 4 like 10, 3 like 11, and 2 like 12.
This passage correctly counts the combinatorics associated with two die casts. For example, he

notes that a sum of 10 arises from (5,5) and from (6,4), where the latter can arise in two ways,

13 The translator has simplified the presentation of the text by writing the outcomes as “(6,6),”
“(6,5),” etc. Cardano’s Latin is “bis, sex, atque sex, & quinque,” that is “twice six, and six &

five.”
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according to which die shows the 6. These 3 equal chance cases are 3/36 = 1/12th of the total
number, 36, of chances. Cardano then reports the same result with his idiosyncratic notion of
“equality.” We are to imagine the total number of equal chance outcomes to be divided into two
equal parts. In this case, half of 36 equal chance cases is 18. An outcome in one such part has the
same chance as an outcome in other half. The three cases corresponding to a sum of 10 then
constitute 3/18 = 1/6th of equality.

There are many more instances in the book of Cardano correctly computing the
combinatorics for other chance set ups and include the more complicated case of three die casts.
For more details, Ore (1953) provides an extensive analysis of Cardano’s computations and his
use of the notion of “equality.”

3.2.3 Galileo

There continued to be sporadic indications of widespread knowledge of combinatoric
computations. The most celebrated examples are of computations by Galileo and Newton. In
both cases, each was approached by someone with a puzzle concerning die casts. Galileo and
Newton obliged by carrying out the calculations. This shows a broader knowledge of these issues
concerning dice casts. In order to resolve problems, the leading thinkers of the time were
consulted for assistance.!4 We have a record of Galileo and Newton’s analysis simply because
they were prominent enough to have their papers preserved. Chance was not a major topic of
research for either of them.

Galileo’s note, “Sopra le scoperte dei dadi” [concerning an investigation on dice],

was written sometime between 1613 and 1623 at the instigation of *“...him who has ordered
me...” !5 The content of the note is recounted by David (1962, Ch. 7) and a translation of the
Galileo’s text is provided in David (1962, Appendix 2). The puzzle analyzed concerns the

relative chances of throwing a sum of 9 or of 10 with three dice (or formally the same problem of

14 Help may well have been needed. The grasp of the combinatorics was then not always correct.
David (1962, p. 35) quotes a 1477 commentary on Dante’s Divine Comedy that appears to count
throwing a sum of four on three dice as arising only in one way.

15 David (1962, p. 65) conjectures plausibly that very few could so order Galileo, so the

instigation came most likely from his sponsor, the Grand Duke of Tuscany.
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a sum of 12 or 11). The question is motivated by the fact that, if we neglect the order in which
they appear, sums of 9 and 10 both arise from six pip combinations:

9 from {6,2,1}, {5,3,1}, {5,2,2}, {4,4,1}, {4,3,2} and {3,3,3}

10 from {6,3,1}, {6,2,2}, {5,4,1}, {5,3,2}, {4,4,2} and {4,3,3}
Yet, Galileo suggests that “long observation” by dice players led them to consider a sum of 10 to
be more advantageous. 16

The illusion that they have equal chances is dispelled, Galileo correctly notes, when we

count how many ways each of these six pip combinations can be cast. If all the pips are unequal,
such as {6,2,1}, they can arise in six casts. If two only are equal, such as {5,2,2}, they can arise
in three casts. If all pips are equal, such as {3,3,3}, it can arise in only one cast. Multiplying by
these factors, we have:

9 from 6x{6,2,1}, 6x{5,3,1}, 3x{5,2,2}, 3x{4,4,1}, 6x{4,3,2} and 1x{3,3,3}

10 from 6x{6,3,1}, 3x{6,2,2}, 6x{5,4,1}, 6x{5,3,2}, 3x{4,4,2} and 3x{4,3,3}
That is, a sum of 9 can arise in 6+6+3+3+6+1=25 casts. However, a sum of 10 has a greater

chance since it can arise in 6+3+6+6+3+3= 27 casts.
3.2.4 Newton

Newton’s combinatoric calculations came in response to a query from Samuel Pepys.17 It
concerned the comparison of three outcomes: securing at least one six on a cast of six dice; at
least two sixes on cast of 12 dice; or at least three sixes on a cast of 18 dice. Newton formulated
the problem in a letter replying to Pepys of December 16, 1693, as a question concerning fair
wagers (Newton, 1961, p. 299):

A hath six dice in a box, with which he is to fling at least one six, for

a wager laid with R.

16 1t is more likely that the question was prompted by a concern that this simple pip count was an
inadequate quantification of chance. In modern terms, a sum of 9 arises with probability
25/216=0.1157 and a sum of 10 with probability 27/216=0.125. This difference of 0.0093 would
require thousands of casts with careful record keeping if the two are to be distinguished. In 1,000
trials, the standard deviation of the frequency of success of a binomially distributed variable is
0.0105.

17 For a recent analysis, see Stigler (2006).
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B hath twelve dice in another box, with which he is to fling at least
two sixes, for a wager laid with S.
C hath eighteen dice in another box, with which he is to fling at least
three sixes, for a wager laid with 7.
The stakes of R, S, & T, are equal; what ought 4, B, & C to stake, that the parties
may play upon equal advantage?
The principal part of Newton’s analysis is simply a direct count of the number of cases favoring
each outcome. In the case of six dice, there are 60 = 46,656 possible outcomes overall. Newton
computes correctly that 31,031 have at least one 6 and so favor 4. The remaining 56 =15,625
have no 6’s and thus favor R. Similarly, for the case of twelve dice, of the 2,176,782,336
outcomes possible, 1,346,704,211 have at least two sixes and so favor B. The remaining
830,078,125 favor S. Using the rule that a fair wager requires each player to offer a stake
proportional to the number of chances of winning, the fair wagers are:
A stakes 31,031 to R’s 15,625
B stakes 1,346,704,211 to S’s 830,078,125
Newton then reduces the two bets to comparable terms by assuming that, in each case, the total
stakes wagered are 1,000/,!8 This reduced, fair wager is!®
A stakes 665/. 2s. 1/2d. to R’s (1,000/ - 6651. 2s. 1/2d.)
B stakes 618/. 13s. 4d. to S”s (1,000/ - 618/. 13s. 4d.)

18 If we assume / = “pounds,” we might now write this as £1,000, using the symbol for pound
that was already in wide use in Newton’s time.

19 <6651. 25. 1/2d.” is “665 pounds, 2 shillings and a halfpenny.”

(31,031/46,656)1,000 = 665.102023. With twenty shillings to the pound and twelve pennies to
the shilling, 0.10202/ = 2.04046s and 0.04046s= 0.5d.=1/2d. This corrects Newton’s erroneous
665.1 0s. 2d. and the failed editorial attempt in Newton (1961, p. 301, fn 5) to correct it. (This is
for me a familiar calculation. When I grew up in Australia, “pounds, shillings and pence” were

still the official currency.)

14



Since 4 must stake more than must B in these scaled versions of the fair wagers, it follows that
A’s outcome is more favorable than B’s. Newton predicts a similar result for C’s wager, but does

not give the calculation, presumably since the numbers become very large and unwieldy.20
3.3 The Interpretive Component: Fair Wagers

The first two components of the theory of chance combinatorics enables the association
of different numbers of equal chance outcomes to the outcomes of interest. The primary
application of these number counts to game play was a specification of which are the fair wagers;
that is, the wagers that favor no gambler in a game. Their identification also served to interpret
the import of different chance counts for those who do not gamble. The simplest case has two
outcomes with the same number of chances for each, such as a head or a tail on a coin toss, or an
even or an odd number on a single die cast. A fair wager has gamblers placing equal stakes on
each of the two outcomes. The winner then collects both stakes. What if two outcomes have
different numbers of equal chances: one is associated in M chances and the other with N? Then
the rule is that the stakes should be in proportion to the number of chances. A fair wager is M on
the first and N on the second; or 2M on the first and 2N; and so on. Knowing which are the fair
wagers is of great practical utility. Any deviation from the fair wagers will favor one gambler

over the other; and prudent gamblers will always ensure that the deviations favor them.

3.3.1 Cardano
Cardano was keenly interested in the conditions under which a wager was fair. He was

not just a disinterested theoretician. He gambled frequently. In elaborating his “Fundamental
Principle of Gambling,” Cardano explained his concerns in stark terms (1663a, pp.189-90):

The most fundamental principle of all in gambling is simply equal conditions, e.g.

of opponents, of bystanders, of money, of situation, of the dice box, and of the die

itself. To the extent to which you depart from that equality, if it is in your

opponent’s favor, you are a fool, and if in your own, you are unjust.
After recounting examples of fair wagers, he formulated the general rule (p. 202):

So there is one general rule, namely, that we should consider the whole circuit, and

the number of those casts which represents in how many ways the favorable result

20 618 is roughly 1014,
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can occur, and compare that number to the remainder of the circuit, and according

to that proportion should the mutual wagers be laid so that one may contend on

equal terms.
This rule requires gamblers to offer stakes in proportion to the number of chances of the
favorable outcome. He considered a wager on “an ace, a deuce or a trey” (one, two or three)
arising at least once in two dice casts. Among the 36 equal chance casts of two dice, there are
3x3=9 casts in which none of one, two or three appear. It follows that the wager wins in 36-9=27
of the 36 equal chance casts. The ratio of favorable to unfavorable chances is 27 to 9, that is,
three to one. Cardano now describes what would be a fair wager (Cardano, 1663a, p. 200):

...if, therefore, the player who wants an ace, deuce, or trey were to wager three

ducats and the other player one, then the former would win three times and would

gain three ducats; and the other once and would win three ducats; therefore in the

circuit of 4 throws they would always be equal. So this is the rationale of

contending on equal terms; if, therefore, one of them were to wager more, he would

strive under an unfair condition and with loss; but if less, then with gain.
Cardano here appears to offer a rationale for the rule governing fair wagers based on a
connection to frequencies. If the wager is favored by three chances to each unfavorable
chance, then the wager will win three times for each single loss. Therefore, a fair stake
for the wager should be three times that against the wager.

The connection to frequencies is intuitively compelling. However, it is

theoretically imprecise. For at this stage of the development of chance notions, there was
no precise connection between the ratios of chances and the frequencies of their
occurrence. If Cardano intended to use frequencies to justify the rule, then his analysis
contradicts his recognition (reported in Section 4.2 below) that frequencies and chances

do not reliably match.
3.3.2 Port-Royal Logic

The Port-Royal Logic (Arnaud and Nicole, 1662) does not have any sustained treatment

of chance and gambling. However, it does report the rule of a fair wager. The rule is used to
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demonstrate that playing a lottery is a poor choice, since the operator’s overhead makes the play
unfair. The text that illustrates fair wagers reads (1662, pp. 384-5):21

There are games in which, if ten persons each put in a crown, only one wins the

whole pot and all the others lose. Thus each person risks losing only a crown and

may win nine. If we consider only the gain and loss in themselves, it would appear

that each person has the advantage. But we must consider in addition that if each

could win nine crowns and risks losing only one, it is also nine times more probable

for each person to lose one crown and not win the nine. Hence each has nine crowns

to hope for himself, one crown to lose, nine degrees of probability of losing a

crown, and only one of winning the nine crowns. This puts the matter at perfect

equality.
This text might be justifying the rule by means of frequencies, but there is insufficient to
conclude it definitively. If the phrase “nine times more probable” means “nine times more
frequent.” then it is a frequency justification. The terms, in French, probable and probabilité
appear in many places in the Port-Royal Logic. However, their use is informal and roughly
equivalent to “likely” and “likelihood.” No explicit account of the meanings of the terms is
given.
3.3.3 Newton

The rule was in broad, explicit use. It appears without apparently needing any
justification as part of Newton’s analysis of the problem posed to him by Samuel Pepys,
discussed above. Newton’s formulation is inserted in passing in the middle of his letter of
December 16, 1693, to Pepys (Newton, 1961, p. 299): “for their stakes must be as their
expectations, that is, as the number of chances which make for them.”
3.3.4 Ozanam
Jacques Ozanam’s (1694) Récréations Mathématique et Physiques was an introductory

survey of the useful mathematics and science of his time. It extends from simple ideas in
arithmetic through geometry to astronomy. Familiar problems of chance are treated fully within

the chance combinatoric theory, without mention of “probability.”

21 Translation from (Arnaud and Nicole, 1996, p. 274). This passage is identical in the first
edition of 1662 and the 1683 edition of the translation.

17



An illustration of Ozanam’s analysis is his treatment of the problem of points (pp. 69-76).
This classic problem, through Pascal and Fermat’s treatments, figures centrally in the
development of theories of chance and probability. In its simplest form, two players gamble in
successive games, with the successful player winning one point in each round. When one player
achieves some predetermined number of points, that player takes all the stakes and the gambling
is over. If play must halt before that termination, what is a fair division of the stakes?

Ozanam considered several instances of the problem. The simplest is that play is halted
when the first player lacks two points and the second lacks three points. Ozanam had first solved
the problem using the “arithmetical triangle” (Pascal’s triangle). Ozanam then provided a
simplified analysis in which he displayed explicitly all the permutations. In this case, one of the
players must win sometime over the next four games. He wrote “a” for “player one wins one
game” and “b” for “player two wins one game.” He then displayed all possible permutations in

his figure on p. 75:

aaaa aabb abbb

aaab abba babb

aaba bbaa bbab

abaa baab bbba

baaa baba bbbb
abab

In the eleven outcomes in the first two columns, player one wins. In the five outcomes in the
third column, player two wins.

So far, all we have is an enumeration of permutations of equally likely cases. To use them
to divide the stakes in the game, we need a rule for what constitutes fair wagers. This rule had
been announced already somewhat imprecisely when Ozanam had introduced the problem of
points (p. 69):

On Divisions in Games
In game play, one calls a division [Parti] the fair distribution, or the rule [of
division] that should be applied to several gamblers who are at play and who play
up to a certain number of points. [The stakes are divided] proportionally to that
which each has a right to hope for by fortune according to the number of points he
lacks for completion.
That the divisio