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Seventeenth century “chance combinatorics” was a self-contained theory. It had an 

objective notion of chance derived from physical devices with chance properties, 

such as die casts, combinatorics to count chances and, to interpret their significance, 

a rule for converting these counts into fair wagers. It lacked a notion of chance as a 

measure of belief, a precise way to connect chance counts with frequencies and a 

way to compare chances across different games. These omissions were not needed 

for the theory’s interpretation of chance counts: determining which are fair wagers. 

The theory provided a model for how indefinitenesses could be treated with 

mathematical precision in a special case and stimulated efforts to seek a broader 

theory. 

1. Introduction 

 The writing of the history of probability theory has been controlled by one question:  

How close were earlier ideas to modern probability theory?  

The traditional starting point is the correspondence between Fermat and Pascal in 1654 on the 

problem of points, posed by the Chevalier de Méré. It asks how to divide fairly the stakes 

between two gamblers in an interrupted game of dice. 

 The question is worth answering. Problems arise if it is the only question asked. Then we 

are led to a distorted picture of the historical development of ideas of chance. In it, earlier ideas 

of chance are incomplete or defective and their value lies only in fostering the views we now 

hold. We should ask a different question: 
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What conception of chance did these earlier figures have?  

My goal in this paper is to answer this second question for a conception of chance that came to 

maturity in the seventeenth century. 

 The main elements of the theory are recounted in Sections 2 and 3. Its application was 

limited to traditional games of chance that are played with simple, physical devices, such as cast 

dice, shuffled cards and lottery drawings. They supply players and gamblers a discrete set of 

equal chance outcomes. The theory’s chance notion was objective and secured by the physical 

properties of the device realizing chance behaviors. While this notion can be subsumed by later 

probabilistic accounts, it is a cogent notion in its own right. The major computational elements of 

the theory were the use of combinatorics to determine the chances of compound outcomes; and a 

rule for which wagers in a game are fair. This last rule was the principal means of interpreting 

the chance counts. It enabled gamblers to determine which games favored them and which did 

not; and it enabled a practical understanding of the significance of various counts of chances. 

What might it mean that one outcome has seven chances and another five? It is that a stake of 

five on the first to seven on the second is a fair wager. That understanding is conveyed without 

any need actually to place wagers.  The theory deserves a name and I will use “chance 

combinatorics” for it. Its leading expositors were Cardano and Huygens and it was a theory 

widely known and applied in the seventeenth century. 

 Section 4 recounts what was missing from chance combinatorics. The theory lacked a 

notion of chance as a measure of belief; it had no precise connection between chances and 

frequencies; and it lacked a direct means to compare chances across different games. The theory 

counted equally likely chances and did not form as the fundamental quantity the later notion of 

probability as the ratio of favorable to all chances. The omission of this ratio was not an 

oversight. It had no foundational role. That changed when Jacob Bernoulli sought a way to use 

Huygens’ analysis to assign chances to situations outside the tidy realm of games of chance. His 

version of the law of large numbers provided the means to recover probabilities a posteriori from 

frequencies. In the absence of this connection, frequencies were only seen to be loosely 

connected with chance counts and could not be used to compare chances in different games or to 

justify the rule for identifying fair wagers.  

 These omissions are no reason to dismiss chance combinatorics as an incomplete or 

defective theory. For the theory did not need these missing components to serve its function of 
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assessing the relative chances of outcomes and discerning which are the fair wagers. When 

Huygens’ 1656 De Ratiociniis in Ludo Aleae presented a game theoretic derivation of the rule 

for fair wagers, it provided a satisfactory completion to chance combinatorics without 

consideration of frequencies. It was a self-contained theory, successful in its limited goals. It was 

stretched to its limits in 1693 when Samuel Pepys tasked Newton with a problem that required 

chance comparisons across different outcome spaces. The inability of chance combinatorics to 

make such comparisons explains the otherwise puzzling convolutions of Newton’s analysis.  

 Section 5 argues that it is hard to see why the 1654 correspondence of Fermat and Pascal 

has such prominence in our histories. Their analysis was mathematically sophisticated, but 

proceeded fully within chance combinatorics. It used known methods on a known problem and 

did not add anything of foundational importance. Section 6 examines how the historical literature 

came to elevate the importance of Fermat and Pascal’s correspondence and reports the later 

literature’s efforts to rectify this overestimation. Since this literature has been too concerned with 

finding modern probabilistic ideas in earlier writings, it left no place for chance combinatorics, 

which became the theory that history forgot. 

 Finally, Section 7 proposes an alternative historiography for probability. The seventeenth 

century theory of chance combinatorics provided a model for later theorizing. It showed how 

indefinitenesses could be analyzed with mathematical precision in the narrow case of games of 

chance. Its success inspired the project of extending chance combinatorics to a wider range of 

indefinitenesses and eventually led to modern probabilistic analysis. The mathematical methods 

of modern analysis, based on the theory of additive measures, vastly outstrips the relatively 

meager powers of the mathematics of the seventeenth century. However, interpretations of 

probability in the present analysis are fragmented. They have failed to provide a univocal 

understanding of probability that matches the simplicity of seventeenth century chance 

combinatorics. In this one aspect, modern analysis falls short of its seventeenth century model. 

2. Chance Combinatorics 

 In the seventeenth century, a serviceable theory of chance was brought to completion. It 

applied specifically to games of chance in which a physical device chose with equal favor among 

a finite set of outcomes. The theory’s goal was to compute the chances of different outcomes and 

to discern which bets are equally fair to all players. The notion of chance employed could later 
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be subsumed by that of a uniform probability measure over a finite outcome space. However, 

since this modern theory was not available in the seventeenth century, it could not then be 

understood in this way. In this sense, it was a non-probabilistic theory. The chance of an 

outcome was assessed by counting the number of primitive, equal chance cases that comprised it. 

The numerical notion of probability as the ratio of favorable to all chances was absent or merely 

introduced as an intermediate in other computations. 

 The pertinent notion of chance could only be loosely connected with frequencies. The 

precise application came in the theory’s identification of which are the fair wagers. It was the 

result of practical value to gamblers. Fair wagers could be accepted knowing that no player was 

advantaged. Deviations from them would be sought if they favored the player and avoided if they 

did not. It also gave a meaning to chance assessments that extend beyond the confines of the 

theory. A computation within the theory might tell us that one outcome arises with seven chances 

and another with five. The import of that difference could be conveyed by identifying a 

corresponding fair wager: a stake of five on the first to seven on the second. This import could 

not be recovered precisely using frequencies, since the theory asserted no precise connection to 

them. It could not interpret equal chance outcomes as those that arise equally often, near enough. 

It could interpret them as those in which one could take either side of an equal stakes bet without 

either gaining an advantage. 

 The components of the theory were: 

• Setting: A finite set of primitive cases with selection among them by a physical process, 

such as die casts, whose mechanical operation assured the equality of their chances. 

• A mathematical component: The combinatorics of counting primitive cases. It answered 

question such as “how many combinations of casts of two dice give a sum of seven?” 

• An interpretive component: for a given game where equal chance outcomes are known, 

which are the wagers that are equally fair to all players. 

These three components will be described in greater detail in Section 3 below. While this theory 

was narrower in scope than that of modern probabilistic analysis, it was self-contained and 

useful. It remains as serviceable to gamblers today as it was for those in the seventeenth century. 

 This theory of chance combinatorics was assembled slowly from elements that had 

already been present for centuries and in one case millennia. It was in wide-spread practical use, 



 5 

even if it rarely appeared in academic treatises. The existence of the theory was recognized by 

Laplace (1902, p. 185) as part of a remark of historical importance: 

Long ago were determined, in the simplest games, the ratios of the chances which 

are favorable or unfavorable to the players; the stakes and the bets were regulated 

according to these ratios. 

When we return to Laplace’s influential remark below, we shall see that he had little respect for 

the theory. 

3. What is in Chance Combinatorics 

 Two self-contained treatises on chances embody this theory of chance combinatorics. The 

first is Girolamo Cardano’s Liber de Ludo Aleae, his Book on Games of Chance. The text was, as 

reported by David (1965, p.43), written and rewritten in fragments between 1525 and 1565. It 

was discovered among his papers posthumously and first printed in his collected works as 

Cardano (1663). Ore (1953) gives an extended analysis of it and includes an English translation, 

Cardano (1663a). It is a boisterous work, written by someone who himself gambled extensively 

and also had considerable mathematical abilities. The work is a mixture of practical advice from 

an experienced gambler, raucous anecdotes and the mathematical analysis of chance. It includes 

all the elements of the theory of chance combinatorics and also additional constructions, 

idiosyncratic to Cardano. It is a challenging work to read since it is not always internally 

consistent and, for this reason, authors like Todhunter (1865, p. 3) are impatient with the text. 

 Christiann Huygens’ (1657) De Ratiociniis in Ludo Aleae (On Reasoning in Games of 

Chance) was, by contrast, a work of disciplined analysis by a careful mathematician. Its novel 

contribution was to provide a non-frequentist, game-theoretic justification of the rule that 

specifies which are the fair wagers. This justification perfected the theory of chance 

combinatorics. At least two translations into English were prepared within the ensuing half 

century (Arbuthnot, 1692; Brown, 1714). It was an influential work. 

3.1 Setting: Equal Chance Cases 

3.1.1 Cardano’s Principle 

 The analyses of Cardano’s Liber require that the casting of dice and related devices 

produces equal chance outcomes. This he makes clear in his Chapter VI (1663a, p.189): 

6. The Fundamental Principle of Gambling 



 6 

The most fundamental principle of all in gambling is simply equal conditions, e.g. 

of opponents, of bystanders, of money, of situation, of the dice box, and of the die 

itself. 

The statement entangles the social with the physical conditions. Its later part shows an 

understanding that the die casts must produce an equality of chances. In the next Chapter VII, 

Cardano, the experienced gambler, describes how the equality can fail due to slight variations in 

the physical condition. The chapter provides directions on the detection of inequalities in the 

gaming board, the dice box and the dice; and even warns of various forms of dishonest fakery in 

the dice themselves. (We shall return to this last concern below.) 

3.1.2 The Archeology of Physical Devices with Chance Properties 

 Dice and other similar chancy devices have been found in virtually all eras of history, 

including many centuries BCE.1 Their forms can provide some indication of the concepts of 

chance entertained by their users.  

 Since nature does not supply ready-made cubes, their ancient presence suggests that dice 

makers found it worth the effort to craft a shape that guarantees equal chances for each of the six 

sides in a fair cast. This presumes that they had a local concept of the chance of each face. We 

have anecdotal reports of ancient successes in forming fair cubical dice. Hacking (2006, p. 4) 

found dice in the Cairo Museum of Antiquities “exquisitely well balanced.” David (1955, pp. 6-

7) reported less success in her investigations: “Many dice of the classical period have been 

thrown by the writer and they were nearly all biased but not all in the same way.”2 

 What complicates matters is that many forms of irregular dice-like devices were also 

recovered from ancient sites. They are dice that visibly deviate from cubical and irregularly 

shaped astragali or tali, now commonly known as knucklebones. Their popularity shows that 

many users were indifferent to whether each face arose with equal chances. Norton (2022) 

argues that these users would have found these irregular devices fit for their purposes if they 

 
1 Artioli et al. (2011) examined the physical properties of 91 Etruscan dice. The earliest, sample 

40, was cubic and was dated to the eight century BC. Many more came from the sixth to the third 

centuries BCE. 
2 My chi-square test for uniformity on the data she supplies for casts of three ancient dice show 

two passing and the third die, which is visually irregular, failing. 
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approached the chance properties of the overall system globally. In gambling, this means that the 

rules of play were such that each player has equal prospects of winning, independently of the 

probabilities of the individual device outcomes. In a popular ancient game, four tali are cast and 

the player takes the pool with a Venus (all four tali different); or must contribute to the pool with 

a “dog” (all ones).3 That the sides of the tali arise with different chances4 gave no player an 

advantage. They were all subject to the same rules. 

 What is important for our purposes is that dice makers gradually abandoned irregular 

shapes. In Artioli et al.’s (2011) examination of Etrurian dice in the eighth to third centuries 

BCE, 74 are described as “cube” and 17 as “parallelepiped.” Eerkens and de Voogt (2017, p. 

169) examined 110 cubical dice recovered in the Netherlands and found that dice became more 

regular with time in the past two millennia: 

… die symmetry increases steadily over time. Nearly 90% of the dice in our 

database that date before 650 CE have maximum sides that are more than 5% larger 

than the minimum (max/min > 1.05). After 1450 CE, less than 40% of the dice are 

similarly lopsided. 

They judged that dice exceeding their 5% limit would be visibly irregular. This study shows that, 

by the end of the middle ages, there was a shift towards regularity in dice. This, along with the 

abandoning of knucklebones in gambling, indicates a growing concern for physical devices 

whose individual outcomes have equal chances. 

3.1.3 Faked Dice 

 Another indication of the understanding that a regular die produces equal chance 

outcomes is the existence of faked dice. They outwardly resemble regular dice but have been 

surreptitiously tampered with to make the chances of different outcomes unequal. That the 

tampering must be surreptitious shows that it was not only the cheats who understood the effects 

of deviations from regularity. David (1955, p.6) reports what might be a weighted die in Roman 

times. It has an opening that can be covered with a seal. Her description matches that of ivory 

 
3 Augustus Caesar, as quoted by Suetonius (Rolfe, 1914, p. 235), describes playing this game. 
4 David (1955, p.3) found that the two broader sides numbered 3 and 4 arise each with 

probability roughly 4/10. The remaining two narrower sides are numbered 1 and 6 and each arise 

roughly with probability 1/10. 
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dice recovered from the ruins of Pompei. In a museum photo, two ivory dice with round 

openings and round plate seals can be seen.5  

 In 16th century England, gambling was widespread and, with it, much cheating. 

Aydelotte (1913, Ch. IV) is a revealing compendium of the many forms of cheating taking place. 

Reproducing a list from an early salacious exposé of many forms of cheating, Anon (1555),6 

Aydelotte (p. 91) lists fourteen different types of faked dice in the cheater’s outfit and decoded 

the form of faking in some of them: 

Fullams were dice loaded with quicksilver or lead: bristles were those with a short 

hair set in one side to prevent that face lying on the table. Capell conjectures that 

gourds were dice hollowed out on one side to accomplish the same result as 

loading. 

“Flats” are dice reduced in length on one axis, so that the faces on that axis are more likely. A 

“langret” or “barred die” was elongated on the axis with faces marked three and four and thus 

made a cast of three or four more difficult. A passage in Anon (1555) is reproduced7 in 

Aydelotte (p. 91-92):8 

‘Lo here saith the chetor to this yong Nouisse, a well fauored die that semeth good 

and square: yet is the forhed longer on the cater and tray, then any other way, and 

therefore holdeth the name of a langret, such be also called bard cater [4] tres [3], 

bicause commonly the longer end will of his owne sway draw downwards, and 

turne vp to the eye sice [6] sinke [5], deuis [2] or ace [1], the principal vse of them 

is at Nouem quinque. So long as a paier of bard quater tres be walking on the bord 

 
5 Exhibit “A Day in Pompei,” Museum of Science, Boston, MA, October 2, 2011 - February 12, 

2012). http://www.outandaboutinparis.com/2011/10/day-in-pompeii-at-museum-of-science-

in.html 
6 An original of this rare book is in the Huntington Library, San Marino, California. 
7 Correctly—I checked against the original ms. Aydelotte dates the work to 1552. The 

Huntington Library Catalog reports 1555. 
8 This passage proved so enticing to contemporaries that Aydelotte (Appendix B) could 

demonstrate that it was reproduced nearly verbatim in three subsequent works of the time, all by 

different authors, in 1597, 1608 and 1612. 
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so long can ye cast neither .v. nor .ix. onles it be by a great mischance that the 

roughnes of the bord, or some other stay, force them to stay and run against their 

kind. For without quater trey, ye wot that, v. nor .ix. can neuer fall.’ 

This last passage indicates an astute understanding of just how sensitive the roll of the die is to 

such issues as the perfection of the cube and the surface on which it is cast. There was a 

community of cheaters whose livelihood depended at least in part on an understanding of how 

well-made dice yield equal chance outcomes and how subtle tampering could affect them; and 

that the tampering had to be subtle since everyone else also understood the equality of chances in 

regular dice.9 

3.2 The Mathematical Component: Combinatorics 

 The above understanding of equal chance cases is, by itself, only of limited use. Real dice 

games were played with several dice. In such games, a player needs to be able to compare the 

chance of, say, a pair of dice yielding a sum of two or a sum of seven. The standard approach is 

to count the number of equal chance cases comprising each outcome. There is only one such case 

for the sum of two, but there are six cases for the sum of seven. A novice might imagine that a 

sum of three comes about only in one way: a one on one die and a two on the other. Someone 

more adept at case counting would recognize that it can come about in two ways: a one on the 

first die; and a two on the second; and the reverse. 

3.2.1 De Vetula 

 There is ample evidence that this more adept understanding of the combinatorics was in 

wide circulation for centuries prior to the seventeenth century. Strong evidence comes in the 

Latin poem De Vetula (“Of the old lady”). It is nominally attributed to Ovid, but was most likely 

written in the thirteenth century by Richard de Fournival, Chancellor of the Cathedral of Amiens. 

It recounts Ovid’s disappointment in romantic engagements and how he turned to other pursuits. 

Part of the narrative includes a sustained account of how to count correctly the various 

 
9 A set of 24 doctored dice of the late fifteenth century has been recovered from the Thames 

foreshores. They include dice weighted with mercury and also those with repeated pip counts. 

See https://medievallondon.ace.fordham.edu/collections/show/92 
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combinations of die casts.10 It examines in great detail how the count should go for the casting of 

three dice. The results are summarized in a table reproduced in Figure 1. 

 
Figure 1. Table of Combinations from de Vetula 11 

 

My rather free translation is:12 

Each compound number has the following number of pips and ways of casting. 

3 18 pips 1 casts 1 

4 17 pips 2 casts 3 

5 16 pips 2 casts 6 

6 15 pips 3 casts 10 

7 14 pips 4 casts 15 

8 13 pips 5 casts 12 [21] 

 
10 For further discussion of the manuscript, see Robathan (1957); and for discussion of the 

combinatorics of dice casts in de Vetula, see Kendall (1956, p.6), David (1962, pp. 33-34) and, in 

most detail, Bellhouse (2000). 
11 The image matches that of the corresponding page reproduced in Bellhouse (2000, p. 130), 

which is identified there as from the 1534 printing. Both include the typographical error in row 8 

not found in other editions, such as the 1662 edition shown in Kendall (1956, p. 6) and David 

(1962, p. 32) 
12 The entry 12 in row 8 is a typographical error that has inverted the order of the digits of the 

correct value of 21. 
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9 12 pips  casts 25 

10 11 pips 6 casts 27 

In all, 108 casts of all the pips. 

The rows can be read as follows. For the row marked “5”: 

For the casts of three dice showing a sum of 5 or of 16, if we neglect the order of the pips 

on the dice, there are two different configurations (“pips”). For 5, they would be {1, 1, 3} 

or {1, 2, 2}. For 16, they would be {5, 5, 6} or {4, 6, 6}. Each of these can be cast in 3 

ways: for a sum of 5, 1-1-3, 1-3-1, 3-1-1 and 1-2-2, 2-1-2, 2-2-1, making 6 configurations 

in total (“casts”); and similarly for a sum of 16. 

This was not an obscure manuscript in its time. Bellhouse (2000, p. 126) reports that nearly sixty 

copies still exist and that the poem was well cited. The earliest copies were produced manually 

by scribes. There were printed versions in 1479, 1534 and 1662 and even a French adaptation. 

3.2.2 Cardano 

 Girolamo Cardano, in his Book on Games of Chance, was adept in the combinatorics of 

case counting. His presentation, however, is extended and idiosyncratic. Here is a part of his 

analysis of two die casts (Cardano, 1663a, p. 198):13 

In the case of two dice, the points 12 and 11 can be obtained respectively as (6,6) 

and as (6,5). The point 10 consists of (5,5) and of (6,4), but the latter can occur in 

two ways, so that the whole number of ways of obtaining 10 will be 1/12 of the 

circuit and 1/6 of equality. Again, in the case of 9, there are (5,4) and (6,3), so that 

it will be 1/9 of the circuit and 2/9 of equality. The 8 point consists of (4,4), (3,5), 

and (6, 2). All 5 possibilities are thus about 1/7 of the circuit and 2/7 of equality. 

The point 7 consists of (6,1), (5, 2), and (4,3). Therefore the number of ways of 

getting 7 is 6 in all, 1/3 of equality and 1/6 of the circuit. The point 6 is like 8, 5 like 

9, 4 like 10, 3 like 11, and 2 like 12. 

This passage correctly counts the combinatorics associated with two die casts. For example, he 

notes that a sum of 10 arises from (5,5) and from (6,4), where the latter can arise in two ways, 

 
13 The translator has simplified the presentation of the text by writing the outcomes as “(6,6),” 

“(6,5),” etc. Cardano’s Latin is “bis, sex, atque sex, & quinque,” that is “twice six, and six & 

five.” 
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according to which die shows the 6. These 3 equal chance cases are 3/36 = 1/12th of the total 

number, 36, of chances. Cardano then reports the same result with his idiosyncratic notion of 

“equality.” We are to imagine the total number of equal chance outcomes to be divided into two 

equal parts. In this case, half of 36 equal chance cases is 18. An outcome in one such part has the 

same chance as an outcome in other half. The three cases corresponding to a sum of 10 then 

constitute 3/18 = 1/6th of equality. 

 There are many more instances in the book of Cardano correctly computing the 

combinatorics for other chance set ups and include the more complicated case of three die casts. 

For more details, Ore (1953) provides an extensive analysis of Cardano’s computations and his 

use of the notion of “equality.” 

3.2.3 Galileo 

 There continued to be sporadic indications of widespread knowledge of combinatoric 

computations. The most celebrated examples are of computations by Galileo and Newton. In 

both cases, each was approached by someone with a puzzle concerning die casts. Galileo and 

Newton obliged by carrying out the calculations. This shows a broader knowledge of these issues 

concerning dice casts. In order to resolve problems, the leading thinkers of the time were 

consulted for assistance.14 We have a record of Galileo and Newton’s analysis simply because 

they were prominent enough to have their papers preserved. Chance was not a major topic of 

research for either of them. 

 Galileo’s note, “Sopra le scoperte dei dadi” [concerning an investigation on dice], 

 was written sometime between 1613 and 1623 at the instigation of “…him who has ordered 

me…”15 The content of the note is recounted by David (1962, Ch. 7) and a translation of the 

Galileo’s text is provided in David (1962, Appendix 2). The puzzle analyzed concerns the 

relative chances of throwing a sum of 9 or of 10 with three dice (or formally the same problem of 

 
14 Help may well have been needed. The grasp of the combinatorics was then not always correct. 

David (1962, p. 35) quotes a 1477 commentary on Dante’s Divine Comedy that appears to count 

throwing a sum of four on three dice as arising only in one way. 
15 David (1962, p. 65) conjectures plausibly that very few could so order Galileo, so the 

instigation came most likely from his sponsor, the Grand Duke of Tuscany. 
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a sum of 12 or 11). The question is motivated by the fact that, if we neglect the order in which 

they appear, sums of 9 and 10 both arise from six pip combinations: 

9 from {6,2,1}, {5,3,1}, {5,2,2}, {4,4,1}, {4,3,2} and {3,3,3} 

10 from {6,3,1}, {6,2,2}, {5,4,1}, {5,3,2}, {4,4,2} and {4,3,3} 

Yet, Galileo suggests that “long observation” by dice players led them to consider a sum of 10 to 

be more advantageous.16 

 The illusion that they have equal chances is dispelled, Galileo correctly notes, when we 

count how many ways each of these six pip combinations can be cast. If all the pips are unequal, 

such as {6,2,1}, they can arise in six casts. If two only are equal, such as {5,2,2}, they can arise 

in three casts. If all pips are equal, such as {3,3,3}, it can arise in only one cast. Multiplying by 

these factors, we have: 

9 from 6x{6,2,1}, 6x{5,3,1}, 3x{5,2,2}, 3x{4,4,1}, 6x{4,3,2} and 1x{3,3,3} 

10 from 6x{6,3,1}, 3x{6,2,2}, 6x{5,4,1}, 6x{5,3,2}, 3x{4,4,2} and 3x{4,3,3} 

That is, a sum of 9 can arise in 6+6+3+3+6+1=25 casts. However, a sum of 10 has a greater 

chance since it can arise in 6+3+6+6+3+3= 27 casts. 

3.2.4 Newton 

 Newton’s combinatoric calculations came in response to a query from Samuel Pepys.17 It 

concerned the comparison of three outcomes: securing at least one six on a cast of six dice; at 

least two sixes on cast of 12 dice; or at least three sixes on a cast of 18 dice. Newton formulated 

the problem in a letter replying to Pepys of December 16, 1693, as a question concerning fair 

wagers (Newton, 1961, p. 299): 

A hath six dice in a box, with which he is to fling at least one six, for 

a wager laid with R. 

 
16 It is more likely that the question was prompted by a concern that this simple pip count was an 

inadequate quantification of chance. In modern terms, a sum of 9 arises with probability 

25/216=0.1157 and a sum of 10 with probability 27/216=0.125. This difference of 0.0093 would 

require thousands of casts with careful record keeping if the two are to be distinguished. In 1,000 

trials, the standard deviation of the frequency of success of a binomially distributed variable is 

0.0105. 
17 For a recent analysis, see Stigler (2006). 
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 B hath twelve dice in another box, with which he is to fling at least 

two sixes, for a wager laid with S. 

C hath eighteen dice in another box, with which he is to fling at least 

three sixes, for a wager laid with T. 

The stakes of R, S, & T, are equal; what ought A, B, & C to stake, that the parties 

may play upon equal advantage? 

The principal part of Newton’s analysis is simply a direct count of the number of cases favoring 

each outcome. In the case of six dice, there are 66 = 46,656 possible outcomes overall. Newton 

computes correctly that 31,031 have at least one 6 and so favor A. The remaining  56 =15,625 

have no 6’s and thus favor R. Similarly, for the case of twelve dice, of the 2,176,782,336 

outcomes possible, 1,346,704,211 have at least two sixes and so favor B. The remaining 

830,078,125 favor S. Using the rule that a fair wager requires each player to offer a stake 

proportional to the number of chances of winning, the fair wagers are: 

A stakes 31,031 to R’s 15,625 

B stakes 1,346,704,211 to S’s 830,078,125 

Newton then reduces the two bets to comparable terms by assuming that, in each case, the total 

stakes wagered are 1,000l,18 This reduced, fair wager is19 

A stakes 665l. 2s. 1/2d. to R’s (1,000l - 665l. 2s. 1/2d.) 

B stakes 618l. 13s. 4d. to S’s (1,000l - 618l. 13s. 4d.) 

 
18 If we assume l = “pounds,” we might now write this as £1,000, using the symbol for pound 

that was already in wide use in Newton’s time. 
19 “665l. 2s. 1/2d.” is “665 pounds, 2 shillings and a halfpenny.” 

(31,031/46,656)1,000 = 665.102023. With twenty shillings to the pound and twelve pennies to 

the shilling, 0.10202l = 2.04046s and 0.04046s= 0.5d.=1/2d. This corrects Newton’s erroneous 

665.l 0s. 2d. and the failed editorial attempt in Newton (1961, p. 301, fn 5) to correct it. (This is 

for me a familiar calculation. When I grew up in Australia, “pounds, shillings and pence” were 

still the official currency.) 
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Since A must stake more than must B in these scaled versions of the fair wagers, it follows that 

A’s outcome is more favorable than B’s. Newton predicts a similar result for C’s wager, but does 

not give the calculation, presumably since the numbers become very large and unwieldy.20 

3.3 The Interpretive Component: Fair Wagers 

 The first two components of the theory of chance combinatorics enables the association 

of different numbers of equal chance outcomes to the outcomes of interest. The primary 

application of these number counts to game play was a specification of which are the fair wagers; 

that is, the wagers that favor no gambler in a game. Their identification also served to interpret 

the import of different chance counts for those who do not gamble. The simplest case has two 

outcomes with the same number of chances for each, such as a head or a tail on a coin toss, or an 

even or an odd number on a single die cast. A fair wager has gamblers placing equal stakes on 

each of the two outcomes. The winner then collects both stakes. What if two outcomes have 

different numbers of equal chances: one is associated in M chances and the other with N?  Then 

the rule is that the stakes should be in proportion to the number of chances. A fair wager is M on 

the first and N on the second; or 2M on the first and 2N; and so on. Knowing which are the fair 

wagers is of great practical utility. Any deviation from the fair wagers will favor one gambler 

over the other; and prudent gamblers will always ensure that the deviations favor them. 

3.3.1 Cardano 

 Cardano was keenly interested in the conditions under which a wager was fair. He was 

not just a disinterested theoretician. He gambled frequently. In elaborating his “Fundamental 

Principle of Gambling,” Cardano explained his concerns in stark terms (1663a, pp.189-90): 

The most fundamental principle of all in gambling is simply equal conditions, e.g. 

of opponents, of bystanders, of money, of situation, of the dice box, and of the die 

itself. To the extent to which you depart from that equality, if it is in your 

opponent’s favor, you are a fool, and if in your own, you are unjust. 

After recounting examples of fair wagers, he formulated the general rule (p. 202): 

So there is one general rule, namely, that we should consider the whole circuit, and 

the number of those casts which represents in how many ways the favorable result 

 
20 618 is roughly 1014. 
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can occur, and compare that number to the remainder of the circuit, and according 

to that proportion should the mutual wagers be laid so that one may contend on 

equal terms. 

This rule requires gamblers to offer stakes in proportion to the number of chances of the 

favorable outcome. He considered a wager on “an ace, a deuce or a trey” (one, two or three) 

arising at least once in two dice casts. Among the 36 equal chance casts of two dice, there are 

3x3=9 casts in which none of one, two or three appear. It follows that the wager wins in 36-9=27 

of the 36 equal chance casts. The ratio of favorable to unfavorable chances is 27 to 9, that is, 

three to one. Cardano now describes what would be a fair wager (Cardano, 1663a, p. 200): 

…if, therefore, the player who wants an ace, deuce, or trey were to wager three 

ducats and the other player one, then the former would win three times and would 

gain three ducats; and the other once and would win three ducats; therefore in the 

circuit of 4 throws they would always be equal. So this is the rationale of 

contending on equal terms; if, therefore, one of them were to wager more, he would 

strive under an unfair condition and with loss; but if less, then with gain. 

Cardano here appears to offer a rationale for the rule governing fair wagers based on a 

connection to frequencies. If the wager is favored by three chances to each unfavorable 

chance, then the wager will win three times for each single loss. Therefore, a fair stake 

for the wager should be three times that against the wager. 

 The connection to frequencies is intuitively compelling. However, it is 

theoretically imprecise. For at this stage of the development of chance notions, there was 

no precise connection between the ratios of chances and the frequencies of their 

occurrence. If Cardano intended to use frequencies to justify the rule, then his analysis 

contradicts his recognition (reported in Section 4.2 below) that frequencies and chances 

do not reliably match. 

3.3.2 Port-Royal Logic 

 The Port-Royal Logic (Arnaud and Nicole, 1662) does not have any sustained treatment 

of chance and gambling. However, it does report the rule of a fair wager. The rule is used to 
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demonstrate that playing a lottery is a poor choice, since the operator’s overhead makes the play 

unfair. The text that illustrates fair wagers reads (1662, pp. 384-5):21 

There are games in which, if ten persons each put in a crown, only one wins the 

whole pot and all the others lose. Thus each person risks losing only a crown and 

may win nine. If we consider only the gain and loss in themselves, it would appear 

that each person has the advantage. But we must consider in addition that if each 

could win nine crowns and risks losing only one, it is also nine times more probable 

for each person to lose one crown and not win the nine. Hence each has nine crowns 

to hope for himself, one crown to lose, nine degrees of probability of losing a 

crown, and only one of winning the nine crowns. This puts the matter at perfect 

equality. 

This text might be justifying the rule by means of frequencies, but there is insufficient to 

conclude it definitively. If the phrase “nine times more probable” means “nine times more 

frequent.” then it is a frequency justification. The terms, in French, probable and probabilité 

appear in many places in the Port-Royal Logic. However, their use is informal and roughly 

equivalent to “likely” and “likelihood.” No explicit account of the meanings of the terms is 

given.  

3.3.3 Newton 

 The rule was in broad, explicit use. It appears without apparently needing any 

justification as part of Newton’s analysis of the problem posed to him by Samuel Pepys, 

discussed above. Newton’s formulation is inserted in passing in the middle of his letter of 

December 16, 1693, to Pepys (Newton, 1961, p. 299): “for their stakes must be as their 

expectations, that is, as the number of chances which make for them.” 

3.3.4 Ozanam 

 Jacques Ozanam’s (1694) Récréations Mathématique et Physiques was an introductory 

survey of the useful mathematics and science of his time. It extends from simple ideas in 

arithmetic through geometry to astronomy. Familiar problems of chance are treated fully within 

the chance combinatoric theory, without mention of “probability.” 

 
21 Translation from (Arnaud and Nicole, 1996, p. 274). This passage is identical in the first 

edition of 1662 and the 1683 edition of the translation. 
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 An illustration of Ozanam’s analysis is his treatment of the problem of points (pp. 69-76). 

This classic problem, through Pascal and Fermat’s treatments, figures centrally in the 

development of theories of chance and probability. In its simplest form, two players gamble in 

successive games, with the successful player winning one point in each round. When one player 

achieves some predetermined number of points, that player takes all the stakes and the gambling 

is over. If play must halt before that termination, what is a fair division of the stakes? 

 Ozanam considered several instances of the problem. The simplest is that play is halted 

when the first player lacks two points and the second lacks three points. Ozanam had first solved 

the problem using the “arithmetical triangle” (Pascal’s triangle). Ozanam then provided a 

simplified analysis in which he displayed explicitly all the permutations. In this case, one of the 

players must win sometime over the next four games. He wrote “a” for “player one wins one 

game” and “b” for “player two wins one game.” He then displayed all possible permutations in 

his figure on p. 75: 

aaaa 
aaab 
aaba 
abaa 
baaa 

 

aabb 
abba 
bbaa 
baab 
baba 
abab 

abbb 
babb 
bbab 
bbba 
bbbb 

In the eleven outcomes in the first two columns, player one wins. In the five outcomes in the 

third column, player two wins.  

 So far, all we have is an enumeration of permutations of equally likely cases. To use them 

to divide the stakes in the game, we need a rule for what constitutes fair wagers. This rule had 

been announced already somewhat imprecisely when Ozanam had introduced the problem of 

points (p. 69): 

On Divisions in Games 

In game play, one calls a division [Parti] the fair distribution, or the rule [of 

division] that should be applied to several gamblers who are at play and who play 

up to a certain number of points. [The stakes are divided] proportionally to that 

which each has a right to hope for by fortune according to the number of points he 

lacks for completion. 

That the division intended is simply one in proportion to the chances of winning is made clear in 

the application of the rule to this last case. Ozanam concluded (p. 76): 
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Thus the division of the first player is to the division of the second as 11 is to 5, etc. 

That is, the total stakes in the game are to be divided over the players in proportion to the number 

of chances that each has to win. This analysis remained unchanged in the new edition of 1735 

(Ozanam, 1735, pp. 123-130). It is only in the much later, enlarged edition of 1778, extended by 

Jean-Étienne Montucla, that the word “probability” (probabilité) appears. The new edition (p. 

117) mentions for the first time that this problem of points occupied Pascal in his treatment of 

the probability calculus and contrasts it with Fermat’s approach using combinations. The 

analysis still proceeds in the later text by counting the ratio of equally likely cases. 

3.4 Huygens’ Completion 

 So far, chance combinatorics specifies which are the fair wagers in games of chance. A 

weakness of the theory is that the rule used is declared, but without a rigorous basis. An informal 

basis is in the loose connection to frequencies. If stakes contributed by gamblers are in 

proportion to the chance of each winning, then each will over repeated plays wins as much they 

lose. That is so if the frequencies of wins and losses matches exactly the chances of wins and 

losses. As every experienced gambler knows, that match is at best approximate and thus is 

insufficient to give a rigorous basis for the determination of which are the fair wagers. 

 Huygens’ (1657) De Ratiociniis provided the basis.22 Huygens commenced his analysis 

by presenting various forms of the problem of points. He then needed to justify his judgment of 

which division of the stakes was fair. To that end, he laid down a foundational proposition: (p. 

521) “that my expectation to win something is worth just such a sum as would get me the same 

expectation in a fair game.”23 Here Huygens introduced the notion of an expectation. It 

corresponds to the modern probabilistic notion of expectation. Huygens used it to simplify the 

notion of what are fair stakes in a wager. That notion is a compound notion since it applies to the 

stakes that should be committed by two or more players in a game of chance. Huygens saw that 

 
22 See David (1962, Ch. 11) for an account of the circumstances surrounding the writing of De 

Ratiociniis. 
23 This translation is a variant of the translation in Brown (1714, p. 2). Both Brown and 

Arbuthnot (1692, p. 3) give liberal translations in an effort to extract the clear intent of Huygens 

oblique Latin formulation. 
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the conditions of a fair wager can be recovered from a simpler notion, the expectation, that 

involves only one player in a chance situation.  

 Huygens proceeded to compute expectations in a sequence of propositions that deal with 

chance situations of increasing complication. The method of analysis employed is the same in 

each. It is sufficient to look at one case to see how the method works. Huygens’ Proposition II 

applies when someone has equal chances of obtaining amounts a, b or c. Huygens showed that 

the expectation in this case is (a+b+c)/3. 

 This result is unsurprising if we conceive of equal chance outcomes as arising with equal 

frequencies. For then each of a, b or c would arise one third of the time in repetitions and the 

average return would just be the expectation indicated, (a+b+c)/3. Huygens did not mention a 

connection to frequencies. He was in no position to use them as a precise basis for his 

determination of the expectation. For, these three equal chance outcomes will each arise only less 

commonly in exactly one third of repetitions. Significant deviations from equal frequencies are 

quite possible. 

 Huygens’ strategy amounted to finding a surrogate for these equal frequencies in the 

form of three gamblers in a particular fair game.24 The exact equality of opportunity provided 

each gambler by the fair game provides the exact equality that frequencies could not provide. 

The game has three equal chance outcomes in which the three players win the amounts a, b or c 

in cyclic permutations, such as in Table 1. 

 

 Player 1 Player 2 Player 3 

Outcome 1 a b c 

Outcome 2 b c a 

Outcome 3 c a b 

Table 1. Payoffs of the Game in Huygens’ Proposition II 

 

 
24 There is no circularity in the eventual recovery of the rule for fair stakes in general. Huygens’ 

analysis proceeds from the special case of a game judged fair because, in modern terms, it has a 

perfect symmetry over all the players. 
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The game is fair in so far as no player has any advantage or disadvantage in these payoffs. To 

preserve this equality, each player should stake the same amount. Since the payoffs require a 

total stake of (a+b+c), each player must stake (a+b+c)/3. If they stake any less, there will not be 

enough to cover the payoffs; if they stake any more, there will an undistributed surplus. 

 Huygens then used his foundational proposition to infer that (a+b+c)/3 is the appropriate 

expectation of the chance situation supposed in his Proposition II. Huygens’ analysis requires 

this foundational proposition for this inference since the original chance situation and the fair 

game analyzed are different cases. The foundational proposition fills the gap. It asserts that they 

are equivalent in matters of expectation.25 

 Huygens’ analysis included complications that, as far as I can see, provided no benefits to 

the analysis. He supposed that each player stakes an amount x and that one player wins with 

equal chance the total stakes of 3x. To arrive at the payoffs in Table 1, Huygens supposed that 

each player has entered into contracts with the other players. They are:26 

Player 1-Player 2: if either wins, the winner gives the loser b from the winnings. 

Player 1-Player 3: if either wins, the winner gives the loser c from the winnings. 

Player 2-Player 3: if either wins, the winner gives the loser a from the winnings. 

The overall effect is that each player is playing under the same conditions so that fairness is 

maintained. After the game is played and the winning player completes the agreed contracts, the 

returns to each player are as given in Table 2: 

 

 Player 1 nets Player 2 nets Player 3 nets 

Player 1 wins 3x–b–c b c 

Player 2 wins b 3x–a–b a 

Player 3 wins c a 3x–a–c 

Table 2. Payoffs of the Game in Huygens’ Proposition II with undetermined stakes x 

 

 
25 Huygens’ analysis requires a tacit assumption that any other association of the chance set up 

with different fair games will yield the same expectation. 
26 In Huygens’ text, Player 1 is Huygens and the contract between Player 2 and Player 3 is left 

tacit. 
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To return the fairness of the game, each of players 1, 2 and 3 must net a, c and b respectively. 

For example, we must have for Player 1, 3x–b–c =  a. A little algebra then shows the expected 

result, x = (a+b+c)/3. Huygens then noted the obvious extension. If there were equal chances of 

four amounts, a, b, c and d, then the expectation would be (a+b+c+d)/4; and so on for larger 

amounts. 

 Huygens’ Proposition IV considers the situation in which we have p chances of gaining a 

and q chances of gaining b, all chances being equal. The expectation is readily recoverable as 

(pa+qb)/(p+q). While Huygens did not then note it, this Proposition is sufficient to return the 

then standard rule for a fair wager. To recover it, we set b=0 and imagine a game in which the 

first player wins a with p chances and the second player wins a with the remaining q chances. 

The expectations are then for player 1, pa/(p+q); and for player 2, qa/(p+q). That is their 

expectations are in the ratio of their chances of winning, p to q, which is the ratio prescribed for 

stakes in a fair wager. 

 The main results of the remainder of Huygens’ De Ratiociniis use these propositions to 

determine the fair division of stakes in various versions of the problem of points. While the 

present historical literature has recognized the innovative game theoretic character of Huygens’ 

analysis, Shafer (2019) goes beyond this literature. He recognizes that Huygens’ analysis was not 

just a precursor to the later frequency-based probabilistic analysis. It is an alternative mode of 

analysis. 

4. What is Missing from Chance Combinatorics 

 The elements of chance combinatorics just sketched can be fitted into a modern 

probabilistic account. What distinguishes chance combinatorics from the later theory is what is 

missing. The most obvious is that modern probabilistic analysis is routinely applied to outcome 

spaces of not just infinite but continuum sizes, using the theory of additive measures. The 

outcome space of chance combinatorics is finite. It is restricted, for example, to all possible 

combinations of the finite number of die casts in some game. This omission needs no further 

discussion. Others, however, are more interesting. They are: 

• No notion of chance as a measure of belief. Its chance notion is an objective property of the 

physical device with chance properties and its use. It was not a measure of subjective 

belief, whether well warranted in the evidence or not.  
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• No precise connection to frequencies. While it was recognized that higher chance outcomes 

occurred more often, there was no precise rule connecting frequencies to chances.  

• No probability. The ratio of the favorable number of chances to all chances is not 

distinguished as a measure of chance and, if it appears at all, it is only as an intermediate in 

calculations. 

• No comparison of chances across different games. The relative numbers of chances 

assigned to various outcomes only enabled the direct comparison of the chanciness of 

outcomes in the same game. 

While these omissions mean that the scope of chance combinatorics is much smaller than that of 

modern probabilistic analysis, they do not compromise the theory as far as its intended purpose is 

concerned. It could and did advise gamblers responsibly as to which are the fair wagers in games 

of chance; and it did provide a way to interpret chance counts through these wagers. It is a self-

contained theory. 

4.1 No Subjective Conception of Chance 

 There is now a great variety of probabilistic concepts. We divide them loosely into 

objective and subjective notions and then find in each further subdivisions. The chance notion of 

chance combinatorics was much narrower. It was simply an objective notion that codified the 

chance behaviors of physical devices like cast dice, shuffled cards and lottery drawings; and its 

practical manifestation lay in the identification of which are the fair wagers in each game. The 

primary texts of chance combinatorics, notably Cardano (1663) and Huygens (1657), employ 

only this limited notion of chance. 

 Change was coming.27 Many would soon seek to take this notion of chance from 

probabilistic devices and use it in more general cases. Chapter 15 of the first edition (Arnaud and 

Nicole, 1662) of the Port Royal Logic had already moved in that direction. There, the Logic 

admonishes us to make decisions in the face of uncertainty with considerations of the probability 

of both the good and bad outcomes. The recommendation is clarified by recounting the chances 

 
27 Franklin (2015, pp. 305-306) notes that the mathematician, Roberval, in unpublished writing 

no later than 1647, had made an explicit connection between belief and combinatorial counts that 

was unusual for the time. We should believe, Roberval asserted, in a ten rather than a four in 

three dice casts since there are more ways to cast the ten. 
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of a fair game and of a lottery, which is deplored as an unfair game. While the Logic’s 

connection to games of chance has the flavor merely of a useful analogy, Jacob Bernoulli, in his 

posthumously published Ars Conjectandi (1713), is more direct in making the connection. Part 

IV recounts a fictional murder and sets out to use chance computations to aid in determining the 

culprit.  

 An extensive, modern literature treats the history of the merging of these objective and 

subjective notions. The primary thesis of Hacking’s (2006) Emergence of Probability is that this 

merging around 1660 marked the birth of the notion of probability. The two senses he identified 

are (p.12) “statistical, concerning itself with stochastic laws of chance processes” and 

“epistemological, dedicated to assessing reasonable degrees of belief in propositions quite devoid 

of statistical background.” His verdict is strong: “I say, with only very slight reservations that 

there was no probability until about 1660.” The definiteness of this moment of creation has been 

challenged by Garber and Zabell (1979). Franklin’s (2015) Science of Conjecture provides a very 

detailed examination of notions of probability, especially qualitative notions, up to the 

seventeenth century. 

 The issues raised in this literature are historically of the greatest interest. Just when and 

how did the two senses of probability merge? The answer, however, is unimportant as far as the 

cogency of chance combinatorics is concerned. For that theory existed already in a polished and 

a self-contained form prior to the merging of its notion of chance with the subjective notion. 

4.2 No Precise Connection to Frequencies 

 Chance combinatorics had no precise results connecting chances and frequencies. This 

was no flaw in the theory. No such results were needed to achieve the theory’s goal of 

identifying the fair wagers. Since this identification was unequivocal, it was practically of great 

use to gamblers. The vaguer results on frequencies sketched below could only provide vaguer 

guidance.  

 While there were no precise results connecting the number of chances for an outcome and 

the frequency of its occurrence in repeated plays, it had been long recognized that there is a loose 

connection. The discussion of the combinatorics of die casts is introduced in Book 1 of de Vetula 

by noting that not all casts are of equal value when three dice are cast. The “value” is tied to their 

frequency. The extreme sums of faces, 3 = 1+1+1 and 18 = 6+6+6 can only arise in one way. 
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The remaining sixteen sums may be produced in multiple ways and, the text notes, arise more 

frequently according to how close they are to the middle sums of 10 and 11:28 

On three dice there are eighteen [configurations], 

Of which only three can be on top of the dice. 

These vary in different ways and from them,  

Sixteen compound numbers are produced. They are not, however, 

Of equal value, since the larger and the smaller of them 

Come rarely and the middle ones frequently, 

And the rest, the closer they are to the middle ones, 

The better they are and more frequently they come. 

The association of chance and frequency is loose. It is easy now to overlook just how difficult it 

is to formulate the connection in precise terms. In six die casts, the simplest association would 

require that each of the six faces show just once. It is quite unlikely. Cardano (1663a, p. 192) 

noted the difficulty: 

… the die has six [faces and points]; in six casts each point should turn up once; but 

since some will be repeated, it follows that others will not turn up. 

This separation of chances and frequencies was presumably familiar to any moderately 

experienced gambler of his time. Even now we find that asserting the connection requires some 

subtlety. In very many die casts it is very improbable that a given face will arise with a frequency 

of exactly one sixth. We resort to some version of the law of large numbers to describe the 

connection. The formulation needed is oblique: by sufficiently increasing the number of casts, 

we can bring the probability arbitrarily close to one that the frequency of sixes will lie in some 

small interval of frequencies around one sixth. 

 Without some version of the law of large numbers, Cardano had no way to make precise 

the association of chances and frequencies. Nonetheless, he tried. For the casting of two dice, he 

noted (1663a, p. 195): 

But the throw (1,2) can turn up in two ways, so that for it there is equality in nine 

casts; and if it turns up more frequently or more rarely, that is a matter of luck. 

 
28 Translation from Bellhouse (2000, p. 134). 
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That is, a sum of 3 can arise from two combinations of the total of 36 equal chance 

combinations. Hence, he infers that there is an equal chance (“equality”) of the sum appearing or 

not in nine casts of the two dice.29 However the supposition that this sum appears in exactly half 

of these nine casts is immediately withdrawn. “Luck” may alter the frequency. 

 Cardano recognized that the connection of chances and frequencies is improved if there 

are many trials. He considered 3,600 casts of two dice and considered an outcome that can 

happen or not with equal chances. This case he calls “equality” since it obtains in one half of his 

“circuit,” which is the full set of possible outcomes. He wrote (Cardano, 1663a, p. 196): 

Moreover, a repeated succession, such as favorable points occurring twice, arises from 

circuits performed in turn; for example, in 3,600 casts, the equality is 1/2 of that number, 

namely, 1,800 casts; for in such a number of casts the desired result may or may not happen 

[with equal probability.30] So the whole set of circuits is not inaccurate, except insofar as 

there can be repetition, even twice or three times, in one of them. Accordingly, this 

knowledge is based on conjecture which yields only an approximation, and the reckoning is 

not exact in these details; yet it happens in the case of many circuits that the matter falls out 

very close to conjecture. 

A direct association of chances and frequencies would require the outcome in 1,800 of the 3,600 

casts. Yet, in so far as I can follow his text, the best Cardano can assure his readers is of some 

vaguely delimited approximation to this expectation. 

 
29 Here Cardano’s combinatorics failed. We would now compute the probability of no sums of 3 

appearing in nine casts of two dice as (17/18)9 = 0.5978; and the probability of exactly one sum 

of 3 as 9(1/18)(17/18)8 = 0.3165. 
30 Here the standard translation of Cardano (1663) in Ore (1953) as Cardano (1663a) is 

misleading. The translation inserts the word “probability” where it is not in the original, albeit 

terse Latin (and makes similar insertions elsewhere). The Latin reads “In totidem enim potest 

contingere, & non contingere.” (p. 265) It is loosely translated as “In the same number [of casts], 

[the result] may or may not happen.” The Gould translation above in Ore (1953, p. 196) reads: 

“…for in such a number of casts the desired result may or may not happen with equal 

probability.” The phrase “with equal probability” is not in the Latin. 
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 This imprecise connection between frequencies and chances could not be used to justify 

the precise rule that identifies the fair wagers. With this mode of justification precluded, we can 

appreciate Huygens’ (1657) acumen in using a game theoretic approach to justifying the rule. 

 Discerning more precisely the connection between chances and frequencies became more 

pressing with attempts to extend computations with chances beyond the physical devices of 

games of chance. This extension was the project of Book IV of Jacob Bernoulli’s (1713) Ars 

Conjectandi. Chapter IV of Book IV recalls that identifying the equal chance cases for physical 

devices is a solved problem. Because of the physical equality of die faces, each face arises with 

equal chance in die casts. How, Bernoulli then asks rhetorically, are we to estimate the chances 

of various fatal diseases in old age, of various future weather conditions, or of the prospects of 

players according to their shrewdness or agility. Bernoulli answers that these chances may be 

estimated “a posteriori” from the observed frequencies of occurrences. Here is one of several of 

Bernoulli’s examples (1713a, p. 327): 

If, for example, there once existed three hundred people of the same age and body 

type as Titius now has, and you observed that two hundred of them died before the 

end of a decade, while the rest lived longer, you could safely enough conclude that 

there are twice as many cases in which Titius also may die within a decade as there 

are cases in which he may live beyond a decade. 

The mathematical principle underlying this inference comes from Bernoulli’s version of the law 

of large numbers, whose formulation and proof completes Book IV. He foreshadowed it loosely 

as (1713a, p. 328): 

… as the number of observations increases, so the probability increases of obtaining 

the true ratio between the numbers of cases in which some event can happen and 

not happen, such that this probability may eventually exceed any given degree of 

certainty. 

Bernoulli shortly clarified this statement by noting (p. 329) that the ratios so discovered “should 

be defined within some range.” 
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4.3 No Probability, No Direct Comparison of Chance across Different Games 

4.3.1 No Probability 

 We now routinely compare chance events in different outcome spaces. The probability of 

being struck by lightning31 in any one year (1/500,000) is roughly half the probability of tossing 

18 heads in a row (1/218 = 1/262,244). These comparisons were not supported by chance 

combinatorics. The omission is not reported in the secondary literature. It is very easy to fail to 

notice what is not there! 

 The main reason for the omission, I believe, is that the comparison of chances across 

different games was not needed for a prime application of chance combinatorics: discerning the 

fair wagers. For this purpose, all that matters are the relative chances of outcomes in the one 

game, or to use the later term, the one outcome space. As a result, the measure of uncertainty, the 

counting of chances, provides no useful comparison over different outcome spaces. For example: 

When two dice are cast, there are five chances that a sum of six can arise. 

When three dice are cast, there are seven chances that sum of six can arise. 

While five is less than seven, we cannot now conclude that the first outcome is less likely than 

the second. 

 We now make the comparison across outcome spaces by computing the probability of 

each outcome. That is, we form the ratio of the number of favorable, equal chance cases to the 

total number of equal chance cases. The probabilities for the above dice problems are 5/36 and 

7/216 respectively. These ratios carry a much broader significance for us. Using the law of large 

numbers, they give an estimate of the frequency of occurrence of the two outcomes in repeated 

plays; and using each as the parameter in a binomial distribution, we can assess how likely it is 

for the actual frequency to be close to this estimate. 

 Terms like “probable” and “probability” appeared sometimes in writings within chance 

combinatorics as a qualitative notion. Probability in its quantitative, modern sense does not 

appear. To someone searching for an anticipation of modern probability theory, this is a curious 

and disappointing failure--a missed opportunity. For someone working within chance 

combinatorics, it is otherwise. Nothing prevented the formation of the ratio. It is a simple 

arithmetic division. There was no point in doing it. It would be merely an idle recalibration of the 

 
31 According to https://www.cdc.gov/disasters/lightning/victimdata.html 
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chances. It does not support the conclusion that the first outcome will happen 5 times in 36 casts; 

and the second 7 times in 216 casts. The best that could be said is that something like these 

frequencies would arise, but deviations from them should be expected. 

 The modern sense of probability is in neither Cardano (1663) nor Huygens (1657); and is 

also missing from Fermat and Pascal’s correspondence; and from Ozanam’s (1694) Récréations. 

They all had no need of it. Once Bernoulli derived his version of the law of large numbers, then 

the ratio became useful in its own right as an estimate of frequencies. It is no surprise to find that 

probability is given the ratio definition in the same part of Bernoulli’s Ars Conjectandi that 

contains the derivation of law of large numbers. He wrote (1713a, pp. 315-16, his emphasis): 

Probability, indeed, is degree of certainty, and differs from the latter as a part 

differs from the whole. Truly, if complete and absolute certainty, which we 

represent by the letter a or by 1, is supposed, for the sake of argument, to be 

composed of five parts or probabilities, of which three argue for the existence or 

future existence of some outcome and the others argue against it, then that outcome 

will be said to have 3a/5 or 3/5 of certainty. 

The definition took root and flourished. De Moivre, in the first 1718 edition of his Doctrine of 

Chances gave a similar definition (1718, p.1): 

The Probability of an Event is greater or less, according to the number of Chances 

by which it may happen, compar’d with the whole number of Chances by which it 

may either happen or fail. Thus If an Event has 3 Chances to Happen, and 2 to Fail; 

the Probability of it Happening may be estimated to be 3/5, and the probability of 

its Failing 2/5. 

That he illustrated the notion with the same ratio of 3/5 suggests that he drew the definition from 

Bernoulli’s text. 

 A misleading attribution in the history regarding Leibniz’s De incerti aestimatione (1678)  

needs to be corrected. Hacking (2006, Table of Contents) noted “The definition of probability as 

a ratio among ‘equally possible cases’ originates with Leibniz.” and (p.32) “Laplace did define 

probability as the ratio of favourable cases to the total number of equally possible cases, but so 

did Leibniz in 1678.” De Melo and Cussins (2004, p. 31) repeated the attribution: “Leibniz's 

1678 manuscript De incerti aestimatione (DIA) contains the first appearance of the ‘Laplacian’ 

definition of probability in terms of equally possible cases.” If all this means is that Leibniz 
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formed the ratio of favorable to all cases as an intermediate in his analysis, the remark would be 

correct. However, if we are to understand that Leibniz was initiating the transition in the 

fundamental concepts of chance from the seventeenth century case counting to the later 

probability, then the claim is incorrect. While Leibniz uses the term “probability” (probabilitas) 

elsewhere in his text, he does not use it to identify this ratio. Throughout his text, the basic 

chance concept remains the familiar equally likely case of chance combinatorics and the ratio 

appears as an intermediate in calculating a “hope” (spes), which is comparable to Huygens’ 

expectation (expectatio) 

4.3.2 A Newton Anomaly Resolved 

 That chance combinatorics did not compare chances across different games  

follows from a survey of the problems handled by the theory. How can we know that it could not 

compare them across outcome spaces? 

 That it could not would be shown if someone working in the theory was tasked with such 

a comparison. That happened when Pepys asked Newton how to advise Peter a Criminal 

Convict, in the correspondence recalled above. Pepys’ question involved three different outcome 

spaces: that of six die casts; of twelve die casts; and of eighteen die casts. He wrote (Pepys to 

Newton, December 9, 1693, in Newton, 1961, pp. 297-98): 

…supposing [the dice] instead of 1, 2, 3, &c to bee branded wth ye 6 initiall Letters 

of ye Alphabet A. B. C. D. E. F. And the Case should then bee this; Peter a Criminal 

Convict being doom'd to dye, Paul his Friend prevails for his having ye benefitt of 

One Throw only for his Life, upon Dice soe prepared; with ye Choice of any one of 

these Three Chances for it, viz. 

One F, at least upon Six such Dice. 

Two F's at least upon Twelve such Dice, 

Or 

Three F's at least upon Eighteen such Dice. 

Question.—Which one of these Chances should Peter in this Case choose? 

A modern analysis, such as Stigler (2000), computes the probabilities of the three outcomes 

directly and compares them. Newton’s analysis is oddly convoluted. He does not compare 

chances across the different spaces. Rather, he reformulates the question into another: what are 
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fair wagers in each of the three cases. From those fair wagers he reads off which choice is most 

favorable to the Criminal Convict. 

 We can now understand why Newton followed this convoluted pathway. Chance 

combinatorics had no means to compare chances across different outcome spaces.32  The precise 

result of the application of the theory was the discerning of which are the fair wagers. Newton 

applied the theory, determined which are the fair wagers in each case and then used a 

comparison of them to answer Pepys’ question. It was not a needless detour but the most direct 

use of the resources of chance combinatorics. 

5. Fermat and Pascal 

 The origin of modern probability theory is traditionally attributed to the correspondence 

between Pierre de Fermat and Blaise Pascal in 1654 on the problem of points. That gets 

something right about the chronology. A young Huygens in 1655 (as reported in David, 1962, 

pp. 111-12) knew of Fermat and Pascal’s interest in the problem, but not their solution, and was 

inspired by that knowledge. If we seek fundamental contributions of principle, then none can be 

found in their correspondence. Their analysis was fully within the existing theory of chance 

combinatorics. It counted and compared numbers of chances and translated them into the 

corresponding fair wagers. The only apparent novelty was that their analyses were 

mathematically more sophisticated and more general and provided the best solution up to that 

time of the problem of points. 

 Later historical work reassures us that otherwise there was little of novelty in the 

correspondence. The problem of points had been posed long before and other solutions offered. 

David (1962, pp. 37-38) traced early versions back at least to a 1474 work of Paccioli. Similarly, 

David (1955, p. 61-62, 81-82) identified the use of Pascal’s triangle in combinatorics in several 

works a century prior to the correspondence. The correspondents were addressing an established 

 
32 Newton could have reduced the problem to a single outcome space of 18 die casts. The first 

outcome—at least one 6 in six casts—would have involved the first six of the 18 casts. Newton 

did not do this, perhaps because it would be computationally more onerous and more difficult to 

explain to Pepys. 
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problem using existing methods, but applying them to the problem better than anyone before 

them. 

 That the analysis was fully within the context of chance combinatorics explains the 

otherwise curious omissions noted by Franklin (2016, §2.8):     

They say very little, however, about the nature of the entities they are calculating. In 

their initial letters on the just division of stakes, they merely calculate what would 

be “impartial” between the players. They appear to have no way of conceptualising 

a probability except as a just share of a stake, a concept just sufficient for them to 

deploy the symmetry arguments that result in a numerical solution to the problem. 

 The interesting historiographical issue is how the correspondence came to be celebrated 

as so important. The correspondence may have been well-known informally in the small 

community of scholars interested in chances in the mid seventeenth century. The texts were slow 

to appear in published form. A subset of the now-accessible letters appeared in Fermat’s Opera 

in 1679 and the remainder in later eighteenth and nineteenth century publications.33 The Preface 

to both editions of Montmort’s Essay (1708, pp. xx-xxiii; 1713, pp. xx-xxiii) gave a chronology 

that celebrated Pascal and Fermat’s correspondence and then Huygens’ work. Sylla, in her 

preface to her translation of Bernoulli’s Ars Conjectandi (1713a, p, vii) ascribes great 

historiographic significance to Monmort’s Preface: “His account, starting with the 

correspondence of Pascal and Fermat, became the basis for the standard history of mathematical 

probability.” Subsequently the correspondence is mentioned in passing in Bernoulli’s (1713) Ars 

Conjectandi, for example on p. 29. While the Preface of the first and third editions of de 

Moivre’s Doctrine (1713, 1756) makes extensive mention of Huygens’ book, the Pascal-Fermat 

correspondence is not mentioned. 

6. Standard Histories 

 There was, I have argued, a serviceable if limited theory of chance perfected in the 

seventeenth century. How did it become the theory that history forgot? The answer lies in how 

the history of probability has been written and, especially, how it wrote of the ideas of the 

 
33 For an inventory of the first publications, see Taton (1790-80, p. 341). David (1962, Appendix 

4) has an English translation of the letters. 
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seventeenth century. We shall see below that part of the problem results from an initial 

overvaluing of Pascal and Fermat’s contribution that became entrenched as standard. Historians 

expecting to find in it the origin of probability theory sought in vain for novel statements of 

foundational principles. While more careful historians have corrected this misattribution, the 

historical literature has persisted in seeking anticipations or precursors of later probability theory 

in the earlier work. The result was that there was no natural space in the historical narratives for 

chance combinatorics. It became the theory that history forgot. 

6.1 The Elevation of Pascal and Fermat 

 As we have seen in Section 5, Fermat and Pascal’s correspondence was recognized in 

writing prior to the nineteenth century as part of the chronology of events in the development of 

probability theory. The stronger claim that this correspondence initiated probability theory was 

made by Laplace. Given Laplace’s authority, his summary was highly influential. The same 

passage appears twice: in the second edition34 of his technical Theorie (Laplace, 1814, p. xcxix); 

and in his reflective Essai (Laplace, 1814a, p. 89). The translated passage is (1902, p. 185): 

Long ago were determined, in the simplest games, the ratios of the chances which 

are favorable or unfavorable to the players; the stakes and the bets were regulated 

according to these ratios. But no one before Pascal and Fermat had given the 

principles and the methods for submitting this subject to calculus, and no one had 

solved the rather complicated questions or this kind. It is, then, to these two great 

geometricians that we must refer the first elements of the science of probabilities, 

the discovery of which can be ranked among the remarkable things which have 

rendered illustrious the seventeenth century-the century which has done the greatest 

honor to the human mind. 

 
34The text of the first edition differs in many places. In it, Laplace (1812, p. 3) writes: “[The 

theory of probability] owes its birth to two French geometers [Pascal and Fermat] of the 

seventeenth century, which was so fertile in great men and great discoveries…” That they are 

identified as French raises the possibility that their work was elevated by Laplace out of Gallic 

pride. 
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This celebratory attribution reappeared sporadically in the century that followed in treatises on 

probability theory. It appears in Lubbock (1830, p. 41), Poisson (1837, p.1), Boole (1854, p. 243) 

and Bertrand (1907, p. vi). 

 Perhaps the most important endorsement was in Todhunter’s (1865) history. It was the 

authoritative early history of probability. Its first chapter briefly recounted earlier work on 

chance by Cardano, Kepler and Galileo. Their contributions to the theory of probability were 

judged dismissively as “extremely slight” (p.7). The “true origin” is attributed to Pascal and his 

correspondence with Fermat. The claim is supported with a quote from the first edition of 

Laplace’s (1812, p. 3) Theorie and a comparable quote from Poisson (1837, p.1). This attribution 

became routine in histories of mathematics, such as Rouse Ball (1915, p. 285, p. 300) and Cajori 

(1919, pp. 170-71). The celebration of Pascal and Fermat endures in popular writing. The title of 

Keith Devlin’s (2008) popular work is The Unfinished Game: Pascal, Fermat, and the 

Seventeenth-Century Letter that Made the Modern World. 

 More careful scholarship, starting in the mid twentieth century, sought to correct 

Laplace’s overstatement. The corrections are hesitant. Historians felt a need to offer some 

account of the prominence of the correspondence in the existing literature, while not able to 

identify why it merits that place. David (1962, p. 110) is ready to “pass over” Pascal and Fermat 

as the “real begetter[s]” of probability theory, for Fermat, she notes, merely extended work 

already done by Galileo. Hacking (2006, p. 60) does not see in the correspondence any great 

novelty but praises them for “a completely new standard of excellence for probability 

calculations.” Garber and Zabell (1979, p. 49) locate the importance of the correspondence in the 

fact that Fermat and Pascal, two leading mathematicians of the day, had taken an interest in 

chance problems. That aroused the interest of the wider mathematical community. 

6.2 The Neglect of Chance Combinatorics 

 These welcome efforts to correct the historical record have not gone far enough. Most 

historical writing on chance is still controlled by a quest for modern ideas in earlier times. This is 

revealed by the language commonly used. Hacking often talks of “precursors” or “anticipations” 

of modern probabilistic ideas, while denying (p. 9) that he seeks them. Nonetheless he reports 

“unsuccessful anticipations” (p. 12), “anticipations of probability theory” (p. 49), “some 

anticipation of mathematical expectation” (p. 92) and “… it has been no part of my thesis that 

there were never precursors nor anticipations.” (p. 56). 
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 Less obvious is the practice of attaching the label of “probability” to seventeenth century 

writing and earlier writing on chance where there is none. David (1962, p.110) wrote of “the first 

calculations of a probability by Cardan and by Galileo.” Hacking (2006, pp. 11, 61, 92) calls 

Huygens’ text “the first probability textbook to be published” and “the first printed textbook of 

probability.” The title of Bellhouse’s (2000) analysis of de Vetula is “A Medieval Manuscript 

Containing Probability Calculations.” Stigler’s (2006) title identifies “Isaac Newton as a 

Probabilist.” 

 Probability is a modern term of art not used then in the modern sense. Is it not so used in 

Cardano, in the correspondence of Fermat and Pascal, in Huygens, in Ozanam and, contrary to 

some claims, in Leibniz. 

 In this later historical writing, great efforts were made to write a careful history, 

responsible to the sources. David’s (1962) monograph set out explicitly to recover the history of 

chance prior to Fermat and Pascal. This earlier history occupies the first seven of fifteen 

chapters. Chapter 3 asks why probabilistic ideas and the notion of equally likely possibilities 

were so long delayed.35 In its eagerness to find precursors of probability, David’s text is too 

quick to find probabilities. It asserts that John Graunt was “the first Englishman to calculate 

empirical probabilities on any scale” (p.103) in his Bills of Mortality. Yet Graunt’s (1665) Bills 

of Mortality contain no probabilities or probabilistic reasoning. The work reports actual 

frequencies of various features of the population.36 Similarly David (p. 110) reports “…the first 

calculations of a probability by Cardan and by Galileo…” When we examine Galileo’s text 

(reproduced in translation in David, 1965, pp. 192-94) there are no probabilities. Galileo 

computes the number of chances for various cases. 

 
35 The question has enduring fascination and has been examined also in Kendall (1956, pp.9-10), 

Garber and Zabell (1979, pp. 48-49), Franklin (2015, p. xx,  pp. 330-40), Kidd (2020) and 

extensively for antiquity in Sambursky (1956). 
36 The word “probable” appears twice only in the text (p. 23, p. 96) as a synonym for the 

informal “likely.” “Chance” appears only once as “mischance” (p. 97) to characterize 

unfortunate accidents. 
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 Hacking’s (2006) influential37 Emergence of Probability (first edition 1975) is controlled 

to its detriment by a dismissive appraisal of earlier ideas of chance in the seventeenth century. “I 

say, with only very slight reservations,” he confided, “that there was no probability until about 

1660.” (p. 17) This severe judgment is almost guaranteed by Hacking’s framing of his history. 

His quest is for a quite specific, dual notion of probability that is articulated at some length in his 

Chapter 2, “Duality.” He summarized it as (p. 43): 

In Chapter 2 I emphasized the duality of the probability that emerged around 1660. 

On the one hand it is epistemological, having to do with support by evidence. On 

the other hand it is statistical, having to do with stable frequencies. 

Chance combinatorics has neither stable frequencies nor epistemology since it needs neither. 

Frequencies enter only vaguely and even these are rendered redundant by Huygens’ ingenious 

equality arguments. Hacking’s unnecessarily specific conception precludes his text from 

recognizing the cogency of earlier ideas of chance such as in the chance combinatorics. 

 The trend among more works that treat the historical emergence of probability in the 

seventeenth century is clear. Chance combinatorics is diminished or overlooked. Gigerenzer et 

al. (1989) commences on page one with the familiar attribution to Fermat and Pascal. Daston 

(1988) seems to accept, perhaps reluctantly, the elevation of Pascal and Fermat’s role in the 

history. Her formulation is cautious: (p. 15) 

 … the Pascal/Fermat correspondence created a research tradition, complete with 

problems and concepts, that dominated the field for over fifty years. On these 

grounds alone it deserves its traditional place in the history of mathematical 

probability, and I shall not break with that tradition. 

Hald (2003, 35) concedes only “some elementary results” to Cardano, but associates the “birth of 

probability” with 1654 when Pascal and Fermat, we are assured, first solved the problem of 

points. Finally, Maistrov (1974, pp. 7-8) is exceptional in disputing the idea that the probability 

calculus was born from developments in gambling. Rather it arose from economic factors 

associated with the new bourgeoisie. 

 
37 It is also disputed in its primary claims. See, for an example, Garber and Zabell (1979). 
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7. An Alternative Historiography 

 The controlling idea of our histories has been that earlier ideas of chance, such as those in 

the seventeenth century, were merely imperfect anticipations of a better, completed modern 

theory or even just dim glimpses of a greatness to come. I propose an alternative. We should 

conceive of the seventeenth century theory of chance combinatorics as a well-formed theory that 

provides a model for how indefinitenesses of all types could be handled. It showed in one 

example, games of chance, how they could be represented mathematically and decisions 

pertaining to them could be reduced to objective numerical computations. This model inspired 

the search for comparably precise treatments of many other types of indefiniteness. We learn 

from his examples that Jacob Bernoulli sought an analysis of comparable precision for the 

indefinitenesses of forensics, of medicine, of the weather and more. This extension remains a 

part of the project of modern probabilistic analysis today. In many areas, it has met with great 

successes. In one area, the project is incomplete and possibly terminally so. 

 The greatest success has been the replacement of the simple mathematics of the 

seventeenth century, finite counting and finite combinatorics, with the modern theory of additive 

measures. Its application has led to advances far outstripping anything achieved in the 

seventeenth century. A notable instance has been its application to stochastic processes in 

physics. Statistical mechanics and quantum theory, two jewels of modern physics, depend 

essentially on its application. We now think of the application as obvious and automatic. Yet in 

the mid nineteenth century, its application was a bold step taken by Maxwell. He recognized the 

impracticality of tracing the motions of the individual molecules in a kinetic gas by methods then 

standard in Newtonian mechanics. He suggested that, instead, these motions should be treated 

collectively using the statistical methods that had been employed in social contexts. In explaining 

this transition, Maxwell (1872, p. 289) used the example of a school registrar whose analyses 

proceed without identifying any individual students’ names. 

 The project met with less success in accounting for the nature of probability itself. In an 

inversion of the normal picture, the seventeenth century conception of chance is univocal and the 

most secure of all. The later conceptions are fragmented and unstable. This problem was already 

apparent when Jacob Bernoulli first sought to extend the notion of chance beyond the confines of 

games of chance. In Book IV of Ars Conjectandi, he lamented the difficulty of determining 
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chances outside these confines compared to the ease of determining them for physical devices 

(1713a, pp. 326-27): 

The originators of these games took pains to make them equitable by arranging that 

the numbers of cases resulting in profit or loss be definite and known and that all 

the cases happen equally easily. But this by no means takes place with most other 

effects that depend on the operation of nature or on human will. So, for example, 

the numbers of cases in dice are known: for a single die there are manifestly as 

many cases as the die has faces. Moreover these all have equal tendencies to occur; 

because of the similarity of the faces and the uniform weight of the die, there is no 

reason why one of the faces should be more prone to fall than another — as would 

be the case if the faces had dissimilar shapes or if a die were composed of heavier 

material in one part than another. 

Bernoulli continued to assess likelihoods in the new applications by the counting of equal chance 

cases.38 

 This case counting conception persisted into the early nineteenth century. Laplace in his 

1814 Essai gave it its well-cited formulation (1814a, p.4, 1902, pp. 6-7): 

The theory of chance consists in reducing all the events of the same kind to a 

certain number of cases equally possible, that is to say, to such as we may be 

equally undecided about in regard to their existence, and in determining the number 

of cases favorable to the event whose probability is sought. The ratio of this number 

to that of all the cases possible is the measure of this probability, which is thus 

simply a fraction whose numerator is the number of favorable cases and whose 

denominator is the number of all the cases possible. 

This “classical interpretation” was soon subject to searching criticism. Boole (1854, p. 243-45) 

criticized it as subjective, while, he urged, the appropriate conception is formed from frequencies 

 
38 From the example above in Section 4.2 “there are twice as many cases in which Titius also 

may die within a decade as there are cases in which he may live beyond a decade.” 
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of occurrences.39 Venn (1866, Ch. II) found it a failed attempt to arrive at probabilities by a 

priori methods, where they should be properly ascertained a posteriori from frequencies. 

 When this classical notion of chance is applied in its original context of games of chance, 

Boole, Venn and many later commentators’ criticism is misplaced. Bernoulli had identified the 

viability of the conception in the physical properties of devices with chance properties. However, 

their dissatisfaction with the classical interpretation was well placed when this notion of chance 

is used outside games of chance. The pressing problem was now to find an appropriate 

conception of probability that could be applied in broader contexts. The continuing development 

of work on the notion of probability has provided no univocal solution. It is marked by instability 

and fragmentation. One proposal after another has been advanced, criticized and replacements 

offered, only for the critical cycle to repeat. 

 The views of this enormous literature can be grouped loosely into several traditions.40 

The frequentism of Boole and Venn found continuing support in the twentieth century 

elaborations of Reichenbach and von Mises. In the early twentieth century, Keynes and Carnap 

gave a logical interpretation of probability as partial entailment. At the same time, Ramsey, de 

Finetti and Savage developed a subjective interpretation that identified probability as strength of 

belief. That probability has an objective referent in the world is maintained by approaches such 

as Popper’s propensity interpretation, Jaynes’ objective physical probability and Jon 

Williamson’s objective Bayesianism. 

 This brief inventory scarcely touches a huge literature. That each of these traditions 

retains a following indicates that none has found a fully satisfactory viewpoint. We should 

contrast this fragmentation41 with the solidity of the conception of chance within chance 

 
39 Boole directly addressed Poisson’s (1837, p. 31) later statement: “The measure of the 

probability of an event is the ratio of the number of cases favorable to that event, to the total 

number of cases favorable or contrary, and all equally possible, where all of which have the same 

chance.” (My translation differs slightly from Boole’s.) 
40 For further details see Gillies (2000) and Hájek (2019). 
41 See Hacking (2006, p. 14-16) for an attempt to dismiss this fragmentation as unimportant. 
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combinatorics. It remains today the least problematic conception.42 If we wish now to explain 

what it really means to say that some outcome has probability one half or one sixth, it is almost 

irresistible to call to mind a coin toss or a die cast and thereby to employ the very concept central 

to the seventeenth century theory of chance combinatorics.  

8. Conclusion 

 How close were the ideas of earlier figures to modern probability theory? Answering this 

question has yielded much interesting history. Another question has been neglected. What was 

the conception of chance held by earlier figures in the history? The result of this neglect is that 

the self-contained if limited theory of chance combinatorics of the seventeenth century has been 

overlooked. I have tried to establish here that it served as more than a mere anticipation of the 

later probability theory. It offered a model for how mathematical methods could be applied to 

broader indefinitenesses. Modern probabilistic analysis emerged from efforts to extend its 

successes to larger domains. 
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43 The image matches that of the corresponding page reproduced in Bellhouse (2000, p. 130), 

which is identified there as from the 1534 printing. Both include the typographical error in row 8 

not found in other editions, such as the 1662 edition shown in Kendall (1956, p. 6) and David 

(1962, p. 32) 


