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Abstract

Recent work on the evolution of social contracts and conventions has often used
models of bargaining games, with reinforcement learning. A recent innovation is the
requirement that every strategy must be invented either through through learning
or reinforcement. However, agents frequently get stuck in highly-reinforced “traps”
that prevent them from arriving at outcomes that are efficient or fair to the both
players. Agents face a trade-off between exploration and exploitation, i.e. between
continuing to invent new strategies and reinforcing strategies that have already be-
come highly reinforced by yielding high rewards. In this paper I systematically
study the relationship between rates of invention and the efficiency and fairness of
outcomes in two-player, repeated bargaining games. I use a basic reinforcement
learning model with invention, and five variations of this model, designed introduce
various forms of forgetting, to prioritize more recent reinforcement, or to maintain a
higher rate of invention. I use computer simulations to investigate the outcomes of
each model. Each models shows qualitative similarities in the relationship between
the efficiency and fairness of outcomes, and the relative amount of exploration or
exploitation that takes place. Surprisingly, there are often trade-offs between the
efficiency and the fairness of the outcomes.

1 Introduction

Traditionally, evolutionary game theoretic models have assumed that agents select
strategies from a pre-defined menu of options. However, this assumption is often
left unjustified. In a naturalistic model, we should not always assume that agents
begin with all of the possible strategies as options. In nature, any strategy must be
invented, for example through learning or evolution. To this end, recent game theo-
retic research has relaxed this assumption, instead allowing agents to “invent” new
strategies in signalling games (Alexander et al., 2012), Hawk-Dove games (Herrmann
and Skyrms, 2021) and bargaining games (Freeborn, 2022).

In a bargaining game, two players compete over a divisible resource, with each
player seeking to maximize their reward. Bargaining games have been widely used to
model the evolution of social contracts or conventions (Alexander and Skyrms 1999;
Axtell et al. 2000; Binmore 2005,1; O’Connor 2019; Skyrms 2014). Researchers have
been particularly interested in better understanding how, and to what extent, such
evolved social conventions might be efficient in their allocation of resources and fair
to all players. I consider an outcome more efficient if less of the resource is wasted,
with a Pareto efficient outcome dividing the entire value of the resource between two
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players, and a minimally efficient outcome discarding the entire value of the resource.
I consider an outcome more fair if it gives a more equal share of the resource to each
player, regardless of how much of the resource is wasted. An outcome in which
both players received half the resource’s value would be maximally fair, as would an
outcome in which both players receive nothing.

Recent research (Freeborn, 2022) discusses several learning models that incorpo-
rate strategy invention as well as strategy reinforcement. However, Freeborn does
not systematically examine the possible trade-offs between efficiency and fairness.
Nonetheless, Freeborn finds that fairer outcomes are found to be somewhat favored
over over unfair outcomes, and efficient outcomes are found to be somewhat favored
over inefficient outcomes; however, there is a fairly wide variation in results. On
average, the outcomes usually settle some distance from the fair solution, and some
of the resource remained wasted, even after the simulations run for a large number of
turns. One possible factor is that the rate of mutation decreases as strategies are re-
inforced. Relatedly, each strategy can be reinforced without limit, making it harder
for agents to find success with alternative strategies as the simulation progressed. If
one player, by luck, succeeds in getting a high demand strategy highly reinforced,
the other player may be stuck without being able to get high rewards from making
similarly high demands. Inefficiencies result because players draw strategies at ran-
dom: the two players are not able to co-ordinate perfectly. Players frequently fall
into “inefficient-unfair traps”, in which strategies that lead to somewhat inefficient
and unfair outcomes become ever more reinforced. As the rate of mutation falls, it
becomes ever harder for the players to escape 1.

These inefficient-unfair traps in some ways resemble “polymorphic pitfalls” seen
in finite-population Nash demand games with a finite population, and a finite num-
ber of available strategies, under various dynamics (see Skyrms, 1994 and Alexander,
2008, pages 148-198). In these pitfalls, the players are stuck in a non-perfectly co-
ordinated trap, leading to outcomes that are inefficient and unfair. Introducing small
mutation rates, allowing extinct strategies to be reintroduced, can have a variable
effect: under imitate-the-best dynamics, populations are almost guaranteed to settle
on the fair division, whereas under best-response dynamics, mutation can prevent
co-ordination,leading to worse outcomes. 2 Freeborn (2022) has already shown
that invention with an infinite number of possible strategies can proceed somewhat
differently to mutation with a finite number of strategies, and fairer outcomes are
somewhat, but not completely favoured. Furthermore, forgetting strategies seems
to have an variable effect on the tendency towards a fair division, sometimes either
partially favoring or disfavoring it. Such results require a more systematic investi-
gation. Here I investigate in how, and in what ways, the invention and the types
and rates of forgetting can affect these outcomes.

Perhaps keeping a higher rate of invention for longer would help players to es-
cape from these inefficient-unfair traps. If both players keep experimenting with
new strategies at a sufficiently high rate, then eventually they may discover and re-
inforce strategies that yield higher average rewards. On the other hand, high rates
of invention also carry the risk of wasting part of the resource: whilst experiment-
ing with random strategies, players cannot consistently coordinate. Thus it would

1For similar findings with other learning dynamics, see Sugden, 1986 and Skyrms, 2014 .
2Under imitate-the-best dynamics, each agent adopt the best-performing strategies of those neighbors

it can observe. Under best-response dynamics, selects the strategy that would yield them the maximum
payoff, given the observed strategies that their neighbors are employing.
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be of interest to study the role that rates of invention in bargaining games more
systematically. Of particular interest would be to better understand how they can
influence the efficiency and fairness of evolved social contracts and conventions.

So there may be possible benefits or detriments to keeping the rate of invention
high. Loosely, we might imagine an exploration-exploitation reinforcement learning
trade-off (see Sutton and Barto 2015 for an overview).3 In a loose sense, explo-
ration refers to an agent widely sampling the space of strategies to learn more about
which strategies yield high payoffs, whereas exploitation refers to an agent pursuing
the strategy that they believe to yield the highest payoffs, based on what they have
learned so far. An agent that explores too little may settle in on local maxima whilst
missing potentially better strategies elsewhere. An agent that exploits too little does
not sufficiently take advantage of what they have learned to receive high payoffs.
Intuitively, to receive the highest overall yield, there must be some trade-off between
the two approaches. In the context of this paper, exploration involves either invent-
ing new strategies, or testing strategies that have so far received little reinforcement,
whereas exploitation amounts to playing the most highly reinforced strategies. The
use of the terms here is intentionally quite loose; nonetheless it captures important
intuitions. This type of trade-off between exploration and exploitation has not been
thoroughly investigated in bargaining games. It would be of great interest to better
understand the role of this trade-off in the evolution of social conventions.

Whether or not higher rates of mutation lead to more efficient or fair equilibria,
understanding how different rates of mutation may affect the dynamics is relevant
to many real world systems. It is important to understand both what happens when
the rate of mutation does not fall, and also how changing the rate of mutation affects
the dynamics.4 In a changing environment, learning agents might have reason to
prioritize more recent knowledge over less recent, for instance through a process of
forgetting. Thus it is important to understand how these factors may influence the
evolution of social conventions and contracts.

In this paper, I investigate the relationship between rates of invention and the
outcomes of two-player bargaining games with reinforcement learning more system-
atically. I consider a basic model (section 2) and five variations (section 3), sample
the key variation parameters, and look at the fairness and efficiency of the outcomes.
Each variations is designed to alter the amount of forgetting, or similarly, to prior-
itize more recent reinforcement over less recent reinforcement, to allow the players
to keep learning for longer, or indefinitely. Alternatively, we can understand these
variations as altering and degree to which agents engage in exploration compared to
exploitation. Despite being built upon this common intuition, each variation uses
a very different methodology to achieve this. Nonetheless, each of the variations
shows qualitatively similar relationships between the fairness and efficiency of the
outcomes and the dependency of these outcomes on the exploration-exploitation
trade-off. This suggests some universal features of the relationship, which I analyse

3Note that the terms exploration and exploitation have been used in various senses, some stricter,
others looser. The terms were originally applied to the context of multi-armed bandit problems (Bur-
netas and Katehakis 1997). However, the use of the terms here in this paper is only analogous to the
exploration-exploitation trade-off in multi-armed bandit problems.

4Theoretically, the rate of mutation would fall to zero under some circumstances, for instance in
a stable evolutionary environment in which faithful replication is costless. However, analytical and
empirical studies (Allen and Rosenbloom, 2012) have shown that positive mutation rates can evolve in
novel or fluctuating environments.
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in section 4. However, the relationship between the relative amount of exploration,
the fairness and the efficiency of outcomes is non-trivial and there are several differ-
ent regimes of behavior. I discuss some general conclusions in section 5.

2 Model Details

The basic model consists of two players, repeatedly playing a divide-the-dollar game
against each other, and learning through Roth-Erev type differential reinforcement
(Roth and Erev, 1995,9), with each strategy invented.5 In the divide-the-dollar
game, we have two identical agents, labeled players 1 and 2, who each seek to
maximize their own share of a resource. Without loss of generality, we can assign
the total value of the resource to be unity. Each turn, each player selects a strategy,
which involves demanding some fraction of the resource. If the two players’ demands
sum to less than the resource’s total value, each receives their demands as a reward.
However, if the demands exceed the value of the resource, the players receive a fixed
(typically low-value) payoff, in this case set to zero, representing the failure to come
to an agreement.6

Each player has a list of strategies, with each strategy having an associated posi-
tive real number-valued weight. Players select a strategy each turn with probability
proportional to its relative weight. At the end of each turn, each player reinforces
the strategy that they chose, by increasing its weight by the quantity of the reward
that they received. I also include a “mutator” strategy (which in the basic model
has weight 1). If the mutator is chosen, the player “invents” a new strategy, drawing
from the real numbers in the interval [0, 1], with uniform probability and adds it to
their set of strategies, giving it weight 1, and then plays this strategy, reinforcing
that strategy as usual. The mutator itself is not reinforced in the basic model. I
assume that each player starts with no strategies other than the mutator: every
other strategy must be invented.

2.1 Technical Details

At every turn t, each player, p ∈ {1, 2}, has an ordered list of strategies, S1,t =
(M1, s11, . . . s

1
n) and S2,t = (M2, s21, . . . s

2
m), with, W 1,t = (w1

M , w1,t
1 , . . . w1,t

n ) and

W 2,t = (w2
M , w2,t

1 , . . . w2,t
m ), as the corresponding weights, and M is the mutator,

spj ∈ [0, 1] refers to player p’s jth strategy of demanding some fraction, spj , of the

total resource, and wp,t
j is the associated weight at turn t.

Each turn, each player draws a strategy, with a probability proportional to its
weight,

P t(spj ) =
wp,t

j

wp
M +

∑n
i=1 w

p,t
i

.

If the sum of both players’ demands is less than or equal 1, then the players reinforce
the strategy they just played by the quantity they demanded. I call this a “successful
reinforcement”. If the sum of the demands exceeds 1, then no strategies receive any

5The basic model is the same as that used in Freeborn (2022).
6In other words, the players have access to agreements in the convex feasibility set, S ⊂ R2. If the

players agree on a choice within the set, then they receive the corresponding payoffs. Otherwise the
players receive the payoffs corresponding to a disagreement point, which is set to (0,0).
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reinforcement. For instance, suppose player p plays strategy spj , with weight wp,t
j at

turn t. Then there are two possible outcome, which may result in a different weight
at turn t+1. If there is successful reinforcement, then the new weight at turn t+1
is wp,t+1

j = wp,t
j +spj . If there is no successful reinforcement, then the weight at turn

t+ 1 is unchanged, wp,t+1
j = wp,t

j .
It may help to work through an example. Suppose at turn t, player 1 selects

strategy s1a = 0.2 (demand 0.2 ), with weight w1,t
a = 1.0, whilst player 2 selects

strategy s1a = 0.4 (demand 0.4 ) with weight w2,t
b = 2.0. These demands sum to

0.2 + 0.4 = 0.6 < 1.0, so the result is a successful reinforcement. The new weights
at turn t + 1 will be w1,t+1

a = 1.2, w2,t+1
b = 2.4, so the players are more now likely

to choose these strategies again in the future. Alternatively, suppose that at turn
t, player 1 selects strategy s1a = 0.8 (demand 0.8 ), with weight w1,t

a = 1.0, whilst
player 2 selects strategy s1a = 0.4 (demand 0.4 ) with weight w2,t

b = 2.0. These
demands sum to 0.8 + 0.4 = 1.2 > 1.0, so successful reinforcement does not take
place. Neither strategy’s weight will change: w1,t+1

c = 1.0, w2,t+1
d = 2.0, so the

players are not more likely to select these strategies again after this outcome.
Each turn, each player may draw the mutator, with probability,

P t(Mp) =
wp

M

wp
M +

∑n
i=1 w

p,t
i

.

Then the corresponding player “invents” a new strategy, by drawing from a uniform
distribution over all possible demands in the interval [0, 1].7

The agents begin with strategies limited to only the mutator, Sp,0 = (M),
W p,0 = (1). When a new strategy is invented, the player appends it to their ordered
list of strategies and immediately plays this strategy, reinforcing the weight accord-
ingly. So, if at turn t, player p has the set of n strategies, Sp,t = (Mp, sp1, . . . s

p
n),

with weights W p,t = (wp
M , wp,t

1 , . . . sp,tn ), and draws the mutator strategy, selecting
strategy spn+1, then the new set of strategies will be Sp,t+1 = (Mp, sp1, . . . s

p
n, s

p
n+1, ),

with weights W p,t = (wp
M , wp,t

1 , . . . wp,t
n+1).

2.2 Efficiency and Fairness

We are especially interested in the efficiency and fairness of the outcomes, after
some number of turns, τ . I measure the efficiency at turn τ as the proportion of the
resource awarded to either player, averaged over all turns so far,

Efficiency =

∑τ
t=1 Reward

t,p1 +Rewardt,p2

τ
. (1)

This will be some real number in the interval [0, 1], with higher numbers correspond-
ing to less of the resource being wasted. If the players hit the disagreement point
every turn, each receiving zero reward, then the efficiency will be 0. If the players
are able to coordinate their strategies perfectly every turn, so that the entire reward

7 This is an idealization: the computer cannot really select from a continuous interval. However,
when using a double-precision floating-point number, with a 53-bit significand precision, there are 253

possible numbers in the given range (IEEE Standard for Floating-Point Arithmetic, 2019), vastly greater
than the maximal number of strategies that could be invented in this number of turns. So, there is a
small probability than an identical strategy could be invented twice. The same situation arises for the
model in (Freeborn, 2022).
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is divided between the two players, then the result will be Pareto-optimal, with an
efficiency of 1.

I operationalize the fairness at turn τ as the the absolute difference between the
two players rewards, averaged over all turns so far,

Fairness =

∑τ
t=1 |Reward

t,p1 − Rewardt,p2 |
τ

. (2)

This will be a real number in the interval [0, 1], with a higher number corresponding
to outcomes that are more fair.

2.3 Inefficient-unfair traps

The dynamics of this basic model were already investigated in Freeborn (2022). As
the mutator strategy is not reinforced, so the probability with which the mutator is
selected will decrease as the total reinforcement of other strategies increases. So, in
this basic model, as new strategies are invented, or existing strategies are reinforced,
the probability that the mutator is drawn will fall. Whilst the rate of invention will
begin relatively high, this rate will gradually drop off.

The dynamics somewhat favor outcomes that are more efficient: if the outcome is
inefficient then one or more players could stand to gain by making a higher demand,
as long as such a strategy has been invented. However, in general, the agents will
not perfectly coordinate, and there will be some inefficiency. Fair outcomes are also
somewhat favored: if the outcomes are unfair, then one play will receive less rein-
forcement. If they receive less reinforcement, then they are more likely to experiment
with other strategies or to invent new strategies, which can lead to overshooting,
causing both players to receive zero reward. However, eventually, even unfair strate-
gies may receive high levels of reinforcement, and the rate of experimentation with
other strategies will fall.

As the rate of mutation falls, it is not difficult for the pair of agents to get stuck
in inefficient-unfair traps. In these situations, both players play highly reinforced
strategies, that nonetheless lead to inefficient and unfair outcomes. In particular, it
can be hard for the players to reinforce strategies that might lead to fairer outcomes.
The unfairness is familiar from bargaining games without invention, but with finitely
many possible strategies (for example, see O’Connor, 2019). Suppose that player 1
has highly reinforced a high demand strategy, demand x. Then player 2 is likely to
receive zero reward for any strategy demand y, y > x, as it will probably result in
overshooting. And if player 2 tends to play strategies demand z, z < x, then player
1 has no incentive to demand any less than x: such a strategy would result in lower
reward for player 1.

Meanwhile the inefficiency is a result of the invention process, in which strategies
are drawn at random as real numbers. As such, the two players have zero probability
of coordinating their strategies exactly 8.

8 As noted in footnote 7, for these simulations, the computer algorithm cannot really selected from a
continuous interval, so there is a nonzero probability in the simulations. However, the number of possible
strategies that the computer can choose is much greater than the maximum number of strategies that
can be invented over 10,000 turns, so the probability of the two players coordinating exactly is very
small.
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As I discussed in section 1, this gives one motivation for studying dynamics in
which the rate of mutation remains higher for longer. Does this lead to strategies
that are more fair, or more efficient?

3 Model variations and results

Let us look at efficiency and fairness outcomes for simulated runs of the basic model
and five variations of this model. In each case, I study a range of parameter values.
For each case, I study 10,000 simulation runs, each over 10,000 turns, and take the
average values of efficiency and fairness over those 10,000 runs. In this section, I
explain the models and present the results. I save analysis until section 4.

Three of the variations were already studied for some parameter values in Free-
born (2022), forgetting A, forgetting B and Roth-Erev discounting.9 However, here
I sample a range of parameter values, and study how this effects the efficiency and
fairness of the outcomes. The aim is to understand how the efficiency and fairness of
outcomes vary as the relative amount of exploration and exploitation changes over
the parameter space. These variations introduce “forgetting” into the dynamics, in
which unsuccessful strategies may become rarer or go extinct. Forgetting is likely
to be realistic in many evolutionary and learning contexts. It has also been shown
to lead to improved learning in many contexts (Alexander et al., 2012; Barrett and
Zollman, 2009; Roth and Erev, 1995; Schreiber, 2001).

In particular, Freeborn (2022) finds that forgetting may improve the efficiency
or fairness under certain conditions for learning and inventing agents in bargaining
games. However, the results varied. Forgetting method A was found to lead to
outcomes that were fairer and more efficient than dynamics without forgetting– at
least for some parameter values. The forgetting method B was found to lead to out-
comes that were of similar efficiency but slightly less fair than the no forgetting case.
Roth-Erev discounting led to a trade-off between fairness and efficiency, depending
on a choice of parameter values. However, only a limited range of parameter values
were studied.

Two of the variations have not been previous studied, constant rates of mutation
and bargaining games. These have the effect of keeping a high rate of the mutation
for a longer period, or indefinitely.10

3.1 Basic Model

The results of running the basic model, without any modifications are shown in
table 1. This provides baseline efficiency and fairness values against which each of
the variations will be compared.

3.2 Forgetting A

For the first variation of the model, I apply forgetting method A. Each turn, for-
getting takes place with probability pf for each player. Then one of that player’s

9The terms forgetting A and B originate with Alexander and Skyrms (1999), whilst Roth-Erev
discounting was introduced by Roth and Erev (1995).

10To a lesser extent, the other forms of forgetting will also have this effect, in particular Roth-Erev
discounting, by reducing the total reinforcement for longer; however, this will be to a much lesser extent.
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Efficiency 0.78
Fairness 0.81

Table 1: Average efficiency and fairness for the basic model, over 10,000 simu-
lation runs, each run for 10,000 turns.

strategies is chosen at random, with probability proportional to its weight. The
weight assigned to this strategy is reduced by a value rf . If the strategy’s weight
is already less than rf , then the strategy’s weight is set to 0. So, on average, the
weight of strategies is reduced in proportion to their weight.

Freeborn (2022) finds that this form of forgetting provides a more challenging
evolutionary environment, especially for successful strategies. Some strategies may
fall in weight or die out because they are forgotten faster than they can be reinforced.
This form of forgetting is more punishing of very high and low demand strategies,
and less punishing of strategies close to demand 0.5.

In general, any strategy to demand less than pf × rf or greater than 1− pf × rf
cannot achieve fixation11 in the long run. To see this, first note that any fixated
strategy will reduce by pf × rf on average each turn. Now, let us suppose that
strategy demand k, k > 1 − pf × rf has fixated for player 2. When player 2 plays
this strategy, player 1 can receive a maximum reward of 1 − k each turn. But any
fixated strategy for player 1 will reduce by a greater amount on average each turn,
pf × rf > 1 − k, so player 1’s strategy will be forgotten faster than it is reinforced
on average. But if player 1 makes demands of greater than k, then the players will
overshoot and neither will receive a reward. So player 1 will not receive consistent
reward either.

If pf × rf ≥ 0.5, then no strategy will be successful for long. All strategies will
be forgotten faster than they are reinforced, on average. Most of the time, players
will have no reinforced strategies other than drawing the mutator. I will call this
regime the “invention without reinforcement” regime.

The results of running the model with forgetting A, are shown in table 2. We
can think of pf × rf as parametrizing the “amount of forgetting” that takes place.
This can be most conveniently sampled by varying pf . I set rf = 1 and vary the
value of pf , to sample values between no forgetting taking place (identical to the
basic model), pf = 0 and the invention without reinforcement regime, pf = 0.5 12.

For small values of the forgetting probability, below around pf = 0.24, the effi-
ciency increases with the value of pf . Above this value, the efficiency decreases with
the probability of forgetting. The fairness decreases very slightly with increasing
probabilities of forgetting, until around pf = 0.2. Above this, the fairness increases
continually with higher probabilities of forgetting.

3.3 Forgetting B

Second, I apply forgetting method B. Each turn, forgetting takes place with prob-
ability pf for each player. If forgetting takes place for a player, then one of that

11“Fixation” refers to the process by which a particular strategy becomes the sole version present.
12Note that varying rf has as a qualitatively similar effect to varying pf here. For clarity, only results

for varying pf are shown.
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pf 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Efficiency 0.78 0.79 0.80 0.81 0.82 0.84 0.84 0.85 0.85 0.86 0.87 0.87 0.87
Fairness 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.83 0.83 0.84

pf 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

Efficiency 0.87 0.87 0.87 0.86 0.85 0.84 0.82 0.68 0.54 0.46 0.44 0.43 0.35
Fairness 0.85 0.86 0.87 0.87 0.88 0.89 0.90 0.95 0.97 0.98 0.99 0.99 1.00

Table 2: Average efficiency and fairness for the model with forgetting A, rf = 1,
over 10,000 simulation runs, each run for 10,000 turns.

player’s strategies is chosen at random, with equal probability for each strategy. The
weight assigned to this strategy is reduced by a value rf . If the strategy’s weight
is already less than rf , then the strategy’s weight is set to 0. So, on average, the
weight of each strategy is reduced in proportion to its weight. So this is similar
to forgetting A, but strategies are forgotten with equal probability, rather than in
proportion to their weight.

Freeborn (2022) finds that the effects of forgetting B are quite different to forget-
ting A, because it does not selectively punish more reinforced, or fixated strategies.
However, forgetting B lengthens the time that it takes for players to settle on highly
reinforced clusters of strategies. As a result, the relative probability of drawing the
mutator remains higher for longer.

The effects of varying the pf parameter by some fixed amount generally has
a smaller effect with forgetting B than forgetting A. However, as pf × rf ≥ 0.5 it
becomes harder any strategy to get reinforced consistently faster than it is forgotten.
The maximum that any player can receive as a reward is 1 unit per turn. Therefore,
once pf × rf ≥ 0.5 = 1, we enter a “invention without reinforcement”. Note that
this occurs at a value of pf × rf ≥ 0.5 twice that as for forgetting A.

The results of running the model with forgetting A, are shown in table 3. I
set rf = 1 and vary the value of pf , to sample values between no forgetting taking
place (identical to the basic model), pf = 0 and the invention without reinforcement
regime, pf = 1.

As with forgetting A, increasing the probability of forgetting B initially leads
to increases in the efficiencies of the outcomes, until around pf = 0.20, after which
the effiency rapidly falls. Small values of pf initially decrease the fairness of the
outcomes up to around pf = 0.14 after which the fairness increases monotonically.
However, the values are somewhat different for those of forgetting A: forgetting B
is less punishing of high and low demand strategies, for each given value of pf , the
fairness is generally similar for forgetting B than for forgetting A with the same
value of pf .
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pf 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Efficiency 0.78 0.83 0.86 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89
Fairness 0.81 0.79 0.78 0.76 0.75 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.79

pf 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48

Efficiency 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.86 0.81
Fairness 0.80 0.81 0.83 0.84 0.86 0.87 0.89 0.90 0.93 0.95 0.97 0.98

pf 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74

Efficiency 0.67 0.50 0.45 0.42 0.41 0.40 0.39 0.39 0.38 0.38 0.38 0.37 0.37
Fairness 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

pf 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Efficiency 0.37 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35
Fairness 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Average efficiency and fairness for the model with forgetting B, rf = 1,
over 10,000 simulation runs, each run for 10,000 turns.

3.4 Roth-Erev

The next variation includes Roth-Erev discounting (see Roth and Erev, 1995). Un-
like forgetting A and B, this is not stochastic; instead we apply a discount factor
that reduces the weights of every strategy, each turn. Each weight is multiplied by
a factor, (1 − df ), for some x ∈ (0, 1). As a strategy is reinforced more, it will be
discounted more, in proportion to its weight.

As with forgettingA andB, the results of Roth-Erev discounting were analysed in
Freeborn (2022). Like forgetting A, this disfavors more highly reinforced strategies,
in proportion to their weight. In effect, Roth-Erev discounting puts an upper limit
on the total weight that any given strategy can reach. To see this, suppose that
some strategy, i, has weight wt

i at turn t and earns a reward of rsuccess if played
successfully without overshooting, and an expected reward of rµ each turn. In Roth-
Erev discounting, each term the strategy weights will be discounted by wt

i × (1−df )
each turn. So a strategy canot be reinforced to any higher weight once it reaches
weight wt

i × (1 − df ) = rsuccess. Furthermore, a strategy will stop increasing on
average after reaching weight wt

i × (1− df ) = rµ.
However, note that an agent has no limit to how many strategies they can invent,

and in principle can invent strategies arbitrarily close to a previous strategy. As a
result, whilst an individual strategy may reach maximal reinforcement, the agent
might continue to find success by inventing nearby strategies, which may receive
similar reward on average. Thus whilst the maximum reinforcement is capped for
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any individual strategy13, the set of all strategies within any finite interval does not
have a maximal total reward. However, to invent and reinforce nearby strategies
will take some time on average.

Hence, in practice, Roth-Erev discounting serves to keep the total weight of
strategies significantly lower, although it does not cap this total weight at any par-
ticular finite value. The result will be that the rate of mutation remains higher for
longer when Roth-Erev discounting takes place, although it will eventually fall, as
long as df < 1. When df = 1, we reach invention without reinforcement regime, as
no strategy can be successfully reinforced at all, as it will be discounted by its entire
weight each turn.

The results of running the model with Roth-Erev discounting, are shown in
table 4. I vary the value of df , to sample values between no forgetting taking place
(identical to the basic model), df = 0 and the invention without reinforcement
regime, df = 1.

df 0 0.7532 0.7531 0.7530 0.7529 0.7528 0.7527 0.7526 0.7525

Efficiency 0.78 0.79 0.80 0.80 0.80 0.81 0.82 0.84 0.85
Fairness 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

df 0.7524 0.7523 0.7522 0.7521 0.7520 0.7519 0.7518 0.7517 0.7516

Efficiency 0.86 0.86 0.88 0.88 0.88 0.87 0.86 0.84 0.80
Fairness 0.80 0.80 0.81 0.81 0.82 0.83 0.84 0.86 0.89

df 0.7515 0.7514 0.7513 0.7512 0.7511 0.7510 0.759 0.758 0.757

Efficiency 0.76 0.69 0.48 0.43 0.40 0.39 0.37 0.36 0.35
Fairness 0.94 0.99 0.99 0.99 0.99 099 0.99 0.99 0.99

df 0.756 0.754 0.753 0.752 0.75 1

Efficiency 0.35 0.35 0.34 0.34 0.34 0.33
Fairness 0.99 0.99 0.99 0.99 1.00 1.00

Table 4: Average efficiency and fairness for the model with Roth-Erev discount-
ing, over 10,000 simulation runs, each run for 10,000 turns.

The general pattern of these results is especially similar to forgetting A: Roth
Erev is also more punishing of strategies in proportion to their weight. The efficiency
increases with the depreciation rate until around df = 0.004, after which it falls.

13Of course, as noted in footnotes 7 and 8, in the computer simulations there is also a positive
probability that a precisely identical strategy can be invented many times. Only the reinforcement for
each individual instance of that strategy would be capped.
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The fairness of the outcomes decreases slightly with the depreciation rate for small
values, but above around df = 0.001 the fairness increases instead.

3.5 Constant probability of mutation

The previous forms of forgetting serve to keep the rate of invention higher for longer,
although eventually the total weight of strategies will increase, and the probability
of drawing the mutator will decrease. Instead, we could try fixing the probability of
drawing the mutator at some constant value, mf , regardless of the weight assigned
to the other strategies. The probability of drawing any other strategy is then nor-
malized to the relative weight of the other strategies. Note that this requires that
each has at least one non-mutator strategy from the beginning with nonzero weight:
I start each with agent the strategy demand 0.

As a result, this variation is a more fundamental alteration of the basic model.
In the previous variations, the agents start with no strategies other than drawing
the mutator, so the probability of drawing the mutator begins at 1, which then
tends to fall as other strategies are reinforced. Here, the rate at which the mutator
is drawn will not fall towards zero, the initial rate of drawing the mutator will be
lower, except for the case mf = 1. The agents do not begin with a period of rapid
experimentation and learning. Of course, the case mf = 1 represents an invention
without reinforcement regime. Unlike the previous variations, there is no value of
mf equivalent to the basic model.

The results of running the model with a constant probability of mutation dis-
counting, are shown in table 5. I vary the value of mf , to sample values between no
invention occurs, df = 0 and the invention without reinforcement regime, mf = 1.

df 0 0.7525 0.7524 0.7523 0.7522 0.7521 0.7520 0.7519 0.7518

Efficiency 0.0 0.62 0.65 0.69 0.72 0.73 0.75 0.76 076
Fairness 1.00 0.72 0.71 0.70 0.70 0.70 0.70 0.71 0.71

df 0.7517 0.7516 0.7515 0.7514 0.7513 0.7512 0.7511 0.7510 0.759

Efficiency 0.76 0.75 0.74 0.70 0.66 0.61 0.56 0.51 0.46
Fairness 0.72 0.74 0.76 0,79 0.81 0.85 0.88 0.81 0.91

df 0.758 0.757 0.756 0.755 0.754 0.753 0.752 0.75 1

Efficiency 0.41 0.38 0.37 36 0.35 0.34 0.34 0.34 0.34
Fairness 0.94 0.97 0.98 0.99 0.99 0.99 0.99 1.00 1.00

Table 5: Average efficiency and fairness for the model with Roth-Erev discount-
ing, over 10,000 simulation runs, each run for 10,000 turns.

Here the general pattern still shows some similarities to the previous results.
Below around mf = 0.005, increasing the mutation probability leads to higher ef-
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ficiency outcomes, but above this value increasing the mutation probability leads
to lower efficiency outcomes. Below around mf = 0.003, increasing the mutation
probability leads to increasing fairness, but above this value increasing the mutation
probability leads to decreasing fairness.

3.6 Memory cutoff

One way to think about the previous variations is they systematically discount past
reinforcement. In the case of Roth-Erev discounting, each unit of reinforcement
degrades by a constant factor. Forgetting A has a similar effect but the forgetting is
stochastic. Forgetting B instead degrades the weight equally for each strategy. This
has the effect of prioritizing more recent reinforcement, which is likely to be realistic
in many evolutionary contexts. In the case of a constant probability of mutation,
past reinforcement is effectively discounted because we successively normalize the
weights of each non-mutator strategy each turn.

The final variation goes further in prioritizing recent reinforcement over past
reinforcement. With a memory cutoff, we discard all reinforcement altogether that
is older than a certain number of turns, tf . In effect, the agents only remember
reinforcement that took place in the last tf turns. The effects of this will only start
after we reach turn tf : before this point all the reinforcement will be kept. Let τ
be the total number of turns (recall in the simulations studied here, τ = 10, 000).
Clearly, if tf = τ , then this will be equivalent to the basic model: bothing will
be forgotten. On the other hand, tf = 0 represents a regime of invention without
reinforcement, as all reinforcement will be immediately discarded.

The results of running the model with a memory cutoff, are shown in table 6.
I vary the value of tf , to sample values between no cutoff occurs, tf = τ = 10, 000
and the invention without reinforcement regime, tf = 0.

tf 0 10 20 40 80 160 320 625 1250 2500 5000 10000

Efficiency 0.33 0.57 0.72 0.78 0.82 0.82 0.82 0.81 0.80 0.79 0.77 0.77
Fairness 1.00 0.98 0.94 0.83 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81

Table 6: Average efficiency and fairness with the memory cutoff model, over
10,000 simulation runs, each run for 10,000 turns.

Once again, we see some similarities in the pattern for memory cutoff with the
previous results. For memory cutoffs above around tf = 320, shorter memory cutoffs
lead to greater efficiency. Below this, shorter memory cutoffs lead to lower efficiency.
However, the fairness increases monotonically with shorter memory cutoffs.

4 Analysis: trade-offs between efficiency and fairness

Each variation is meant to capture one plausible mechanism of forgetting, or the
prioritization of more recent over less recent reinforcement. It is helpful to keep
in mind the informal intuition that each of the variations should generally increase
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the amount of exploration that takes place relative to the basic model14, with the
consequence that the the relative amount of exploitation will decrease. Therefore, we
can look at the effects of each of the variations somewhat holistically. I will refer to
small values of the forgetting probability, small values of the Roth-Erev depreciation
rate, small fixed mutation rates and long memory cutoff values as “small values of the
variation parameter”, corresponding to the comparatively low rates of exploration
(and vice versa for “high values of the variation parameter”). I will refer to small
values of the forgetting probability, small values of the Roth-Erev depreciation rate,
large fixed mutation rates and long memory cutoff values as “small values of the
variation parameter”, corresponding to the comparatively low rates of exploration.

There are clear similarities in the patterns of efficiency and fairness between all
of the variations. I plot the fairness against the efficiency for each variation in figure
1.

The basic pattern is qualitatively similar between each of the variations. More-
over, the pattern for forgetting A, forgetting B, Roth-Erev discounting and memory
cutoffs is especially similar with the fixed mutation rate requiring a slightly different
analysis. So let us start by considering those five most similar variations, and then
treat the fixed mutation rate case separately. To better understand the pattern, I
divide the relationship into several different regimes, schematized in figure 2.

Basic model regime

First, let us consider regime in which the variation parameter is effecively switched
off. This corresponds to the point at which the probability of forgetting is zero,
the Roth Erev depreciation rate is zero, or memory length is set to the full number
of turns of the simulation (10,000 turns in this case). In this case, the model is
identical to the basic model (green point in figure 2).

Low exploration regime

Second, is the case in which the variation parameter is allowed to increase above
its smallest possible value. This corresponds to small forgetting probabilities, small
Roth-Erev depreciation rates and long memory cutoffs. A relatively low amount of
exploration takes place here, but it is a little more than in the basic model. In this
regime, as the variation parameter grows, we see an increase in the efficiency of the
outcomes, but comparatively less change to the fairness. In this regime, increasing
values of the variation parameter help to knock the agents out of the inefficient-
unfair traps discussed above, allowing increases in coordination, but does not lead
to significant increases in fairness.

Forgetting B stands out here: the fairness falls even as the efficiency increases
for values of the forgetting parameter below around pf = 0.20. The reason is that
forgetting method B randomly targets agents and treats all strategies equally. In
the highly unequal cases, one or other agent was unlucky: Once the forgetting
parameter begins to rise higher, it is less likely that bad outcomes will specifically
target one agent or the other. Forgetting B caused one agent to forget high demand

14A partial exception here is the fixed mutation rate: the relative increase or decrease in the amount
of exploration will depend on the turn number and the chosen mutator probability parameter. So for
some values and over some turns, the amount of exploration does not increase on average relative to the
basic model.
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Figure 1: Average fairness against efficiency for each of the variations described
above, over 10,000 simulation runs, each for 10,000 turns.

strategies before they were highly reinforced. As a result, the opposing agent had
no high demand strategies, and the other agent received high rewards for their high
demand strategies. A highly unequal outcome ensued due to the stochastic nature
of forgetting B. Once the forgetting parameter begins to rise higher, it is less likely
that bad outcomes will specifically target one agent or the other.

Why does fairness not clearly correlate with efficiency in this regime for the other
variations? Forgetting method A is stochastic like forgetting method B, but any bad
luck dealt to one agent is likely to be compensated for the general increase in fairness
discussed in section 3.2 above. The Roth-Erev depreciation affects all agents in the
same way without a random component: we do not see the corresponding rise in
unequal outcomes with this variation. Likewise, the memory cutoff does not lead to a
rise in unequal outcomes, as this affects both agents the same way, and furthermore,
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Figure 2: Schematic illustration of the efficiency-fairness pattern for forgetting
A, forgetting B, Roth-Erev discounting and memory cutoffs.

for high values will only begin to take affect later during the simulation run, once
strategies are already highly reinforced.

Turning region

Next is the turning region. Surprisingly, this is the only region in which the efficiency
and fairness are clearly positively correlated. This regime is best understood as
an intermediate region between the low exploration regime and the exploration-
dominant regime. In this regime, the fairness begins to monotonically increase as
we increase the variation parameter (see below), but the efficiency continues to
increase, for the same reasons as in the low exploration regime. So there is a small
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region of parameter space in which the efficiency and fairness increase together.

Exploration-dominant regime

Next is the regime in the variation parameter is large enough that exploration dom-
inates over exploitation. The efficiency falls and the fairness rises as the variation
parameters approach their maximum values. When agents spend more of their time
exploring, the results are inherently fair: both agents are equally likely to try out
new strategies, which will not benefit either agent on average. However, this fair-
ness is not especially useful to either agent. It does not arise from agents settling
on a mutually beneficial social contract, but rather from continually trying out new
strategies at random. The agents spend less time exploiting successful strategies,
resulting in lower efficiency.

Invention without reinforcement regime

Finally, let us consider the regime in which the variation parameter reaches its
maximum value: the invention without reinforcement regime (purple point). In this
regime, only exploration happens with no exploitation: the agents draw random
strategies every turn, and no learning takes place at all. This corresponds to the
regime in the forgetting probability or depreciation rate is high enough, or memory
cutoff is zero, so that any reinforced strategy is instantly forgotten.

In this regime, we see an average efficiency of around 1
3 and a fairness of 1. To see

why, consider both players drawing a strategy at random from a uniform distribution
over the interval (0, 1). They have a 1

2 chance of overshooting, resulting in a reward
of 0 for both players. If the players do not overshoot, then the probability density
for each player’s demand will be given by f(x) = 2(1 − x). Hence, the expected

reward is given by 2
∫ 1

0
x(1 − x)dx = 1

3 . So the overall expected reward for both

players is 1
2 × 0 + 1

2 × 1
3 = 1

6 . Thus the efficiency, the total quantity of the reward
earned by the two players, will be given by 1

6 + 1
6 = 1

3 . The fairness will be 1 on
average because neither player can gain an advantage over the other in the long run:
both players can only draw at random from the same distribution.

Fixed memory cutoff

The fixed memory cutoff variation requires a partly separate treatment. I have
divided this result into regimes in several figure 3. When the fixed mutation rate is
set to zero, this does not correspond to the basic model, but rather to a no learning
regime, in which both players can only play “demand zero” against each other. In
this case, the agents will both receive no reward, representing a result that is wholly
inefficient, but completely unfair.15

As we increase the fixed mutation rate to small values above zero, we arrive
at the low exploration regime. Here, the efficiency rapidly increases, but the
fairness rapidly falls. The increasing in efficiency is unsurprising: the agents now
have a chance to invent better strategies and to coordinate. However, very small

15However, note that this result is especially sensitive to the arbitrary choice of starting strategies. For
many other reasonable starting strategies, such as giving the agents a choice of demand 1 and demand
0 with equal weights, the outcome would look similar, but this would not be the case with all such
strategies.
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Figure 3: Average efficiency and fairness for the model with fixed memory cutoff,
with the results divided into different regimes.

probabilities of mutation are likely to particularly favor one player or the other,
especially if only a few strategies are invented over the course of the 10,000 turns.
This accounts for the falling rate of fairness as the mutation probability increases.

Once the mutation rate is high enough, it is less likely to favor one player or
the other. The pattern seen with the fixed mutation rate then looks more sim-
ilar to the other variations. The remaining three regimes, the turning region,
exploration-dominant regime and invention without reinforcement regime
are completely analogous to the other model variations. As exploration increases,
initially efficiency and fairness rise together. Once exploration dominates, the ef-
ficiency falls and the fairness increases, until the dynamics approach the invention
without reinforcement when the probability of mutation reaches 1. However there
are two things to note. First, there is no point which corresponds to the basic model
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case: the probability of mutation here is fixed, whereas in the basic model it varies
as strategies are reinforced. Second, the curve for the fixed mutation rate is gener-
ally below and to the left of the others. In general, keeping a fixed, non-decreasing
mutation rate throughout, leads to less efficient and less fair outcomes than having
an initially high mutation rate that then decreases.

Thus we have seen that there are some general common trends in the relations
seen between efficiency and fairness for all of the dynamics studied here. Most
obviously, all dynamics show common behavior in the exploration-dominant regime.
Likewise, all dynamics exhibit some turning region, where efficiency and fairness rise
together as exploration increases. However, we have seen that in the low-exploration
regime, the idiosyncrasies of particular models can matter more, shaping different
relationships between efficiency and fairness.

5 General lessons

Of course, the most relevant regions of parameter and model space are likely to
depend on the real-world evolutionary or learning systems under consideration. We
cannot talk about whether efficiency and fairness are positively or negatively corre-
lated across most of the parameter space before first putting some measure over that
parameter space. Rather, these results draw attention to some general principles
about the evolution of social conventions. In general terms, the relative rates of
exploration and exploitation may have varying effects on the efficiency and fairness
of outcomes. Furthermore, the efficiency and fairness may be either positively or
negatively correlated. These results depend on both the models used and the regions
of parameter space.

Nonetheless, the general qualitative pattern is mostly robust across the all of
the models. When the rate of exploration is small, increasing exploration generally
increases the efficiency, and the fairness may increase, decrease or remain the same.
Here, exploration helps to nudge the agents out of inefficient-unfair traps, increasing
co-ordination, but the effects on the fairness of the outcomes depends on the choice of
model. When the rate of exploration is intermediate, increasing exploration further
can increase fairness and efficiency together. However, once exploration comes to
dominate, increasing exploration further will increase fairness at the expense of
efficiency. The fairness that we achieve is due to continual exploration by both
players, but they do not learn to exploit the strategies that they invent.

It may seem somewhat surprising that efficiency and fairness only positively
correlate in the intermediate region. Intuitively, highly unfair outcomes should make
co-ordination more difficult, because one player receives much lower reward. If one
of the two players learns to co-ordinate slowly, this will decrease the rate at which
the other player learns as well. For example, agents will never learn to co-ordinate
in a situation where one agent receives the entire reward, because the other agent
will receive no reinforcement at all for a demand 0 strategy.

However, in the region where exploration dominates, the high fairness is mainly
being driven by continual random invention, not by the agents learning to adopt a
fair strategy. Increasing exploration will increase the fairness, because the random
invention process is the same for both agents, but it will decrease the efficiency
because the agents never exploit what they learn to receive higher rewards. In the
low exploration region, fairness and efficiency are negatively correlated in some of
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the models for a different reason. Forgetting B and fixed mutation rates lead to
highly stochastic exploration that relies on random probabilities. This increases
the efficiency above the basic model, but when the probabilities are very low, they
are likely to favor one or other agent, leading to a low fairness in the outcomes.
Increasing fairness through exploration can often achieve both higher efficiencies as
well as higher fairness than the lower exploration regimes.

Recall that Alexander (2008) studies finite strategy, finite population Nash de-
mand games under various dynamics. The finite populations were placed on a lat-
tice, in which agents could observe their neighbors’ strategies. Alexander introduces
small rates of mutation so that previously extinct strategies can be reintroduced.
Mutation can function in a qualitatively similar way to invention and forgetting,
by introducing new strategies and providing some probability that a strategy gets
played away from the most dominant strategy.

It is worth noting a number of comparisons with the discussions in Alexander
(2008). First, Alexander observes that mutation can sometimes drive the population
either towards or away from the fair outcomes. However, these differences are driven
by a qualitatively different mechanism from that observed here. For example, under
imitate-the-best dynamics, small mutation rates can allow islands of fair-division
play to emerge, and eventually dominate, as agents observe and adopt this successful
strategy. However, under best-response dynamics, mutation can have the opposite
effect, destroying islands of fair division and leading to dominance by an unfair
division. The differences between imitate-the-best and best-response dynamics, are
driven by neighbor-neighbor interactions, in particular along edges of regions where
one strategy is dominant. There is no analogy to these edge effects here. Rather,
it is only changes in the mutation rate that drive the agents towards or from fairer
outcomes.

Second, in this study, we can identify a number of different regimes, including
the low exploration regime, in which exploration can increase efficiency without any
corresponding increase in fairness. This is driven, by exploration benefiting one
agent at the expense of the other, and lacks a direct analogue in dynamics where
agents copy the strategies of their neighbors. Indeed, only in the turning region,
just one part of the parameter space, do fairness and efficiency both grow together,
as Alexander observes in imitate-the-best dynamics.

Third, Alexander suggests that given sufficiently high rates of mutation, the
“mutational noise” will prevent all agents co-ordinating. This is in fact similar
to the effects observed in the exploration-dominant regime in this study, in which
agents under-utilize the good strategies they have already found. However, here we
are able to study the effects of high rates of mutation more systematically. It is
notable that this noisy region covers a significant portion of the parameter space.

This study of the trade-offs between efficiency and exploration, and their rela-
tionship to forgetting, exploration and exploitation takes us a step further in our
understanding of the evolution of social contracts and conventions. In the light of
this, it is natural to ask what these results can teach us more broadly. These results
corroborate the idea that fairness is one plausible outcome of (biological or cultural)
evolutionary dynamics. However, they also illustrate how contingent such fair social
divisions might be, favored in some, but by no means all, regimes. Indeed, whether
outcomes such as fairness are achieved may be sensitive to factors such as the degree
and types of experimentation or mutation that take place. We have seen that low
rates of invention may lead to outcomes that favor some agents (the early adopters
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of successful new strategies) over others. On the other hand, high rates of invention
lead to inefficiencies and lack of co-ordination. Therefore, models of this kind can
only explain how intuitions of fairness specifically might have evolved if evolutionary
dynamics can be well-represented by the turning regime. 16 However, models such
as those studied here might offer a tentative step to better understanding the range
of disparate social outcomes attitudes towards fairness seen in real world societies.

There are several directions in which this research could be naturally extended,
beyond the scope of this paper. First, the results here are primarily based on simu-
lations, rather than analytic results. Although the simulations have been studied in
detail, and the full parameter space sampled, it would be interesting to see whether
analytic results can be obtained here.

Second, only repeated games between two agents have been studied. However,
it would be natural to extend this to bargaining games in which agents are sampled
from larger populations. For example, Freeborn (2022) presents a model in which
agents are randomly selected from a larger, but finite population. In such a popu-
lation, we might expect outcomes to be more fair, but less efficient as agents do not
always face the same competitor. It would be interesting to see the extent to which
we see the same qualitative patterns can be found when the amount of exploration
and exploitation is varied.

The work here explored only one dynamical reinforcement learning model. Whilst
such a model provides a natural method for incorporating the invention of new
strategies, it would be of interest to consider other dynamics such as fictitious play.
In particular, it would be interesting to know whether the same qualitative patterns
are robust in other learning dynamics. Likewise, it would be of interest to apply
these learning models to other bargaining games than divide-the-dollar, with asym-
metric payoff structures. Furthermore, the exploration-exploitation trade-off could
also be of great interest in other game theoretic contexts where learning takes place.
Signalling games provide one obvious and potentially fruitful context for further
investigation.

16In the context of biological evolution, rates of mutation are generally low, so a turning regime could
provide a plausible model. However, this will not necessarily hold in the contexts of social learning and
cultural evolution, where rates of invention could be high or variable.
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