
Deep convolutional neural networks are not mechanistic explanations of object recogni-
tion 

Bojana Grujičić 
bojana.grujicic@maxplanckschools.de 

Max Planck School of Cognition, Leipzig, Germany 
Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany 
University College London, Department of Science and Technology Studies, London, UK 

Abstract 

Given the extent of using deep convolutional neural networks to model the mechanism of ob-
ject recognition, it becomes important to analyse the evidence of their similarity and the ex-
planatory potential of these models. I focus on one frequent method of their comparison – 
representational similarity analysis, and I argue, first, that it underdetermines these models as 
how-actually mechanistic explanations. This happens because different similarity measures in 
this framework pick out different mechanisms across DCNNs and the brain in order to corre-
spond them, and there is no arbitration between them in terms of relevance for object recog-
nition. Second, the reason similarity measures are underdetermining to a large degree stems 
from the highly idealised nature of these models, which undermines their status as how-pos-
sibly mechanistic explanatory models of object recognition as well. Thus, building models 
with more theoretical consideration and choosing relevant similarity measures may bring us 
closer to the goal of reaching a mechanistic explanation. 

Key words: deep neural networks, explanation, mechanisms, representation, object recogni-
tion, similarity measures 
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1  Introduction 

Although deep neural networks had their breakthrough in the engineering field of computer 
vision (Krizhevsky et al., 2012), there has been a lot of research in recent years employing 
deep neural networks directly in the pursuit of neuroscientific goals. This new framework at 
the intersection of deep learning and neuroscience aims to offer a novel methodology for neu-
roscience in contrast to the traditional one (Nastase et al., 2020; Richards et al., 2019), having 
hopes of fulfilling not just its predictive but its explanatory goals as well (Lindsay, 2021; Ci-
chy & Kaiser, 2019; Kietzmann et al., 2019; Kriegeskorte, 2015).  
  In the domain of visual neuroscience, there has been an array of findings suggesting 
that inner activations of deep convolutional neural networks (DCNNs) trained for an object 
recognition task enable predicting neural response properties in the ventral stream to a certain 
extent (Lindsay, 2021; Bashivan et al., 2019; Cichy et al., 2016; Cadieu et al., 2014; Khaligh-
Razavi & Kriegeskorte, 2014; Yamins et al., 2014). When it comes to their accuracy on the 
object recognition task, DCNNs are on the human performance level. Based on these findings 
DCNNs are said to be the most predictively successful models of the ventral stream in human 
and nonhuman primate brains for object recognition (Cao & Yamins, 2021a, 2021b; Storrs et 
al., 2021; Yamins et al., 2014). Importantly, this should not be taken as a claim that the learn-
ing mechanisms of DCNNs and the brain are similar. The claim is limited to the correspon-
dence of the brain and DCNN processing in object recognition once DCNNs are trained. 
  Given these findings, the question arises whether DCNNs also provide an explanation 
of our capacity for object recognition. According to some neuroscientists, DCNNs are some-
what explanatory in virtue of capturing some behavioural data and explaining neural variance 
(Lindsay, 2021; Kietzmann et al., 2019; Kriegeskorte, 2015). In addition, philosophical inter-
est in DCNNs has been rising lately (Kieval, 2022; Cao & Yamins, 2021a, 2021b; Buckner, 
2019, 2018), with several arguments offered for the claim of DCNNs being mechanistic ex-
planations of object recognition. Cao & Yamins (2021a, 2021b) argue that DCNNs satisfy the 
model-to-mechanism mapping requirement put forth for mechanistic explanations (Kaplan & 
Craver, 2011) – DCNNs are already sufficiently similar to their neural targets. Buckner 
(2018) suggests a mechanism both DCNNs and the visual cortex instantiate, expanding on 
Stinson's (2018) analysis of connectionist models as explanatory in virtue of capturing some 
generic properties of mechanisms responsible for target cognitive phenomena. 
 One of the most prominently used frameworks for comparing DCNN and brain acti-
vations is representational similarity analysis (RSA), forming an important evidential basis 
for the claim that DCNNs are mechanistic explanations. RSA quantifies second-order similar-
ities between dissimilarities of stimuli-elicited patterns in DCNNs and the ventral stream 
(Kriegeskorte et al., 2008a). First, I argue that RSA underdetermines DCNNs as how-actually 
mechanistic explanations since a variety of similarity measures is used within the framework. 
Focusing on correlation and Euclidean distance, I show that they pick out different types of 
mechanisms in DCNNs and the brain in order to compare them, and I argue that there is a 
problem of relevance of these measures for the explanandum capacity of object recognition. 
Since there is no arbitration between similarity measures in terms of relevance, RSA underde-
termines DCNNs as how-actually mechanistic explanations. Second, the highly idealised na-
ture of current DCNN undermines their status as how-possibly mechanistic explanations of 
object recognition – because models are made with little theoretical consideration, the kinds 
of solutions they arrive at are under-constraining for the purposes of learning about the ven-
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tral stream mechanism. This makes the underdetermination due to the application of different 
similarity measures rampant. 
 After describing the explanandum capacity of object recognition and saying some-
thing about DCNNs in general in the next section, I outline how mechanistic abstraction is 
applicable to DCNNs in section 3. I then introduce RSA as a method of comparing DCNNs 
and the brain in section 4 and argue in section 5 that different similarity measures pick out 
different types of mechanisms on the level of representational vehicles. Section 6 presents a 
limitation on the use of RSA to correspond representational content across systems. I then go 
on to argue that DCNNs are neither how-actually mechanistic explanations in section 7, nor 
how-possibly mechanistic explanations in section 8. Section 9 concludes. 

2 Explanandum capacity of object recognition and the DCNN-based explanans 

2.1 The explanandum – object recognition 

There are various facets of object recognition as one of the critical capacities enabling suc-
cessful interaction with the world around us (Bracci & Op de Beeck, 2022). In what follows I 
focus on a constrained version of what this capacity amounts to, called core object recogni-
tion that, while not being theoretically unobjectionable (cf. Bracci & Op de Beeck (2022)) is 
the notion often used at the intersection of deep learning and neuroscience. I follow DiCarlo 
et al. (2012) in characterising core object recognition as the capacity to assign labels to ob-
jects, e.g. "orange" to an orange. Labels can range from precise ones, in which case the task is 
that of identifying objects, to coarse-grained ones when the task is to categorise them. Our 
ability to identify or categorise objects persists over various contingent conditions of presen-
tation of the object – we are able to say an object is an orange in different lighting conditions, 
from different perspectives, being closer or further away from it, etc. Thus, being able to 
recognise objects demands solving the problem of invariance to these idiosyncratic aspects of 
the presentation of an object (Kreiman, 2021; Pinto et al., 2008). 
 Additionally, we are able to distinguish stimuli whose retinal activations can be quite 
similar, such as a lemon and a tennis ball. Doing this demands being able to track object-spe-
cific properties. These two requirements – invariance and specificity form the crux of the 
problem of object recognition (Riesenhuber & Poggio, 2000). The mechanism that can solve 
it needs to have a way of responding differently to retinally similar stimuli while reliably 
recognising these objects under different conditions of their presentation. 
 The task that is used to assess the core object recognition abilities consists in being 
presented with two-dimensional images of objects with a request to output a label for it. This 
task was adopted into neuroscience from the computer vision field and the ImageNet classifi-
cation challenge (Deng et al., 2009). While it is debatable how representative of our object 
recognition abilities this task is, it is a task humans can do, and current DCNNs can solve it 
on the level of human task performance (Storrs et al., 2021). 
  
2.2 The DCNN-based explanans of object recognition 

Deep neural networks are computational models that consist of multiple layers of nodes con-
nected by patterns of weights which determine the strength of the activity propagated from 
one node to the next one. Input layers in these models process the input information (related 
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to images of objects in this case), output layers produce the result of processing (a label in 
this case), and hidden layers that lie between these two do the work of solving the task at 
hand. 
 The most prominent class of models in the context of object recognition modelling are 
deep convolutional neural networks (see Fig 1). A general scheme of how DCNNs solve the 
problem of object recognition assumes, in the first step, extracting features from the input 
image, such as edges, curves, colours, etc. This step is performed by iterative employment of 
convolutional layers, the nonlinear activation function, and max-pooling layers, all of which 
are biologically inspired (Kreiman, 2021; LeCun et al., 2015). These three kinds of nodes 
jointly enable fine-tuned detection of features of increasing complexity across the processing 
hierarchy, in ways that are invariant to idiosyncratic presentations of objects, thus meeting the 
challenges of specificity and invariance for object recognition. In the second step, a classifier 
in the form of fully connected layers learns to map these features to object labels. 

Fig 1 AlexNet, an eight-layer network, reproduced from Cichy et al. (2016). Layers 1-5 
iterate convolution and max-pooling operations. Convolutional nodes are organised in 
feature maps, where each node in a feature map detects the same feature in its own recep-
tive field, and they jointly tile the whole visual field. There are many feature maps per 
layer. Max-pooling nodes help with meeting the challenge of invariance. Extracted fea-
tures from layer 5 are then passed onto layers 6-8 which are fully connected and approx-
imate a readout from a population of neurons, in order to output a label 

 This is a general scheme of how DCNNs solve the core object recognition task.  Vari1 -
ous architectures have been developed that exhibit these general design features, but never-
theless widely differ in their other architectural features.  Networks may differ regarding their 2

depth, number of nodes, and number of connections between nodes, but also other architec-
tural motifs. For example, many of them are feedforward networks, which seems plausible 
given very fast reaction times of around 350 ms in the task (DiCarlo et al., 2012), the finding 
that constrains the role of feedback connections for core object recognition. In contrast, some 
are recurrent networks, that incorporate feedback connections. 
 In the performance optimisation-driven approach (Yamins & DiCarlo, 2016), during 
the process of training the workings of DCNNs are not constrained by brain data. DCNNs are 
trained in a supervised manner for the object recognition task, learning on their own which 
features are useful for the task. Trained DCNNs enter the process of model selection using 
frameworks that compare their workings with neural population coding in the brain when 
they are exposed to the same stimuli in the task. 

 For a philosophically accessible introduction see Buckner (2019).1

 For overviews of types of architectures see Storrs et al. (2021) and Xu & Vaziri-Pashkam (2021).2
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3 Mechanistic explanatory potential of DCNNs 

The motivation to discuss whether DCNNs can be explanatory models and if they can, in 
which sense, is motivated by a breadth of findings that gave rise to the deep learning revolu-
tion in neuroscience in the last ten years. The quest to advance modelling of visual processes 
by using DCNNs (Schrimpf et al., 2020b) started with the findings of DCNNs hierarchically 
corresponding to stages of processing along the ventral stream – early layers in DCNNs were 
found to be most similar to early processing stages in the ventral stream, while deeper layers 
were found to be most similar to late processing stages in the ventral stream (Cichy et al., 
2016; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014). Although visual areas in 
the brain have been extensively researched and much has been known about the way the early 
visual areas work, later visual areas have eluded visual neuroscientists because of their con-
voluted response properties. Thus, it was a surprising result when it turned out that DCNNs 
trained solely to successfully perform object recognition were able to predict neural response 
properties to an extent, including those of the later visual areas such as the inferior temporal 
cortex (Cichy et al., 2016; Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Corre-
spondences based on representational similarity analysis, which quantifies second-order simi-
larities between dissimilarities of stimuli-elicited patterns in DCNNs and the brain, have had 
an important role, lending support to the view that the ventral stream is a hierarchical system, 
processing more complex features as one goes from early to late processing stages. 
 With these empirical findings came a diversity of views about the roles of DCNNs in 
scientific practice and their explanatory potential. 
 Although researchers utilising DCNNs have been criticised for not explicitly reflect-
ing on the kinds of explanations their models are aimed at (Kay, 2018), several reviews of the 
landscape of modelling the brain with DCNNs explicitly frame this modelling endeavour as 
an attempt to obtain mechanistic explanations of cognitive phenomena (Doerig et al., 2023; 
Lindsay, 2021; Schrimpf et al., 2020b; Kietzmann et al., 2019; Kriegeskorte, 2015). Mod-
elling with DCNNs, according to these views, is a continuation of a widespread attempt to 
reach mechanistic explanations in neuroscience. 
  Recently some philosophical work has proceeded in that direction as well. Cao & 
Yamins (2021a, 2021b) attempt to counter long-standing doubts that DCNNs could be mech-
anistic models, by developing a particular account of mechanistic abstraction applicable to 
DCNNs and reviewing evidence that vindicates these models as mechanistic explanations of 
the ventral stream. Buckner (2018) gives a proposal for a mechanism implemented in both 
DCNNs and the ventral stream, building upon Stinson's analysis (2018) of the mechanistic 
explanatory potential of connectionist networks. 
  In sum, there seems to be some agreement across philosophy and neuroscience that 
DCNNs can be or that they already are mechanistic models of the human visual system. This 
paper speaks to that kind of view. 
  It is important, however, to note that there is an alternative view that considers DC-
NNs similarly to how neuroscientists consider animal models. According to this comparative 
model interpretation, DCNNs are treated as artificial model organisms (Scholte, 2018). DC-
NNs lend themselves to being tweaked in various ways. One can train them on different 
datasets and change their architectural features as one likes. Such malleability and accessibili-
ty of their inner workings can help the process of hypothesis generation about which model 
features are possibly instantiated in the brain. According to this view, current DCNNs are not 
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directly meant to model brain mechanisms but to be used as a platform for hypothesis genera-
tion that can subsequently help to form more elaborate and stringent models that would be 
intended as explanatory models of brain processes. 
   
3.1 Mechanistic abstraction and its application to DCNNs 

Mechanisms are entities and activities organised in such a way that they are responsible for 
the phenomenon to be explained (Illari & Williamson, 2012). Explaining a phenomenon, such 
as object recognition, amounts to describing a mechanism responsible for it. At the intersec-
tion of neuroscience and deep learning, mechanisms are often characterised as mechanisms 
that represent stimuli-related properties, thereby enabling appropriate task performance. The 
talk of representations has been ubiquitous in visual neuroscience since its early days (Bech-
tel, 2007), while deep learning is a representation-learning method (LeCun et al., 2015). The 
particular representations that DCNNs and the ventral stream acquire enable them to meet the 
challenges of invariance and specificity for object recognition, and researchers precisely aim 
to learn about the ventral stream representations using DCNN modelling (Lindsay, 2021; Ki-
etzmann et al., 2019; Kriegeskorte, 2015), especially in its higher visual areas. 
  Thus, mechanisms for object recognition are mechanisms that operate on representa-
tions (Bechtel, 2008, 2007), carrying task-relevant content about stimuli. From this represen-
tational perspective, entities that comprise a mechanism are representations, and activities are 
operations that transform representations in spatio-temporally organised ways. Another per-
spective on the mechanism of object recognition is implementational, which focuses on the 
contribution of neural structures and their activities to the function of object recognition. The 
aspects of this dual perspective on the mechanism of object recognition are connected 
through the notion of the vehicle of representation (Bechtel, 2007, p. 34). Vehicles of repre-
sentation are specifiable types of neural processes that carry stimulus-related representational 
content, needed for successful task performance. 
  A model of object recognition has mechanistic explanatory force if it has variables 
that map onto the representations, activities, and organisational properties of the brain mech-
anism, and if the dependencies posited between these variables map onto the causal relations 
between their counterparts in the target brain mechanism. This is the model-to-mechanism 
mapping (3M) requirement for mechanistic explanations (Craver & Kaplan, 2020; Kaplan & 
Craver, 2011). However, some opposition to the idea of DCNNs being mechanistic models of 
the brain comes from the fact that they aim to model brain processes at a higher level of ab-
straction than some paradigmatically mechanistic explanations, such as that of long-term po-
tentiation (Craver, 2007) or depolarisation (Machamer et al., 2000). DCNNs abstract away 
from many low-level neural features, which opens up the question of their compatibility with 
the 3M requirement. 
 Recently there has been a lot of discussion on the topic of abstraction and mechanistic 
explanation (Stinson, 2016; Potochnik, 2015; Chirimuuta, 2014; Levy, 2014; Weiskopf, 
2011), leading to a wider recognition of abstraction being characteristic of modelling and that 
abstract models can be mechanistic explanations (Craver & Kaplan, 2020; Boone & Piccini-
ni, 2016). Models can abstract away from both, details that are irrelevant for object recogni-
tion, as well as some relevant details, and still be mechanistically explanatory in virtue of sat-
isfying the 3M requirement. Abstract mechanistic explanatory models often aim to describe 
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just those core features of mechanisms that are the most important for the phenomenon of 
interest. 
 The account of mechanism schemata found in Machamer et al. (2000) and Darden 
(2002) captures this point.  Typically, scientists are not after describing all the details of a 3

particular mechanism but aim to characterise a type of mechanism responsible for the phe-
nomenon. A mechanism schema is an abstract description of a type of mechanism (Darden, 
2002; Machamer et al., 2000). Schemas may have a general scope, capturing shared major 
features of mechanisms that can occur within quite different systems (Boone & Piccinini, 
2016). For example, a mechanism schema for protein synthesis is DNA→RNA→Protein 
(Darden, 2002; Machamer et al., 2000). This abstract mechanistic template can be instantiat-
ed by inserting more detailed characterisations of entities, activities, and organisational prop-
erties for the variables in the schema, reaching a more detailed description of an instance of a 
mechanism for protein synthesis. Schema instantiation can play an important role in mecha-
nism discovery (Darden, 2002). For example, if a type of mechanism in a DCNN can be de-
picted as a mechanism schema, it can then be transferred as a hypothesis onto the ventral 
stream in an attempt to see whether and how that schema is instantiated in more detail. 
 Deep neural network modelling may thus be shown to be continuous with other ab-
stract mechanistic modelling efforts found in biology more broadly if it can provide abstract 
descriptions of the types of mechanisms responsible for phenomena to be explained. I take 
the core features of the mechanism type responsible for object recognition to be the represen-
tations that DCNNs and the target instantiate, cohering with the goal of the field to learn 
about representations in the ventral stream (Lindsay, 2021; Kietzmann et al., 2019; 
Kriegeskorte, 2015). The emphasis on similarities of mechanistic entities, in this case, repre-
sentations, is one way to type mechanisms (Glennan & Illari, 2017).  These core features of a 4

mechanism type are the ones that are taken to be key contributors to the runnability of the 
model and successful task performance. The runnability of the model is crucial for this mod-
elling paradigm (Rumelhart et al., 1986) since it embeds the possibility of a model exhibiting 
similar object recognition task performance as humans in virtue of operating over similar rep-
resentations (Cao & Yamins, 2021a; Kriegeskorte & Douglas, 2018; Kriegeskorte, 2015). 
 A mechanism schema of a DCNN has explanatory force if there is a mapping between 
the major features of a mechanism type it posits and the target system that is relevant for ob-
ject recognition, as per the 3M requirement. I discuss contexts in which the mapping between 
DCNN and the ventral stream representations is formed using the framework of representa-
tional similarity analysis, which I turn to in section 4. 

3.2 Two candidate levels for the mapping of representations 

Establishing a mapping between representations in DCNNs and the ventral stream presup-
poses a target level of analysis relevant for object recognition. While generally different 

 Note that Craver (2007) characterises schemata differently, as lying between more gappy mechanis3 -
tic explanations (mechanism sketches) and complete mechanistic explanations.
 Typing mechanisms according to their representations is reflected in the scientific practice itself. For 4

example, Storrs et al. (2021) train architecturally different types of DCNNs. When they are shown to 
equally correspond to the ventral stream using representational similarity analysis, the authors con-
clude that DCNNs develop similar representations, and that the architectural features responsible for 
that result are those that are shared across models. Thus, the architectural differences between models 
are not seen as relevant differences.
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neural network models may bottom out at different levels of analysis, looking into the current 
research practice of using DCNNs to model the object recognition mechanism enables us to 
simplify the issue by considering two candidate levels. 
 According to one view, relevant representations lie on the level of individual neurons.   
Extending the traditional way of trying to understand the visual system by analysing which 
stimulus features individual neurons are responsive to (Kriegeskorte & Wei, 2021), this view 
considers individual neuronal activations as vehicles of representational content (Poldrack, 
2021, pp. 1314-1315). These descriptions of individual neuronal activations are summarised 
in the form of tuning functions, which characterise the dependence of neuronal firing on a 
stimulus feature (see Fig 2). For example, the dependence of the firing of neurons in the pri-
mary visual cortex on the presence of edge-shaped stimuli has been classically characterised 
by a bell-shaped tuning curve. Call this the Tuning Functions account. The Tuning Functions 
account captures an attempt to map a mechanism schema of a DCNN on the level of tuning 
functions to tuning functions in a neuronal population in the brain. 
 An alternative view considers neural manifolds as representational vehicles. Neural 
manifolds are responses of a population of neurons or nodes to a variety of images of an ob-
ject – displaying it from different perspectives, varying in scale, location, etc., forming a con-
tinuous, low-dimensional surface inside the high-dimensional neural representational space 
(DiCarlo & Cox, 2007). See Fig 2. It has been proposed that the object recognition capacity 
may depend on reformatting neural manifolds in representational spaces in order to make 
them less entangled and more separable down the processing hierarchy (DiCarlo et al., 2012; 
DiCarlo & Cox, 2007). Call this the Neural Manifolds account. According to it, the mecha-
nism schema of a DCNN lies on the level of neural manifolds that one tries to map in the 
brain as well (Poldrack, 2021; Buckner, 2018).  5

 Mapping tuning functions and neural manifolds coheres well with the goals of the 
neural network-based research programme to bridge "between explanatory levels, from single 
units, through collective dynamics and onto behaviour" (Doerig et al., 2023, p. 436). Howev-
er, whether these two accounts are compatible or competitors as explainers has been a topic 
of recent discussions (Barack & Krakauer, 2021).  Without taking a stance on this question, I 6

charitably consider that mapping representations on both of these levels of analysis can yield 
an explanatory mechanism schema of object recognition. 

 The epistemic status of neural manifolds is, however, under-theorised, with an exception of 5

Humphries (2021). Various views can be found across the discourse. Some see them as descriptive, 
summarising tools (Whiteway & Butts, 2019; Williamson et al., 2019), others as important organisa-
tional principles of neural computation (Barrett et al., 2019). Yet another view is that they are a type 
of an entity the brain and DCNNs use to compute (Jazayeri & Ostojic, 2021; Vyas et al., 2020; Gal-
lego et al., 2017). 

 One relevant factor is that sets of different tuning functions can give rise to similarly shaped mani6 -
folds (Kriegeskorte & Wei, 2021). Thus, if one's goal is to obtain a description of neural tuning, bot-
toming out on the level of manifolds will not be satisfying.

8



 

Fig 2 Tuning functions and neural manifolds. Left: A neuronal tuning function. Right: 
Neural manifolds across three processing stages, reproduced from Cohen et al. (2020). 
Notice the change of the shape of manifolds as they become more disentangled 

4 Comparing representational geometries of DCNNs and the ventral stream 

Representational similarity analysis (RSA) is a widely utilised framework in cognitive neuro-
science for assessing the similarity of processing of systems (Kriegeskorte et al., 2008). Tak-
ing aside some recent intervention-based ways to compare the workings of DCNNs and the 
brain (Sexton & Love, 2022; Bashivan et al., 2019), RSA has been one of the two most fre-
quently used ways of comparing representations of brains and DCNNs, besides linear map-
ping of neuronal activations based on activations of nodes in a DCNN (Schrimpf et al., 
2020a). Thus, it forms an important evidential basis for the assessment of the mechanistic 
explanatory potential of DCNNs. Indeed, several scientific reviews mention RSA as a method 
of comparing DCNN with brain representations with the goal of reaching mechanistic expla-
nations (Doerig et al., 2023; Lindsay, 2021; Kietzmann et al., 2019; Kriegeskorte, 2015). 
 In the philosophical literature, Buckner (2018) and Cao & Yamins (2021a) argue for 
the mechanistic explanatory potential of DCNNs but they do not analyse whether RSA-based 
evidence can corroborate DCNNs toward that goal. An exception to this is the work of Kieval 
(2022) who argues that RSA can help uncover brain mechanisms via shared causal patterns 
between DCNNs and the brain. 
 RSA is an analysis method that allows for an examination of a large number of stim-
uli-elicited patterns, obtained by fMRI in human participants and by recording activations of 
nodes in a DCNN. It is a pattern analysis method that analyses activations of DCNNs and 
brains multivariately as a population code. The activity of a population of neurons (or nodes  
in a layer) elicited by a presentation of a stimulus is jointly taken as representing properties of 
that stimulus. 
 Representations across voxels in a brain region or across nodes in a DCNN layer are 
depicted in a multidimensional space, where each dimension of the space stands for the acti-
vation level of a voxel in a brain, or a node in a DCNN. A pattern of activation elicited by a 
presentation of a visual stimulus across a population of voxels or nodes is then represented as 
a point in this multidimensional representational space. Thus, all the stimuli presented to a 
brain region or a DCNN layer have their corresponding points in this multidimensional space. 
 RSA works by quantifying the similarity structure of activation patterns elicited by a 
set of stimuli across stages of processing, also called representational geometry (Kriegeskorte 
et al., 2008a). Importantly, RSA does not aim to directly correspond architectures of systems, 
numbers of nodes or neurons in a population, and similar – these may be substantially differ-
ent across systems that are compared. The framework aims to compare representational 
geometries across systems, which are of course dependent upon the particularities of the ar-
chitectures they have. 
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 To characterise a representational geometry for a brain region in a task (or a layer in a 
DCNN), one forms a representational dissimilarity matrix (RDM). This is the first step of the 
RSA methodology. In the second step, the similarity of RDMs of a brain region and a DCNN 
layer is assessed. 
 In the first step, one forms an RDM for a brain region by quantifying how dissimilar 
each two stimuli-elicited patterns are. Another RDM is formed for a DCNN layer. For exam-
ple, if the stimuli set are images of animate objects, such as faces, and inanimate objects such 
as houses, then one calculates the dissimilarity between every two patterns elicited by ani-
mates and inanimates in that set. An RDM is a square matrix (see Fig 3), whose rows and 
columns are indexed by visual stimulus presentations, in this case, images of animate and 
inanimate objects. Then, each cell in the matrix contains a numerical value standing for the 
measured dissimilarity between two stimuli-elicited patterns. The matrix is symmetric about 
a diagonal of zeros (standing for the dissimilarity of each pattern from itself). 
 To quantify dissimilarity between two stimuli-elicited patterns one looks at their dis-
tance in the multidimensional space. The bigger the distance, according to a particular simi-
larity measure, the bigger the dissimilarity between the patterns. Often this measure is corre-
lation (Kriegeskorte et al., 2008a), which calculates distances as 1−correlation across voxels 
in the brain, or nodes in a DCNN (1 standing for perfect correlation minus their actual corre-
lation). Thus, intuitively, an RDM captures how dissimilarly some images in a set of stimuli 
are processed by a model or the target system. 
 For example, Fig. 3 illustrates the responses of the inferior temporal (IT) cortex in 
humans clustering into two broad categories of animate and inanimate objects. IT representa-
tions of animate objects are more similar to each other than to IT representations of inanimate 
objects, and vice versa. To the extent a new incoming stimulus-elicited pattern is similar to 
patterns elicited by animates, it will tend to have similar effects on downstream neurons and 
the object recognition performance as other animate objects. Such analysis of activation pat-
terns through the lens of similarity suggests which representational distinctions the IT cortex 
makes in order to successfully perform the task. 
 After the formation of RDMs of a DCNN layer and a brain region, in the second step, 
their dissimilarity is assessed. That comparison often looks at how correlated their RDMs are 
and quantifies their dissimilarity as 1−correlation as well. 
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Fig 3 An example of an empirical RDM obtained in the human IT cortex, reproduced 
from Kriegeskorte et al. (2008b). The most noticeable clusters are those formed by low 
dissimilarities in the upper left quadrant between patterns elicited by animate objects, 
and lower right quadrant for patterns elicited by inanimate objects. The other two quad-
rants describe high dissimilarities between patterns elicited by categories of animates and 
inanimates 

4.1 Quantifying Dissimilarity 

The formation of an RDM requires the adoption of a similarity measure. While cognitive 
psychologists extensively discussed the notion of similarity and the extent to which it can be 
invoked as an explanatory or an evidential construct (Edelman, 1999; Medin et al., 1993), 
such efforts are not paralleled in contemporary neuroscience. Taking a look over the current 
research practices of using RSA to compare brains and DCNNs, or DCNNs among them-
selves, reveals that the field is not unified in quantifying similarity in a particular way. Al-
though correlation is often used as a similarity measure, other similarity measures are also in 
play. Similarity measures used are correlation and cosine distance (Xu & Vaziri-Pashkam, 
2021; Mehrer et al., 2020; Cichy et al., 2016; Cadieu et al., 2014; Khaligh-Razavi & 
Kriegeskorte, 2014), Euclidean and Mahalanobis distances (Storrs et al., 2021; Xu & Vaziri-
Pashkam, 2021; Mehrer et al., 2020), while Kornblith et al. (2019) devise a way of quantify-
ing representational geometry based on the dot product. 
 I contrast members of two broad families of similarity measures – correlation and co-
sine distance, on the one hand, and Euclidean and Mahalanobis distances, on the other 
(Bobadilla-Suarez et al., 2020). I primarily focus on correlation and Euclidean distance to 
illustrate the fact that similarity measures provide different perspectives on what distance is 
in representational space. Then in section 5 I argue that correlation and Euclidean distance 
pick out different types of mechanisms according to both the Tuning Functions account and 
the Neural Manifolds account. 
 Correlation and cosine distance are angle-based measures (Bobadilla-Suarez et al., 
2020). Take as an example a multivariate space spanned by the activations of two voxels to 
an image of an orange and an image of a pear (see Fig 4). Then one can imagine looking in 
the direction of the two stimulus-elicited patterns A and B from the origin of this two-dimen-
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sional space. According to correlation and cosine distance, the distance between these two 
stimulus-elicited patterns is a function of the angle that these two points subtend with the ori-
gin. Cosine distance measures similarity as the cosine of the angle that they subtend, while 
dissimilarity is calculated when that number is subtracted from 1. Geometric interpretation of 
correlation relies on the same logic, so that the distance between the two vectors is the cosine 
of the angle they subtend after mean centering each condition (Ramírez, 2018; Walther et al., 
2016; Mur et al., 2009). 
 In contrast, Euclidean and Mahalanobis distance measures are magnitude-based 
(Bobadilla-Suarez et al., 2020). While Mahalanobis distance measures the distance between a 
point and a distribution, Euclidean distance is a non-distributional measure. Turning again to 
Fig 4, the distance between two stimulus-elicited patterns A and B according to Euclidean 
distance is their distance in Euclidean space (dotted lines in Fig 4). Intuitively, in the case of 
Euclidean distance in this example, one looks at the space from above and measures distances 
that way. Euclidean distance between two vectors is calculated as the square root of the 
summed squared differences along each vector component (Ramírez, 2018; Walther et al., 
2016; Mur et al., 2009). 

Fig 4 Correlation and cosine distance measures are angle-based measures – similarity 
between an orange-elicited response pattern and a pear-elicited response pattern is a 
function of the angle they subtend with the origin, and stays the same across all pairs of 
vectors (A & B, A' & B') subtending the same angle. In contrast, Euclidean distance is a 
magnitude-based measure that relies on measuring distances as the length of a straight 
line so that the distances between vectors (dotted lines) are different 

 Correlation and Euclidean distance provide different respects in which one can quan-
tify representational geometries. Since correlation relies on measuring angle-based distances 
after the mean value subtraction, the overall mean in the region is disregarded as a coding 
dimension (Ramírez, 2018; Ramírez et al., 2014). Thus, correlation measures distances by 
looking at the pattern of differential population firing across conditions. In direct contrast to 
this, as a magnitude-based measure Euclidean distance quantifies representational geometries 
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in virtue of tracking differences in amplitude of population firing, and consequently the mean 
is taken as a coding dimension (Ramírez, 2018; Ramírez et al., 2014).  7

 Let us go back to the categorical structure of IT representations in Fig 3. The RDM 
reveals two clusters corresponding to animates and inanimates. Correlation, then, implies that 
the between-category information needed for object categorisation is not carried by the over-
all amplitude of the population response. Consequently, a downstream neural population does 
not discriminate between patterns elicited by animates and inanimates in virtue of the overall 
amplitude, which, in turn, implies that outputting an appropriate label in the object recogni-
tion task does not depend upon it either. In contrast, Euclidean distance sees precisely the dif-
ferences in amplitude as properties of population activations that carry such discriminative 
information and lead to successful task performance. 

4.2 Invariance properties of similarity measures 

As mentioned in section 4, the basis of RSA is the representation of stimuli-elicited patterns 
in a multidimensional space. However, that representation abstracts away from tuning func-
tions of neurons in voxels or nodes in a DCNN, focusing on the population-level response. 
Nevertheless, the overall population response in a voxel or a DCNN layer is of course depen-
dent upon tuning functions of individual neurons or nodes that comprise them. In the case of 
RSA, a set of neurons in a population or nodes in a layer tuned for some stimuli-related prop-
erties fully determines a corresponding representational geometry (Kriegeskorte & Wei, 
2021). 
 However, the same representational geometry can be implemented by different sets of 
tuning functions (Kriegeskorte & Wei, 2021). This is a consequence of the invariance proper-
ties of similarity measures. 
 Invariance properties determine the conditions under which perturbations of points in 
the representational space conserve a representational geometry quantified using a particular 
similarity measure (Kornblith et al., 2019). Perturbations that a similarity measure is invariant 
to are not considered a relevant transformation of vectors for the quantification of similarity. 
In practice, this means that a DCNN layer could exhibit a pattern of responses that is some 
transformation of responses of human IT, but a transformation that does not affect much its 
representational geometry. 
 For example, correlation is scale invariant (see Fig 4). Uniformly multiplying vectors 
in state space with a certain number does not affect how similar stimuli-elicited patterns are, 
as long as they keep subtending the same angle. From the perspective of the origin, one can-
not detect how far away A and B are from A' and B', since both pairs of vectors lie on the 
same horizon. In contrast, being a magnitude-based measure Euclidean distance considers 
differences in amplitude as meaningful differences. Perturbations affecting the amplitude af-
fect representational geometries. 
 Another example is the rotation of points in multivariate space. In Fig 5, after rigidly 
rotating vectors A and B in space along with other data points, their similarity will stay the 
same according to Euclidean distance (Mehrer et al., 2020). In contrast, correlation is not in-

 See Walther et al. (2016, Fig 1) for other illustrations of the ways Euclidean-based and correlation-7

based geometries can be affected by common data manipulation techniques.
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variant to such rotations since they affect the angle between vectors and therefore their simi-
larities (Mehrer et al., 2020). 
 

Fig 5 Rotating A and B in space affects the angle between them, which in turn affects judgments 
of similarity based on correlation. However, their Euclidean distance stays the same. The figure is 
based on Mehrer et al. (2020, Supplementary Figure 5) 

 Each such transformation of vectors that leaves a correlation-based or a Euclidean-
based representational geometry intact often entails a change on the level of tuning functions 
able to implement the geometry. The same population level response and its representational 
geometry can be yielded by populations of neurons with different tuning functions 
(Kriegeskorte & Wei, 2021). That the relationship between sets of tuning functions and a rep-
resentational geometry is many-to-one is a consequence of the invariance properties of simi-
larity measures. 

4.3 The choice of similarity measure is theoretically non-trivial – a case study 

In the previous two sections, I have discussed how similarity measures pick out different 
properties of population level responses in order to quantify a representational geometry, and 
that due to the invariance properties of similarity measures multiple sets of tuning functions 
are able to implement the same representational geometry. In this section, I illustrate that cor-
relation-based and Euclidean-based representational geometries are implemented by non-
identical sets of tuning functions. The choice of a similarity measure one applies is non-trivial 
since it can lead to theoretically meaningfully different conclusions. 
 To illustrate my point I turn to the study of Ramirez et al. (2014), which deals with the 
representations of faces at different rotational angles in human fusiform face area (FFA). Re-
sponses in FFA were recorded using fMRI. While participants were fixating on the centre of 
the screen, stimuli of faces at different angles (−90°, −45°, 0°, 45°, 90°) were shown at two 
positions – above and below the fixation cross. 
 Ramirez et al. quantify the representational geometry of faces at all rotational angles 
in FFA, for two positions (above and below the fixation cross). See Fig 6. They tested two 
hypotheses related to the kind of tuning that can account for the representational geometry in 
FFA. One hypothesis was that neurons in FFA are primarily unimodally tuned for a single 
preferred view. According to another hypothesis, FFA neurons could exhibit mirror-symmet-
ric encoding of face orientations, so that the responses are highly similar for faces presented 
at −45° and 45°, as well as −90° and 90°. Two representational distance matrices were 
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formed capturing which representational geometry of a region would be expected if it were 
the case that unimodally tuned neurons encode face orientation across retinal positions, and if 
it were the case that mirror-symmetric neurons encode it. Finally, these two representational 
distance matrices were compared with the empirical distance matrix of the FFA responses. 
 When the authors used correlation to quantify the representational geometries, the 
unimodal tuning hypothesis was favoured, as it captured more variance than the geometry 
based on mirror-symmetric tuning. However, when Euclidean distance was used, the two hy-
potheses were indistinguishable.  
 Therefore, the choice of similarity measure used to quantify the representational 
geometry of FFA has a consequence for a theoretically meaningful conclusion that is drawn. 
Unimodal tuning is a hypothesis that stems from view-dependent theories of object and face 
representation, and it is a hypothesis that is favoured if correlation is chosen to quantify the 
representational geometry of FFA. On the other hand, the hypothesis of mirror-symmetric 
tuning was first put forth by proponents of view-independent theories of the object and face 
representation according to which individual cells respond to mirror-symmetric rotational an-
gles, thus partially achieving view-point invariance (Ramírez, 2018). However, when repre-
sentational geometries were quantified with Euclidean distance, both unimodal as well as 
mirror-symmetric tuning could account for the representational geometry of human FFA. 












Fig 6 An empirically obtained correlation-based RDM of face rotational angles in FFA 
across two retinal positions (left), adapted from Ramirez et al. (2014). If correlation is 
used to quantify RDMs, the unimodal tuning hypothesis better accounts for the RDM. If 
Euclidean distance is used, both hypotheses can account for the RDM. 

5 Implementational view on the mechanism of object recognition: different simi-
larity measures correspond different types of mechanisms 

When RSA provides the mapping between DCNNs and the brain, in order to satisfy the 3M 
requirement, an issue arises due to a variety of similarity measures used in that framework. In 
this section, using section 4, I argue that correlation and Euclidean distance pick out different 
representational vehicles, according to the Tuning Functions and the Neural Manifolds ac-
counts, that they correspond in DCNNs and the brain. 
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 If one types mechanisms according to their representations (see section 3.1), the im-
plementational view on the mechanism of object recognition allows for typing mechanisms 
according to the representational vehicles systems have. Representational vehicles are types 
of neural states that carry representational content, and that are causally relevant for the oper-
ation of a mechanism downstream and its task performance (Bechtel, 2007). If it is shown 
that different similarity measures pick out different representational vehicles, then they pick 
out different mechanism types that they correspond in DCNNs and the ventral stream. 

5.1 The Neural Manifolds account 

It may seem far-fetched at first sight that the quantification of representational geometries can 
in principle capture something about the underlying mechanism of the system, since analyses 
of similarities of processing may seem too detached from the actual workings of the mecha-
nism. This, however, is incorrect. Representational geometries can in principle reveal some 
core features of representational vehicles responsible for object recognition. 
 Let us go back to the example of the representational geometry in human IT in Fig 3, 
which is reproduced by a DCNN (Khaligh-Razavi & Kriegeskorte, 2014). The structure of 
similarities between responses elicited by images of animate and inanimate objects form two 
clusters. These low-dimensional subspaces revealed in IT and a DCNN layer are neural mani-
folds of animates and inanimates. The structure of similarities between patterns elicited by 
animates and inanimates describes the shape of their neural manifolds. This may be more vis-
ible in Fig 2, where the shape of cat and dog manifolds is depicted. A quantification of repre-
sentational geometry can capture the shapes of representational vehicles according to the 
Neural Manifolds account. 
 Shapes of manifolds have a potential causal relevance for processing downstream. 
From the perspective of a downstream neural population or a DCNN layer that is meant to 
distinguish between animates and inanimates and output a label in the task, similarity rela-
tions between stimuli-elicited patterns lying on different manifolds serve to distinguish them 
(Kriegeskorte & Wei, 2021; Buckner, 2018; Kriegeskorte & Kievit, 2013). For example, if a 
newly incoming stimulus-elicited pattern is more similar to the previously encountered pat-
terns elicited by animates and thus falls into the manifold for animates, it will tend to have 
similar effects on downstream neurons and the object recognition task performance as other 
animate objects – it will get recognised as an animate object. This similarity structure of in-
puts is implicit in the weights of a DCNN – the weights ensure the treatment of new but simi-
lar inputs similarly. The generalisation ability may thus depend on the sensitivity of DCNNs 
and the ventral stream to the similarities between previously encountered inputs and the new 
ones (Rumelhart et al., 1986). 
 The quantification of representational geometry can describe shapes of neural mani-
folds relevant for processing downstream and the object recognition task performance. How-
ever, the issue arises that the shape of manifolds is defined differently depending on whether 
correlation or Euclidean distance is used to quantify a corresponding representational geome-
try. As discussed in section 4.1, correlation does not describe the shape of neural manifolds in 
terms of the amplitude, while Euclidean distance does precisely that. Correlation thus does 
not take the amplitude of a population level response as defining of representational vehicles, 
in virtue of which a downstream population can distinguish between animates and inanimates 
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and output a label in the task. The application of Euclidean distance entails the exact opposite 
conclusion. 
 Thus, in principle a representational geometry can capture shapes of manifolds as rep-
resentational vehicles that are defining of a mechanism type. The issue is, however, that dif-
ferent similarity measures pick out different types of mechanisms in order to correspond 
DCNNs and the ventral stream. 

5.2 The Tuning Functions account 

The categorical structure of the population code in Fig 3, exhibited by a DCNN as well (Kha-
ligh-Razavi & Kriegeskorte, 2014), is derivative from the activations of many individual 
neural cells or nodes. Even though it may seem that representational geometries are too de-
tached from tuning functions, they nevertheless directly depend upon them (Kriegeskorte & 
Wei, 2021). A representational geometry can in principle capture some abstract properties of 
similarity of responses arising from a population tuned in a particular way. These properties 
of similarity determine which sets of tuning functions can implement a given geometry. 
However, it is important to note two things based on the discussion in section 4. 
 First, due to the invariance properties of similarity measures, as discussed in section 
4.2, many sets of tuning functions can exhibit the same representational geometry. Right from 
the start, the relationship between tuning functions and a representational geometry is many-
to-one. Thus, one should not conclude that two systems have similar tuning functions in case 
they have similar representational geometries. 
 Second, as discussed in section 4.3 in the case of Ramirez et al. (2014) study, sets of 
tuning functions that can implement a correlation-based representational geometry and a Eu-
clidean distance-based representational geometry are non-identical, a matter that can be fairly 
theoretically meaningful as their example shows. Quantifying geometry in a particular way 
does fix a set of tuning functions that can implement it, as not all tuning functions will do. 
However, different similarity measures pick out non-identical sets of tuning functions. 
 Therefore, depending on how one chooses to quantify a representational geometry, 
different sets of tuning functions will seem to be plausibly instantiating it. If tuning functions 
are representational vehicles, different similarity measures pick out different sets of represen-
tational vehicles. Since the implementational view on the mechanism of object recognition 
types mechanisms according to their representational vehicles, different similarity measures 
pick out different mechanism types to correspond across DCNNs and the ventral stream. 

6 Representational view on the mechanism of object recognition: RSA does not 
correspond representational content across systems 

While similarities of representational geometries can in principle be mechanistically informa-
tive similarities for the implementational view on the mechanism of object recognition, as 
argued in the previous section, they underdetermine the similarity of representational content, 
relevant for the representational view on the mechanism of object recognition.  
 Not infrequently an inference is made that RSA precisely allows for a mapping be-
tween representational content across systems. Consider Kieval's (2022) conclusion that a 
match-up of representational geometries between a model and the brain occurs "precisely be-
cause they both instantiate the same causal patterns between mechanism and stimulus condi-

17



tions" (Kieval, 2022, p. 19). Roskies (2021, p. 5926) also states that "the degree to which the 
content is similar in structure to the domain with which it is being compared is indicative of 
its representational content". Such inferences that slide from the acknowledgment of corre-
spondence of representational geometries to the claim of similar representations being used to 
track properties of stimuli also occur in the scientific literature (for some examples see Duj-
mović et al. (2022)). There is enough empirical evidence available showing that such infer-
ences are fallacious. 

6.1 The Neural Manifolds account 

A representational geometry describes relational properties of similarity between stimuli-
elicited patterns in a system. It is entirely consistent with a significant match-up of represen-
tational geometries between two systems that one system exhibits given relational properties 
of similarity in virtue of tracking shape-related properties of stimuli, while another exhibits 
given relational properties of similarity in virtue of tracking texture-related properties. In fact, 
humans rely on shapes in object recognition, while DCNNs often rely on texture in order to 
perform the task (Bowers et al., 2022). Geirhos et al. (2018) showed this for certain types of 
DCNNs, whose representational geometries, on the other hand, have been shown by Storrs et 
al. (2021) to be equally similar to that of human IT. This suggests that the possibility of two 
systems exhibiting similar representational geometries while nevertheless representing differ-
ent properties of the world depends in part on the structure of the world. DCNNs are particu-
larly successful in task contexts where there is some repeated structure present in the envi-
ronment (e.g. based on texture), which can be exploited by utilising convolutions and weight 
sharing applied hierarchically, building up more and more complex features out of simpler 
ones. The brain could perform the same task by exploiting yet another repeated structure in 
the environment (e.g. related to shapes). If objects similar in texture are also similar in shape 
("the mimic effect" as Dujmović et al. (2022) call it), then DCNNs and the ventral stream 
may exhibit similar representational geometries, while tracking different stimulus-related 
properties.  
 If this analysis is correct, then neural manifolds across DCNNs and the ventral stream 
may have similar shapes but implement different representational spaces – a shape-related 
and a texture-related representational space. The match of representational geometries under-
determines the similarity of representational content. 

6.2 The Tuning Functions account 

Given that such properties of manifolds are dependent upon tuning functions in the popula-
tion (Kriegeskorte & Wei, 2021), DCNN nodes and the ventral stream neurons would have to 
be tuned to shape-related and texture-related properties of the stimuli as well. 
 Another example illustrating that the match of representational geometries underde-
termines similarities of representational content across systems is based on the case study of 
Ramirez et al. (2014), discussed in section 4.3. When the representational geometry of FFA 
was quantified using Euclidean distance, both unimodal tuning as well as mirror-symmetric 
tuning were able to account for it, two competing hypotheses stemming from different theo-
retical frameworks on object and face recognition (Ramírez, 2018; Hummel, 2013). The for-
mer derives from view-dependent theories of object and face representations, while the latter 
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derives from view-independent theories. Thus neurons and nodes can be tuned to different 
properties of stimuli while exhibiting similar representational geometries. Additional prob-
lems arise due to different similarity measures – as the example of Ramirez et al. (2014) 
shows, they may lead us to ascribe different representational content to individual neurons. 
 Therefore, similarities of representational geometries alone underdetermine similari-
ties of content, because the relationship of content ascriptions to vehicles instantiating similar 
representational geometries is many-to-one, contra Roskies (2021) and Kieval (2022). As 
DCNNs evolve and model selection based on RSA continues, this point should be kept in 
mind. 
  
7 DCNNs are not how-actually mechanism schemata of object recognition 

A mechanism schema is how-actually explanatory if there is a mapping between the core fea-
tures of a mechanism type it posits and the target system that is relevant for object recogni-
tion, as per the 3M requirement (Craver & Kaplan, 2020). However, the framework of RSA 
comes with a diversity of similarity measures serving the role of the mapping function, which 
pick out different types of mechanisms on the level of representational vehicles that they map 
in a model and the target system, as argued in section 5. But which type of mechanism is rel-
evant for object recognition? If there is no arbitration between them in terms of relevance for 
object recognition, it is clear that current DCNNs are not how-actually mechanism schemas 
of object recognition. 
 That the components of an explanatory mechanism have to be responsible for the 
phenomenon to be explained is a key aspect of mechanistic explanation that has been stressed 
by all prominent definitions of mechanisms (Illari & Williamson, 2012). However, the com-
munity of researchers using RSA to compare DCNNs and the brain relies on applying differ-
ent similarity measures without any arbitration in terms of relevance for the explanandum 
capacity of object recognition. In relation to correlation and Euclidean distance, does the am-
plitude of the population level response carry discriminative categorical information a down-
stream area may use? 
 Except for a couple of exceptions (Bobadilla-Suarez et al., 2020; Ramírez, 2018; 
Ramírez et al., 2014), similarity measures and the issue of their relevance for the task at hand 
are not frequently discussed in neuroscience. The lack of consideration of relevance is appar-
ent when one looks at the totality of studies using DCNNs to model object recognition. On 
the one hand, there are many papers (Storrs et al., 2021; Cichy et al., 2016; Khaligh-Razavi & 
Kriegeskorte, 2014) that aim to assess the similarity of the brain and DCNN workings by fo-
cusing on the neural level of analysis. They do not analyse whether the properties similarity 
measures pick out to compare systems on the neural level of analysis are relevant for the 
phenomenon to be explained, in this case, object recognition task performance. 
 On the other hand, there are studies like Geirhos et al. (2020) that probe the workings 
of systems, in this case architecturally different DCNNs, with atypical stimuli like silhouette 
pictures or drawings. They then analyse whether they make similar kinds of errors on a trial-
to-trial basis like humans. However, this analysis of the task performance is not related to the 
neural level of analysis across these systems. 
 The work on the neural level of analysis and on the level of task performance pro-
ceeds in parallel as things now stand and they are not brought in contact (with the exception 
of Ding et al. (2021), unrelated to RSA). But the work on mechanisms in philosophy of sci-
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ence precisely suggests that relating quantified representational geometries to task perfor-
mance is of crucial importance for the success of mechanistic explanation (see also Ritchie et 
al. (2019)), and the idea of runnability of DCNNs (section 3.1) embeds the same assumption. 
	 One useful test of the relevance of a similarity measure for object recognition would 
be to see if it manages to predict the similarity of task performance across compared systems, 
based on the quantified similarity of their population codes. For example, if one took differ-
ent DCNN architectures, tracked which kinds of errors they make on the level of task per-
formance, and probed their workings with atypical stimuli similar to Geirhos et al. (2020), 
would their similarity of task performances correlate with the similarity of their representa-
tional geometries quantified by a particular similarity measure? If a similarity measure does 
track properties in virtue of which one can quantify the structure of the population code 
which would be predictive of the similarity of task performance across these DCNNs, then it 
would not happen, for example, that DCNNs are judged as highly similar on the level of 
geometries but turn out to be dissimilar on the level of task performance. In that case, we 
would say that a similarity measure likely does not track properties relevant for object recog-
nition. Certainly, intervening on neural populations and altering the structure of the popula-
tion code would be the gold standard for testing its relevance but looking into the correlation 
between similarity across mechanisms and across their task performance would be a good 
start.  
 Given that the relevance of similarity measures used as a part of the RSA framework 
is not assessed, it is underdetermined which of the mechanism types picked out by similarity 
measures are relevant for object recognition. Thus, DCNNs are not how-actually mechanism 
schemas of object recognition. While explanatory models help us answer what-if-things-had-
been-different questions about a target system's behaviour, DCNNs do not do this with re-
spect to representational vehicles. 

8 DCNNs are not how-possibly mechanism schemata of object recognition 

It is not just the practices surrounding the use of similarity measures that hinder reaching the 
goal of mechanistic explanation. The crucial part relates to the ways DCNN models are archi-
tecturally constructed, giving rise to the issues of underdetermination of similarity measures. 
Few and biologically implausible architectural constraints leave DCNNs too highly idealised 
and too detached from the target system for the purposes of explaining representational 
mechanisms in the brain, even in a how-possibly way. 
 A how-possibly model does not demonstrate only that something is possible, in this 
case reproducing object recognition based on a DCNN architecture, but it accounts for how it 
occurs (Brainard, 2020), elucidating the link between the explanandum and the explanans 
(Machamer et al., 2000). In this context, this amounts to portraying some core properties of 
representational vehicles that define a mechanism type underlying object recognition.  
 A how-possibly model is a loosely constrained conjecture (Weiskopf, 2011; Craver, 
2007). The amount of evidential support for it can be low. However, the value of such models 
is in linking a hypothesised type of mechanism to an explanandum in a way that constrains 
the domain of models one may want to explore further by introducing a boundary condition 
on the space of possible models. 
 Take a classic example of a how-possibly model – Schelling's checkerboard model of 
residential segregation (1971). The model is highly idealised but posits one core difference-
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maker for the explanandum – that people do not prefer the minority status. While it was pre-
viously thought that only racial discrimination could lead to residential segregation, this 
model transformed our understanding of the explanandum by showing that it can be a result 
of non-discriminatory preferences. In order to fulfil the role of a how-possibly model, this 
model posits a difference-maker that acts as a boundary on the class of models we may want 
to explore further. 
 Current DCNNs are not analogous. In its interaction with the application of correla-
tion and Euclidean distances, one and the same DCNN can be seen as instantiating two dif-
ferent mechanism schemas, that imply contradictory answers to what-if-things-had-been-dif-
ferent-questions, for example about the role of the overall response amplitude as the vehicle 
of representation. Is the class of models researchers should further investigate such that mod-
els instantiate a mechanism schema according to which the overall amplitude of the popula-
tion response matters for representational vehicles, or the one according to which it does not 
matter? Approaching from the angle of tuning functions – which mechanism schema outlines 
a promising class of models regarding tuning across stages of processing? Current DCNNs do 
not delimit the space of promising models across similarity measures-induced mechanism 
schemas of their workings. They do not play that directive role expected of a how-possibly 
model, by helping us navigate the space of the population coding strategies on the level of 
manifolds or tuning. Since DCNNs do not impose such a boundary, they are not how-possi-
bly mechanism schemata of object recognition. We are left in the dark about the representa-
tional and implementational properties of the mechanism of object recognition – they may lie 
anywhere in the vast space of vehicles and content that can yield representational geometries 
quantified in diverse ways. 
 This rampant underdetermination happens because of the highly idealised status of 
DCNNs. The types of architectural constraints embedded in current models often do not re-
flect theoretically informed hypotheses on constraints on population coding strategies the 
brain may use. Many current architectures within the performance optimisation-driven ap-
proach embed only several architectural constraints (Storrs et al., 2021; Xu & Vaziri-
Pashkam, 2021), some of which are known to be implausible. For example, many DCNNs 
aim to mimic the hierarchical processing of the visual cortex in a feedforward way although 
the ventral stream is a seat of a lot of recurrent processing, and the number of layers may not 
meaningfully correspond to the stages of processing in the ventral stream (models may have 
from 8 to 200 layers). Some features are invoked for engineering reasons rather than the rea-
sons of biological resemblance, such as inception modules or residual connections.  These 8

architectural features do not allow DCNNs to converge to solutions that would be sufficiently 
constraining and instructive for the goals of learning about representations in the target sys-
tem. If DCNNs were made in theoretically more informed ways about the biological structure 
of the ventral stream (Revsine et al., 2023), this would help them converge to solutions that 
would not be as under-constraining for our goals in their interaction with RSA and would be 
able to impose a boundary on the class of possible representational vehicles. 
 Contrast this current performance optimisation-driven approach with some classical 
models such as, for example, a model proposed by Riesenhuber & Poggio (2000). The model 
expanded on HMAX (Riesenhuber & Poggio, 1999) which accomplished size and translation 

 This approach can be contrasted with that of Revsine et al. (2023) who offer a how-possibly neural 8

network model reflecting biologically inspired architectural features, that in interaction with stimuli 
properties can explain RSA-based discordant results about tuning properties in higher visual areas.
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invariance by positing cells tuned to specific views of specific objects with an addition in the 
form of a hypothesis about object-tuned cells ensuing after view-tuned cells, where the for-
mer accomplish invariance to rotation in depth and illumination by pooling over the latter. In 
the case of this model, there is an explicit hypothesis about how representations differ across 
stages of processing, and how they accomplish invariance necessary for object recognition. 
Comparing such a model using RSA with the brain is much less underdetermining than in the 
case of DCNNs. 

The architectural constraints of current DCNNs do not reflect similar theoretical con-
siderations about the biological structure and representational strategies across stages of pro-
cessing. DCNNs are then compared with the brain using a variety of similarity measures that 
are not arbitrated between on the grounds of relevance. Hence, this whole practice of DCNN 
model building and RSA-based comparisons proceeds entirely in a theory-free way about 
population coding. Consequently, object recognition is not mechanistically explained either 
in a how-possibly or how-actually way. 

9 Conclusion 

It has been claimed both across neuroscience and philosophy that DCNNs can be or 
that they already are mechanistic explanations of object recognition, while RSA has been tak-
en to be able to corroborate DCNNs as mechanistic explanations. The arguments presented 
suggest that there are aspects of the current scientific practice of using DCNNs with RSA that 
are not conducive to the goal of mechanistically explaining object recognition and learning 
about the representations in the ventral stream. There are readily available constraints the sci-
entific practice could use that would be beneficial towards this goal. The first suggestion is to 
architecturally constrain DCNNs more carefully, by invoking biological constraints known to 
exist in the ventral stream. More theoretically informed architectural constraints would help 
models converge to solutions that would not be under-constraining for the purposes of learn-
ing about representational vehicles in the target system and would be able to reduce the un-
derdetermination arising from multiple similarity measures used in this context. The second 
suggestion is that the relevance of similarity measures should also be tested rigorously. Given 
that current scientific practice does not reflect these concerns, DCNNs are neither how-actu-
ally nor how-possibly mechanistic explanations of object recognition. 
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