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Abstract

As idealized descriptions of mathematical language, there is a sense in which formal systems
specify too little, and there is a sense in which they specify too much. On the one hand, formal
languages fail to account for a number of features of informal mathematical language that are
essential to the communicative and inferential goals of the subject. On the other hand, many of
these features are independent of the choice of a formal foundation, so grounding their analysis
on a particular choice of a formal system introduces unnecessary specificity. This chapter begins
to map out the design features of mathematical language without descending to the level of
formal implementation, drawing on examples from the mathematical literature and insights
from the design of computational proof assistants and their libraries.

1 Introduction
Mathematics is governed by a network of norms that determines what we can say and how we
are supposed to say it. Learning how to speak about mathematics properly is an important part
of learning to do mathematics. But, when pressed, it turns out to be surprisingly hard to say
what it is we are talking about; mathematics seems to be, as the title of a book by John Burgess
and Gideon Rosen proclaims, a subject with no object. And without making sense of what
we are talking about, it is hard to see how we can make sense of what we are thinking about.
The outward manifestations of mathematical thought are found in the way we communicate
mathematics to others.

Here we adopt the view that an important way to make sense of what we are talking about is
to develop a better understanding of mathematical language itself. From a grammatical point
of view, the language of mathematics is rather simple. There are no subtle variations of tense,
modality, or aspect, and the subject is generally devoid of subjunctives and counterfactuals.
Mathematical statements make claims as to what is true, always has been true, and always will
be true, and mathematical proofs back these claims up with more statements of the same sort.
The subtleties of mathematical language stem rather from the features that render it suitable for
reasoning about abstract objects and properties.

Formal languages provide informative models of mathematical discourse. It is by now well
understood that ordinary mathematics can be formalized in various ways in first-order logic
and the language of set theory, in variants of simple type theory or dependent type theory, or
in category-theoretic foundations. These variations provide complementary perspectives and
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serve as bases for formalization in proof assistants like Mizar [Grabowski et al., 2010], Isabelle
[Nipkow et al., 2002], Coq [Bertot and Castéran, 2004], HOL Light [Harrison, 2009], Metamath
[Megill, 2006], and Lean [de Moura et al., 2015].

As valuable as they are, there is a sense in which formal languages specify too much, and
there is a sense in which they specify too little. The fact that an ordinary mathematical text
can be represented equally well in any of the foundations above shows that these foundations
should be viewed as alternative implementations of mathematics. It is therefore reasonable to
look for descriptions of mathematical language and patterns of inference that abstract away the
superficial differences and clarify the specifications that the implementations are designed to
meet.

Formal languages specify too little in the sense that many essential features of ordinary
mathematical language are not addressed by a formal specification. Instantiating the formal
foundation is only the first step in implementing a mathematical proof assistant, and the bulk of
the work then goes into supporting the interactions that make them usable in practice. Such
systems have to parse user input, disambiguate notation, manage libraries of theorems and
definitions, and keep track of algebraic structures and relationships between them. They need
to provide convenient manners of expression and support efficient inference. The design of
a proof assistant requires countless engineering decisions that bear on the system’s usability,
and these decisions can, in turn, be viewed as attempts to capture the functionality of informal
mathematical language and inference. We might optimistically seek a better philosophical
understanding of this functionality, one that can help us make sense of the implementation goals.

Another approach to thinking about mathematical language is to view it as a part of natural
language, albeit a part of natural language with its own characteristic features. Ganesalingam
[2013] leans in this direction, which allows him to bring the methods of generative linguistics
to bear on the analysis of ordinary mathematical texts. Various systems of controlled natural
language offer a complementary approach, presenting structured languages with enough
flexibility to incorporate a range of natural language constructs, so that users can write texts that
read like natural language but can be translated to the language of an underlying formal system
[Paskevich, 2007, Cramer et al., 2009].

Here we will not try to account for the range of grammatical and stylistic variation that
one finds in natural language. We will rather seek idealizations that illuminate the features of
mathematical language that are specifically adapted to supporting mathematical activity. One
way of describing what we are after is to say that we are looking for a description of mathematics
as a semiformal language. We want a description that renders it regimented and precise, like a
formal language, designed to support certain types of abstraction and inference. At the same
time, we want a model that is more informative than formal logic, one that tells a story of how
mathematical language serves to support the processes that are needed to track mathematical
objects and the relationships between them. Our overarching goal will be to develop such a
design specification for mathematical language without descending to the level of a fully formal
implementation.

This chapter falls short of that goal, but it aims to make progress by cataloging some of the
features of mathematical language that are essential to its communicative and inferential aims.
It also describes some of the mechanisms that contemporary proof assistants use to model those
features and support those aims. The interaction between informal and formal mathematics gives
rise to a fruitful dialectic: the engineering efforts clarify the nature of mathematical language
and inference, and, conversely, philosophical understanding guides the implementation.
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2 Perspectives
2.1 Philosophical orientation
Philosophy of mathematics has traditionally been concerned with the nature of mathematical
objects, knowledge, and thought. Talking about these in a rigorous way requires some sort of
conception of mathematics itself, and some sort of understanding of the features of mathematical
practice that fall under the scope of the analysis. Toward forming such a conception, what we
have the most direct access to is the mathematical literature: the historical record of statements,
questions, arguments, definitions, and other textual artifacts that are constitutive of the subject.
These artifacts, rooted in language, form the starting point for philosophical study.

No matter how we ultimately try to characterize the goals and methods of mathematics,
we have to start with language. Whether we view mathematics as the practice of solving
problems, abstracting from experience, or getting at a certain type of truth, what we say about
that practice has to fit with what we see in the mathematical literature. We need to understand
how mathematical language enables us to carry out those activities and how those activities are
manifested in language.

One central thesis of this chapter is that, when we study mathematical language, it is
important to understand not just what is allowed, but also what is desired. Formal systems
specify rules that tell us when a formula is well formed and when an inference is justified, but it
doesn’t tell us which definitions are good definitions, or which among the myriad inferential
steps that can be taken at any given point are most worthy of our attention. Mathematics calls
upon its practitioners to carry out complex tasks and to do so creatively, efficiently, and reliably.
Reflection on mathematical practice should help explain how it helps us manage complexity and
carry out fruitful exploration.

Another central thesis of this chapter is that it is helpful to view mathematical language
as the object of design. Mathematical language and method have evolved over the centuries,
presumably for good reasons. Some features of mathematical language and method have
remained remarkably stable, again, we may presume, for good reasons. Mathematics provides
powerful means for abstraction and for managing information, making data salient when it is
needed and suppressing it when it is a distraction. Recognizing that mathematical language has
evolved to serve such purposes should encourage us to try to understand the general principles
by which it succeeds, and, conversely, understanding how it functions can help clarify the nature
of mathematics itself. Thinking of mathematical language in terms of design is not at odds with
viewing it as the outcome of an organic evolutionary process; some have even found it profitable
to think about natural language in design terms [Chomsky, 2005, Hockett, 1960b,a].

2.2 Methodological orientation
With respect to the goal of developing a semiformal description of mathematical language,
how can we tell whether we are on the right track? This chapter uses two sources of data as
touchstones.

The first is the mathematical literature itself. In the sections that follow, I will frequently
resort to examples pulled from a random sample of textbooks. There is nothing exceptional
about the examples I chose; the point is that they represent patterns that one can find in virtually
any mathematical text. A theory of mathematical language should help us make sense of the
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instances of mathematics that we find all around us.
The second source of data comes from contemporary proof assistants, and from the formal

methods that have been developed to support mathematical communication and inference in
that setting. Processing a mathematical text requires tokenizing, parsing, and elaboration, and a
variety of methods are used to infer information that is generally left implicit, including class
inference, canonical instances, and unification hints [Wenzel, 1997, Sozeau and Oury, 2008,
Asperti et al., 2009, Garillot et al., 2009]. Theories and libraries are organized using environments,
modules, and namespaces. Decision procedures support domain-specific reasoning, and indexing
techniques provide fast ways of locating relevant information for automated search [Robinson
and Voronkov, 2001]. Ongoing research is bringing the methods of machine learning to bear on
mathematical reasoning [Gauthier et al., 2021, Lee et al., 2020].

Describing this technology in detail would take us too far afield. (For overviews, see Hales
[2008], Avigad and Harrison [2014], Avigad [2018], Blanchette and Mahboubi [to appear].) The
technological developments are informative, however, because they make explicit the challenges
that need to be met in order to bridge the gap between informal mathematics and its formal
representation. Highlighting these challenges helps clarify the features of informal mathematical
language that are essential to mathematical practice. A second measure of success for the
analysis here, then, is the extent to which it helps use understand these features and meet the
technical challenges.

We will focus on contemporary mathematical language. It is also worthwhile to study the
way mathematical language has changed over time and to try to understand the reasons behind
those changes, but I will make no attempt to do that here. When I refer to historical sources in
this chapter, it is either to highlight features of mathematical language that have remained fairly
stable over time or to highlight features of mathematical language that are relatively new. In
both cases, the aim is to characterize mathematical language as it is used today.

3 Fundamentals
This section deals with features of mathematical language that are close to the basic grammar of
the subject. It considers the way that mathematical objects fall into categories that shape the
way we talk about them, the expressions that we use to name objects, and the ways that we talk
about the relationships between such objects.

3.1 Sorts
We start with the simple observation that mathematical objects fall into categories. Consider the
first proposition of Euclid’s Elements:

Proposition 1. On a given straight line to construct an equilateral triangle.
Let 𝐴𝐵 be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight line 𝐴𝐵.
With centre 𝐴 and distance 𝐴𝐵 let the circle 𝐵𝐶𝐷 be described;
again, with centre 𝐵 and distance 𝐵𝐴 let the circle 𝐴𝐶𝐸 be described;
and from the point 𝐶, in which the circles cut one another, to the points 𝐴, 𝐵 let the
straight lines 𝐶𝐴, 𝐶𝐵 be joined.
[Euclid, 2002, p. 3]
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The proof refers to a number of different kinds of objects: points 𝐴, 𝐵, and 𝐶, a finite straight
line 𝐴𝐵, a circle 𝐵𝐶𝐷, and the equilateral triangle that is under construction. Some objects
arise in the course of the proof: given the point 𝐴 and the finite straight line 𝐴𝐵 (now construed
as a distance), a circle is described, and given the points 𝐶 and 𝐴, the straight line 𝐶𝐴 is joined.
Objects bear relationships to one another: two circles can cut one another at a point 𝐶, and an
equilateral triangle can lie on a straight line.

It is informative to consider the way that objects are introduced into contemporary mathe-
matical discourse.

Let 𝑋 be a locally convex topological vector space and 𝐹 a closed convex subset.
[Royden, 1988, p. 241]

Let 𝑝 and 𝑞 be odd primes.
[Ireland and Rosen, 1990, p. 53]

Let 𝑘 be a field, and let 𝑘 [𝑥] = 𝑘 [𝑥1, . . . , 𝑥𝑛] be a finitely generated ring over 𝑘 . Let
𝜑 : 𝑘 → 𝐿 be an embedding of 𝑘 into an algebraically closed field 𝐿.
[Lang, 2002, p. 378]

Let 𝔐 be a maximal ideal of 𝑘 [𝑥]. Let 𝜎 be the canonical homomorphism
𝜎 : 𝑘 [𝑥] → 𝑘 [𝑥]/𝔐.
[Lang, 2002, p. 378]

Let 𝜏2 = 𝑛; let 𝑡1 be the smallest 𝑘 such that 𝑋𝑘 ≥ 𝛼, if there is one, and 𝑛 otherwise.
[Billingsley, 1995, p. 5]

The first three examples appear in the statements of theorems, whereas the next two are taken
from the beginnings of proofs. The point is simply that we would not expect to see a theorem or
proof begin with the words “let 𝑝 and 𝑞 be objects” or “let 𝑝 and 𝑞 be things.” Mathematical
variables always range over a sort.

It is not always clear what we should take the fundamental sort of an object to be and what
we should view as ancillary attributes. It seems sensible to say that an equilateral triangle is
fundamentally a triangle that happens to have the property of being equilateral, and it seems
sensible to say that a prime number is a number that is prime. But is a nonnegative integer an
integer that has the property of being nonnegative, or a number that has the property of being
nonnegative and integral? Is a finite straight line in the Elements a straight line that happens to
be finite? A maximal ideal of 𝑘 [𝑥] can be construed as an ideal of 𝑘 [𝑥] that has the property of
being maximal, or a subset of 𝑘 [𝑥] that has the property of being a maximal ideal, or simply a
set that has the property of being a maximal ideal of 𝑘 [𝑥]. In axiomatic set theory, everything is
a set, but that stance is not more informative than considering everything an object.

The fact that objects belong to sorts is not specific to mathematics. Aristotle distinguished
between an object’s essential and accidental properties. Socrates was both human and short,
and we can imagine what ancient Greece might have been like had Socrates been a few inches
taller, but when we try to imagine Socrates as anything other than a human being, it’s hard to
argue that we are still thinking about Socrates. The ascription of sorts to mathematical objects,
however, has specifically mathematical uses.

• It can be used to disambiguate notation. The expression 𝑥𝑦 might denote exponentiation,
but it might also denote conjugation in a group. The expression 𝑥 · 𝑦 can denote
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multiplication in any structure, so its meaning depends on the sort of objects that 𝑥 and 𝑦
are.

• It can be used to determine meaning. An element 𝑥 can be maximal only if it is viewed
as an element of a structure with an associated ordering. A function 𝑓 is surjective only
with respect to a specification of its codomain, continuous only with respect to a topology
on its domain and codomain, a homomorphism only with respect to algebraic structures
on those, and essentially bounded only with respect to a measure on the domain and an
ordering of the codomain.

• It can be used to justify an expression as meaningful; for example,
√
𝑥 makes sense if 𝑥 is

a nonnegative real number, and 1/𝑥 is meaningful if 𝑥 is a nonzero real.
• It can be used to support immediate inference. If 𝑓 : 𝐺 → 𝐻 and 𝑔 : 𝐻→ 𝐾 are group

homomorphisms, their composition is again a group homomorphism. If we view them
fundamentally as functions, then their composition is merely another function, and we
need an additional inference to conclude that they are again homomorphisms.

• It can be used to support higher-level inferences and heuristics. Knowing that we are
dealing with integers or real numbers or triangles or elements of a group cues us to a body
of methods and background knowledge that are relevant to the inferential tasks at hand.

We can designate the sorts of objects that occur in the passage from Euclid with tokens
like Point, Line, and Circle. In the theory of programming languages and in a number of
computational proof languages, it is common to view these as data types, or, more simply,
types. We can write 𝐴 : Point to express that a variable or expression 𝐴 is a point and write
𝐿,𝑀 : Line to express that 𝐿 and 𝑀 are lines.

In formal axiomatic foundations like simple type theory and dependent type theory, every
expression denotes an object of some type. Proof assistants based on those foundations therefore
have built-in mechanisms for type inference, which is the task of determining the type of a given
expression, and type checking, which is the task of checking whether the type of an expression
matches an expected type. The latter can be used to report errors when users apply operations to
the wrong sorts of arguments, or when the system cannot infer the information it needs to make
sense of an expression. Even systems based on set theory sometimes incorporate notions of
type. Soft typing refers to the use of a typing discipline separate from the axiomatic foundation
to infer meaning and to report errors.

3.2 Operations
Mathematical operations provide constructions or descriptions of objects. Two points 𝐴 and 𝐵
determine a line segment 𝐴𝐵 and, in the excerpt from the Elements, 𝐴𝐶𝐸 is specified as the
circle with center 𝐵 and radius equal to the distance 𝐴𝐵. The first operation may be modeled with
a constant segment-of : Point → Point → Segment, where the type indicates that segment-of
can be applied to two points to yield a segment. The convention in proof assistants is to take
the arrows to associate to the right, so that the type above is read Point → (Point → Segment).
This means that when segment-of is applied to a point 𝐴, the result, segment-of 𝐴, has
type Point → Segment. When this is applied to another point 𝐵, the resulting expression,
segment-of 𝐴 𝐵, has type Segment. The constant segment-of in segment-of 𝐴 is said to be
partially applied, and considering such expressions is natural in some mathematical contexts
but not others.

The second operation may be modeled by a constant circle-of : Point → Segment → Circle,
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or perhaps circle-of : Point → Point → Circle if it turns out that the distance in question is
always measured from the center. Arithmetic offers other prototypical examples of mathematical
operations: we can refer to the sum of two numbers, 𝑥 + 𝑦, the square 𝑥2 of 𝑥, or the greatest
common divisor gcd 𝑥 𝑦 of 𝑥 and 𝑦.

In most formal foundations, a function 𝑓 has an intended domain 𝐴 and an intended
codomain 𝐵, which is what is expressed by writing 𝑓 : 𝐴→ 𝐵. In ordinary mathematics, it is
well understood is that the interpretation of the codomain is fluid: the specification 𝑓 (𝑥) = 𝑥2 can
be viewed equally well as defining a function 𝑓 : R→ R and as defining a function 𝑓 : R→ R≥0,
where R≥0 denotes the nonnegative real numbers. More confusingly, the interpretation of the
domain is also fluid: in a mathematical context, 𝑓 (𝑥) = 𝑥2 may be viewed as a function defined
on the complex numbers, real numbers, rationals, integers, or natural numbers, or any other
domain with a multiplication. These considerations bear on whether we take the squaring
function to be injective, surjective, both, or neither. In mathematical contexts there is generally
a broadest construal of the domain that makes sense, and circumstances dictate when we need to
pass to a restricted interpretation.

The fact that the dot in 𝑥 · 𝑦 can denote multiplication in any of a number of structures and
that an expression intersection 𝑋 𝑌 may denote the intersection of two lines, two circles, or a
line and a circle shows that mathematical notation and terminology are overloaded. In these
cases, information about the sorts of the arguments can be used to disambiguate meaning. In
some cases, it is natural to view information like the structure in which multiplication occurs
as an implicit argument to the notation. Proof assistants invariably have mechanisms to infer
such information. A semiformal specification of mathematical language should say something
general about how ambiguities are resolved and how and when implicit information is inferred.

3.3 Predicates and relations
If we use center-of to denote the relation of being the center of a circle, computer scientists are
apt to write center-of 𝐴 𝛾 to express that 𝐴 is the center of 𝛾. In a proof assistant we might write

center-of : Point → Circle → Prop

to specify the type of the the relation. We continue to interpret the arrows as associating to the
right, so that center-of 𝐴 𝛾 denotes a proposition, namely, the proposition that 𝐴 is the center of
𝛾. Modeled in this way, relations can take any number of arguments. A relation that takes only
one argument is usually called a predicate or property. For example, equilateral 𝑇 expresses
that a triangle 𝑇 is equilateral and even 𝑛 expresses that an integer 𝑛 is even.

Notation and terminology for relations, like notation and terminology for operations, can
also be overloaded. We can use a symbol on : Point → Line → Prop to express that a point 𝐴
lies on a line 𝐿, and a symbol on : Point → Circle → Prop to express that a point 𝐴 lies on a
circle 𝛾. Similarly, 𝑥 ≤ 𝑦 can be used denote an order comparison in any structure that has such
an order. And we have already seen that predicates can rely on implicit information. A predicate
maximal 𝑥 depends on the order structure with respect to which 𝑥 is judged to be maximal, and
continuous 𝑓 depends on the topologies with respect to which 𝑓 is judged to be continuous.
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3.4 Definedness and partiality
Another complication that arises in the formalization of mathematics is that mathematical
language often uses operations that can only meaningfully be applied to some of the objects in
the natural domain of interpretation. Euclid can only speak of the intersection of two circles
when the two circles intersect, and the phrase “the greatest common divisor of 𝑥 and 𝑦” only
makes sense when 𝑥 and 𝑦 have a greatest common divisor, which is not the case when 𝑥 and 𝑦
are zero.

Set theory allows us to view each of these as a partial function, whose value may or may
not be defined at a given input. Formally, a partial function from 𝐴 to a 𝐵 is a function from
some subset of 𝐴 to 𝐵. Proof assistants sometimes provide mechanisms for defining subtypes or
adding preconditions, namely, proof obligations that must be fulfilled every time such a function
is applied. For example, one can insist that every inscription 𝑎/𝑏 is accompanied by a proof that
𝑏 is nonzero.

In ordinary mathematics, however, the implicit preconditions can be subtle. Consider a
statement of the prime number theorem:

Let 𝜋(𝑥) be the number of primes between 1 and 𝑥. . .

lim
𝑥→∞

𝜋(𝑥)
𝑥/ln(𝑥) = 1.

[Ireland and Rosen, 1990, p. 2]
The expression in the limit is undefined when 𝑥 is negative, equal to 0, or equal to 1. None of
this matters because to determine the limit we can restrict attention to arbitrarily large values of
𝑥, but in a formal foundation, the range of relevant values and the interpretation of the expression
at those values have to be made explicit. Similarly, consider the statement of Bézout’s theorem
in an introductory number theory textbook:

. . . Thus the greatest common divisor (𝑏, 𝑐) is defined for every pair of integers 𝑏, 𝑐
except for 𝑏 = 0, 𝑐 = 0, and we note that (𝑏, 𝑐) ≥ 1.

Theorem 1.3. If 𝑔 is the greatest common divisor of 𝑏 and 𝑐, then there exist
integers 𝑥0 and 𝑦0 such that 𝑔 = (𝑏, 𝑐) = 𝑏𝑥0 + 𝑐𝑦0.
[Niven and Zuckerman, 1980, p. 7]

Here the phrase “the greatest common divisor” is rendered meaningful by an implicit assumption
that 𝑏 and 𝑐 are not both zero.

One always has the option of modeling a partial operation as an operation on a smaller
sort. For example, one can take the variable 𝑥 in the statement of the prime number theorem as
ranging over positive real numbers. This often leads to problems; we should be able to supply a
positive real number in any context where a real number is expected. (See the discussion of
identification in Section 4 below.) But in other contexts it is more natural. The product 𝑀 ·𝑁 of
two matrices makes sense only if the number of columns of 𝑀 is equal to the number of rows
of 𝑁; in other words, if 𝑀 is an 𝑚 × 𝑘 matrix and 𝑁 is a 𝑘 × 𝑛 matrix for some 𝑚, 𝑘 , and 𝑛.
One can interpret multiplication as a partial operation on matrices, but formalization is often
smoother if we interpret it as a family of total operations indexed by 𝑚, 𝑘 , and 𝑛, and take these
values to be implicit in the expression. This requires that a variable like 𝑀 can range over a
sort Matrix 𝑚 𝑘 of 𝑚× 𝑘 matrices, or even Matrix 𝑅 𝑚 𝑘 , where 𝑅 specifies a ring of underlying
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elements. Such a sort is said to be a dependent type. The fact that Matrix 𝑅 𝑛 𝑛 can be viewed as
a ring for every 𝑛 > 0 provides additional support for viewing Matrix 𝑅 𝑚 𝑘 as an independent
sort of objects rather than a predicate on a larger one.

4 Abstract objects
Mathematics is the art of rigorous abstraction. Mathematization amounts to identifying the
features that are essential to the inferential and calculational steps that are needed in specific
reasoning contexts and making them explicit. This results in modularization and encapsulation:
the objects and assumptions that an argument depends are presented as part of the interface, and
the argument can then be applied to any data that instantiates the relevant hypotheses.

Abstracting and modularizing in this way serves two purposes [Avigad, 2020]. The first is
to manage complexity. If an argument about a geometric object only depends on the fact that it
is a triangle, presenting it as such means we can temporarily ignore other information we have
about it, such as its particular dimensions or its relationship to other objects in a diagram. If an
argument about the roots of an equation only depends on the fact that the set of permutations of
those roots is a group, presenting the argument in group-theoretic terms allows us to set aside
everything else we know about equations and roots. If an argument about a complicated space
of functions depends only on the fact that it is a convex Banach space, presenting it as such
allows us to suppress specific details of the space that are irrelevant to the argument.

The second purpose is, of course, generality. A theorem about triangles holds of all triangles,
not just the one in a particular diagrammatic configuration. A group-theoretic result holds of all
groups, of which there are many, and a theorem about convex Banach spaces holds of every
convex Banach space. An abstract argument can be applied not only in settings we are currently
interested in, but also in settings we cannot yet even imagine.

In Sections 6 and 7, we will consider the way that set-theoretic language and the use of
algebraic structures, respectively, support these goals. But first it is helpful to think about
the way we talk about abstract objects in general, and the role that abstract objects play in
mathematical thought.

4.1 Numbers
For centuries, mathematics was understood to be the general science of quantity, with continuous
quantities, or magnitudes, as the subject matter of geometry, and discrete quantities, or number,
as the subject matter of arithmetic. The first mention of magnitudes occurs in Book V of
Euclid’s Elements, which introduces the theory of ratios:

A magnitude is part of a magnitude, the less of the greater, when it measures the
greater.
The greater is a multiple of the less when it is measured by the less.
[Euclid, 2002]

In the Elements, two magnitudes may be equal or one may be less than another. A magnitude 𝑎
is a part of a magnitude 𝑏 if 𝑏 can be measured as some whole number multiple of 𝑎. Book VII
extends the terminology to number:

An unit is that by virtue of which each of the things that exist is called one.
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A number is a multitude composed of units.
A number is a part of a number, the less of the greater, when it measures the greater.
[Euclid, 2002]

Today, we are apt to interpret Euclid’s magnitudes as nonnegative real numbers and his numbers
as natural numbers. But Euclid’s presentation and the early history of mathematics bring some
interesting differences to light. One curious feature of the Elements is that the smallest number
is 2; one sheep does not make a multitude. This fact is manifest in the first two propositions of
Book VII, which describe the Euclidean algorithm for calculating the greatest common divisor
of two numbers. The first proposition deals with the case where the result is a unit, whereas the
second deals with the case where the two numbers have a common measure.

A more significant difference is that, in Euclid, a magnitude is always a magnitude of some
type. It makes sense to add and compare lengths, areas, and angles, but not to add a length to an
area or compare a length to an area. Even towards the end of the sixteenth century, we find
François Viète, in the New Algebra, insisting that only homogenous quantities can be compared
or added. So if 𝑥 is a length, instead of 𝑥3 + 𝑥, we must consider 𝑥3 + 𝑎𝑥 for some area 𝑎.
Descartes’ landmark Geometry of 1637 resolved the problem of comparing lengths and areas by
providing a geometric construction that reduces products to lengths, modulo a choice of a unit.

Although today we consider numbers to be relatively concrete mathematical objects, we
should keep in mind that they nonetheless represent a substantial abstraction. Mathematics
allows us to add the average temperature in Pittsburgh on April 19, 2020 to the number of
moons of Jupiter, and then multiply the result by the length of the Nile river, whether or not
the resulting number is useful or interesting. The fact that we consider such a quantity to be
a legitimate mathematical object says something significant about the nature of mathematical
abstraction.

4.2 Dedekind abstraction
A parable by Paul Benacerraf imagines two children who, thanks to a solid logical upbringing,
each possess a set-theoretic definition of the natural numbers [Benacerraf, 1965]. The definitions
serve each of the children well until they come to realize that although the definitions denote
isomorphic set-theoretic structures, they are not identical. Since every object of set theory
is, fundamentally, a set, mathematical objects have ancillary properties qua sets. So we can
imagine that according to one definition, 2 is an element of 3, and according to the other, it is
not. Since the structures are isomorphic, the two students are in a position to come to agreement
regarding all substantive claims about the set of natural numbers. But the identification of
abstract numbers with concrete set representations forces us to the unsettling conclusion that, if
the natural numbers really are sets, then either 2 is an element of 3 or it isn’t, and any definition
we give has to adjudicate the matter.

The title of Benacerraf’s paper, “What numbers could not be,” is a nod to an essay by
Richard Dedekind from 1888, titled “Was sind und was sollen die Zahlen?” (roughly, “What
are numbers and what should they be?”). That essay, and Dedekind’s 1871 construction of the
real numbers, foreshadow the problem. Dedekind explicitly addressed the issue in a letter to
Heinrich Weber in 1888, in which he resists identification of the real numbers with his particular
construction as a system of cuts:

. . . I would advise that by [real] number. . . one understand not the class itself. . . but
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something new (corresponding to this class) which the mind creates. We are a divine
race and undoubtedly possess creative power, not merely in material things (railways,
telegraphs) but especially in things of the mind. This is precisely the same question
that you raise at the end of your letter in connection with my theory of irrationals,
where you say that the irrational number is nothing other than the cut itself, while
I prefer to create something new (different from the cut) that corresponds to the
cut and of which I say that it brings forth, creates the cut. . . . The rational numbers
also produce cuts, but I would certainly not call the rational number identical with
the cut it produces; and after the introduction of the irrational numbers one will
often speak of cut-phenomena with such expressions, and ascribe to them such
attributes, as would sound in the highest degree peculiar were they to be applied to
the numbers themselves. Something quite similar holds for the definition of cardinal
number . . . as a class; one will say many things about the class (e.g. that it is a
system of infinitely many elements, namely, of all similar systems) that one would
apply to the number only with the greatest reluctance; does anybody think, or won’t
he gladly forget, that the number four is a system of infinitely many elements?
[Dedekind, 1888]

These circumstances have led a number of philosophers to adopt a structural view of
mathematics [Resnik, 1997, Shapiro, 1997, Reck, 2003, Parsons, 2004], which holds that when
we say something about the number two, we are never talking about a unique object, but, rather,
an element of an axiomatically characterized natural-number structure. Some go so far as to
give the notion of a place in a structure a metaphysical standing of its own. The more sober
mathematical practice, inaugurated by Dedekind, is to characterize mathematical structures
uniquely up to isomorphism, provide a specific mathematical construction that shows that such
a structure exists, and then refer to the structure only in terms of its axiomatic characterization,
so that anything one says about the structure holds equally well of any isomorphic copy.

Perhaps there is no harm in identifying mathematical objects like numbers with particular set-
theoretic objects if one then subsequently restricts oneself to the proper mathematical statements
about them, but we should recognize that mathematical language obeys this restriction. Proof
assistants implement various mechanisms to support this. In a number of proof assistants,
once one has a construction of the real numbers as Dedekind cuts (or equivalence classes of
sequences, or whatever), one can introduce a new type, R, with an abstraction function abs from
the type of representatives to R, and a representation function repr in the other direction. These
are assumed to satisfy abs (repr 𝑦) = 𝑦. The type R provides the “new things” suggested by
Dedekind. The function abs 𝑥 maps every representation to the abstract thing it represents, and
the axiom says that every real number has a representation, not necessarily unique.

Inductive types in a proof assistant allow one to declare the natural numbers axiomatically
as a type that is freely generated by zero and a successor function. Such declarations are
underwritten by a set-theoretic interpretation, but the form of the declaration in the system
helpfully abstracts away the specifics. Alternatively, some systems, like Agda and Coq, offer
systems of modules, which allow users to declare constants and properties axiomatically, reason
about them, and instantiate them later on.
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4.3 Equality
We will see in the next two subsections that mathematics allows us to substitute one expression
for another in contexts that respect the sense in which we can treat them as the same thing. The
equality relation in mathematics is generally reserved for substitutions that are allowed in all
mathematical contexts. Saying 𝑎 = 𝑏 means that we should be able to substitute 𝑎 for 𝑏 in any
meaningful mathematical statement salva veritate, that is, preserving the truth of that statement.
Frege’s “On sense and reference” [Frege, 1892] famously provides examples of linguistic
contexts, like ascriptions of knowledge or belief, where identity and substitutability come apart.
One of the hallmarks of mathematical language is that it is devoid of such modalities.

If we assume that any meaningful mathematical statement about an object 𝑥 describes a
property of 𝑥, the requirement above follows from the principle that if two arguments are equal,
they have all the same properties. Conversely, if two objects have all the same properties in
common, then they must be equal: being equal to 𝑥 is a property of 𝑥, so if 𝑦 has all the same
properties that 𝑥 does, it is equal to 𝑥 as well. This characterization of equality is known as the
Leibniz principle or the principle of identity of indiscernibles.

Leibniz’ principle says something about equality in general but nothing about what it means
for two objects to be equal in particular. It is perfectly reasonable to ask when two natural
numbers are equal to each other; the inductive characterization of the natural numbers provides
an answer to that, namely, that they are equal if they are both zero or have equal predecessors.
Similarly, if we define the real numbers as equivalence classes of Cauchy sequences, asserting
the equality of two real numbers is tantamount to saying that the Cauchy sequences representing
them are equivalent. Questions of equality involve representations of objects, and settling such
questions can require substantial mathematical knowledge.

We have seen that foundational approaches often overspecify mathematical objects. In set
theory, we can ask whether 1+1 is equal to the set {∅, {∅}}, a mathematical variant of Frege’s
Julius Ceasar problem. Dedekind abstraction helps; in most implementations of type theory, a
proposition 𝑠 = 𝑡 is grammatically acceptable only when 𝑠 and 𝑡 are objects of the same type.

One thing that plagues proof assistants is that, in addition to substantial judgments of equality,
there are also implicit equality judgments that are so fundamental that they have a silent bearing
on the very grammar of the language. For example, if 𝑥 and 𝑦 are column vectors of length 3,
then concatenating them results in a vector of length 6. In a mathematical text, one might use

𝑀 ·
[
𝑥

𝑦

]
to denote the product of an 𝑛×6 array with that vector. Strictly speaking, the concatenation of 𝑥
and 𝑦 yields a vector of length 3+3, and a tiny bit of mental arithmetic is needed to see that
the expression is well-formed. Accepting this fact opens the door to allowing any background
mathematical knowledge to bear on such determinations, and it isn’t clear where to draw the line.
Systems of type theory that allow ordinary mathematical expressions to occur in an expressions
datatype (like R3+3 and R6) distinguish between definitional equality, which are the kind that
the system needs to recognize in order to judge whether an expression is well formed, and
propositional equality, which is the more substantive kind. Informal mathematics does not
make the distinction, and we need to better understand how to model the identifications that
mathematicians are not even conscious of performing.
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4.4 Identifying objects
If there is any such thing as a concrete mathematical object, the number two should fit the bill.
But we have seen that even the number two is a rather abstract thing, and its nature is slippery.
There are a 2 in the integers and a 2 in the rationals, and also 2s in the real numbers and complex
numbers. Set theory tells us that we have Z ⊆ R ⊆ C, so we can view these all as the same 2.
But such a view is hard to maintain as the 2s proliferate. There are also 2s in the quaternions
and octonians, and there is a 2 in the ring of 𝑝-adic integers for every prime number 𝑝. In fact,
there is a 2 in every ring. In Z/2Z, we have 2 = 0, so that particular 2 probably isn’t the same
as the integer 2. Even if we restrict attention to rings of characteristic zero, which contain an
isomorphic copy of Z, it is hard to maintain that all the 2s are the same. The 2 in the ring 𝑀2 (R)
of 2×2 matrices over R is (

2 0
0 2

)
,

and it is hard to see how that can be equal to the integer 2.
The general mathematical stance is that what we are really doing is identifying all the

isomorphic copies of the integers, allowing us to transfer properties between them. In particular,
identifying the integers with a subset of the real numbers means that we can consider an object
𝑛 to be an integer and a real number at the same time. So, in an expression like 3𝑥2 +2𝑥 +7
we can view the coefficients as integers, we can view 𝑥 as a real number, and we can view the
multiplication as the usual multiplication operation on the real numbers. But each number
domain has its own special character. We can prove a general expression involving a natural
number 𝑛 by induction on 𝑛 only if we view 𝑛 as a natural number and not a real number, and
we can use the implication from 𝑛 < 𝑚 +1 to 𝑛 ≤ 𝑚 when we know 𝑚 and 𝑛 are integers. When
we write the binomial theorem,

(𝑥 + 𝑦)𝑛 =
∑︁
𝑖≤𝑛

(
𝑛

𝑖

)
𝑥𝑖𝑦𝑛−𝑖 ,

we understand that 𝑖 ranges over natural numbers, or, equivalently, nonnegative integers, 𝑥 and 𝑦
are elements of any commutative ring, and the apparent multiplication by

(𝑛
𝑖

)
is interpreted as

an action of integers on ring elements. In fact, in the identity(
𝑛

𝑖

)
=

𝑛!
𝑖!(𝑛− 𝑖)!

we recognize that the division symbol is justified a priori because any integer can be viewed as a
rational number, though at the same time we are aware of the fact that in this case the operation
keeps us within the integers.

The fluidity with which we pass between views of mathematical objects poses challenges for
formalization. We will consider some of the practical mechanisms used to cope with this in
Subsection 4.6.

4.5 Identifying structures
We also identify structures. Any mathematician will tell you that the set {0,1} with addition
modulo two is the two-element group, and that the set {1,−1} with multiplication is also
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the two-element group. The reflexivity of equality tells us that the identity element of the
two-element group is equal to the identity element of the two-element group. By substitution,
we can conclude that 0 is equal to 1.

As a mathematical joke, this isn’t a very good one. There is nothing mysterious going on
here: mathematicians are well aware of the fact that we can treat distinct objects as being the
same only insofar as we limit ourselves to operations and properties that respect the senses in
which they are the same and avoid talking about the differences. The two structures in the last
paragraph are the same only insofar as we talk about them as groups. If we allow ourselves to
talk about the elements of the carrier set, they are patently different.

In logical terms, it is permissible to identify isomorphic structures in the sense that any
statement that can be expressed in the language of the structure’s signature cannot distinguish
between them. But then it is important to recognize that the relevant signature depends on the
reasoning context at hand. Keränen [2001] challenged the philosophical view that mathematical
objects are merely places in structures with the observation that some structures have nontrivial
automorphisms. If the complex number 𝑖 is just a place in a structure, which one is it? Anything
that can be said about 𝑖 can be said equally well about −𝑖, so there is nothing to distinguish the
two.

Keränen used this observation to reject a metaphysical stance, realist structuralism, which
holds that references to elements of a mathematical structure should be interpreted at face value,
in terms of an ontology of places in abstract structures. He takes the problem to rule this out
in favor of a more mathematically familiar stance, nominalist structuralism, on which terms
refer to elements in any system of elements that satisfies the relevant structural axioms. But the
question remains as to how to an expression like 𝑖 can refer in any particular structure in which
its denotation is ambiguous, and Keränen does not address that problem.

Mathematical practice itself suggests a straightforward solution: when we talk about the
complex numbers, we know full well that there are two square roots of −1, and that 𝑖 can be
designated to be either one. So the best way to construe talk about the complex numbers while
viewing it as an algebraically characterized structure is to view it as a structure with a fixed
choice of 𝑖. With that choice, the structure is rigid, and the problem is solved. But this calls for
a more robust account of how and when such choices should be viewed as having been fixed,
implicitly, by the mathematical context, and what ensures that the various implicit choices are
coherent with one another. We will see a variation on this problem in Subsection 7.2.

4.6 Managing abstraction
The conclusion of the previous subsection is that it is safe to identify structures as long as suitable
linguistic hygiene is maintained. But mathematicians don’t go around declaring languages
and signatures; in any given context, they simply know what is allowed. When we formalize
mathematics with a proof assistant, we have to operationalize that. It’s not enough to make
vague gestures at reasoning contexts; the rules need to be spelled out in enough detail that a
proof assistant can supply the relevant axiomatic justification. We also need to make sure the
different contexts interact, so that we can establish mathematical claims once and for all and
then apply them wherever it is appropriate to do so.

In this subsection, I will describe four general strategies that are used in formal libraries to
support the application of abstract theorems in the various contexts in which they can be applied.
The four strategies are as follows:
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1. Generalize.
2. Use equality.
3. Use algebra.
4. Use coercions.
The first strategy can also be phrased in negative terms, in which case it sounds like cynical

advice to a young politician: avoid saying anything specific. For instance, proof assistants
usually establish 𝑥 + 𝑦 = 𝑦 + 𝑥 as a general property of a suitable class of algebraic structures.
That means that when we need to use the fact that 2+3 is equal to 3+2, we don’t have to worry
about whether this is a fact about integers or real numbers, or even whether they are the same
fact or not. Nor do we have to worry about transferring the result from one domain to another.
We just need to know that the relevant algebraic hypotheses are satisfied.

For that reason, mathematical libraries tend to favor theorems about commutative rings and
ordered fields over theorems about specific number structures. Other opportunities for generality
often crop up in unexpected ways. Theorems of multivariate analysis hold of the structure R𝑛
of 𝑛-tuples of natural numbers, which we can view as maps from the set {0,1,2, . . . , 𝑛−1} to
R. But this can lead to the annoying need to reindex when we try to view R𝑛 as a subspace of
R𝑚+𝑛. In fact, most theorems one might want to prove about R𝑛 remain true if we interpret 𝑛
as an arbitrary finite set, and we can interpret the + in R𝑚+𝑛 as disjoint union. This avoids the
need to treat any particular 𝑛-element set as canonical. If we incorporate this design decision
into a formal library, we don’t need to identify one 𝑛-element set with another because our
theorems hold for all of them. In a similar way, Buzzard et al. [2022] found it advantageous
to reason about arbitrary localizations of a ring 𝑅 at a submonoid 𝑆 rather than any particular
representation.

Nonetheless, there are invariably times when we want to consider a mathematical structure
as both an entity in its own right and a substructure of a larger one. It is often convenient to
have the integers be a subset of the reals. For a more striking example, consider the number
field obtained by adjoining both

√
2 and

√
3 to the rationals. We can describe this structure as

Q[
√

2] [
√

3], Q[
√

3] [
√

2], or Q[
√

2,
√

3]. These describe distinct mathematical constructions,
any of which may come up in practice, leaving us struggling to identify them when the contexts
clash. But viewed as subsets of the real numbers, they are the same subset, and any element of
one is an element of the other.

A variation on this second strategy played a fundamental role in the celebrated formalization
of the Feit–Thompson theorem [Gonthier et al., 2013]. The formalization of group theory used
for that project might more accurately be called a formalization of subgroup theory because
theorems in the underlying library where phrased as theorems about subgroups of a larger
ambient group. Every group is a subgroup of itself, so, mathematically, there is no difference.
But an element of a group can generally be viewed as an element of multiple subgroups of
interest, and centering the library on the concept of a subgroup avoids the need to mediate
between the different views.

The third strategy in the list is really a special case of the first: sometimes the right way to
generalize a theorem involves adopting a proper algebraic perspective. Mathematicians are well
aware of the fact that any abelian group 𝐴 can be viewed, equivalently, as a Z-module, which
means that it comes equipped with an action 𝑛 · 𝑥 of Z on 𝐴. On the additive part of any ring
𝑅, this action coincides with multiplication by image of 𝑛 in 𝑅. Reasoning in terms of scalar
multiplication means that we don’t have to worry about this identification; often the properties
of the action are all we need. Similarly, instead of reasoning about a subring 𝑅 of a ring 𝑆,

15



it is more convenient to view 𝑆 as an 𝑅-algebra. This is equivalent to saying that there is a
homomorphism from 𝑅 to 𝑆, namely, the one that maps each element 𝑟 in 𝑅 to 𝑟 ·1. Any subring
is a homomorphic image of the identity map, so, once again, there is no substantial mathematical
difference. But building a library around images of morphisms rather than substructures avoids
the need to identify one structure with another; the identification is built into the theorems. (See
Baanen et al. [2021] for a nice instance of this.)

In fact, reasoning about structures and mappings between them from a structural algebraic
perspective often makes it unnecessary to reason about elements at all. Every subspace of
a vector space is the image of a linear map, and it is often natural to build a library around
properties of morphisms and maps. There is no need to worry about identifying elements if the
theorems are about the identifications themselves.

Finally, there are times when it is impossible to avoid identifying two distinct structures
and transferring results between them. Sometimes we really need to identify the real numbers
with the one-dimensional vector space over the reals, and sometimes we really need to identify
the elements of an algebraic number field with their representations in the complex numbers.
In that case, proof assistants often use casts or coercions from one structure to another. There
are various mechanisms that can be used to infer the need for such coercions and insert them
automatically, as is done in most programming languages. There are also mechanisms that
can be used to translate statements across an embedding or isomorphism [Barthe et al., 2003,
Huffman and Kuncar, 2013, Lewis and Madelaine, 2020]. Coercions are generally not required
to be injective; so in a sense elements of the source are identified with one another as well as
with their images. (See also the discussion of quotients in Subsection 6.3.) Homotopy type
theory offers another solution, based on an axiom known as univalence [Univalent Foundations
Program, 2013].

It may seem disappointing that I have offered a grab-bag of ad-hoc approaches to managing
identification, especially when mathematicians seem to do it so effortlessly. Surely, one might
think, there must be a simpler explanation as to how mathematicians manage to transfer results
from domain to domain without violating foundational norms. But it is a mistake to look for
an easy explanation. Mathematics requires extensive training, and learning to do mathematics
requires learning how to manage abstraction appropriately. The strategies I have described
are all natural, though partial, explanations of what is going on under the hood. The fact that
mathematicians have internalized the allowable moves does not mean that we cannot make them
explicit. In that respect, formalization can help us understand the inner workings of the practice.

5 Mathematical theories
So far, we have focused on some of the basic components of mathematical statements. These, in
turn, are used to formulate definitions, state theorems, and prove them. Collections of definitions
and theorems are then structured into mathematical theories. This section considers some of the
syntactic mechanisms that the subject use to structure knowledge in this way.

5.1 Definitions
Mathematical definitions are often set apart typographically, but they are also often introduced
on the fly, in the flow of a mathematical text.
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Definition 2. 𝑅 is said to be a principal ideal domain (PID) if every ideal of 𝑅 is
principal.
[Ireland and Rosen, 1990, p. 9]

Definition. Given a point 𝑥 of a set 𝑋 and an open set𝑈 of the space 𝑌 , let

𝑆(𝑥,𝑈) = { 𝑓 | 𝑓 ∈ 𝑌𝑋 and 𝑓 (𝑥) ∈𝑈}.

The sets 𝑆(𝑥,𝑈) are a subbasis for a topology on 𝑌𝑋, which is called the topology
of pointwise convergence (or the point open topology).
[Munkres, 2000, p. 281]

By a measure algebra, we mean a Boolean 𝜎-algebra A together with a nonnegative
real-valued function ` defined on A such that `(𝐴) = 0 if and only if 𝐴 = 0 and

`

( ∞∨
𝑖=1

𝐴𝑖

)
=

∞∑︁
𝑖=1

`𝐴𝑖

if 𝐴𝑖 ∧ 𝐴 𝑗 = 0 for 𝑖 ≠ 𝑗 .
[Royden, 1988, p. 398]

In either case, the text serves to associate the body of the definition, the definiens, to the
definiendum, which is the word or phrase being defined. In the first and third examples, the body
of the definition associates a predicate on the type of objects it describes, in the first case, a ring
𝑅, and in the second, a pair (`,A) of the kind indicated. In other cases, a definition describes a
new object or structure.

Making sense of a definition by description requires recognizing that there is exactly one
object meeting the description. When a function is defined in a programming language, the
definitional apparatus itself guarantees the existence of a function, or at least a partial function,
meeting the specification. Modern mathematics, however, allows for more liberal descriptions,
and it is often not obvious that the object described has been well defined. Indeed, it is a
common procedure to justify such a definition explicitly by first proving existence and uniqueness.
(And sometime uniqueness means uniqueness up to isomorphism, along the lines described in
Subsection 4.5.)

Sometimes a definition is a construction—we speak of the construction of Haar measure or
the Radon–Nikodym derivative or a direct limit. The definition of a function sometimes comes
with an implicit algorithm (see Subsection 8.2), but mathematics tends to favor definitions that
characterize the concept’s role in a theory over the means of computation. In other words,
definition of the greatest common divisor of two integers or the Legendre symbol may or may
not be accompanied by an algorithm to calculate it.

5.2 Theorems
Theorems are the building blocks of theories. They are noteworthy accomplishments in their
own right and stepping stones to even greater ones. The word “proposition” is generally reserved
for smaller theorems, facts that are generally unsurprising but which form the basis for more
substantial results. A “lemma” is a fact established expressly to support the proof of a theorem,
and the label “corollary” is used to denote a straightforward consequence.
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Setting out the inferential structure of a mathematical theory requires having ways of
referring to theorems that have previously been established. In a journal article or textbook,
theorems generally have unique identifiers like “Theorem 5.3” or “Proposition 4.2.3,” and
these can be used across publications, as in “Theorem 4.3 of [5].” Some fundamental results
have names, like the prime number theorem, the ergodic theorem, the dominated convergence
theorem, and the fundamental theorem of algebra. Some names celebrate their authors, like
Birkhoff’s theorem, Picard’s theorem, Szemerédi’s theorem, Whitehead’s theorem, Minkowski’s
inequality, and the Hilbert basis theorem. Some, like the Yoneda lemma, König’s lemma, and
Zorn’s lemma show that apparently minor results can take on added significance after the fact.

Sometimes a theorem is referred to descriptively, like the compactness of 𝑆𝑛, the uniqueness
of Haar measure, the existence of an orthogonal complement, the monotonicity of the exponential
function, and the fact that a positive semidefinite matrix has real eigenvalues. Using such a
description suggests that supporting references are not hard to come by, and that the results are
assumed to be part of a common background knowledge.

5.3 Proofs
In mathematical texts, proofs are often introduced with the label “Proof ” and closed with a
box at the end, a notational device introduced by Paul Halmos. The flow of information is
generally linear. The primary justification for a claim typically comes from the statement or two
preceding it, though additional background knowledge is often needed, and occasionally facts
established earlier in a proof. Statements of fact are generally favored over the reasons that they
hold, though a number of devices are used to indicate the latter.

Hence the closure of 𝑆 in 𝐸 is �̄� ∩ 𝑆.
[Royden, 1988, p. 151]

By our previous results the first case obtains when 𝑝 ≡ 1 mod 4 and 𝑝 ≡ ±1 mod 12.
[Ireland and Rosen, 1990, p. 54]

Because 𝐻 is connected, the fiber 𝐹 over 𝛾(0) = 𝛾(1) is connected.
[Duistermaat and Kolk, 2000, p. 175]

Now we can see that all the maps 𝑓∗ and 𝑓∗ in the commutative diagram of transfer
sequences are isomorphisms by induction on dimension, using the evident fact that
if three maps in a commutative square are isomorphisms, so is the fourth.
[Hatcher, 2002, p. 175]

From 𝑃[𝑌 ∈ 𝐷 𝑓 ] = `(𝐷 𝑓 ) = 0 it follows that 𝑓 (𝑌𝑛) → 𝑓 (𝑌 ) with probability 1,
and so by change of variable (see (21.1)) and the bounded convergence theorem,∫
𝑓 𝑑`𝑛 = 𝐸 [ 𝑓 (𝑌𝑛)] → 𝐸 [ 𝑓 (𝑌 )] →

∫
𝑓 𝑑`.

[Billingsley, 1995, p. 335]

Using Hilbert’s theorem 90 again, together with the fact that |𝜎𝛼 | = |𝛼 | for all
𝛼 ∈ 𝐾∗, we see that 𝐻 = 𝐾∗1−𝜎 .
[Lang, 1994, p. 189]
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Sometimes the justification for a claim is an explicitly named theorem, like the bounded
convergence theorem or Hilbert’s theorem 90. Sometimes it is a named property, like the
commutativity of addition or the compactness of a space. Sometimes it involves repeating a fact
previously established. Sometimes it requires a few words of explanation, and sometimes it
involves reminding the reader of something they already know.

The biggest difference between informal proofs and the proofs that are parsed by proof
assistants is the amount of justificatory information that is left implicit in the informal ones.
Every fact in a formal library, no matter how mundane or trivial, has a unique identifier, and one
of the hardest parts about using a proof assistant is that one generally has to learn the names of
facts in the library and refer to them explicitly when needed. Justificatory steps are also spelled
out in far greater detail in a proof assistant, whereas ordinary mathematics has fewer resources
for naming facts and composing them. Informal proofs rely instead on contextual hints and cues
that enable a reader with sufficient expertise to spell out the details. This helps explain why
expertise is so important; checking an informal proof is far from a mechanical process.

Sometimes the justification for a later inference is flagged in advance.
Note that adjoining a copy of Z induces an injection on 𝜋1 since the induced
homomorphism is the free product of the injection 𝜋1 (𝐴) → 𝜋1 (Z) with the identity
map on the complementary free factor.
[Hatcher, 2002, p. 172]

Note that each set𝑈′
𝑛 is open, being the difference of an open set𝑈𝑛 and a closed

set
⋃𝑛

𝑖=1𝑉 𝑖 .
[Munkres, 2000, p. 201]

Consider the significance of noting as a cognitive act; the proof asks the reader to keep the
fact close at hand so that it can be deployed when needed, often without further comment.
Mathematical texts call on us to perform other cognitive acts as well:

Expressing each generator as a sum of homogeneous elements, . . .
[Lang, 2002, p. 428]

We can choose the indices 𝑖 in such a way that 𝜎𝑖𝐴1 = 𝐴𝑖 .
[Lang, 2002, p. 183]

Now identify 𝔤 with R3 by means of an orthonormal basis with respect to the
Ad 𝐺-invariant inner product on 𝔤.
[Duistermaat and Kolk, 2000, p. 169]

. . . consider the 𝑛 simplex [a0, · · · , a𝑛] with a0 at the origin and a𝑘 the unit vector
along the 𝑘th coordinate axis for 𝑘 > 0.
[Hatcher, 2002, p. 270]

We now apply the bilinear form of Parseval’s identity (Lemma 1.5, Chapter 3) to
the integral defining A.
[Stein and Shakarchi, 2003, p. 104]

To make our way through a proof, we have to express things, choose things, identify things,
consider things, and apply things. (See Avigad [2006], especially Section 3.2, as well as
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Tanswell [to appear] and Weber and Tanswell [2022].) Traditional logic doesn’t account for
these acts, only the result of performing them, which should be a network of inferences that
takes us from a theorem’s premises to its conclusion.

Logicians are fond of representing proofs diagrammatically as trees that branch at inference
rules that have more than one premise. But the flow through an ordinary mathematical proof is
remarkably linear. Sometimes the application of a theorem requires checking side hypotheses
that are dispensed with quickly, and the base case in a proof by induction is usually dismissed
easily. Occasionally one comes across a case split where the cases have equal footing, and the
in those situations, the branching nature of the proof is made clear.

If 𝑑 ≡ 2 or 3 (4) then. . .
If 𝑑 ≡ 1(4) . . .
[Ireland and Rosen, 1990, p. 191]

There are three cases. If 𝑚 < 𝑛 then 𝑓 −1 (𝐶) closed implies 𝐶∩ 𝑋𝑛−1 closed, hence
𝐶 ∩ 𝑒𝑚

𝛽
is closed since 𝑒𝑚

𝛽
⊂ 𝑋𝑛−1. If 𝑚 = 𝑛 then 𝑒𝑚

𝛽
is one of the cells 𝑒𝑛𝛼, so

𝑓 −1 (𝐶) closed implies 𝑓 −1 (𝐶) ∩𝐷𝛼 is closed, hence compact, hence its image
𝐶 ∩ 𝑒𝑛𝛼 under 𝑓 is compact and therefore closed. Finally there is the case 𝑚 > 𝑛.
[Hatcher, 2002, p. 521]

Such case splits, however, are few and far between.
Although a proof is generally presented as a sequence of factual assertions, the narrative has

to pull off the difficult task of enabling us to determine how each successive statement follows
from what has come before. Mathematical language supplies an array of devices that can be used
to suggest inferential patterns, flag relevance, and indicate the necessary connections. Some
of these devices are implemented in proof assistants. The Mizar proof language [Grabowski
et al., 2010] was a pioneering effort in this sense, providing the first formal representation of
informal proof vernacular. (See also de Bruĳn [1987].) Most proof languages today contain
similar means for structuring formal proofs. Those who design the languages have to balance
competing goals, such as making proofs easy for users to write, making proofs easy for users to
read, and making proofs easy for the system to process. But there is still more to be learned,
and paying closer attention to the literature should provide better insight as to how well-chosen
language supports mathematical inference.

5.4 Notation
Mathematical texts often introduce new notation.

Let 𝑉,𝑉 ′ be two vector spaces, and suppose given a mapping

𝑉 ×𝑉 ′ → 𝐾

denoted by
(𝑥, 𝑥′) ↦→ ⟨𝑥, 𝑥′⟩

for 𝑥 ∈ 𝑉 and 𝑥′ ∈ 𝑉 ′. We call the mapping bilinear if . . .
[Lang, 2002, p. 144]

We define the convolution 𝑓 ★𝑔 on [−𝜋, 𝜋] by . . .
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[Stein and Shakarchi, 2003, p. 44]

We define the Dirichlet L-function associated to 𝜒 by the formula

𝐿 (𝑠, 𝜒) =
∞∑︁
𝑛=1

𝜒(𝑛)𝑛−𝑠 .

[Ireland and Rosen, 1990, p. 254]
Exploring what makes for good notation would take us too far afield, but it is worth recognizing
that good notation has remarkable staying power [Cajori, 1993]. Even fonts and letter choices
tend to stick around: the use of 𝜋 goes back to the early eighteenth century, and the use of 𝑓 (𝑥)
and 𝑔(𝑥) for functions in analysis, as well as the use of 𝑒, 𝑖, and 𝜑 for the familiar mathematical
constants, goes back to Euler. We still speak of Riemann’s Z function and a Dirichlet 𝐿 series,
and we tend to use Fraktur letters 𝔞, 𝔟, and 𝔠 for ideals, following Dedekind.

One challenge for proof assistants is that notation, like identifiers, can be overloaded. The
addition symbol in 𝑥 + 𝑦 can refer to addition in the integers or reals, but also to addition in any
ring or additive group. The addition symbol can also be used to denote the pointwise sum 𝑓 +𝑔
of two functions, or the sum `+ a of two measures.

When a symbol is used in two unrelated ways, computer scientists refer to it as ad hoc
polymorphism. In all the examples above, one can view the domains over which the addition is
defined as being instances of an additively written semigroup, which makes them instances of
parametric polymorphism. We can therefore interpret them as the same addition, where only the
semigroup itself is left implicit. We will return to this when we discuss algebraic language in
Section 7. Computational implementations of mathematical language use various mechanisms
to infer the relevant structure. Even ad-hoc uses of an addition symbol can be used as instances
of an “addition structure” [Wadler and Blott, 1989].

5.5 Calculation
Once seen as the essence of mathematics, calculation is now often associated with applied
mathematics, but it plays a role in pure mathematics as well. Here is an excerpt from a proof of
the ergodic theorem:

∫
[ |𝑎𝑛 |>_]

|𝑎𝑛 | 𝑑𝑃 ≤ 1
𝑛

𝑛∑︁
𝑘=1

∫
𝐺_

| 𝑓 (𝑇 𝑘−1𝜔) |𝑃(𝑑𝜔)

≤ 1
𝑛

𝑛∑︁
𝑘=1

(∫
| 𝑓 (𝑇𝑘−1𝜔) |>𝛼

| 𝑓 (𝑇 𝑘−1𝜔) |𝑃(𝑑𝜔) +𝛼𝑃(𝐺_)
)

=

∫
| 𝑓 (𝜔) |>𝛼

𝑃(𝑑𝜔) +𝛼𝑃(𝐺_)

≤
∫
| 𝑓 (𝜔) |>𝛼

𝑃(𝑑𝜔) +2
𝛼

_
𝐸 [| 𝑓 |] .

[Billingsley, 1995, p. 318]
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In this case the calculation is a chain of equalities and inequalities. Formal systems rarely
specify syntax for calculations or distinguish them from other types of arguments, but proof
assistants generally provide special mechanisms to support them.

6 Set-theoretic abstraction
Sets, functions, and relations are so fundamental to contemporary mathematics that it is easy
to forget that they are recent additions to the subject. In the middle of the eighteenth century,
Euler grounded calculus on the notion of a function, but the term did not take on anything
approximating its contemporary significance until late in the nineteenth century. Similarly, it is
hard to find anything like the modern notion of a set before that time.

The goal of this section is to characterize the contemporary notions of set and function and
consider their role in mathematical language. In large part, set-theoretic language evolved in the
nineteenth century as a means of supporting algebraic abstraction, which is discussed in the
next section.

6.1 Functions
In the early nineteenth century mathematicians dealt with a number of mathematical objects that
we view as instances of the general function concept today, but were not then seen as such. These
include sequences, series, geometric transformations, and permutations of roots of an equation.
The word function and its cognates in western languages were used exclusively for functions that
are defined on the real or complex numbers and take values in one of those domains [Monna,
1972, Youschkevitch, 1976/77, Avigad and Morris, 2014]. Even number-theoretic functions,
like the Euler 𝜙 function or the totient function, were described as symbols or characters rather
than functions. The general view of a function as a mapping between any two domains first
emerged later in the nineteenth century, in Dedekind’s supplements to Dirichlet’s Lectures on
Number Theory and Frege’s Begriffsschrift.

The modern concept of function has these features:
1. A function 𝑓 : 𝐴→ 𝐵 maps elements from a domain 𝐴 to a codomain 𝐵.
2. Any description that associates a unique element of 𝐵 to each element of 𝐴 serves to

define a function. There need not be any algorithm or procedure for producing an element
of 𝐵 from an element of 𝐴; in fact, there need not be any means of representing particular
elements of 𝐴 in a way that an algorithm can act on them.

3. The axiom of choice allows us to consider functions for which we don’t even have a means
of description.

4. Two functions from 𝐴 to 𝐵 are considered to be the same when they take the same values
at every argument. There is nothing more to a function than the association of output
values to inputs.

Foundational accounts differ as to whether the specification of the codomain is part of the
function, for example, whether the function 𝑓 (𝑥) = 𝑥2 from R to R is simultaneously a function
from R to the nonnegative reals. Mathematicians freely identify the two. Logical foundations
often differ as to whether applying a function 𝑓 to an element outside its intended domain
is a syntactic error or a semantic one, that is, whether it is grammatically incorrect or only
mathematically dubious.
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In set theory, a function 𝑓 : 𝐴→ 𝐵 is usually defined to be a set of ordered pairs, where
𝑓 (𝑥) = 𝑦 means that the pair (𝑥, 𝑦) is an element of 𝑓 . A function 𝑓 (𝑥, 𝑦, 𝑧) with multiple
arguments is generally viewed as a function 𝑓 : 𝐴×𝐵×𝐶→ 𝐷. In type-theoretic foundations,
the notion of a function 𝑓 : 𝐴→ 𝐵 is a primitive notion, and the type of inputs and the type of
the outputs are both an inherent part of the syntactic specification. We have seen that in type
theory, a function 𝑓 (𝑥, 𝑦, 𝑧) is commonly represented as an object of type 𝐴→ (𝐵→ (𝐶→ 𝐷))
and application is commonly expressed by writing 𝑓 𝑥 𝑦 𝑧, where 𝑥, 𝑦, and 𝑧 are of type 𝐴, 𝐵,
and 𝐶, respectively. This has the sometimes useful side effect that an expression like 𝑓 𝑥 𝑦

denotes an object of type 𝐶→ 𝐷, in which case, 𝑓 is said to be partially applied. In type theory,
it is harder to view a function that takes values in the integers as simultaneously a function that
takes values in the real numbers. In compensation, the fact that the type of an expression like
𝑓 𝑥 is unambiguous is often useful.

The modern viewpoint allows us to treat functions as objects in their own right, on par
with other mathematical objects, like natural numbers. We can quantify over functions the
same way we quantify over numbers, we can define structures whose elements are functions
just as we can define structures whose arguments are numbers, and we can define functions
(also known as functionals) whose arguments are functions. This is what distinguishes the
discussion of functions here from the discussion of operations in Subsection 3.2. We can talk
about multiplication as an operation on the integers, but when we talk about the multiplication
function on the natural numbers, we are talking about a first-class object. Any implementation
of mathematical language has to mediate between these two views, that is, the treatment of
functions as objects and the treatment of functions as operations in the sense of Subsection 3.2.

6.2 Sets
In his book, Labyrinths of Thought, José Ferreiros observes that in the nineteenth century there
was no standard terminology to denote the set concept [Ferreirós, 1999, page xx]. Although
French quickly settled on ensemble, Italian on insieme, and Spanish on conjunto, German
terminology was not as uniform. Dedekind used words like System and Gebiet, while Cantor
tended to favor Mannigfaltigkeit and Menge. It is interesting to read the following snippet from
a letter from Dedekind to Cantor.

(incidentally, I should like to see the shorter and equally Riemannian word “do-
main” [Gebiet] given clear preference over the clumsy word “manifold” [Mannig-
faltigkeit]. . . )
[Ewald, 1996, p. 870]

The term manifold has, of course, survived, though it is used to describe sets with a specific
geometric structure. Language and notation for sets in general is found everywhere in
mathematics.

Let 𝐴0 ⊂ 𝐶0 be the set of cubes disjoint from 𝐾 , and inductively, let 𝐴𝑘 ⊂ 𝐶𝑘 be the
set of cubes disjoint from 𝐾 and not contained in cubes of 𝐴 𝑗 for 𝑗 < 𝑘 .
[Hatcher, 2002, pp. 525–526]

Consider the set of ideals {𝐴𝑖 | 1 ≤ 𝑖 ≤ ℎ𝐹 +1}.
[Ireland and Rosen, 1990, p. 179]

𝑊 acts transitively on the set of connected components of 𝐺reg ∩𝑇 .
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[Duistermaat and Kolk, 2000, p. 154]
Let {𝑒1, . . . , 𝑒𝑚, . . .} be a basis of 𝐹. . .
[Lang, 2002, p. 521]

A set 𝐴 is a `-continuity set if it is a Borel set and `(𝜕𝐴) = 0.
[Billingsley, 1995, p. 335]

Talk of sets is often implicit in the definitions of mathematical spaces and structures because
they are often defined by specifying the underlying set.

The space of bounded linear functionals on a normed space 𝑋 is called the dual (or
conjugate) of 𝑋 and is denoted 𝑋∗.
[Royden, 1988, p. 326]

Given a map 𝑓 : 𝐴→ 𝐵, let 𝐸 𝑓 be the space of pairs (𝑎, 𝛾) where 𝑎 ∈ 𝐴 and
𝛾 : 𝐼 → 𝐵 is a path in 𝐵.
[Hatcher, 2002, p. 407]

Let [𝑀] denote the isomorphism class of a finite module 𝑀 . We define the sum to
be the direct sum. Then the isomorphism classes over the ring form a monoid.
[Lang, 2002, p. 139]

Any implementation of mathematical language has to make it easy to describe sets and reason
about them.

In axiomatic set theory, the notion of set is basic; everything is a set, and a function is a set
of ordered pairs. In axiomatic type theory, in contrast, the notion of a function between types
is basic. A predicate on a data type 𝛼 is viewed as a function from 𝛼 to truth values, and sets
are in one-to-one correspondence with predicates: given a predicate like Even on the natural
numbers, we can form the set of even numbers, and, of course, given any set 𝑠, we can consider
the property of being an element of 𝑠.

There is an important difference between set theory and type theory. In set theory, any
collection of objects can form a set. We can consider the set consisting of the number 𝜋, the
multiplication function on the integers, and the Eiffel tower. In type theory, any set is a set of
objects of some fundamental type. We can consider a set of integers or a set of functions, but
there is no notion of a set of arbitrary mathematical objects. Whereas this is mathematically
natural, the distinction between sets and types in type theory forces us to distinguish between
the integers as a fundamental type and the integers as a subset of the real numbers. But, as we
have seen in Section 4, the problem of identifying objects and structures is not limited to type
theory. It poses challenges for set-theoretic foundations as well.

6.3 Quotients
In a familiar set-theoretic construction, if 𝐴 is a set and ≡ is an equivalence relation on 𝐴, the
quotient 𝐴/≡ is defined to be the set of equivalence classes of 𝐴. Functions and relations on 𝐴
that respect the equivalence relation descend to functions and relations on 𝐴/≡. (Confusingly,
computer scientists often use the term “lift” instead of “descend.”) This construction provides a
useful way to treat equivalent objects as identical.

Quotient constructions come up often.
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We denote by 𝑃𝔠 the subgroup of 𝑃 consisting of those principal fractional ideals
(𝛼) with 𝛼 ∈ 𝑘𝔠. Then it is clear that 𝑃𝔠 is a subgroup of 𝐼 (𝔠). The factor group
𝐼 (𝔠)/𝑃𝔠 will be called the group of 𝔠-ideal classes.
[Lang, 1994, p. 125]

From the diagram above, 𝐻𝑛 (𝑋) can be identified with 𝐻𝑛 (𝑋𝑛)/Im 𝛿𝑛+1.
[Hatcher, 2002, p. 140]

Let 𝑋 be the mapping torus of 𝑓 , the quotient space of (𝑆2
𝛼 ∨ 𝑆2

𝛽
) × 𝐼 under the

identifications (𝑥,0) ∼ ( 𝑓 (𝑥),1).
[Hatcher, 2002, p. 589]

Let 𝔐 be the class of measurable subsets of [0,1], 𝔑 the class of subsets of measure
zero, and 𝑚 Lebesgue measure. Then ⟨𝔐/𝔑,𝑚⟩ is a separable measure algebra
without atoms.
[Royden, 1988, p. 399]

The equivalence classes of fractional ideals form a finite group, . . . which we call
the ideal class group.
[Lang, 1994, p. 123]

Because the canonical projection 𝜋 : 𝑀 → 𝐺 \𝑀 is continuous and maps open
subsets of 𝑀 onto open subsets of 𝐺 \𝑀 , the orbit space 𝐺 \𝑀 is locally compact.
[Duistermaat and Kolk, 2000, p. 104]

Mathematicians often pass silently between talking about elements of a quotient and talking
about representatives in the quotiented set. For example, it is common to conflate functions
with equivalence classes of functions up to almost everywhere equivalence in a function space.

7 Algebraic abstraction
Algebra involves calculating with variables that range over elements of some domain, using
rules that are valid for that domain. The practice was used in the late sixteenth century by Viète,
who saw the algebraic method as the foundation for a universal science. In the seventeenth
century, Descartes and Leibniz held similar views.

We obtain modern algebra by making the rules explicit and abstracting the underlying
domain, so that variables range over any domain that obeys the general laws and the theorems we
prove can be applied to any such domain. In other words, we get modern algebra (also known as
abstract algebra) when we treat the objects under consideration as elements of an algebraic
structure. This is a powerful means of abstraction that makes the properties that are relevant to a
particular reasoning context explicit.

Conventional terminology wavers between using the expression “algebraic structure” to
describe a class of mathematical structures and using it to describe any particular instance. In
other words, sometimes we call the group concept an algebraic structure and sometimes we call a
particular group an algebraic structure. For clarity, here I will reserve the term “structure” for the
individual instances, and use the phrase “abstract structure” for the axiomatically characterized
concept. With that terminology in place, we can describe the general practice: we define an
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abstract structure by specifying a linguistic signature and a collection of properties, and this
allows us to reason uniformly about all its instances. The process of reasoning about such
algebraically characterized classes becomes an art unto itself, and it is worthwhile to consider
how mathematical language supports it.

7.1 Implicit structure
An abstract structure is specified with a signature. We start by specifying that it has one or more
carrier sets, and then we specify the functions and relations that are to be found in any instance,
together with the axioms they are assumed to satisfy. A group (𝐺,◦, 𝑒, ·−1) is any structure with
a carrier set 𝐺, an element 𝑒 ∈ 𝐺, a binary operation ◦ on 𝐺, and a unary operation ·−1 on 𝐺,
all satisfying the group axioms. A partial order (𝑋, 𝑅) consists of a transitive, reflexive, and
antisymmetric relation 𝑅 on a set 𝑋 . An abstract structure can sometimes refer to higher-order
objects over the carrier sets. A topological space consists of a pair (𝑋,T) where T is a collection
of subsets of 𝑋 satisfying the axioms for a topological space, and a hypergraph (𝑋,𝐸) consists
of a set 𝑋 and an arbitrary collection 𝐸 of nonempty subsets of 𝑋 .

When a mathematical object is an element of the carrier set of a structure, properties ascribed
to the object often implicitly invoke the signature of the ambient structure. An element 𝑎 ∈ 𝑋
of a partial order (𝑋, 𝑅) is minimal if it is 𝑅-related to every other element of 𝑋 . Similarly,
properties of a function 𝑓 : 𝑋 → 𝑌 between carrier sets of two structures or a subset 𝐴 ⊆ 𝑋 of
the carrier set of a structure often make implicit reference to those structures. Saying that a set
𝐴 ⊆ 𝑋 is closed or compact presupposes that there is a topology on 𝑋 , saying that 𝑓 : 𝑋 → 𝑌 is
continuous presupposes that there are topological structures on 𝑋 and 𝑌 . This is an important
sense in which sorts make a difference: to make sense of a statement like “𝑎 is minimal” or
“ 𝑓 is continuous,” it is not enough to view 𝑎 as an object and 𝑓 as a function; we have to view
them as objects of appropriate sorts, and we have to view those sorts as coming equipped with
ambient structures.

In a mathematical text, the relevant structures are often determined implicitly by the context.
The same can be said for operations like the maximum function on an order or the closure
operation on sets in a topology, and for notation like 𝑥 · 𝑦 and 𝑥𝑦 . In proof assistants, various
methods are used to infer implicit structure [Wenzel, 1997, Asperti et al., 2009, Sozeau and
Oury, 2008, Garillot et al., 2009, Selsam et al., 2020]. A good semiformal description should
clarify the means by which the relevant associations are registered by a mathematical text.

7.2 Algebraic hierarchies
Abstract structures bear relationships to one another. An abstract structure can add axioms to
one described previously. A total order is a partial order (𝑋, 𝑅) such that for any two elements
𝑎 and 𝑏 of 𝑋 , either 𝑅(𝑎, 𝑏) or 𝑅(𝑏, 𝑎) holds. A well-founded partial order adds a different
assumption, and a well-founded total order retains both. An abelian group is a group in which
the group operation is commutative. Adding an axiom to an abstract structure means that the
resulting class of instances is contained in the class of instances of the prior one, which is to say,
any instance of class of structure with the additional axiom is an instance of the class without it.
This is one way in which structures form a hierarchy.

An abstract structure can also extend another by adding additional data. For example, a
pointed topological space is just a topological space (𝑋,T) with an additional point 𝑎 ∈ 𝑋 . More
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commonly, an abstract structure will extend another with both additional data and additional
axioms. A group is a monoid with an inverse; an ordered group is a group is together with a
partial order on the carrier that is compatible with the group operation. A ring (𝑅, ·,+,1,0) is
best described as the combination of a monoid (𝑅, ·,1) and an abelian group (𝑅,+,0) satisfying
the distributivity axioms.

Viewing a network of abstract algebraic structures and the relationships between them as a
hierarchy supports modularity and abstraction in the sense of Section 4. A definition made in
the context of one abstract structure instantly carries over to any others that inherit that structure,
and a theorem proved about an abstract structure immediately applies to any of its instances.
The reason that this is relevant to our discussion of mathematical language is that the transfer is
built in to the grammar. Any concepts defined in the context of a group can be interpreted in
any abelian group or any ordered group, and, in practice, such concepts are deployed without
comment or explanation. So a semiformal description of mathematical language has to specify
not only how implicit algebraic structure is inferred, but also how algebraic relationships are
tracked and used to make sense of mathematical statements.

The combined need to infer structure and to track relationships in the algebraic hierarchy
gives rise to an interesting problem, namely, the diamond problem, that has been made manifest
by the practice of formalization. It arises from the fact that, given a complex hierarchy, structure
can be inferred in multiple ways, and the coherence of the practice relies on the fact that the
results agree.

Here is an example of the phenomenon. Every metric space is an instance of a topological
space; given a metric space, there is a unique topological space that is determined by the metric
space. Given topological spaces with carriers 𝑋 and 𝑌 , there is a canonical topology on their
product, 𝑋 ×𝑌 . If 𝑋 and 𝑌 are metric spaces, there are various natural ways of imposing a
metric on 𝑋 ×𝑌 that induces the same topology. Suppose we fix one and let 𝑓 be a function from
𝑋 ×𝑌 to some other space, and suppose we then say that 𝑓 is continuous. We have seen that this
requires us to view 𝑋 ×𝑌 as a topological space. The question is: what is the topological space
that is implicit in the statement?

The problem is that there are two ways to find such a space. Given that 𝑋 and 𝑌 are metric
spaces, we can view them as topological spaces, and then take the canonical topology on 𝑋 ×𝑌 .
Alternatively, we can view 𝑋 ×𝑌 as a metric space, and take the metric-space topology on
𝑋 ×𝑌 . Now, assuming we have chosen the metric on 𝑋 ×𝑌 to have this property, the two
choices coincide. But it may be a nontrivial mathematical theorem that they do. Suppose, in
proving a theorem, we establish the continuity of 𝑓 using one understanding of the relevant
topological space, and then apply a theorem that presupposes the continuity of 𝑓 using the
other. We can hardly expect our proof assistant to run off and prove a substantial mathematical
theorem just to infer that the two statements are the same. This is yet another instance of the
identification problem raised in Section 7: mathematicians are comfortable shifting between
equivalent readings of a statement once they have internalized the equivalence, but explaining
what is going on formally requires some effort.

One solution found in the literature [Buzzard et al., 2020, Affeldt et al., 2020] is to take the
structure of a metric space to include a specification of the associated topology, together with a
proof that the topology is compatible with the metric. That makes it possible to ensure that both
paths yield answers that are easily seen to be the same. But more experimentation is needed
to determine whether this is a viable way of solving all the diamond problems that crop up in
practice, and whether the method can be made principled and general enough to become part of
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our semiformal specification.
Diamond problems serve to highlight fundamental questions about meaning and reference.

As in Subsection 4.5, in cases where these are underspecified by the surface syntax, we would
like to say that the mathematical context supplies the information needed to fix meaning and
reference appropriately. But then we need a better story of how that works, and, in particular,
a story about what ensures that the “canonical” interpretations that the context supplies are
coherent. Implementations of mathematical language in proof assistants clarify the problem
and open the door to philosophical analysis.

7.3 Structures as objects
What gives an entity the status of a mathematical object? Section 3 presented some of the
hallmarks: variables can range over objects, objects bear properties and relationships to one
another, and mathematical operations build new objects from old ones. In Section 4 we observed
that objects can be identified with other objects in various ways. The current section provides
yet another aspect of objecthood: mathematical objects are, or can be seen as, elements of
axiomatically characterized structures.

In contemporary mathematics, individual structures themselves are mathematical objects
in all these senses. We quantify over groups, rings, and fields the same way we quantify over
numbers and points on the Euclidean plane. We talk about products, powers, and limits of
sequences of algebraic structures the same way talk about products, powers, and limits of
sequences of numbers. Various operations can be used to build new structures out of old ones;
the automorphisms of a group, ring, or field form a group, the square-integrable real-valued
functions on any measure space form a Hilbert space, and for every field 𝐹 and natural number
𝑛, the structure 𝐹𝑛 is a vector space. We identify structures, though here the relevant notion
of “sameness” is isomorphism, which is coarser than the notion of equality that derives from
viewing a structure as a tuple consisting of a carrier set and some functions and relations.
And algebraic structures can be inhabitants of larger algebraic structures. The category of
abelian groups (or abelian groups in a fixed set-theoretic universe) is an algebraic structure
whose elements are abelian groups, a sheaf of rings is a collection of rings bearing an algebraic
structure, and measure-theoretic probability allows us to consider measures on spaces whose
elements are themselves measures.

This means that algebraic structures play dual roles. We can treat a group𝐺 as a mathematical
object, and at the same time consider elements 𝑥 and 𝑦 of 𝐺. In the latter case, 𝐺 specifies
the sorts of objects that 𝑥 and 𝑦 are, and this is used to make sense of expressions that involve
them. This duality is handled in various ways in proof assistants. One approach is to take a
group, 𝐺, to consist of a structure, one component of which is the carrier type, carrier 𝐺. The
statement that 𝑥 and 𝑦 are elements of 𝐺 is interpreted as shorthand for saying that 𝑥 and 𝑦 are
elements of carrier 𝐺 by coercing 𝐺 to its carrier. An alternative is to use type classes, which
provide a means of using context to associate information with a given data type. In that case,
the statement that 𝐺 is a group is interpreted as saying that 𝐺 is a data type with an associated
group structure. The statement that 𝑥 and 𝑦 are elements of 𝐺 is interpreted as just that; but an
expression like 𝑥 · 𝑦 is interpreted as making reference to an ambient structure that is inferred
from the context.
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8 Other aspects of mathematical language
There are a number of important aspects of mathematical language that we have not even begun
to address. We use language to state conjectures, raise questions, launch research programs,
describe methods, and assess the value of mathematical contributions and artifacts. In this final
section, we briefly consider some other aspects of mathematical communication.

8.1 Diagrams
Diagrams and images are important components of mathematical language. They are used
to justify and explain, often more efficiently and effectively than text-based representations.
In the last couple of decades, there has been a substantial literature on uses of diagrams in
reasoning; see Giaquinto [2007], Manders [2008], De Toffoli and Giardino [2014], De Toffoli
[2017], Hamami and Mumma [2013] for a representative sample. Work like this provides a
diagrammatic analogue of the type of textual analysis proposed here, by developing a taxonomy
of representational devices and their uses.

Given the size of the literature on mathematical diagrams, it is reasonable to ask why the
analysis of textual communicative devices is lagging. One possibility is that the differences
between diagrammatic representations and formal logic are so dramatic that it is clear that there
is something interesting going on, whereas, in contrast, it is easier to convince ourselves that
formal logic captures the essence of text-based reasoning. I hope this chapter has made the
case that the mechanisms employed in text-based reasoning are just as elaborate, subtle, and
mysterious as the ones employed in diagrammatic reasoning, and that they are just as worthy of
study, if not more so.

8.2 Algorithms
For most of its history, mathematics was algorithmic in nature. Euclid’s Elements provided
recipes for constructing geometric objects, early algebraists were concerned with recipes for
calculating quantities of interest, early probabilists were concerned with calculating odds in
games of chance, and early analysts were concerned with calculating the motions of the planets.

Pure mathematics tends to keep computation at arm’s length, relegating questions about how
to calculate quantities described or guaranteed to exist by a theory to the realm of application.
A contemporary textbook on modern algebra might well prove that every matrix can be put
in Jordan canonical form without saying explicitly how to do it [Lang, 2002, p. 559]. Still,
algorithms sometimes creep into textbooks in pure mathematics.

As a first application of quadratic reciprocity we show how, in conjunction with
Proposition 5.1.2, it can be used in numerical computations of the Legendre symbol.
[Ireland and Rosen, 1990, p. 54]

Example 4L.3: Stable Splittings. The formula (★) tells us how to compute Steenrod
squares for R𝑃∞, hence also for any suspension of R𝑃∞.
[Hatcher, 2002, p. 491]

Numerical and symbolic computation are an important part of mathematics, and the language
that textbooks and journal articles use to describe such algorithms should be viewed as an
important part of mathematical language.
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Fortunately, computer science has developed ample means of representing algorithms
formally—this is precisely what programming languages do. And proof assistants are commonly
used for software verification, so there is a vast literature to draw on when thinking about
mathematical algorithms.

8.3 Plans
Our discussion of proof in Subsection 5.3 ignored a number of narrative elements that are found
in mathematical texts. A proof serves as a tour guide, drawing our attention along, highlighting
key facts, and shaping the experience of understanding. A good proof reminds us where we have
been, and it gives us a sense of where we are going and what we need to have with us on the way.

Now let 𝔠 be a connected component of 𝔱reg.
[Duistermaat and Kolk, 2000, p. 147]

Think about the significance of the word “now.” It is hard to pin down its inferential
significance, but it plays an important role. It tells the reader that the part that has come before
has been preparatory to that moment; it asks us to check our footing, and prepare ourselves for
the next phase of the ascent.

To show that 𝜓 is onto, it is sufficient to show that . . .
. . .
Having shown that 𝜓 is onto, we now investigate the kernel. Clearly, ker 𝜓 =

𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑔. We must show that under the hypotheses the intersection is
equal to the kernel.
[Ireland and Rosen, 1990, p. 181]

Thus it only remains to show that (ii) ⇒ (iii). To do this. . .
[Royden, 1988, p. 206]

We are now in a position to state the main theorem of this chapter. The proof will
be spread out over the next three sections.
[Ireland and Rosen, 1990, p. 251]

There would be no difficulty if we could write 𝐵 = 𝐴[𝛼] for some 𝛼. This is true
only locally. Hence we shall use the approximation theorem to reduce our problem
to the local case.
[Lang, 1994, p. 63]

Rebecca Morris has observed that we expect a proof to be motivated, in the sense that
the structure of such a proof should make it clear how each step might have been anticipated,
and how each step gets us closer to the goal [Morris, 2020]. Her work explores some of the
devices that contribute to that aim. Morris and Yacin Hamami have argued that good proofs
show evidence of a rational plan [Hamami and Morris, to appear]. We tend to understand
other people’s behavior by assuming that they have particular goals and by interpreting their
actions in relation to plans that achieve those goals. In a similar way, we make sense of proofs
by interpreting them in terms of a systematic overall plan. Proof assistants give us languages
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for expressing definitions, theorems, and proofs. What can we say about the components of
mathematical language that are used to put forth a plan?

I am grateful to David Waszek for pointing out that, contrary to a claim I made in the
introduction, the last quotation includes an instance of a modality: “There would be no difficulty
if we could write 𝐵 = 𝐴[𝛼] for some 𝛼.” One also sometimes sees modal language in proofs by
contradiction, for example: “We need to show 𝑥 is even. Suppose 𝑥 were odd. . . .” In each
case, modal language is used to modify the reasoning context by temporarily introducing a new
assumption before drawing out conclusions. Logically and mathematically, such hypothetical
reasoning is easy to explain, and it is telling that mathematicians more often avoid the use of
subjunctive or counterfactual language in the second case, writing, instead, “suppose 𝑥 is odd. . . .”
It may well be that the closest thing to the notion of a possible world in mathematical discourse
is the notion of a temporary reasoning context, one that is related to a more primary reasoning
context in some fashion. It is an interesting question whether conventional philosophical ways
of thinking about modal language can shed light on the way we pass between such contexts.

8.4 Intuitions and heuristics
Seventeenth century mathematicians like Descartes and Leibniz were enamored of the prospect
of having methods of solving mathematical problems, like geometric construction problems and
optimization problems. One can view this as a search for computational algorithms. But one
can view their interest more broadly as having a bodies of heuristics that limit the search space
and guide reason to its desired end. The mathematical literature is filled with such offerings.

The methods to be used are identical with those already developed in the previous
sections.
[Ireland and Rosen, 1990, p. 103]

Two corollaries, interesting in themselves, will make clearer the structure of the
proof of sufficiency given above.
[Billingsley, 1995, p. 350]

The next section treats a general scheme for dealing with path-function questions by
in effect replacing an uncountable time set by a countable one.
[Billingsley, 1995, p. 503]

We now return, for the remainder of the chapter, to the consideration of various
methods for imposing topologies on sets.
[Munkres, 2000, p. 112]

The notions of a Galois extension and a Galois group are defined completely
algebraically. Hence they behave formally under isomorphisms the way one expects
from objects in any category.
[Lang, 2002, p. 264]

This section contains a general discussion of invariant densities, especially on
homogenous spaces. Although in the next section this is only used in a relatively
simple case, the general discussion will be useful for future reference.
[Duistermaat and Kolk, 2000, p. 179]
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Notice that if 𝑓 already sends some vertices of 𝐾 to vertices of 𝐿 then we may
choose 𝑔 to equal 𝑓 on these vertices, and hence the homotopy from 𝑓 to 𝑔 will be
stationary on these vertices. This is convenient if one is in a situation where one
wants maps and homotopies to preserve basepoints.
[Hatcher, 2002, p. 179]

Statements like these do not make precise mathematical claims. Instead, they convey information
that is meant to shape the way we organize, categorize, and store the knowledge we have, and
the way we deploy that knowledge in the future.

Automated reasoning depends crucially on using heuristics to limit the space of options and
fruitfully guide a search through a combinatorial explosion of possibilities. Successful machine
learning algorithms seem to acquire representations that also structure spaces of options in
fruitful ways. If we focus on mathematical statements like the ones above and think about what
they are doing, we may be in a better position to design systems that provide better support for
mathematical reasoning.

9 Conclusions
Understanding mathematical language can help us formalize mathematics, design better
automated reasoning tools, and harvest data mechanically from mathematical texts. But
mathematical language is also interesting in its own right, and understanding how it works adds
to our appreciation of mathematics. A good piece of mathematics is a work of art, and there is a
deep satisfaction to be had in admiring the creativity and insight that went into it. But that is not
at odds with studying the mechanics of the underlying language. Whether we view that language
as the medium for mathematical thought or merely an outward manifestation, understanding
how it works it an important part of understanding the nature of mathematics itself.

Acknowledgments. I am grateful to Gihan Marasingha, David Waszek, and an anonymous
referee for helpful suggestions.
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