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Abstract: I argue that ML models used in science function as highly idealized 

toy models. If we treat ML models as a type of highly idealized toy model, then 

we can deploy standard representational and epistemic strategies from the toy 

model literature to explain why ML models can still provide epistemic success 

despite their lack of similarity to their targets.  

 

 

 

1. Introduction 

Most attention on complex machine learning (ML) models used in science has centered around 

issues of opacity, such as the nature of opacity (Creel 2020, Boge 2022) and its epistemic 

consequences for science (Duede 2023).1 While some have argued that ML models can still 

provide understanding of phenomena despite their opacity (Meskhidze 2021; Sullivan 2022a), 

others demur (Räz and Beisbart 2022). However, before the epistemic consequences of opacity 

become salient, there is an underexplored prior question of representation. If ML models used 

in science do not represent real-world targets in any meaningful sense, how can ML models 

provide understanding in the first place?  

The problem is that it seems as though ML models do not represent their targets in any 

meaningful sense. For example, the similarity view of representation seems to exclude the 

possibility that ML models can represent phenomena. According to the similarity view (Mäki 

2009; Giere 2004; Weisberg 2013), for a model to represent some phenomenon requires that 

the model be sufficiently similar to its target. However, ML models use methods of finding 

feature relationships that are highly divorced from their target systems, such as relying on 

complex computations or loose correlations instead of causal relationships. Moreover, the data 

that models are trained on can be manipulated by modelers in a way that reduces similarity. 

For example, the well-known melanoma detection ML model (Esteva et al. 2017) is trained on 

manipulated and resized variations on images viewed by dermatologists and interprets RGB 

arrays of pixels. Thus, if the similarity view is right, then even if model opacity qua opacity 

 
1 In this paper, my focus is on deep learning neural network architectures. However, analogous arguments could 

be made toward random forests or Bayesian nets, or other ML techniques that engage in idealization. 
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does not get in the way of understanding, ML models may still fail to enable understanding of 

phenomena because they fail to represent phenomena. This gives rise to the following 

hypothesis concerning the epistemic status of ML models: 

 

ML Representation Hypothesis   

Complex or opaque ML models fail to enable understanding of real-world 

phenomena because ML models are not similar to, and therefore, fail to 

represent their targets. 

 

In this paper, I argue that we should reject the ML representation hypothesis. 

Specifically, I argue that ML models function representationally and epistemically in a similar 

way as highly idealized toy models do in science. If we treat ML models as functioning as 

highly idealized toy models, then there are two ways of rejecting the ML representation 

hypothesis. We can (i) adopt an interpretative view of representation (Nguyen 2020), in which 

case a compelling story can be told that ML models do in fact represent their targets. Or, (ii) if 

adopting an interpretative view of representation is unpalatable, we can still reject the ML 

representation hypothesis by appealing to the epistemic status of idealizations and adopting the 

following idealization failure hypothesis instead: 

 

Idealization Failure Hypothesis 

Complex or opaque ML models fail to enable understanding of real-world 

phenomena when there is idealization failure. 

 

Adopting the idealization failure hypothesis would mean that evaluating the epistemic virtues 

and limitations of ML models requires identifying and evaluating the idealizations within ML 

modeling, not necessarily striving to make ML models more similar to their targets. 

The paper proceeds as follows. First, I introduce the epistemic and representational 

puzzle that toy models introduce and possible solutions to the puzzle (section 2). Second, I 

argue we should think of ML models as functioning as highly idealized toy models and apply 

the same solutions as we do with toy models (section 3). Lastly, in section 4, I discuss the 

benefits of adopting the idealization failure hypothesis as a necessary step for evaluating the 

epistemic status of ML models. In the end, even though ML models seem to be the opposite of 

highly idealized toy models, there are a number of representational and epistemic similarities 

between them. Thus, if we accept that highly idealized models can either represent phenomena 

or still enable understanding in the absence of representation, then the same holds for ML 

models.  
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2. The puzzle of toy models 

Toy models are models that are (i) extremely simple, (ii) highly idealized, and (iii) said to refer 

to a target system in the world (Reutlinger et al. 2018). Common examples include the hawk-

dove game or Lotka-Volterra equations in population biology, Ising physics model, and 

Schelling’s segregation model. Focusing on the latter, Schelling (1971), in seeking to explain 

why so many cities are racially segregated, developed a simple toy model on a checkboard. 

The model shows that if people move based on a simple preference that a certain percentage of 

their neighbors are the same, then a segregated board is the equilibrium state. Schelling’s model 

makes several idealizing assumptions that make it unlike any city on earth. There is no cost to 

moving, people are free to move to any empty space, there is no institutional racism, and people 

move based on a single preference for ‘like neighbors.’ 

The use of toy models like this in science raises an interesting puzzle. How is it that a 

model that is so highly idealized and so divorced from real world phenomena can give us any 

epistemic insight? Schelling’s model is not at all similar to real cities, so how could it be said 

to represent real cities in any meaningful sense? How can it provide any understanding into 

why real-world cities are segregated? There are two central ways that philosophers of science 

approach solutions to this puzzle. The first is to reject the underlying similarity view of 

representation that seems implicit in how the puzzle is posed and offer an alternative view of 

representation where similarity is not the locus of representational content. The second 

approach considers the unique epistemic status of idealizations. I consider each in turn.  

 

2.1.  Interpretive view of representation  

The puzzle from toy models implicitly assumes a similarity view of representation where a 

model must be ‘sufficiently similar’ to its target for accurate representation (Mäki 2009; Giere 

2004; Weisberg 2013). However, there are alternative, and influential, theories of 

representation that do not require model similarity with its target (Nguyen 2020; Suárez 2015; 

Frigg and Nguyen 2018). In this paper, I will focus on Nguyen’s (2020) interpretative view 

where toy models are representational in the sense that they license truthful inferences about 

the target system. Importantly, for a model to license truthful inferences, similarity does not 

matter, but an interpretative function that can map model-facts to claims that could also serve 

as a ‘translation key’ that connects the model to its target (Frigg and Nguyen 2018; Nguyen 

2020). While on the similarity view of representation Schelling’s model does not represent its 

target in virtue of the fact that Schelling’s model is not sufficiently similar to real cities, on the 

interpretative view of representation, Schelling’s model does in fact represent real world 

segregated cities. Using an interpretative function regarding the underlying mechanism driving 
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Schelling’s model—that acting on certain preferences can lead to segregated equilibriums—

gives rise to a true claim about segregation namely that “a city whose residents have a weak 

preference regarding the [race] of their neighbors has a susceptibility toward global 

segregation” (Nguyen 2020, pg. 1030). On the interpretive account, toy models are unique in 

that they (i) move from an inevitability in the model to a susceptibility claim about the target, 

and (ii) move from a specific model-fact to a less specific claim about the target (pg. 1030). 

Schelling’s model provides a model-based inevitability regarding the certainty of segregation 

to a less specific susceptibility claim about real-world populations. 

Notice that on the interpretative view of representation, the puzzle of toy models 

dissolves. The reason toy models are useful and successful tools in science is because they 

provide us with representational content regarding their target systems when they enable us to 

make true inferences regarding the target.  

 

2.2 Epistemology of toy models 

A second set of solutions to the puzzle of toy models considers the epistemology regarding 

how idealizations, despite their falsity, can still enable understanding. Such a solution need not 

appeal to representation per se. While some, such as Elgin (2017), deploy a representational 

view of idealizations as representing-as, many others go a different route. For example, on 

Potochnik’s (2017) account, idealizations are misrepresentations with the falsehood of the 

idealization playing an active role. On the holistic distortion view (Rice 2019), true and false 

aspects of a representation cannot be separated, so idealized models become holistic 

misrepresentations. Others argue that idealizations are non-representational. On Lawler’s 

(2021) extraction view, idealizations play an enabling role and are not constitutive of scientific 

representations. Carrillo and Knuuttila (2022) propose an artifactual account of idealization 

that actively rejects the need for the representation question, and instead focuses on the way 

that idealizations, and models, are tools for epistemic purposes.  

 Despite differences between these views on the representational status of idealizations, 

all of these theorists agree that idealizations either themselves constitute epistemic success or 

can help point to relevant truths that enable success; in the worst-case, idealizations serve as 

convenience crutches (Sullivan and Khalifa 2019). Importantly though, those that separate the 

idealization question from the representation question have a tempered view of the epistemic 

role the heavy idealizations in toy models provide. Toy models merely provide how-possibly 

explanations if the adequate link between the model and target are in some way in doubt. A 

common interpretation of the epistemic success of Schelling’s model is that it only provides us 
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with how it is possible segregation could occur in real-world populations, while failing to 

provide an explanation why actual cities are segregated because it is not embedded within a 

larger confirmed theory (Reutlinger et al. 2018). Understanding real-world phenomena requires 

establishing empirical links outside of the model (Sullivan and Khalifa 2019; Sullivan 2022a). 

Thus, the epistemic solution to the puzzle of toy models exercises caution regarding the extent 

of the scientific understanding toy models may provide, but nevertheless can still account for 

why toy models are useful and enable scientific understanding, albeit understanding of 

possibilities.  

 

3. ML models as toy models 

Current ML models are not the kind of highly idealized models that philosophers of science 

often discuss alongside idealization. They are complex instead of simple, they are new instead 

of mature, and they are not constructed with built-in theoretical assumptions or what Knüsel 

and Baumberger (2020) call process-models, where model equations explicitly refer to 

processes in the target system. In contrast, the inner decision points in ML models are not 

tracking these types of processes; instead, an ML model is essentially trying to minimize loss 

and satisfy a defined objective function running a series of mathematical computations in 

vector space (Boge 2022). ML models are often used precisely because causal processes are 

unknown, or because researchers are interested in seeing whether there are overlooked patterns 

of interest. Despite these differences with traditional model-based science, I want to suggest 

that ML models used in science function in a similar way as toy models. First, ML models 

(including predictive models) used in science aim to refer to various real-world phenomena 

(e.g. models of new physics, disease indicators, climate patterns, etc).2 Second, they engage 

heavily in idealizations across the ML modeling pipeline. Third, central questions regarding 

representation and epistemic success seem to mirror that of toy models.   

 

3.1. ML Idealizations 

Even though ML models are highly complex data-driven models and are not the simple type 

of model often thought of as toy models, ML models still engage in significant idealization 

throughout the ML modeling pipeline.3  Table 1 provides a (non-exhaustive) overview of where 

idealizations may appear in the ML pipeline, ranging from ML architectures to data collection, 

model training, the learned algorithm that results from training, and generalizing to novel cases. 

 
2 There could be cases where an ML model does not aim to refer to real-world phenomena. In these cases, the 

ML models could be closer to so-called targetless models.  
3 Following Levy (2021), I take abstraction to be a relation between two representations and idealization to be a 

relation between a model and the world. Thus, something can be both an abstraction and an idealization.   
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               Table 1.  Idealizations across ML Pipeline 
ML architectures 

 

Idealizations introduced by architecture choice. 

Example: Fully connected networks assume independence of input variables 

data choices 
Idealizations introduced through data choices. 

Example: data manipulation as part of data processing 

Model training 
Idealizations that emerge through model training. 

Example: Backpropagation techniques finding local minima through gradient descent   

Learned ML 

algorithm 

Idealizations present in the ML model after training. 

Example: ML models relying on reliable proxies or not relying on relevant causal 

influences in the target 

Generalization  
Idealizations that are created when applying a ML model to novel data. 

Example: Deploying model on data that is dissimilar to testing and training data  

Explaining model 

decisions 

Idealizations that are introduced when applying explainability methods to explain ML 

model decisions. 

Example: Linear approximations of local decisions4  

 

For example, ML architectures idealize. The simplest type of neural network (NN) 

architecture is a fully connected NN that assumes causal independence among input variables. 

All input variables are treated as independent even though we know that there is 

interdependence between input features. Furthermore, as the network ‘learns,’ each new layer 

‘forgets’ weights and influences from previous layers. Such an architecture is an idealization 

because many phenomena that NNs aim to capture do have causal inter-dependence among 

variables. For example, a deep NN (DNN) model may seek to predict disease indicators using 

input data that has known strong correlations and causal influences in the data. If researchers 

use a fully-connected DNN, these causal dependencies are idealized away in the initial 

architecture. Other more sophisticated architectures, like transformer models, de-idealize these 

assumptions. Specifically, transformers add attention layers that address the ‘forgetful’ 

problem in fully connected NN but may introduce different idealizations in the process. 

Importantly, what makes something an idealization is context dependent. While in many cases 

fully connected NNs constitute an idealization, there could be other cases where this is not an 

idealization because we have good reason to believe there is causal independence between 

variables. Not every result of a mathematical process deployed in ML will itself constitute an 

idealization. It ultimately depends on the relationship between the target and what results from 

the mathematical processes (Levy 2021).  

 

3.2.  Representation and ML 

Since ML models engage in idealizations and can find patterns of interest in a way divorced 

from underlying real-world processes, like toy models, it seems like ML models do not actually 

represent their targets and that we should accept the ML representation hypothesis regarding 

 
4 See Fleisher (2022) for a discussion of idealizations in explainable AI. 
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their epistemic status. And indeed, in a recent paper, Tamir and Shech (2022) argue that ML 

models can fail to represent their targets, undermining their epistemic status. One example they 

highlight is the case of Esteva et al.’s (2017) melanoma classifier that reportedly does better at 

identifying melanoma compared to dermatologists. The ML model was trained on distortions 

of the original dermatological images. For example, the Inception-v3 model that was used 

requires input images of 299x299 pixels (Estava p. 119).5 This means the analyzed data is 

dissimilar to the original larger images as well as dissimilar to the phenomena at hand (i.e. the 

way moles and melanoma appear on the skin). This is an example of what I am calling a data 

processing idealization. Tamir and Shech (2022) suggest that the lack of similarity resulting 

from data processing idealizations can undermine how well ML models represent phenomena. 

 However, the worry here is largely grounded in implicitly adopting a similarity view of 

representation.  If we adopt an interpretive view of representation—as we do with toy models—

we get a different result. Nguyen (2020) considers an analogous case comparing an unmodified 

image of Obama to a color inverted picture. According to a similarity view of representation, 

the ordinary image of Obama is more similar to him and thereby is a more accurate 

representation of Obama. However, on the interpretive view of representation, both pictures 

have the same representational content because both pictures can license the same inferences 

about Obama. The difference is that the function one should use to map model-facts to claims 

differs between the two images. The inverted photo requires a color_inversion()function 

that converts the inversion to derive true inferences. The same is true of various data 

idealizations in ML modeling. In the dermatological example, the data processing that involves 

image distortion and representing images as RGB arrays requires the right interpretive function. 

For example, a resize_image() or array_to_pic() function to map model-facts to claims 

about a mole. The fact that the data becomes less similar to the target does not imply it becomes 

less representative of the target, with the right interpretive function. 

The interpretive view can be pushed even further regarding other distortions and 

idealizations in ML modeling, even to the aspects of ML models that seem the most dissimilar 

to their targets, such as finding patterns by manipulating vector space. For example, Boge 

(2022) argues that the hyper-parameters within a DNN in the best case give us ambiguous 

meanings, and in the worst case, are simply meaningless and thus cannot represent phenomena. 

However, it is compatible with the interpretative view that some lower-level internals of a DNN 

may not represent; as long as we can map abstract high-level ML model-facts to claims, the 

 
5 See https://cloud.google.com/tpu/docs/inception-v3-advanced) for more detail on Inception-v3.  

https://cloud.google.com/tpu/docs/inception-v3-advanced
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ML model can be said represent phenomena. Knowing the high-level model-facts—that these 

set of features contributed most to the decision—is possible through interpretability techniques 

(Creel 2020, Sullivan 2022a).  

Mapping ML model-facts to claims will likely involve a two-step process. Consider the 

dermatology example. First, an interpretability method must map a series of weights in a DNN 

to a set of understandable features (e.g. attention layer map, SHAP values, etc), where the 

interpretability method is itself an idealized model (Fleisher 2022).  Second, an interpretative 

function is needed that connects the set of understandable features the model relies on to the 

target phenomena.  For example, just as with toy models, the dermatology ML model (i) moves 

from an inevitability in the model concerning feature importance and classification to a 

susceptibility claim about the target system, namely that certain pigmentation differences 

indicate a susceptibility to be a melanoma. And (ii) we move from a very specific (and very 

local) model fact—that this particular mole was classified as a melanoma—to a less specific 

claim about identifying cases of melanoma in real cases (i.e. that it is possible that these features 

are indicators of melanoma). If anything, since evaluating ML models, due to model opacity, 

relies on another idealized model (interpretability methods), ML models could be described 

replying on idealization more than toy models.  

The challenge on the interpretive view of representation in the case of ML becomes 

finding the correct interpretative map that can reinterpret the idealizations and distortions that 

the ML model makes to the actual target. Such an interpretive map may not be known 

depending on the specific model and target phenomena. However, notice that this question—

the absence of a known map—is a different consideration from the ML representation 

hypothesis that focuses on representation with regard to similarity. It might be that this is where 

ML opacity starts to become an issue. Moreover, interpretability techniques themselves might 

be subject to idealization failures that can prevent understanding, which again signals that the 

idealization failure hypothesis is better suited to evaluate the epistemic status of ML models. 

 

3.3. Epistemology of ML models 

Recall that a second approach to solving the problem of toy models is to understand 

idealizations’ epistemic value. Here too ML models in science function epistemically as toy 

models. In the toy model literature, Reutlinger et al. (2018) distinguish highly idealized toy 

models that are embedded into and are models of an empirically well confirmed theory from 

‘autonomous’ models, where the science is still out, and are successful in virtue of enabling 

how-possibly explanations or how-possibly understanding. ML models function largely the 
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same way. Sullivan (2022a, 2022b) argues it is other evidential support external to the model 

that can render a ML model as facilitating or inducing understanding. Most ML models, on this 

view, have a high level of ‘link-uncertainty’ such that the ML model merely provide a type of 

how-possibly explanation, like toy models. Zednik and Boelsen (2022) also argue that ML 

models in science chiefly serve as hypothesis generating tools. Indeed, toy models are largely 

circumscribed as playing such a heuristic role (Sullivan and Khalifa 2019).  

Even if ML models may only provide how-possibly explanations, such explanations 

can still facilitate scientific understanding. How-possibly explanations are valuable heuristics 

to build better theories, discover hypotheses for future research, and provide answers to genuine 

questions regarding the scope of (im)possibilities (see Verreault-Julien 2019).  Thus, again, by 

taking ML models in science as functioning as highly idealized scientific models, we can reject 

the ML representation hypothesis regarding the epistemic status of ML models. ML models 

can still provide understanding (of possibilities) without being similar to their targets, which 

can explain the success of ML models despite their known limitations.  

 

4. Idealization failure hypothesis  

The discussion so far has centered around reasons we can reject the ML representation 

hypothesis regarding the epistemic status of ML models. In this last section, I want to suggest 

an alternative hypothesis that treats idealization evaluation, instead of representation, as 

centrally important for assessing the epistemic status of ML models.  

 

Idealization Failure Hypothesis 

Complex or opaque ML models fail to enable understanding of real-world 

phenomena when there is ML idealization failure.6 

 

The idealization failure hypothesis does not appeal to representation per se since, as discussed 

above (Section 2.2.), on several accounts of idealization, idealization lacks representational 

status or might misrepresent. Thus, one benefit of adopting the idealization failure hypothesis 

is that it does not necessarily require adopting a strong position regarding the representational 

status of ML models.  But what does it mean to have idealization failure? And when do ML 

model idealizations fail? I will have to leave a complete answer to these questions for further 

work, but there some avenues worth exploring.  

 
6 There may be other ways we should evaluate the epistemic status of ML models besides assessing 

idealizations. The ML idealization failure hypothesis should be read as a necessary test for ML models to pass, 

not a sufficiency test.  
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Current approaches to evaluating idealizations in philosophy of science are chiefly 

concerned with explaining why idealizations are successful. As a result, current idealization 

evaluation falls under two broad methods: The first trades on evaluating whether idealizations 

achieve the scientific aims of explanation or scientific understanding. The second method 

evaluates whether particular cases of idealizations instantiate a given theory of idealization. In 

the latter case, notions of idealization failure are often marginalized to the negation of a positive 

proposal.  

In general, idealizations can be successful empirically if they have predictive power 

(Mizrahi 2012) or are safe for engineering use (Batterman and Rice 2014; see Lawler 2021). 

On this score, ML models may do well because of their high predictive power and usefulness. 

On influential accounts of idealizations, idealizations are successful if they exemplify features 

of phenomena (Elgin 2017) or only distort non-difference makers (Strevens 2016). Developing 

certain evaluation tests of ML may help to uncover distortions of difference-making, such as 

spurious correlation tests or novel tests that probe ML architectures to uncover structural 

idealizations. Lawler (2021) proposes that idealizations can be legitimate and successful even 

if they only have the potential for empirical success, as long as there is an appropriate tie to the 

phenomenon in question. In the context of ML securing the appropriate tie to phenomena will 

likely require reducing link-uncertainty (Sullivan 2022a, 2022b). 

Since philosophers of science discuss successful idealization using examples that are 

either known successes, or cases of clear problematic distortions, idealization failure either 

goes unaddressed, with several cases simply labelled as successful in virtue of merely being 

possible explanations. There is a need for considering different gradients of success regarding 

how-possibly explanation, which can further assess cases of idealization failure and the 

epistemic status of idealizations in ML.7 So while in this paper I cannot provide an account of 

idealization failure for ML models, I hope that this paper provides motivation for considering 

the idealization failure hypothesis as a way to solve the problems that emerge from the 

similarity between ML models used in science and toy models. 

 

5. Conclusion  

Are ML models anything more than ‘mathematized science fiction’?8 In this paper I argued 

that one way of answering this question is to treat ML models as functioning as highly idealized 

toy models. If we adopt the view that highly idealized toy models can represent phenomena, 

 
7 Grüne-Yanoff and Verreault-Julien (2021) might be useful place to start.  
8 See Reutlinger et al. (2018, p. 1070) for posing the same question to toy models. 
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then so do ML models. Of course, there could be hold-outs to the similarity view of 

representation. For those holdouts, focusing more on the epistemology of idealization can 

capture the extent to which ML models may enable understanding without subscribing to the 

view that ML models represent targets. All told, I believe that adopting the view that the 

function of ML models is the same as highly idealized models can help us to understand not 

only the epistemic limitations of ML models, but also help to explain why they have been so 

successful and influential despite these epistemic limitations.  
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