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Abstract

The emergence of an autocatalytic network from an available set of elements
is a fundamental step in early evolutionary processes, such as the origin of
metabolism. Given the set of elements, the reactions between them (chemical or
otherwise), and with various elements catalysing certain reactions, a Reflexively
Autocatalytic F-generated (RAF) set is a subset R′ of reactions that is self-
generating from a given food set, and with each reaction in R′ being catalysed
from within R′. RAF theory has been applied to various phenomena in theoreti-
cal biology, and a key feature of the approach is that it is possible to efficiently
identify and classify RAFs within large systems. This is possible because RAFs
can be described as the (nonempty) subsets of the reactions that are the fixed
points of an (efficiently computable) interior map that operates on subsets of
reactions. Although the main generic results concerning RAFs can be derived
using just this property, we show that for systems with at least 12 reactions there
are generic results concerning RAFs that cannot be proven using the interior
operator property alone.

Keywords: autocatalytic network, union-closed sets, idempotent functions, directed
graphs

1 Introduction

Discrete graph-theoretic models have been developed to describe the emergence and
structure of self-generating autocatalytic reaction networks within a larger network.
This approach was pioneered by Stuart Kauffman’s modelling of autocatalytic sys-
tems in a simple polymer-based origin-of-life model [13, 14], as well as independent
results on the appearance of cycles in random directed graphs [2, 4] motivated by their
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relevance to the emergence of living systems. Kauffman’s notion of a self-generating
autocatalytic network was later formalised as a the concept of a Reflexively Autocat-
alytic and F-generated set (‘RAF’, defined shortly) [11]. The subsequent theory and
algorithms concerning RAFs have been applied in a number of areas, ranging from the
origin and structure of primitive metabolism [19, 20], to cognitive modelling in cultural
evolution [6, 7], to ecology [8, 9], and to economics [9]. The RAF concept is related
to (but different from) Robert Rosen’s Metabolism-Replacement (M;R) systems in
theoretical biology [12].

The task of determining whether or not a large network of ‘reactions’ contains a
RAF and if so finding one, is made tractable (in polynomial time) by the property
of a certain RAF map defined on the subsets of the full network of reactions. Here
we generalize RAF maps to interior operators and investigate the properties of such
operators, as well as the extent to which such operators (on arbitrary finite sets)
can be realized as RAF maps. In particular, we show that there are generic results
concerning RAFs that are not provable from just the basic properties of the RAF map
as an interior operator. The significance of this result in applications is that certain
generic properties of RAFs may require more detailed arguments than those that can
be derived using interior operator properties alone.

We begin by defining interior operators on finite sets, listing some of their basic
properties, and describing how they arise naturally from directed graphs. The results
are then applied to self-generating autocatalytic networks.

2 Interior operators and their fixed sets

In this paper, we will assume that all sets are finite, and given a set Y , we write 2Y

to denote the power set of Y . A function ψ : 2Y → 2Y is an interior operator on the
subsets of Y if it satisfies the following three properties (nesting, monotonicity, and
idempotence) for all subsets X,X ′ of Y :

(I1) ψ(X) ⊆ X,
(I2) X ⊆ X ′ ⇒ ψ(X) ⊆ ψ(X ′), and
(I3) ψ(ψ(X)) = ψ(X).

The term ‘interior operator’ comes from topology, since the function that assigns to
any subspace S of a topological space the interior of S (the union of all the open sets
contained in S) satisfies the three properties (I1)–(I3).

Given an interior operator, ψ : 2Y → 2Y and a subset X of Y , let

Fψ(X) = {U ⊆ X : ψ(U) = U}

denote collection of subsets of X that are fixed by ψ. We refer to the collection
{Fψ(X) : X ∈ 2Y } as the fixed sets of ψ. Note that Fψ(X) 6= ∅ since ∅ ∈ Fψ(X) for
any interior operator ψ.

The following lemma summarises some basic and elementary properties of interior
operators (a proof is provided in the Appendix).
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Lemma 1. Let, ψ : 2Y → 2Y be an interior operator, and let X be a subset of Y .

(i) ψ(X) ∈ Fψ(X) and ψ(X) =
⋃
U∈Fψ(X) U .

(ii) W ⊆ Fψ(X)⇒
⋃
W ∈ Fψ(X).1

(iii) An arbitrary collection C of subsets is the collection of fixed sets for some interior
operator if and only if ∅ ∈ C and C is union-closed. Moreover, in that case, there is
a unique interior operator ψC that has C as its collection of fixed sets, and which is
determined by:

ψC(X) =
⋃
{U ∈ C : U ⊆ X}, (1)

for all X ⊆ Y .

Notice that Parts (i) and (ii) of this lemma imply that ψ(X) is the unique maximal
fixed set contained within X.

Next, consider any function λ : 2Y → 2Y that satisfies the properties (I1) and (I2)
of an interior operator (but not necessarily (I3)). Define a function ψλ : 2Y → 2Y as
follows. For X ∈ 2Y , set

ψλ(X) =
⋂
i≥0

Hi(X), (2)

where H0(X) = X and Hi+1(X) = λ(Hi(X)) for all i ≥ 0. Notice that since Y is
finite, this intersection is finite, and thus, ψλ(X) = Hn(X) for the first value of n for
which Hn(X) = Hn+1(X).

Proposition 1. If Y is finite, and λ : 2Y → 2Y satisfies the properties (I1) and (I2),
then ψλ is an interior operator on 2Y . Moreover, ψλ = λ if and only if λ satisfies (I3).

Proof: For any X ∈ 2Y , we have ψλ(X) = Hn(X) for some value of n (dependent
on X), and Hn+1(X) = λ(Hn(X)) = Hn(X). Thus,

ψλ(ψλ(X)) = Hn(X) ∩ λ(Hn(X)) ∩ λ(λ(Hn(X)) · · ·

Since all of the sets in this intersection equal Hn(X) we obtain ψλ(ψλ(X)) = Hn(X) =
ψλ(X). For the second claim, if λ = ψλ then since ψλ satisfies (I3), so does λ.
Conversely, if λ satisfies (I3) then for every X ∈ 2Y we have:

ψλ(X) = X ∩ λ(X) ∩ λ(λ(X)) · · · = λ(X).

�

2.1 Interior operators arising from directed graphs

Let D = (Y,A) be a finite directed graph with vertex set Y , and for any nonempty
subset X of Y , let D|X be the induced sub-digraph on X (i.e. D|X has vertex set X
and (u, v) is an arc of D|X if and only if (u, v) ∈ A and u, v ∈ X). We let d+

D(v) denote

1For a collection W of sets we use the shorthand
⋃
W to denote ∪V∈WV .
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the in-degree of vertex v in D, and for v ∈ X, we let d+
D|X(v) denote the in-degree of

vertex v in D|X. Let
(
Y
k

)
denote the subsets of Y of size k, and for k ≥ 1, let:

Ck(D) = {X ∈
(
Y

k

)
: d+

D|X(v) ≥ 1 for all v ∈ X}, and

C(D) = {∅} ∪
⋃
k≥1

Ck(D).

We say that C(D) is trivial if C(D) = {∅}. The following result (particularly Part (iii))
will play an important role in Section 3.3. The proof is provided in the Appendix.

Proposition 2.

(i) C(D) is union-closed; moreover, C(D) is nontrivial if and only if D contains a
directed cycle.

(ii) If U,W ∈ C(D) with U ( W , then either W \ U ∈ C(D) or there is an element
w ∈W \ U for which U ∪ {w} ∈ C(D).

(iii) Suppose that k ≥ 3, Ck(D) =
(
Y
k

)
and Cj(D) = ∅ for all 1 ≤ j < k. Then

|Y | ≤ 1 + (k − 1)(k − 2).

Remarks:

• In Part (i), the claim that C(D) is nontrivial implies that D has a directed cycle
was noted in [5].

• Proposition 2(iii) fails for k = 1 or k = 2; in fact, Y can be arbitrarily large in these
cases (e.g., for k = 1 take the arc set {(v, v) : v ∈ Y } and for k = 2 take the arc set
{(u, v) : u, v ∈ Y, u 6= v}).

• It follows from Proposition 2 that not every interior operator on 2Y can be realised
as ψC(D) for some digraph D. For example, if we let Y = {a, b, c} and take the
union-closed set system C = {∅, {a}, {a, b, c}} then C cannot equal C(D) for any
digraph D by Proposition 2(ii). Alternatively, consider the union-closed set system
C+
k = {X ∈ 2Y : |X| ≥ k} ∪ {∅}, where k ≥ 3. This satisfies the two assumptions in

Proposition 2(iii) and so for any set Y with |Y | > 1 + (k − 1)(k − 2) it follows that
C+
k 6= C(D) for any digraph D on vertex set Y .

Moreover, as Y becomes large, the proportion of interior operators on 2Y that can be
realised as ψC(D) for some D converges to zero as |Y | grows. To see this, observe that

there are exactly 2n
2

digraphs on a vertex set Y of size n, and each digraph uniquely
determines ψC(D) (though many digraphs produce the same interior operator2). By
contrast, the total number of interior operators on 2Y grows much faster, as the
following result shows (a proof is provided in the Appendix).

Proposition 3. For any set Y of size n, there are at least 2( n
bn/2c) interior operators

on 2Y .

2For example, by Proposition 2(i), all acyclic digraphs return the trivial interior operator defined by
ψC(D)(X) = ∅, ∀X ⊆ Y .
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3 Self-generating autocatalytic networks (RAFs)

A catalytic reaction system (CRS) is a quadruple Q = (X,R,C, F ) consisting of a
finite nonempty set X of elements (e.g., molecule types) and a finite set R of reactions;
here a reaction r ∈ R refers to an ordered pair (A,B) where A and B are multisets
of elements from X. In addition, C is a subset of X × R where (x, r) ∈ C has the
interpretation that element x ‘catalyses’ reaction r. We will denote such a CRS by
writing Q = (X,R,C, F ). For each r ∈ R, the subset of X consisting of those elements
x for which (x, r) ∈ C are called the catalysts of r, and a particular subset of X,
namely a set F that has the interpretation as a set of elements that are freely available
to the system. Accordingly, F is referred to as a food set. We write

r : a1 + · · ·+ ak[c1, · · · , cr]→ b1 + · · ·+ bl

to denote the reaction that has the reactants A = {a1, . . . , ak}, the products
B = {b1, . . . , bl}, and the catalysts {c1, . . . , cr}.

Let ρ(r) denote the set of reactants of r (i.e., A, ignoring multiplicities), and let
π(r) denote the products of r (i.e., B, ignoring multiplicities)3. Moreover, for a subset
R′ of R, it is convenient to let π(R′) =

⋃
r∈R′ π(r) denote the set of products of the

reactions in R′.
A subset R′ is F-generated if the reactions in R′ can be placed in some linear

order r1, r2, . . . , rk so that ρ(r1) ⊆ F and for all j between 2 and k we have ρ(rj) ⊆
F ∪ π({r1, . . . , rj−1}). In other words, the reactions in R′ are F-generated if they can
proceed in some order so that the reactant(s) of each reaction are available by the time
they are first required. We call such an ordered sequence of R′ an admissible ordering.

Finally, given a CRS Q = (X,R,C, F ), we say that a subset R′ of R is a RAF
(Reflexively Autocatalytic and F-generated set) if R′ is nonempty and is F -generated
and, in addition, each reaction r ∈ R′ is catalysed by at least one element in F ∪π(R′).
For any CRS Q, let CRAF

Q denote the set of RAFs for Q.

Example 1. Consider the CRS Q = (X,R, F,C) for which X = {f, f ′, x, y, z},
F = {f, f ′} and the set R of reactions (with a catalyst indicated in square brackets) is
given by:

r1 : f [f ′]→ x; r2 : x[y]→ z; and r3 : x+ f [z]→ y.

In this case, R has exactly two admissible orderings (r1, r2, r3 and r1, r3, r2), and
CRAF
Q = {{r1}, {r1, r2, r3}}.

3.1 The maxRAF interior operator

A basic result is that when a CRS Q has a RAF, it has has a unique maximal RAF
(which is the union of all the RAFs for Q), denoted maxRAF(Q) [11]. For any subset

3It is assumed that ρ(r), π(r) 6= ∅ for all r ∈ R.
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R′ of R, let Q|R′ be the CRS (X,R′, C ′, F ), where C ′ is the restriction of C to X×R′,
and let ϕQ : 2R → 2R be the following function:

ϕQ(R′) =

{
maxRAF(Q|R′), if Q|R′ has a RAF;

∅, otherwise.
(3)

To describe how ϕQ can be viewed as an interior operator, we will first recall some
further terminology. Given a subset R′ of reactions R, a subset W of X is said to be
R′-closed if the following property holds:

• If a reaction r in R′ has all its reactants in W (i.e. ρ(r) ⊆W ), then all the products
of r are also in W (i.e., π(r) ⊆W ).

The union of two R′-closed sets need not be R′-closed; nevertheless, given a nonempty
subset W0 of X, there is a unique minimal R′-closed set containing W0, denoted
clR′(W0). This can be computed in polynomial time in the size of the system by
constructing a nested increasing sequence of subsets of elements

W0 ⊂W1, . . . ⊂Wk = Wk+1 ⊆ X

where:

Wi+1 = Wi ∪ {x ∈ X : ∃r ∈ R′ : ρ(r) ⊆Wi, x ∈ π(r)}, for i ≥ 0.

We then have clR′(W0) = Wk (note that k is the first value of i for which Wi = Wi+1).
If we now take W0 = F , it turns out that any subset R′ of R is F -generated if and
only if ρ(r) ⊆ clR′(F ) for all r ∈ R′ [17]; moreover, R′ is a RAF if R′ 6= ∅ and for each
r ∈ R′, the reactants of r and at least one catalyst of r is present in clR′(F ). This
allows us to express ϕQ as an operator of the form ψλ, where λ is a function on 2R

that satisfies the interior operator properties (I1) and (I2).
Let λQ : 2R → 2R be the function defined by:

λQ(R′) = {r ∈ R′ : ρ(r) ⊆ clR′(F ) and ∃x ∈ clR′(F ) : (x, r) ∈ C}.

The function λQ clearly satisfies conditions (I1) and (I2). If we recall the definition of
ψλ from Eqn. (2), the maxRAF operator has a representation in the following result
from [18].

Proposition 4. For any CRS Q = (X,R,C, F ), the map ϕQ : 2R → 2R is precisely
the interior operator ψλ for λ = λQ.

This identity (ϕQ = ψλ) allows for a polynomial-time algorithm to compute ϕQ
(c.f. [18] and the references therein). In particular, a nonempty subset R′ of R is a RAF
if and only if ϕQ(R′) = R′. Some new and interesting algebraic (semigroup) properties
of the map ϕQ were established recently in [16] (see also [15], which considers a more
general notion than a RAF, corresponding to ‘pseudo-RAFs’ in the RAF literature,
and which we do not explore further in this paper).
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3.2 RAFs in elementary CRS systems

At this point, it is helpful to consider a very special type of catalytic reaction system.
A CRS Q = (X,R,C, F ) is said to be elementary if each of its reactions has all its
reactants in the present food set (formally, ρ(r) ⊆ F for each r ∈ R).

Given an elementary CRS Q = (X,R,C, F ), define a digraph D(Q) = (V,AQ) to
have vertex set R and an arc from r to r′ (r 6= r′) if a product of r catalyses r′; in
addition, we place an arc from r to itself if either a product of r or an element of F
catalyses r.

The following result is easily verified from the definitions (or see [17], Theorem
2.1) and describes the set of RAFs of an elementary CRS Q (i.e., CRAF

Q ) in terms of
the fixed sets of the interior operators arising from digraphs (from Section 2.1, and
recalling the definition of C(D)). This will be applied in the next section.

Lemma 2. CRAF
Q ∪ {∅} = C(D(Q)).

An immediate consequence of this lemma and Proposition 2(ii) is the following.

Corollary 1. If Q is an elementary CRS which has a RAF, then for any two RAFs
of Q (say, R′, R′′) if R′ ( R′′, then either R′′ \ R′ is a RAF for Q or there is some
reaction r ∈ R′′ \R′ for which R′′ ∪ {r} is a RAF for Q.

Note that this corollary can fail without the assumption that Q is elementary;
Example 1 provides a counterexample for the two RAFs R′ = {r1} and R′′ = R =
{r1, r2, r3}. If one removes the ‘elementary’ restriction on a CRS, the class of possible
set systems that can be realised as RAFs of some suitably chosen CRS becomes larger
and less tractable. We investigate this further in the next section, where we will apply
Lemma 2 and the earlier Proposition 2(iii).

3.3 Representing an interior operator as a RAF operator

The main results in RAF theory that are generic (i.e., which hold regardless of the
particular choices or restrictions on F , X, R or C in Q) can be established by using
only the property that the maxRAF operator ϕQ is a (efficiently computable) interior
operator (see [18]). This raises the question as to whether theorems that hold true for
all RAFs can always be established from (just) this generic property. In other words,
can every interior operator on every finite set Y be realised as the maxRAF operator
associated with a suitably chosen catalytic reaction system Q = (X,R,C, F ) in which
Y is identified (via a bijection) with the set R of reactions in Q. We show that the
answer is ‘no’ by describing a generic result in RAF theory that is not a consequence
of the interior operator property of the maxRAF operator.

More precisely, we say that ψ has a RAF-realisation if there exists a CRS Q =
(X,R,C, F ) and a bijection b : Y → R such that for each Y ′ ∈ 2Y we have:

ψ(Y ′) = β−1 ◦ ϕQ(R′)

where R′ = β(Y ′) and where β : 2Y → 2R is the natural bijection induced by b. In
other words, the diagram shown commutes for each Y ′ ⊆ Y . Note that no restriction
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is placed on the sets X,F , and C in Q; in particular, they could be arbitrarily large
sets.

Y
′ ψ(Y ′)

R
′ ϕQ(R

′)

β β

ψ

ϕQ

We now show that such a realisation is not always possible, as described in Proposi-
tion 5(ii) below. For this result, an irreducible RAF (iRAF) for a CRSQ = (X,R,C, F )
is a RAF R′ with the property that it contains no (nonempty) RAF as a proper subset
(i.e., ϕQ(R′) = R′ and ϕQ(R′ \ {r}) = ∅ for all r ∈ R′).

Proposition 5.

(i) For any integer k ≥ 3 and any CRS Q = (X,R,C, F ) with |R| ≥ k3− 3k2 + 4k, not
all subsets of R of size k are iRAFs.

(ii) For any finite set R of size at least 12, there exists an interior operator ψ on 2R

that does not have a RAF-realisation.

Proof of Proposition 5: Part (i): Let m = (k2−3k+3), and suppose that |R| ≥ km
and every subset of R of size k is an iRAF; we will derive a contradiction. Since
|R| ≥ km there exist m disjoint subsets of R of size k, call them R1, . . . , Rm. Since
these are subsets of R of size k they are iRAFs for Q. Now, any RAF requires at
least one reaction to have all its reactants in the food set F (this can easily been
verified by considering the first reaction in any admissible ordering of the reactions
in a RAF). Thus, we can select one such reaction ri from Ri (for each i), to obtain a
set Rk = {r1, . . . , rm} of m (distinct) reactions, with each reaction in Rm having all
its reactants in F . Consider the CRS Qm = (X,Rm, Cm, F ) by restricting R to Rm
and restricting C to Cm = {(x, r) ∈ C : r ∈ Rm}. This is an elementary CRS, and
so, by Lemma 2, the set of RAFs of Qm is equal to C(D(Qm)) \ {∅} (where D(Q)) is
defined as Section 3.2). Since each subset of R of size k is an iRAF of Q (and noting
that m ≥ k), it follows that C(D(Qm)) \ {∅} contains all subsets of Rm of size k, and
no subsets of size less than k, and so we can apply Proposition 2(iii) (with Y = Rm)
to deduce that m = |Rm| ≤ 1 + (k − 1)(k − 2). But this contradicts the inequality
m = |R|/k = k2 − 3k + 4 > 1 + (k − 1)(k − 2).

Part (ii): Put k = 3 in Part (i) and consider the following map ψ : 2R → 2R:

ψ(R′),=

{
R′, if |R′| ≥ 3;

∅, if |R′| ≤ 2.

It is easily verified that ψ satisfies properties (I1), (I2) and (I3) and so is an interior
operator, but ψ has no RAF-realisation by Part (i). �
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Remarks:

• The condition that k ≥ 3 is required in Proposition 5(i) since for k ≤ 2 it is easy to
construct CRS systems with an arbitrarily large set of reactions and with all subsets
of R of size k being iRAFs (based on the second remark following Proposition 2).

• Note also that the value 12 in Proposition 5(i) (when k = 3) can be reduced to 4
if one restricts to RAF representations within elementary CRS systems. However,
without that restriction, Proposition 5(i) does not hold if 12 is replaced by 4. An
example is provided by the CRS Q consisting of X = {f, c1, c2, c3, γ, x, y, z}, F =
{f} and R comprising the four catalysed reactions:

r1 : f [c3, γ]→ x+ y + c1

r2 : f [c1, γ]→ y + z + c2

r3 : f [c2, γ]→ x+ z + c3

r4 : x+ y + z[w]→ w + γ

For this system, each of the four subsets ofR of size 3 is an iRAF ofQ = (X,R,C, F ).

It is possible that the value of 12 in Proposition 5(i) (when k = 3) could be reduced
further (or that value of 4 provided by the example above could be increased), however
this would require more elaborate arguments.

4 Concluding comments

Proposition 2 provides set-theoretic necessary conditions for a union-closed collection
of sets to be realisable by a digraph. A natural question is whether there is a set-
theoretic characterisation of the class of union-closed sets to be realisable by a digraph.
A more difficult task would be to characterise the set systems that are realisable as
the RAFs of some CRS. Related to the (still open) union-closed conjecture [1], is the
question of whether there is always a reaction that lies in at least half the RAFs (for
either an elementary or general CRS). Although we have focused on applications of
interior operators arising from digraphs to autocatalytic networks, other properties
of interior operators realisable by graph-based processes may also be relevant to vari-
ous applications (e.g. in investigating the fixed sets present within digraph models of
neuronal networks of the type discussed in [10])).
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7 Appendix

Proof of Lemma 1
Part (i): The first claim follows immediately from Condition (I3). For the second

claim, observe that the term on the right is a subset of ψ(X) since every set U in
Fψ(X) is a subset of X and so we can apply Condition (I2). However ψ(X) is also in
Fψ(X) (by Condition (I3)), so the ψ(X) is a subset of the right-hand side.

Part (ii): If A ∈ W , then A = ψ(A) ⊆ ψ(
⋃
W ) by (I2), so

⋃
W ⊆ ψ(

⋃
W ). Since

ψ(
⋃
W ) ⊆

⋃
W (by I1) it follows that ψ(

⋃
W ) =

⋃
W and so

⋃
W ∈ Fψ(X), as

claimed.
Part (iii): If C is a collection of fixed sets of some interior operator, then ∅ ∈ C, and

C is union-closed by Part (ii). Suppose that C has these properties, and consider ψC .
This function clearly satisfies (I1) and (I2). To verify Condition (I3), observe that the
union closure condition on C implies that

⋃
{U ∈ C : U ⊆ X} is a set U ′ in C, and so

ψC(ψC(X)) = ψC(U
′) =

⋃
{U ′′ ∈ C : U ′′ ⊆ U ′} = U ′ = ψC(X),

as required. Moreover, the fixed set of ψC is C, since if X ∈ C, then ψC(X) =
⋃
{U ∈

C : U ⊆ X} = X, and if ψC(X) = X then since C is union-closed, this implies
that X ∈ C. For the uniqueness claim, suppose that ψ has Fψ = C. From Part (i),
ψ(X) =

⋃
U∈Fψ(X) U and Fψ(X) = {U ∈ C : U ⊆ X} thus ψ = ψC . �

Proof of Proposition 2
Part (i): Suppose that X,X ′ ∈ C(D), and v ∈ X ∪X ′. Without loss of generality,

we may suppose that v ∈ X. Then v has strictly positive in-degree in D|X, and any
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arc of the form (x, v) with x ∈ X is also present in D|(X ∪X ′). Thus X ∪X ′ ∈ C(D).
For the second claim, if v1, . . . , vr = v1 is a directed cycle in D, then the set of vertices
in this cycle lies in C(D). Conversely, if D is acyclic, then so too is D|X for any subset
X of Y , and since every finite acyclic directed graph has a vertex of in-degree 0, it
follows that X 6∈ C(D).

Part (ii): Suppose there is no vertex w ∈W \ U for which U ∪ {w} ∈ C(D). Then
there is no arc from any vertex in U to a vertex in W \ U . However, every vertex in
W \U has an incoming arc from some vertex in W , and therefore, it has an incoming
arc from some vertex in W \ U . Thus D|(W \ U) has the property that every vertex
in this induced graph has in-degree at least 1, so W \ U ∈ C(D).

Part (iii): Let D = (V,A), and suppose that Ck(D) =
(
Y
k

)
and Cj(D) = ∅ for all

1 ≤ j < k, where k ≥ 3. We first show that this implies that d+
D(v) ≤ k − 2 for each

vertex v ∈ Y . To see this, suppose that d+
D(v′) ≥ k−1 for some element v′ ∈ Y ; we will

derive a contradiction. Observe that (v′, v′) /∈ A (otherwise {v′} ∈ C1(D) = ∅) and so
there is a subset X ′ of size at least k − 1 for which (x′, v′) ∈ A for each x′ ∈ X ′. Let
X ′′ be any subset of X ′ of size exactly k− 1. Since Ck−1(D) = ∅ and |X ′′| = k− 1, at
least one element x′′ ∈ X ′′ has no incoming arc from any other vertex in X ′′, which
means that (v′, x′′) ∈ A, since X ′′ ∪ {v′} ∈ Ck(D). On the other hand, (x′′, v′) ∈ A
(by definition of X ′′), which implies that {v′, x′′} ∈ C2(D), providing the required
contradiction since C2(D) = ∅ (since k ≥ 3). Thus each vertex v in D has in-degree at
most k − 2, as claimed.

If we now let n = |Y | then, since |A| =
∑

v∈Y d
+
D(v), we obtain:

|A| ≤ (k − 2) · n. (4)

Now consider the set Ω of pairs (S, a) where S is a subset of k vertices from Y , and a
is an arc between any two vertices of S. Formally,

Ω = {(S, a) : S ∈
(
Y

k

)
; a ∈ A ∩ (S × S)}.

We count this set in two ways. Since n = |Y |, the number of choices for S is
(
n
k

)
.

Moreover, for each such set S, there are precisely k arcs that form a cycle involving k
elements in S, since: (a) if any more arcs were present between the vertices of S then
a set in Cj(D) for some j < k would appear, and (b) if no cycle was present involving
all elements of k, then S would not lie in Ck(D), and both of these two possibilities
are excluded by the two assumptions stated in Part (iii). In summary,

|Ω| =
(
n

k

)
· k (5)

We can also count Ω by first selecting an arc (u, v) from A and counting the number
of sets S ∈

(
Y
k

)
that contain u and v. By the assumptions in Part (iii), each subset

of Y of size k induces a unique cycle through all the vertices (and with no other arcs
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present between the vertices), so the number of sets S that can be chosen for (u, v) is(
n−2
k−2

)
. Thus we have:

|Ω| =
(
n− 2

k − 2

)
· |A| (6)

Combining Eqns. (4), (5) and (6) gives:(
n

k

)
k ≤

(
n− 2

k − 2

)
(k − 2)n,

which simplifies to n ≤ 1 + (k − 1)(k − 2), as claimed. �

Proof of Proposition 3:
Let A = {U ⊂ Y : |U | = bn/2c}, which is an antichain in the poset 2Y (partially

ordered by set inclusion) of size
(

n
bn/2c

)
(A is also a largest antichain by Sperner’s

theorem). Let S be a subset of A, and let C[S] be the collection of subsets of Y
consisting of ∅, the sets in S, and all possible unions of the sets from S. In this case,
C[S] satisfies the conditions of Lemma 1 (iii) and so there is a unique interior operator
ψC[S] that has the fixed set C[S]. Moreover, the collection of minimal nonempty fixed
sets of ψC[S] is precisely the sets in S, so if S 6= S′, then ψC[S] 6= ψC[S′]. Since there

are 2( n
bn/2c) choices for S, this completes the proof. �

13


	Introduction
	Interior operators and their fixed sets
	Interior operators arising from directed graphs

	Self-generating autocatalytic networks (RAFs)
	The maxRAF interior operator
	RAFs in elementary CRS systems
	Representing an interior operator as a RAF operator

	Concluding comments
	Acknowledgements
	Declarations
	Appendix

