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I prove the existence of infinitely many physically distinct worlds represented by the same state
vector and evolving according to the same law. This gives a constructive refutation of “Hilbert-space
fundamentalism”, the hypothesis that from the abstract state vector and the Hamiltonian all features
of the physical world emerge uniquely, including space, all physical objects and their properties, and
the decomposition into subsystems (Carroll 2021). This thesis was previously refuted in (Stoica 2021)
in full generality, but the proof was mathematically very abstract, while the present constructive
proof is, hopefully, easily accessible to the down-to-earth intuition of the working physicists and
philosophers of physics.
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I. INTRODUCTION

A quantum system, which may be the entire world, is
represented by a unit vector |ψ(t)⟩ called state vector.
|ψ(t)⟩ belongs to a state space H, a complex vector space
endowed with a scalar product ⟨ψ|ξ⟩ = ⟨ξ|ψ⟩∗, having
some continuity properties that make it a Hilbert space.
A system in the state |ψ(0)⟩ changes, after a time in-

terval t, according to the evolution equation:

|ψ(t)⟩ = Ût |ψ(0)⟩ , (1)

where Ût = e−i/ℏĤt, ℏ is the reduced Planck constant,

and Ĥ is the Hamiltonian operator. Ĥ is time indepen-
dent for closed systems and even for the entire universe.

The evolution operators Ût preserve the complex vector
space structure and the scalar product of H, so they are
unitary.

Definition BQS. We call the triple (H, Ĥ, |ψ(t)⟩) basic
quantum structure.

This quantum formalism raises the following problem:

Question 1. Does the basic quantum structure

(H, Ĥ, |ψ(t)⟩) give a complete description of reality?

It is sometimes claimed that the answer to Question
1 is yes (Carroll 2021, Carroll and Singh 2019). This
thesis, coined “Hilbert-space fundamentalism” in (Car-
roll 2021), is assumed in numerous research programs,
especially Quantum Gravity programs in which space-
time emerges from the quantum structure. A discussion
and more references are given in (Stoica 2021), where it
was shown that the answer is negative by giving an ad-
mittedly very abstract but fully general proof. Also nu-
merous counterexamples can be found in (Stoica 2022b).

In Section §II I show that the same state vector and
the same Hamiltonian describe physically distinct histo-
ries corresponding to different measurement outcomes.
This provides a very simple, intuitive and constructive

proof that the answer to Question 1 is negative. This
supplements the proof from (Stoica 2021) and the coun-
terexamples from (Stoica 2022b) with more concrete sit-
uations that are more accessible to the readers that are
too busy or less patient with mathematical abstractions,
but have a good physical intuition of quantum theory. In
Section §III we will see that this ambiguity extends to
the classical level of reality, even in the absence of explic-
itly quantum measurements. Section §IV concludes with
a brief discussion of the implications of this result. The
more technical parts are exiled in Appendix §A.

II. THE PRINCE AND THE PAUPER

Edward is a young dreamer with bold ideas, who wants
to make positive contributions to the world. He wants to
invest, thinking that money would help him achieve his
goals. Since he has a risk-embracing attitude, he decides
to let quantum measurements make financial decisions
for him. Or maybe he is just practical, not wanting to
waste too much time making decisions based on incom-
plete information.
So whenever he thinks of choosing between two pos-

sible investments, or between buying or selling stocks,
he lets quantum chance decide for him, and he faithfully
bids accordingly. He can do this by making quantum
measurement on qubits, or by using Vaidman’s Quantum
World Splitter (Vaidman 2022).
Suppose that if the qubit turns out to be in the state

|+⟩ Edward becomes very wealthy. Let’s represent the
world’s state in which Edward is rich like a prince by

|ψ+⟩ =

∣∣∣∣∣
〉
. (2)

But if the opposite result |−⟩ is obtained, he becomes
poor like a pauper, and the world’s state becomes:

|ψ−⟩ =

∣∣∣∣∣
〉
. (3)

mailto:cristi.stoica@theory.nipne.ro
mailto:holotronix@gmail.com


2

This scenario is inspired by Mark Twain (Twain 1882).
The images are A.I. generated (Zendesk 2023). Based on
this scenario, I prove the following result:

Theorem 1. The same basic quantum structure can rep-
resent an unlimited number of physically distinct realities.

Proof. Let the (H, Ĥ, |ψ+(t)⟩) be the basic quantum
structure, assumed to describe a world in which Edward
is rich like a prince.

Consider an alternative universe, with the same de-
grees of freedom and the same evolution law. There is no
need for an alternative universe to exist, later we will see
that this can be dropped and we can talk about the same
universe. But for now it’s pedagogically easier to intro-
duce our problem by assuming an alternative universe.

Let (H′, Ĥ′, |ϕ(t)⟩′) be its basic quantum structure.

The two basic quantum structures (H, Ĥ, |ψ+(t)⟩) and
(H′, Ĥ′, |ϕ(t)⟩′) are isomorphic if there is a unitary op-

erator T̂ : H → H′ so that{
T̂ |ψ+(t)⟩ = |ϕ(t)⟩′

T̂ĤT̂−1 = Ĥ′.
(4)

If they are isomorphic, for any structure S sup-
posed to emerge from the basic quantum structure

(H, Ĥ, |ψ+(t)⟩), there is an equivalent structure S′ emerg-

ing from (H′, Ĥ′, |ϕ(t)⟩′), induced by an isomorphism as
in equation (4) from the structure S.
I will show that the basic quantum structure

(H, Ĥ, |ψ+(t)⟩) is isomorphic to both (H′, Ĥ′, |ψ+(t)⟩′)
and (H′, Ĥ′, |ψ−(t)⟩′), where |ψ+(t)⟩′ and |ψ−(t)⟩′ are
two physically distinct worlds resulting from the same
qubit measurement. This will entail that there are phys-
ically distinct structures, so they don’t emerge uniquely.

For this, let’s return to young Edward and his usage
of quantum measurements for decision making. We will
consider a copy of Edward and his world represented in
H′. Let the universe, prior to the qubit measurement, be
in the state

|Q⟩ |ready⟩ . (5)

If |Q⟩ = |+⟩, the universe evolves unitarily like

|+⟩ |ready⟩ 7→ |ψ+⟩ =

∣∣∣∣∣
〉
, (6)

while if |Q⟩ = |−⟩, its unitary evolution is

|−⟩ |ready⟩ 7→ |ψ−⟩ =

∣∣∣∣∣
〉
. (7)

From Lemma 1 (see Appendix §A), there is a unitary

transformation Ŝ of the total Hilbert space H′ that pre-

serves the Hamiltonian Ĥ′ so that

Ŝ

∣∣∣∣∣
〉

=

∣∣∣∣∣
〉
. (8)

We found two basic quantum structure isomorphisms,{
T̂ : (H, Ĥ, |ψ+(t)⟩) → (H′, Ĥ′, |ψ+(t)⟩′)
ŜT̂ : (H, Ĥ, |ψ+(t)⟩) → (H′, Ĥ′, |ψ−(t)⟩′).

(9)

Therefore, (H, Ĥ, |ψ+(t)⟩) represents both a world in
which Edward is rich, and a world in which he is poor.

Moreover, since Edward makes many financial deci-
sions by using qubit measurements, the number of al-
ternative worlds represented by the same basic quantum
structure has an exponential, unlimited growth.

All these worlds may be physically very different, from
containing a bankrupt Edward living on the street, to
versions of Edward that built various financial empires,
depending on the investment he made as advised by the
results of the quantum measurements.

Therefore, the basic quantum structure (H, Ĥ, |ψ(t)⟩)
doesn’t give a complete description of reality.

III. AMBIGUITY AT THE CLASSICAL LEVEL

While the world is described by quantum theory, it
appears to us classical, at least as long as we don’t ap-
peal to quantum measurements. But quantum measure-
ments are ubiquitous, for example sight is a quantum
measurement. When we observe visually the positions
and shapes of objects, sight works like a position mea-
surement. When we observe color, it works like a mo-
mentum measurement, since the wavelength of light is
proportional to the momentum.

Both the emergence of classicality at the macro level
and the quantum measurements work in the same way. A
quantum measurement leads to a superposition of states
in which the pointer state has observably distinct states.
Whatever resolves this superposition, whether it is the
wavefunction collapse or decoherence or another mecha-
nism, it also ensures that at the macro level superposition
is gone, and the world appears to us classical.

The observables that represent positions and momenta
have continuous spectra, the full set of real numbers R.
This is in contrast with the qubit observables, which have
only two eigenvalues. But Lemma 2 shows that the re-
sulting states corresponding to two distinct eigenvalues
are related by a unitary transformation that preserves
the evolution law.

Therefore, the possible states of the macro level of
reality that result from the same initial state vector
can be described by the same basic quantum structure

(H, Ĥ, |ψ(t)⟩). This provides, again, an unlimited num-
ber of concrete counterexamples to the Hilbert-space fun-
damentalism thesis. These counterexamples don’t even
require explicitly quantum measurements, only naked eye
observations of the world.



3

IV. DISCUSSION

If Hilbert-space fundamentalism were true, space,
fields on space, the decomposition into subsystems, a
preferred basis, and every other physical feature of the
world would emerge uniquely from the state vector and
the Hamiltonian.

In (Stoica 2021) it was shown that whenever such a
structure emerges from the state vector and the Hamil-
tonian, it is not unique. The only structures that can
emerge uniquely are those that can’t exhibit physical dif-
ferences, even in relation with the state vector. But the
actual structures exhibit such differences. For example
the wavefunction changes with respect to space and to
the tensor product decomposition of the Hilbert space
that corresponds to subsystems. Numerous counterex-
amples to Hilbert-space fundamentalism were provided
in (Stoica 2022b). One may object that the particular
Hamiltonian of our world is not among those examples,
but in (Stoica 2022a) it was shown that if it is not, the
world can return to a past state.

The results from (Stoica 2021) were shown to affect all
theories that assume an affirmative answer to Question
1, whether they rely on state vector reduction or branch-
ing (e.g. the version of Everett’s Interpretation coined
by Carroll and Singh “Mad-dog Everettianism”), propos-
als based on decoherence, and proposals that spacetime
emerges from a purely quantum theory of gravity. This
doesn’t mean that such approaches are useless, just that
they can’t give a complete description of reality.

The proof given in (Stoica 2021) is fully general, but
it was largely ignored, maybe because it’s quite abstract,
using tensors on the Hilbert space and invariants, and
because it’s an existence proof without many construc-
tive counterexamples. The most intuitive and construc-
tive counterexample was obtained using transformations

of the form Ŝ = Ût, which preserve the Hamiltonian and
its relation with the state vector. This implies that the
present time state vector also describes the past and fu-
ture states of the world. But the constructions present
here give concrete examples of alternative realities repre-
sented by the same state vector and Hamiltonian.

If we assume Hilbert-space fundamentalism, Theorem
1 implies that Edward from a world in which he is poor
also lives in a world in which he is rich, and he can realize
this just by passively changing the basis of the Hilbert
space. Section §III implies that he can do this with-
out even making explicitly quantum measurements. By

changing the basis using Ŝ = Ût, he can also passively
travel in time (Stoica 2021). Such paradoxes show that
the abstract state vector and the Hamiltonian provide an
incomplete description of reality.

There are infinitely many continuous families of uni-
tary transformations that commute with the Hamiltonian
and preserve the state vector (Stoica 2021). Those from
this article are just more intuitive, physically.

Appendix A: Proof of Lemma 1

To prove Lemma 1, needed in the proof of Theorem
1, we recall the standard model of quantum measure-
ments (see e.g. Mittelstaedt 2004, §2.2(b), and Busch
et al. 1995, §II.3.4). Realistic examples of such mea-
surements are described in (Busch et al. 1995, §VII),
including spin measurements using the Stern-Gerlach de-
vice, photon polarization measurements, various photon
counters and measurements, and various beam splitter
experiments.
We will apply the model to the measurement of a qubit

observable Â whose eigenvalues are ±1.
In the case of spin measurements using the Stern-

Gerlach apparatus, the possible outcomes of the measure-
ment are distinguished by the region of a photographic
plate hit by the observed particle. Therefore, the pointer
observable corresponds to position. Similarly, we choose

a pointer operator Ẑ with the spectrum equal to R. By
working in the interaction picture, we can take the free
Hamiltonians of the two systems to be zero, without loss
of generality. This allows us to focus only on the inter-
action Hamiltonian. The Hamiltonian is

Ĥ = Ĥint = −gÂ⊗ p̂Z, (A1)

where p̂Z is the canonical conjugate of the pointer oper-

ator Ẑ. The coupling g is constant in the interval [0, T ]
and negligible outside this interval.
Let {|λ, a⟩}a∈A be a set of orthonormal eigenvectors of

Â corresponding to the eigenvalue λ. To account for the
possible degeneracy of the eigenvalues, they are indexed

by a label a ∈ A . Since all eigenspaces of Â have the
same dimension, we can choose the same set of labels for
all λ. They can be absent if the eigenvalues are unique.
Let |ζ⟩ be the pointer eigenvector corresponding to the

eigenvalue ζ ∈ R. Since p̂Z is the canonical conjugate of

the pointer operator Ẑ, they satisfy the canonical com-
mutation relation

[Ẑ, p̂Z] = iℏÎ. (A2)

The operator p̂Z generates the translations on the set

of eigenvectors of Ẑ, i.e. for τ ∈ R,

e−iτ p̂Z |ζ⟩ = |ζ + τ⟩ . (A3)

Then, for any eigenvector |λ, a⟩ of Â and any time
interval t ∈ [0, T ], we obtain (Mittelstaedt 2004, §2.2(b)),

Ût |λ, a⟩ |ζ⟩ = e−
i
ℏ Ĥt |λ, a⟩ |ζ⟩

= e
i
ℏ gÂ⊗p̂Zt |λ, a⟩ |ζ⟩

= |λ, a⟩ eigtλp̂Z |ζ⟩
= |λ, a⟩ |ζ − gtλ⟩ .

(A4)

If the ready pointer state is calibrated to be |0⟩ and
the resulting pointer state after the time interval T is
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|−gTλ⟩, the corresponding eigenvalue of Â for the ob-
served system is read to be λ. Therefore,

Ût |λ, a⟩ |ready⟩ = |λ, a⟩ |result = λ⟩ . (A5)

Lemma 1. For the qubit measurement there is a unitary

transformation Ŝ of the total Hilbert space so that

[Ŝ, Ĥ] = 0̂ (A6)

and

Ŝ |+⟩ |result = +1⟩ = |−⟩ |result = −1⟩ . (A7)

Proof. In the standard measurement scheme, we choose
the unitary transformation defined on the basis vectors
of the Hilbert space by

Ŝ |λ, a⟩ |ζ⟩ = |−λ, a⟩ |−ζ⟩ . (A8)

Therefore condition (A7) is satisfied.
For the condition (A6), we notice that for all t ∈ [0, T ]

ÛtŜ |λ, a⟩ |ζ⟩ (A8)
= Ût |−λ, a⟩ |−ζ⟩

(A4)
= |−λ, a⟩ |−ζ + gtλ⟩

(A8)
= Ŝ |λ, a⟩ |ζ − gtλ⟩

(A4)
= ŜÛt |λ, a⟩ |ζ⟩ .

(A9)

Therefore, for all t ∈ [0, T ],

ÛtŜ = ŜÛt. (A10)

By taking the limit t ↘ 0, it follows that ĤŜ = ŜĤ,
so condition (A6) is satisfied too.

Remark 1. The result from Lemma 1 extends easily to

any observable Â that has −λ as an eigenvalue when-
ever λ is an eigenvalue, and whose eigenspaces have
equal dimension. This includes the cases when the spec-

trum of Â is a continuous interval (−λmax,+λmax) or
[−λmax,+λmax].

In addition, in the case when the spectrum of the ob-

servable Â is R, we have the following result.

Lemma 2. If the spectrum of Â is R and the eigenspaces
have equal dimension, for any pair of non-null eigenvalues

λ1 ̸= λ2 there is a unitary transformation Ŝ of the total

Hilbert space so that [Ŝ, Ĥ] = 0̂ and

Ŝ |λ1⟩ |result = λ1⟩ = |λ2⟩ |result = λ2⟩ . (A11)

Proof. This is achieved by the unitary transformation

Ŝ |λ, a⟩ |ζ⟩ =
∣∣∣∣λ2λ1λ, a

〉 ∣∣∣∣λ2λ1 ζ
〉
. (A12)

Then,

ÛtŜ |λ, a⟩ |ζ⟩ (A12)
= Ût

∣∣∣λ2

λ1
λ, a

〉 ∣∣∣λ2

λ1
ζ
〉

(A4)
=

∣∣∣λ2

λ1
λ, a

〉 ∣∣∣λ2

λ1
ζ − gtλ2

λ1
λ
〉

(A12)
= Ŝ |λ, a⟩ |ζ − gtλ⟩

(A4)
= ŜÛt |λ, a⟩ |ζ⟩ .

(A13)

Therefore, ÛtŜ = ŜÛt for all t ∈ [0, T ] and the limit

t↘ 0 gives ĤŜ = ŜĤ.
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