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Abstract

Philosophers of science have argued that the widespread adoption of the
methods of machine learning (ML) will entail radical changes to the va-
riety of epistemic outputs science is capable of producing. Call this the
disruption claim. This, in turn, rests on a distinctness claim, which holds
ML to exist on novel epistemic footing relative to classical modelling ap-
proaches in virtue of its atheoreticity. We describe the operation of ML
systems in scientific practice and reveal it to be a necessarily theory-laden
exercise. This undercuts claims of epistemic distinctness and, therefore,
at least one path to claims of disruption.

1 Introduction

The field of artificial intelligence—or, perhaps more accurately, fields, as there
have been a number of distinct research communities and bodies of scholarship
under this denomination which bear little in common beyond the title—has
been beset by waves of popular attention and ebbs and flows of funding since
its incipience. It is worth noting that there have been (at least) two epochs
of AI hype in the past decades which have compounded together to emerge in
the present form of obsession over “automated science.” In the late 1990s and
early 2000s there occurred an early internet data-mining craze, in which it was
discovered that statistical techniques, unleashed on sufficiently large datasets,
could reveal complex and meaningful patterns (Rajaraman & Norvig, 1998).
Around 2010 there commenced what has since come to be known as the deep
learning revolution, in which breakthroughs in neural network approaches to
image classification (alexnet) and natural language processing (word2vec) re-
newed public interest in the methods of machine learning. We appear to be on
the cusp of a third wave at present with the ascension of generative modelling
fueled by web-scale data.

The prospects of machine learning for science have, in particular, opened
wide in the last decade, over which timescale ML techniques were adopted in
the Large Hadron Collider at CERN for sorting the significance of particle col-
lision events (Duarte et al., 2018) and DeepMind released its AlphaFold and
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AlphaFold 2.0 (Jumper et al., 2021), capable of predicting tertiary and quater-
nary protein structure from amino acid sequence data, effectively solving one of
biology’s most complex and enduring open problems. The rapidity and ubiq-
uity of machine learning uptake across all sectors of public life, in particular,
science, has sparked an onslaught of speculation concerning its nature and the
downstream consequences of its widespread use.

Such speculation has issued from cultural commentators, journalists, and
media personalities, from the mathematicians and engineers producing the tools
of ML and the scientists deploying them and, of course, from philosophers, in
both academic and popular venues. Responses focussed on the epistemic status
of ML and its projected impact on science have echoed statements to the effect
that machine learning differs radically from prevailing modelling, statistical, or
scientific methods in ways that are projected to change the landscape of scientific
discovery or the nature of the epistemic fruits of scientific enterprise.

These scholars prophesy a data-driven or ML-driven scientific revolution
(Hey, Tansley, Tolle, et al., 2009; Mayer-Schönberger & Cukier, 2013; Anderson,
2008; Spinney, 2022). They foretell an end to hypothesis testing (Anderson,
2008; Mayer-Schönberger & Cukier, 2013; Spinney, 2022). They envision ML
methods retiring or else displacing the role of theorising in science (Anderson,
2008; Mayer-Schönberger & Cukier, 2013; Spinney, 2022; Srećković, Berber,
& Filipović, 2022). They predict that ML will obviate the need for domain
knowledge or expertise in science (Mayer-Schönberger & Cukier, 2013). The
predictive success of ML is projected to replace the need for insight into causal
mechanisms or the data-generating process (Mayer-Schönberger & Cukier, 2013;
Spinney, 2022). Some of these statements echo proclamations that were once
made of classical statistical method: that big data analytic tools promise to
allow the raw data to “speak for themselves” (Levins & Lewontin, 1985).

Some of these claims of disruption fall under the heading of ML or AI hype—
they issue from individuals swept up in a wave of drastically overselling the
capabilities of presently existing ML techniques 1. Others reflect what we term
a theory-free ideal in science: aspirations of näıve empiricism rampant today
within the special sciences. Subscribers to the theory-free ideal seek to purge
science of what they see as epistemically compromising arbitrariness and sub-
jectivity, which are brought on board when human critical thinking and concep-
tualisation of the phenomena under study play an essential role in shaping the
empirical research programme or the conceptual tools wielded therein. Lastly,
these claims have been motivated by a concern for the future of science. If the
scientific process becomes automated, purged of theory, and overtaken by un-
interpretable black-box algorithms with human domain experts pushed out of
the loop, this third category worries that the epistemic products of science may
cease to be accessible to human interpreters. Interestingly, whether motivated
by optimism or pessimism for the future of science, assessments of the role of ML
in science have converged upon the same essential thesis: science will undergo

1 Often, though not always, because such individuals stand to materially benefit from this
widespread cultural misperception
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drastic change with the advent of ML-based methods, because such methods are
theoretically unmoored or conceptually impoverished in a way that sets them
fundamentally apart from existing instances of applied mathematics. We dub
this second claim the distinctness claim.

If, indeed, the procedure of science or the status of knowledge produced
in science are set to radically change, this merits serious engagement by sci-
entists and philosophers of science. If, instead, as we will argue, this is base-
less sensationalism—which has established a foothold in not only the public
consciousness but in communities of relevant experts—this deceptive narrative
ought to be challenged, for it will lead scientists and the public astray. The
distinctness claim latches onto a real novelty in much ML deployed toward sci-
entific ends: potential for misuse and lack of methodological standards. Instead
of identifying this as the epistemic problem it represents, however, the distinct-
ness claim functions to reify this (potential) misuse of ML-based tools into an
account of how these tools normally function, how they necessarily function, or
even how they normatively ought to function.

2 Disruption & Distinctness

Claims of disruption and distinctness do not originate from within philosophy of
science—they have been repeated for some time now by scientists, engineers, and
journalists. Such proclamations as they come from engineers and journalists,
or made in passing by scientists providing reconstruction or meta-commentary
on the subject of their own work, lack the detail and rigour that philosophers
of science are held to in defending such claims, and for this reason we engage
principally with claims of disruption and distinctness as they are expressed by
philosophers of science in formal venues. It is our hope, however, that the
argument generalises as a response to all instances of such claims, independent
of disciplinary affiliation, interlocutor, or venue. We will look to three texts in
the philosophy of science as representative of disruption and distinctness claims.

Boge (2022) speculates that a revolution in either scientific practice or its
epistemic footing may be in store owing to the adoption of machine learning—
specifically deep learning—methods. Boge’s argument rests on the idea that
deep learning is both instrumental in an idiosyncratic sense among modelling
approaches in the sciences, and that it exhibits a novel kind of epistemic opacity
to its deployers. These identifying facets of deep learning pose an impediment
to understanding and explanation (in the scientific sense), especially when de-
ployed in exploratory settings where the successful results of scientific enquiry
will require novel concept formation. Owing to their divergence from standard
mathematical modelling practices in the sciences, Boge claims, ML modelling
techniques “have the potential to profoundly ‘change the face of science’” (Boge,
Grünke, & Hillerbrand, 2022, p.71).

Boge urges that the distinction between the procedure of classical mathemat-
ical modelling or computer simulation in science and the application of machine
learning methods is that the former procedure begins with a conceptualisation
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of the target phenomenon under investigation, while this step is absent in the
use of ML. Especially in exploratory modelling contexts, the lack of background
theory or conceptualisation of the target phenomenon is taken as an impediment
to understanding. While Boge grants that DL models might represent, he holds
that they fail to be explanatory for lack of theoretical context and conceptual
content. Boge takes after de Regt in his stance on the relation between represen-
tational status and explanatory status: “for representational models to explain,
they must also be constructed under the principles of an intelligible theory,
where a theory is intelligible if it has certain qualities that ‘provide conceptual
tools for achieving understanding’ (de Regt, 2017, p. 118)”(Boge, 2022, 54).
Boge predicts profound changes to the practice and epistemic products of sci-
ence because ML-based tools will fail to provide understanding or explanations
due to their lack of theoretical or conceptual motivation and content.

In a similar vein, Sreckovic, Berber, and Filipovic (2022) differentiate ma-
chine learning techniques from standard practices in statistical modelling, ar-
guing that statisticians employ theoretical assumptions, while machine learners
do not (Srećković et al., 2022). Sreckovic, Berber, and Filipovic (2022) eval-
uate what they hold to be the key differences between traditional modelling
approaches and machine learning methods in terms of the explanatory capacity
of both and their capacity to elucidate causal relationships. Sreckovic et al di-
agnose the methods of machine learning as uninterpretable, and not resting on
theoretical considerations. This, according to the authors, prevents the prac-
tice from getting at underlying causes and furnishing explanations of natural
phenomena. The ability of ML techniques to provide prediction in the absence
of explanation is projected by the authors to alter the landscape of how we
conduct science.

“In contrast to explanatory-focused statistical models,” Sreckovic et al ar-
gue, “ML models reach predictions without the theoretical backup that supple-
ments the correlations found in the data with a potential causal interpretation”
(Srećković et al., 2022, 160). Machine learning, they argue, is “theory-agnostic”
in that “there are no a priori assumptions concerning the mechanism of the tar-
get phenomenon” (Srećković et al., 2022, 165). While the authors acknowledge
a sort of disappearing line between ML and traditional statistical techniques,
their emphasis is on drawing out broad characterisations of the two disciplines
and what separates them. Whereas for “traditional statistics, standard models
rely on the representation of underlying causal mechanisms, and they are used
for retrospective testing of an already existing set of causal hypotheses...ML
models are constructed based on data instead of theoretical assumptions about
the target system. The purpose of such models is primarily forward-looking, i.e.
to predict new observations” (Srećković et al., 2022, 166). Here, the contrast
the authors draw between broadly “data-driven” and “theoretically-motivated”
methods is telling. This distinction is not one the authors have introduced: such
a divide between theory-driven or hypothesis-driven research and data-driven
research is held widely among engineers and scientists. Sreckovic et al merely
provision a philosophical exposition and justification thereof.

The majority of philosophers of science grappling with the existence and
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scientific uptake of tools from ML have accepted the premises that machine
learning is, in the first place, fundamentally different from existing approaches
in applied mathematics and, in the second, that it will usher in sweeping changes
to the epistemic products or practices of science. One noteworthy exception is
a 2020 work by philosopher of science Mieke Boon. Boon (2020) argues against
the thesis that machine learning methods will obviate the need for auxiliary or
intermediary human conceptual apparatus in the generation of scientific knowl-
edge. She argues that the reason that we grant any sort of a priori plausibility
to statements to the effect that big data will usher in a scientific revolution
flows from a shared implicit view of how science works—one which she argues
to be in error. She labels this erroneous conception of science a “strict empiri-
cism.” Her goal is to “make plausible that on an empiricist epistemology the
elimination of any human contribution to scientific knowledge is in fact already
built in as a normative ideal...strict empiricist epistemologies indeed support the
claim that objective, although opaque, data-models produced in machine learn-
ing processes can replace and may even be preferable to human-made scientific
knowledge” (Boon, 2020, 46).

Boon advocates for the necessity of human capacities for conceptualisation,
abstraction, and interpretation in every aspect of collecting, preparing, and ma-
nipulating data: “not only when setting up the data-generating instrumentation
and seeing to its proper functioning, but also in assessing and interpreting the
data, drawing relationships between data from different sources, and for making
the distinction between ‘real’ phenomena and artifacts” (Boon, 2020, 59). Fur-
ther, “[t]he necessity to prepare data that are about something in the real world
also implies that phenomena are crucial in scientific practices, even when only
aiming at the generation of data for machine-learning processes” (Boon, 2020,
57). As evidenced in these passages, Boon clearly takes data provenance and
processing to be an interpretive affair. But for her argument against would-be
empiricist dogma to work, she must take it axiomatically that data and data
models are objective and worldly. This is part and parcel of the misconception of
scientific process and products which we believe Boon seeks to argue against—
the misconception which we are, in this paper, chiefly arguing against. Namely,
the misconception of data as being raw, objective, and worldly—unmediated by
human theorising and conceptual grasp on the target.

If we banish the idea that data is objective and worldly from the start,
instead viewing data collection, cleaning, processing, and interpretation in an
inference-licensing capacity as a fundamentally theory-mediated affair, Boon’s
contentions with empiricist epistemologies appear to dissipate. Perhaps the
stumbling block is most easily seen in Boon’s in-passing characterisation of the
role of idealisation in mathematical representation. Boon claims that “machines
are not confined by the kinds of idealizations and simplifications humans need to
make in order to fit data into comprehensive mathematical formalisms” (Boon,
2020, 51). The idea that the role of idealisation in scientific representation
ultimately serves the human-interpretability of our representations—and that
idealisations are evitable or eliminable—is not, of course, novel or idiosyncratic
to Boon. It is, however, revelatory of her commitments to the representational
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properties of applied mathematics. Mathematical representation is conceptual
work. Idealisation is essential to it. Use of ML-based tools in science thus
cannot escape the necessity of idealisation.

Boon is a vocal proponent of a theory-laden conception of data. Yet her
analysis of the prospects for machine learning in science appear to reveal in-
consistencies in her view. Like Boge and Sreckovic et al., Boon concludes that
applications of ML in science will fall short of providing understanding or ex-
planation in virtue of being conceptually impoverished. This, on her view, sets
applications of ML to scientific research intrinsically apart from “real science.”
“‘[R]eal science’ and machine learning technologies,” she writes, “operate in very
different domains and must not be regarded as competing” (Boon, 2020, 58).
If data is necessarily theory-laden and conceptually-mediated, however, then it
cannot be the case that ML-facilitated science is a theory-free or concept-free
epistemic activity, because the use of ML in science will be necessarily inflected
by the theoretical and conceptual commitments inherent to the data.

Boon, Boge, and Sreckovic et al each sign onto the idea that ML methods
are theory-free, and hence distinct from canonical modelling methods in sci-
ence. Boge and Sreckovic et al further contend that the widespread adoption of
ML methods will catalyse disruptive change in science, while Boon argues that
the theory-freeness of ML methods rules them out as viable tools for science.
These scholars take the perceived differences between “normal science” or even
“real science” and machine learning to amount to the degree to which they are
theory-laden, theory-driven, or conceptually rich. As we will demonstrate in the
subsequent sections, no use of ML in science is “theory-free,” and those that
aspire to this ideal tend to result in poor scientific practice.

3 Theory Ladenness

Even the most simplistic of experimental designs reveals the nature and extent
to which data, and scientific practice at large, are “theory-laden.” The very act
of investigation involves commitment to the existence and in-principle measura-
bility of some phenomenon and, if we are making measurements and performing
quantitative analyses thereon, commitment to its quantitative nature. How we
choose to measure a phenomenon generally includes a commitment to a kind
of quantitative ontology of the phenomenon, e.g., is it categorical, ordinal, or
cardinal? Measurement cannot be total, and therefore there is always a com-
mitment as to what to look at experimentally and what to exclude. There is
always a commitment to the appropriate level of abstraction at which to study
the phenomenon in play in terms of such things as instrument settings like
degree of magnification or periodicity of sampling. The very design of our in-
struments of measure and their calibration includes various commitments to the
nature of the worldly phenomena under investigation. In fundamental physics,
when we cool our instruments to reduce the contamination of our measurements
by thermal noise, it is our prior theoretical grasp on the target phenomena, the
physical systems under study, that motivates us to do so. “Data” is not physical
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phenomena. “Data” is abstract representation of the results of direct observa-
tion or measurement which is capable of serving an evidential role in licensing
inferences about physical phenomena.

In contemporary philosophy of science, the idea that data is theory-mediated
is widely endorsed (Boyd & Bogen, 2009; Bogen & Woodward, 1988; Gitelman,
2013; Leonelli, 2019b). Philosophers of science have largely overcome “[t]he
näıve fantasy that data have an immediate relation to phenomena of the world,
that they are ‘objective’ in some strong, ontological sense of that term, that
they are the facts of the world directly speaking to us” (Longino, 2020, 391)
and accept now that there is “no pristine separation of model and data” (Lloyd,
2018, 397). Bogen (2016) argues that it is the very fact that data is not raw, that
it is, in a sense, “impure” that makes it able to serve the meaningful epistemic
role it does (Bogen, 2016). Boyd (Boyd, 2018; Boyd & Bogen, 2009) argues
further that it is not in spite of, but owing to the theory-ladenness of data that
empirical science garners us its epistemic results.

Philosophers of science now popularly profess allegiance to a theory-laden
conception of data; certainly none nowadays outright defend an account of data
as raw and objective. But the philosophers of science most attuned to how
data is understood in the context of scientific practice note that in many philo-
sophical accounts, data is still treated as raw and objective, “as reliable infor-
mation source—a mere “input” into processes of modelling” (Leonelli, 2019b,
4). Leonelli (2018) argues that mainstream accounts from within philosophy of
science—though they might profess otherwise—tend to treat data as representa-
tional, and understand this representation relation in terms of the recapitulation
of worldly structure in data. “Philosophers tend to assume that data have some
sort of representational content, in the sense of instantiating some of the prop-
erties of a given target of investigation in ways that are mind-independent”
(Leonelli, 2019b, 4).

Although no philosophers of science today would appear to explicitly endorse
an interpretation of data as objective and worldly, unfortunate relics of this
view remain widespread, often in the form of a conception of data as mere
“empirical input for modelling” hence “implicitly accepting a view of data as
intrinsically reliable representations of the world” (Leonelli, 2019b, 4). Leonelli
(2018) investigates “the different extents to which theory—understood broadly
as a set of theoretical commitments and goals—impinges on inferential processes
from data” (Leonelli, 2019b, 22). In several book-length treatments of the use
and interpretation of data in scientific practice (e.g., (Leonelli, 2018, 2019a;
Leonelli & Tempini, 2020; Leonelli & Beaulieu, 2021)), Leonelli concludes that
there is no place in scientific practice in which we have data that is not already,
to some degree, shaped by our existing conceptual or theoretical grasp on the
phenomenon, commitments to epistemic goals and questions to be answered,
idealisations, and auxiliary assumptions.
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4 Machine Learning and Deep Learning

4.1 Machine Learning

ML is fundamentally a set of mathematical and computational tools for draw-
ing inferences (learning) from data. As a discipline, it has historically been
divided into three broad categories: supervised learning, unsupervised learn-
ing, and reinforcement learning—only the first two of which will be relevant
for our purposes in this essay. Supervised learning involves training a model
to predict an unknown property of an observation from a known property, e.g.,
in object recognition, inferring the presence or absence of an object (unknown
property) in an image from the pixel values (known property). The trained
model approximates a function, and the function it has learned is (we hope)
able to extrapolate to correctly fit or categorise unseen instances—instances
which lie outside of the training dataset. We set aside subsets of labelled data
in holdout or validation sets to check that we have not, for instance, overfit to
uninformative idiosyncracies of the training set.

For our purposes, what is salient is that supervised learning always essen-
tially seeks to learn the rule expressed in the training set, which human users
or developers have deemed to be the learning objective for their epistemic pur-
poses. The task is to generalise this rule, which relies on the premise that the
data on which the model is deployed will be sufficiently similar to the training
data. Supervised learning is always, therefore, a straightforwardly theory-laden
exercise. The data on which supervised models are trained reflect human de-
terminations of salience, of what the meaningful patterns to be distilled are, of
what are outliers to be ignored, whether the data sufficiently resembles future
data to be collected, and ultimately what the criteria are for successful pre-
diction/classification. Supervised learning cannot be free of human conceptual
influence because what we are attempting to extract from data is precisely the
human concepts the data is imbued with.

Unsupervised learning is a category defined primarily in opposition to super-
vised learning. It encompasses dimensionality reduction and embedding, gen-
erative modeling, and clustering, to name only a few of the disparate practices
which fall under this umbrella. The unifying feature of unsupervised methods
is that they are tasked with extracting the contours of data; the data on which
the models are trained do not embody a preexisting conceptualisation of the
“right answer” that the models should learn. For instance, we might employ
an algorithm to partition a dataset into some k number of groupings such that
the groupings minimise the within-group distance between datapoints along ev-
ery featural dimension expressed in the dataset—this technique is known as
k-means clustering. At a glance, the task of unsupervised learning appears
not to be shaped by preexisting scientific theory or human conceptualisation
of the phenomena under study in the same way that supervised learning is;
whereas SL is always an attempt to replicate an existing decision rule, UL at-
tempts to extract meaningful patterns, trends, or clusters from the “raw data”
alone. From this alone, we might reason that unsupervised learning methods
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are somehow divorced from theorising, making it the kind of ML that will “alter
the landscape of science,” as many have claimed. Such a conclusion, however,
is only reached if we are ignorant as to the theory-ladenness of data and model
evaluation, and the constrained application of unsupervised learning techniques
in science. Unsupervised learning is typically relegated to the role of fulfilling
relatively minor tasks within a more involved scientific pipeline—data prepro-
cessing, curve-fitting, dimensionality reduction, and whatnot. It is not used to
blaze new trails of scientific discovery. Attempts to saddle unsupervised learning
techniques with a more robust role in scientific practice under the assumption
that the methods are “theory-free” or “obviate the need for theory” lead to
pseudoscientific practices, as we illustrate in a case study in section 5.2.

4.2 Deep Learning

ML refers properly to a broad class of computational methods, and the use cases
for ML methods in science are consequently very broad. The disruption and dis-
tinctness claims we take as the target of this essay appear to centre around deep
learning methods. It is worth noting here that machine learning properly de-
notes much, much more than mere deep learning (DL), and that various machine
learning methods are already widely deployed across the sciences—as they have
been for some time. Even restricting our analysis to the methods of deep learn-
ing alone, however, we still find both the methods and the use cases to be quite
diverse. Potential applications of DL techniques in scientific enquiry range from
anomaly discovery in cosmological surveys and sifting signal from noise in par-
ticle collision events, to nanomaterials discovery, biomaterials discovery, drug
discovery, and protein folding, to serving as a model of image processing in the
primate visual system. Generative Adversarial Networks (GANs) alone, for in-
stance, can be useful in materials discovery or drug discovery, in preprocessing
data or images for later automated classification, or in “filling in the blanks” of
discrete time step images—for instance, neuroimaging or cell development—to
create a continuous time evolution. We can utilise the methods of DL to approx-
imate solutions to stochastic PDEs. We can use DL to probe the latent space of
biomaterials for as-yet-unimagined cold-tolerant hydrophilic protein structures.
We can use DL to represent how the mammalian visual cortex engages in ob-
ject recognition. We can use DL to draw a line between particle collision events
likely to be interesting and those which are uninformative. There remain such a
plurality of use cases for deep learning in science that any two have little more
to do with one another than any two arbitrary instances of applied mathemat-
ics. The techniques of machine learning can be utilised in science for problems
which are as basic as linear regression or image pre-processing. The more im-
pressive results, however—the results commanding the attention of the broader
scientific and philosophical community—are far more sophisticated than these,
and all involve modern deep learning architectures.

Sensationalism about the capabilities of deep learning models abounds to-
day, and it is partially the aim of this text to combat it. With that proviso,
there is much that DNNs are capable of which is of considerable philosophical,
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mathematical, and scientific interest, and which marks an abrupt (and, accord-
ing to many, inexplicable) break from the capabilities of traditional statistical
methods and more mundane ML modelling tools. The ability of these models
to generalise as well as they do remains unexplained within existing theoretical
frameworks (e.g., those that provide generalisatuon guarantees for supervised
learning). The novelty of DL methods rests essentially on 1. their ability to
function in very high-dimensional regimes (e.g., computer vision and natural
language) and 2. their ability to do so without the need for painstaking feature
extraction/feature engineering(which dominated pre-DL methods. This latter
feature of DL is, at least partially, responsible for the claim that DL “obviates
the need for domain expertise.” Features refer to dimensions of a dataset. If
each datapoint represents an individual, the features might represent height,
weight, smoker status, and blood pressure. When we refer to big data or high
dimensional datasets, we are referring to datasets with potentially billions of
datapoints and hundreds of thousands of dimensions. Feature engineering or
extraction refers to conceptual and statistical means of organising datasets ac-
cording to the featural dimensions they express. DL methods are generally
capable of extracting meaningful statistical relationships without necessarily re-
lying on hand-engineered features. However, as we shall see in a detailed case
study in the following section, this only means that theoretical considerations
come in elsewhere in the model development pipeline.

5 Theory-Ladenness in ML

5.1 The Unreasonable Efficacy of AlphaFold

Far and away the most impressive result that ML methods have achieved for
science is AlphaFold 2.0. To appreciate the unprecedentedness of the AlphaFold
results, we must first appreciate the scientific problem it is confronted with. The
problem of protein folding is notoriously difficult. There is very little that we
can say from the genotypic specification of a particular protein about how it will
fold. Mapping from sequences of adenines, cytosine, guanines, and thymines to
a menagerie of amino acids is straightforward, as is predicting the polypeptide
chains these amino acid sequences will form. What mess of three-dimensional
spaghetti those amino acid chains will assume once synthesised, however, is
another matter entirely. This is an essential problem for the biomedical sci-
ences. The three-dimensional anatomy of protein structure is determinative of
its function and is thus a crucial object of scientific inference.

To truly comprehend the difficulty of the protein folding problem—and how
the methods of machine learning were able to get around it—we have to recog-
nise that protein structure is understood at four levels. DNA is a string com-
posed of four alternative base pairs. It encodes information in sequence. When
proteins are assembled, that DNA is read, codon by codon, and a polypeptide
chain is built up from twenty amino acids on the basis of these instructions.
These amino acid sequences are dubbed the “primary structure” of a protein.
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All amino acids are composed of the same base molecular structure of 9 atoms,
which will bond together to form the backbone of the polypeptide chain. From
this molecular backbone extends the R-group or side chain, the determinant of
the amino acid’s “flavour.” The secondary structure of a protein refers to the
morphology that polypeptide chains take on on their own, owing to bonding
patterns in the backbone. The morphology of these peptide chains results from
local interactions between adjacent and semi-adjacent molecules in the back-
bone of the peptide chain. Owing to the periodicity of the placement of amino
acids with certain valences (and other molecular-bond determining features) in
the chain, they will typically either form what are known as α helices or β
sheets. Up until this point things have remained relatively straightforward: we
have a basic, repeated molecular structure and its self-interaction in the form
of hydrogen bonding.

The tertiary structure of a protein is determined by the R-groups of the
amino acids. Recall that these come in twenty flavours. Recall that virtually all
forms of non-covalent bonding are available to these molecules now. Recall that
amino acids can exhibit hydrophobic and hydrophilic proclivities. If a protein
is composed of more than one polypeptide chain, it will have a quaternary
structure as well. At the tertiary and quaternary levels of protein structure, we
have advanced from assembling text from bit strings to attempting to predict
all of the ways in which several distinct kinds of spaghetti thrown together in
a pot can cohabitate, given six dimensions along which spaghetti substructures
may or may not like to interact.

At first blush, this seems like an unsolvable problem. The initial trick—the
trick that gets existing bioinformatic solutions off the ground—lies in noting that
when we have a variant in one amino-acid we can see what non-local variants
tend to co-vary along with it. This begins to tell us something about what
might be touching what in the tertiary and quaternary protein structures. Still a
difficult problem, but more manageable. These associations of covarying amino-
acid substitutions lend us what is known as a protein contact map which further
lends us a multiple sequence alignment (MSA).

The AlphaFold team created their own database of protein structures—now
the largest existing database of its kind—by scraping2 existing publicly-available
databases. DeepMind’s AlphaFold 2.0 runs queries on an amino acid sequence
in its pre-processing stage to obtain a multiple sequence alignment (MSA). Any
modern approach to predicting protein structure begins with an amino acid
sequence as input. As we have noted, given the state of modern biological
knowledge, it is trivial to determine amino acid sequences given the protein’s
genetic blueprint. To construct the inputs, AlphaFold queries protein structure
databases to assemble an MSA. In addition to the primary amino acid sequence
and MSA, AlphaFold was also supplied as input database-derived templates—
three-dimensional atomic maps—for a small number of sufficiently similar ho-
mologous protein structures. The templates and the MSA are rendered together
to create what the AlphaFold team dubs a pair representation.

2 I.e., automatically extracting web data.
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AlphaFold treats the prediction of 3-dimensional protein structure from these
pair representations and MSAs as a graphical problem, rendering the represen-
tations in the primary trunk of the model architecture into gradated bitmaps.
The problem formulation for the Deepmind team was to “view the prediction
of protein structures as a graph inference problem in 3D space in which the
edges of the graph are defined by residues in proximity” (Jumper et al., 2021,
585). The core structure of AlphaFold 2.0 is a transformer—a form of DNN ar-
chitecture which is easier to train and outperforms competing architectures by
parallelising and better attending to higher-level contextual factors in the train-
ing data. AlphaFold passes both the MSA and the pair representation back
and forth through the trunk of the model for a set number of iterations (48
blocks), progressively refining the representations, and allowing the two distinct
representations (MSA and pair representation) to influence one another as each
is refined. The output of this refinement procedure is then, in the final stage,
fed to a generative neural network which produces a plausible candidate 3-D
protein structure. The 3D protein structure is then passed, with MSA and pair-
representations, back through the trunk. This is repeated for three iterations
until a final predicted 3D protein structure is achieved.

Let us draw out what is salient about this scientific procedure for our anal-
ysis. Our aim is to show that theoretical considerations are playing an essential
role at the stage of data provenance and engineering, the stage of architecture
design, hyperparameter selection and model training, and at the stage of model
evaluation and interpretation.

Theory integration comes in at the level of the data in terms of what the data
ultimately represents and how it is imbued with that representational content.
Taking on board the notion of theory-laden measurement, we understand that
the data on which AlphaFold is trained is richly structured by existing empirical
knowledge of the target domain and our theoretical understanding thereof. Al-
phaFold sits atop a wealth of domain knowledge about the form and function of
proteins. Theory also comes into play in how the data is handled for the specific
task in question and how it is made to serve as evidence in this task. AlphaFold
is, at its core, an instance of (semi-)supervised learning. The exercise is premised
on the idea that the rules of association between amino acid sequences and three
dimensional protein structure lie latent in cross-taxa protein structure data. It
is further premised on the supposition that the systematic breakdown in protein
structure and function resultant from certain amino acid substitutions can be
leveraged to learn the complex bonding affinities governing 3-dimensional pro-
tein structure. Part of what is noteworthy in this case study is the insight to
take the publicly available data and turn it into novel representational forms in
multiple places: combining MSAs and templates to create pair representations,
and projecting those into effective heatmaps of sequence-structure associations
so that the inference task could be treated like a graphical problem.

The architecting of the various model components utilised in AlphaFold 2.0
was similarly bound to theoretical considerations. AlphaFold is not a domain-
generic model; the model architecture is hand-tailored to the specific task of
learning to predict three dimensional protein structure from MSAs and pair
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representations—a novel representational form for the task. AlphaFold 2.0 em-
ploys a transformer network that is designed to iteratively refine progressively
more accurate guesses at the true protein structure. The transformer trunk
utilised in AlphaFold was created to combine and refine representations of the
specific form it is fed in a novel training and deployment procedure. Perhaps
the most strikingly theory-laden aspect of AlphaFold 2.0 is the engineering of
specially tailored loss functions. In training a DNN, a loss function governs
how the distance metric is calculated between present output and desired out-
put of the model (in a typical neural network training regime, the error is then
back-propagated through the network to update the model’s parameters). In
specifying the loss function, machine learners are able to express precisely what
it is that they are interested in learning for a particular task. In AlphaFold 2.0,
the loss function is heavily tailored to the problem of predicting folded protein
structure from amino acid sequences. The researchers employed “a loss term
that places substantial weight on the orientational correctness of the residues”
(Jumper et al., 2021, 585). Loss terms specific to the learning of various struc-
tural features of protein folding along a number of dimensions were employed
at all stages of training and fine-tuning: “satisfaction of the peptide bond ge-
ometry is encouraged during fine-tuning by a violation loss term” (Jumper et
al., 2021, 586-587).

Finally, model-evaluation, that is, judging the success of the trained model
and interpreting its results requires integrating the resulting predictions of Al-
phaFold into existing biological knowledge. We can only judge the success of
such a model when it is understood against the backdrop of our prevailing sci-
entific accounts. We can likewise only put the results of such a modelling effort
to use when we have accomodated them within a theoretical framework.

5.2 Transcriptomics

Single-cell transcriptomics is a method for inferring cellular-level gene expres-
sion. The technique is utilised for identifying cell populations, modelling tran-
scription dynamics, inferring the developmental trajectories of cellular popu-
lations, and monitoring changes in cell populations relative to health status.
Single-cell transcriptomics emerged with the availability of massive quantities
of high throughput RNA sequencing and expression data. It is typical in such
exercises to be working with datasets which possess hundreds of thousands of
feature dimensions; for this reason, researchers typically employ dimensionality
reduction techniques. Dimensionality reduction is a (unsupervised ML) method
of mapping a high-dimensional dataset to a lower-dimensional space—or em-
bedding higher-dimensional data in a lower-dimensional space. Dimensionality
reduction techniques are used to distill essential patterns from large datasets,
make analyses tractable, and isolate signal from noise.

A now well-established workflow in single-cell transcriptomics involves apply-
ing dimensionality reduction techniques sequentially to high-throughput RNA
expression data; first linear methods which reduce the dataset to tens of di-
mensions using principle component analysis (PCA) or analogous techniques of
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dimensionality reduction, followed by one of two purpose-built two-dimensional
nonlinear reductions: UMAP or t-SNE. The method produces visualisations
for exploratory data analysis. A scientist cannot very well eyeball a 250,000-
dimensional manifold and distill from it useful and meaningful information (or
eyeball it at all). A two-dimensional embedding, however, might very well reveal
visually intuitive information about cell populations and trajectories. However,
as Chari and Pachter (2021) demonstrate, this now standardised procedure in
single-cell transcriptomics lacks theoretical motivation, represents poor statisti-
cal practice, and is effectively incapable of providing meaningful biological infor-
mation; instead it creates the opportunity for erroneous interpretation (Chari
& Pachter, 2021).

In a series of analyses, the researchers demonstrated that the practice of
repeated application of dimensionality reduction techniques introduced heavy
distortions and was incapable of preserving the interpretively salient features
of the datasets under investigation: local and global structure, distance, and
continuousness (Chari & Pachter, 2021). Interpretive practices surrounding the
resultant visualisations, they concluded, led to erroneous or conflicting conclu-
sions. Chari and Pachter (2021) found that the combined use of supervised and
unsupervised ML methods in single-cell transcriptomics was haphazard:

“[T]he same k-nearest neighbor (knn) graph constructed from the
higher dimensional PCA space is passed to both the clustering al-
gorithm and the embedding algorithm...the embedding is then not
an independent assessment of clustering results and is likely to form
clusters that match the knn graph even if that graph does not rep-
resent the ‘original’ underlying manifold. Together, the use of such
embeddings to imply or infer continuous relationships then becomes
an arbitrary endeavour, with a user unable to trust seemingly dra-
matic connections or isolated populations, and likely to choose what
seems most appealing” (Chari & Pachter, 2021, 14).

In one particularly striking example, Chari and Pachter projected transcrip-
tomics datasets onto arbitrary shapes (a flower, von Neumann’s elephant) and
found that they preserved the interpretively salient features—local and global
structure, distance, and continuousness—commensurate with, or better than,
the resultant embeddings from PCA → t-SNE or PCA → UMAP workflows
(Chari & Pachter, 2021).

These techniques fall under the heading of what we term Rorschach research
methods or intuition laundering : interpreters of the results of these data analysis
methods are free to cast upon them whatever intuitive interpretation appeals to
them, wielding the graphics to lend supposed empirical support to their claims.
Such pseudoscientific practices are likely to emerge anywhere the methods of
ML are employed without adequate theoretical grounding and statistical lit-
eracy. Chari and Pachter (2021) demonstrate that semi-supervised learning
methods and targeted embeddings for specific featural dimensions are capable
of illucidating far more than the näıve methods they critique. Such approaches,
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however, require domain expertise, critical thinking, and being able to both
identify and (statistically) articulate what you are looking for—characteristics
markedly absent from the t-SNE/UMAP workflows under scrutiny.

5.3 Takeaways about ML in Scientific Practice

AlphaFold is a case of resounding success; perhaps the greatest win for ML
in science to date. No other application of ML to science has achieved quite
so stark an advantage over pre-existing techniques. Many applications of the
tools of ML to science, by contrast, have been run of the mill: automating
laborious processes, achieving minor gains in efficiency or accuracy over human
classification or “analogue” statistical techniques without notable breakthroughs
in what sort of knowledge could be gained by their use. Many scientists have also
faced great frustrations in incorporating computational tools into their research
paradigms, either because they were attempting to utilise ML in an untenable,
“theory-free” manner or because they faced difficulty in their attempts to imbue
ML-based tools with the requisite theory or domain knowledge.

Researchers in the biomedical sciences bemoan the fields’ recent infatua-
tion with the tools of ML in operation with its longstanding “theory-aversion”
(what we term a “theory-free ideal” in science, in analogy to Douglas’ value-free
ideal (Douglas, 2009)) (Coveney, Dougherty, & Highfield, 2016). Incorporating
theoretical principles into ML-assisted and big data-fueled research can prove
difficult, and is unlikely to happen when institutional and publishing incentives
overwhelmingly favour the collection of higher volumes of data and the adop-
tion of novel computational tools over critical thinking and principled research
design. In fundamental physics, by contrast, the need for theoretically-informed
models is more apparent and is met with less resistance. Karniadakis et al review
methods of incorporating physical principles into applications of DL in physics
(Karniadakis et al., 2021). Incorporating theory into ML-assisted scientific prac-
tice is no simple matter, but work of this kind reveals both its possibility and
its necessity.

The use of unsupervised learning in physics is now concentrated on “physics-
informed” architectures—forcing the model to conform to the form of a known
e.g., physical, principle. These methods, unlike “näıve” unsupervised cluster or
regression techniques, which can only occupy relatively simplistic intermediary
calculational or bookkeeping roles, can play a far more central role in research.
This is precisely because they have the conceptual resources to serve a meaning-
ful role in empirical research. In this sense, the conclusion we reach aligns with
some of the reasoning in Boge, Sreckovic et al., and Boon: theory-involvement
is a requisite feature of our conceptual instruments in science for them to be
able to elucidate previously unknown features of our natural world from data.
The issue is that the perfectly theory-free vision of ML (or DL, or unsupervised
DL) in science that is the target of these scholars’ critiques either singles out a
strawman or a failure case.
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6 Conclusion

It is widely believed of the methods of ML—as reflected in the texts from philos-
ophy of science which we have analysed in this paper—that if loosed on enough
data they are capable of discovering meaningful patterns, natural joints, or
mind-independent truths of their own accord, without any intervention by hu-
man theorising or conceptualisation of the target system. There is a näıve
version of this view that only those unfamiliar with the ins and outs of apply-
ing ML methods could hold onto. However, a more sophisticated version of
the thesis also exists and is commonly held even by engineers, researchers, and
practitioners building and deploying ML-based tools. This is the idea that un-
supervised learning tools are capable of discovering mind-independent natural
patterns or boundaries in a “principled” manner without the need for any arbi-
trarity or human input. If we believe this, and if we also believe the techniques
of ML to be “opaque” or “uninterpretable” in some novel way—in a way that
sets them fundamentally apart from existing conceptual tools or instruments
in science—then what is learned via these tools will be inscrutable to human
scientists. If these tools are then adopted widely in scientific practice, this will
then entail radical change to the varieties of epistemic outputs science is capable
of generating. As we have argued in this text, the ideal of theory-free learning
via ML from “raw data” is a confused one.

This conclusion is overdetermined when we consider accounts from philos-
ophy of science and theoretical computer science of constraints on inductive
generalisation. Inductive inference is the procedure of gaining knowledge by
extrapolating from a limited number of instances to a more general class—the
fundamental task of ML. According to Norton (2003), an account which he
dubs the material theory of induction, successful inductive inference is never
licensed by universal, domain-generic formal rules, but always proceeds by the
application of local rules warranted by hard-won empirical (material) facts tied
to a specific line of research (Norton, 2003). There is no one inductively valid
formula to rule them all. The way in which the methods of ML and their epis-
temic aims are portrayed by those buying into and perpetuating ML “hype”
is as though they seek to (and, indeed, will eventually) discover such a univer-
sally valid formal principle of inductive inference. Such a project is a doomed
one. Learning theory has itself independently discovered the impossibility of
a universally valid domain-generic inference rule: the no free lunch theorems
(Wolpert & Macready, 1997). While these results obtain only in a very arti-
ficial setting, the moral they deliver is an important one for ML in practice:
inductive inference only works in virtue of having learned domain-specific in-
ductive biases. Claims of disruption and distinctness regarding the role of ML
in scientific practice that are premised on a conception of applied ML as free
from theoretical considerations and capable of generalising without inductive
bias or the importation of domain knowledge thereby fail.

Claims to the effect that ML/DL in science is free from theoretical consider-
ations are, we hope to have shown in the course of this paper, misguided. The
idea that ML will “disrupt,” “revolutionise,” or “change the face of” scientific
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methods or outputs are fueled by sensationalism and ignorance to the nuance
of ML deployed in scientific practice. In reality, there is a disappearing line be-
tween tried and true methods of mathematical modelling or statistical analysis
in science and ML-based methods. In this essay, we have largely focussed on
illustrating some of the ways that ML is utilised in and in support of empirical
research. The aim has been to defeat something of a cartoon vision of ML in
science which we take to be the actual target of distinctness and disruption
claims—for the claims fail to make sense when addressed at actually existing
or possible deployments of ML/DL methods in science. But this confusion sur-
rounding ML in science has another likely source: namely, a cartoon vision of
the scientific method itself.

There exists a great deal of methodological diversity in scientific practice
today, as there have been historically, and a great deal of diversity in the ways
in which theory plays a role in such practices. Yet the practical and stated
aims of philosophy of science in the twentieth century, its raison d’être, lay in
characterising empirical knowledge and the scientific method. The public shares,
if not in the details of such a vision, in the unitary conception of knowledge
and empirical method. It is what we are taught from an early age from our
schoolbooks and what gets echoed to us throughout our lives from popular media
and expert scholarship alike. In stark contrast to its role throughout much
of the previous century, philosophy of science today has embraced pluralism.
Pluralism refers to the idea that there is not one viable scientific method that
holds across disciplines, subject matter, epistemic aims, and stages of scientific
maturity, but a variety of them. Many proponents of such a view connect it to
the associated idea that we are better able to understand natural phenomena
by coming at them simultaneously from a number of methodological angles and
triangulating.

The central problem inherent to pluralism as practiced by the majority of
contemporary philosophers of science is as follows. They take their work to con-
sist in studying the methods of particular, highly-constrained areas of science in
great detail and to provide rational reconstructions of what the work entails and
how the results are achieved, with almost complete deference to the scientist, to
the professed or institutionally-acknowledged validity of their methods, and to
the scientist’s own introspective accounts of what they are doing. This presents
a major issue if we take the key epistemic function of philosophy of science to
rest in providing the means to differentiate between epistemically sound and
epistemically unsound scientific practices. Scientists are, on the whole, power-
fully disincentivised to proclaim their own work scientifically unsound.

It is our belief that the public—and many philosophers of science, implicitly—
have held onto a monolithic vision of scientific methods and epistemic outputs
because the pluralistic approach fails to deliver on this front. The accounts of
ML in science we take here as the targets of our critique get things wrong pre-
cisely in the failure to acknowledge a distinction between sound and unsound
applications of an epistemic technology. Once we are willing to draw such lines
in the sand, we reveal that most of the assessments of ML from philosophers
of science amount to the observation that we might do shoddy science with
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ML—or that ML even increases the likelihood of doing shoddy science. The
reality is that we are already doing shoddy science—science that is shoddy in
precisely the same ways (if marginally slower) as shoddy science might be done
as aided by the tools of ML. We are already rearing generations upon genera-
tions of scientists to solve nature’s puzzles by “throwing math at it” without
teaching them to speak the language of math (or, for that matter, to speak the
language of nature). The mythos of “theory-freeness,” meanwhile, merely feeds
into cartoon characterisations and popular narratives surrounding science and
ML which support such malpractice. Philosophers of science, we argue, have a
duty to disabuse scientists and the public of such misapprehensions and promote
a more nuanced understanding of ML and its reliance on theory in their place.

There is a final misconception responsible for the understanding of ML as a
theory-free endeavor. It is a misconception about the epistemology of applied
mathematics, which we believe to have originated from folk intuition but which
philosophers of science have only served to cement and to legitimise. Most
philosophers of science defend, at least implicitly, the idea that there are two
quite distinct varieties of applied mathematics. There are, in the first place,
formal models which represent phenomena in nature; which stand in for natural
systems, allowing surrogative reasoning about them. In the second place, there
are tools from mathematics which do not represent contingent truths about na-
ture, which serve mere calculational or bookkeeping roles. This dichotomisation
of applied mathematics echoes how working scientists, modellers, and applied
mathematicians conceptualise of their own work but not the actual practice of
wielding applied mathematics. As we have seen illustrated in the case studies
of ML tools used in science in 5.1 and 5.2, even instances of applied math-
ematics described as “mere data modelling” or “mere curve-fitting” involve
representation of the target phenomena, and their epistemic success depends
on engaging in explicit reasoning about the representational dimension of the
work. No applied mathematics is agnostic to what it is being applied to. As
the case of stacked dimensionality reduction procedures in single-cell transcrip-
tomics demonstrates, failure to consider the appropriateness of a mathematical
tool to the system under study and the epistemic task at hand results in futile
scientific activities.

Advancing the state of the discourse away from false dichotomies and misdi-
rected concerns is essential, for there is much that is interesting and potentially
novel about ML/DL and its potential use cases in science. Where to localise
theoretical considerations in DL-based scientific workflows differs, along vari-
ous dimensions, from a certain canonical mode of doing science. On a received,
roughly hypothetico-deductive view of experimental science and statistical mod-
elling, we are typically formulating hypotheses and going out to collect data
capable of adjudicating between our hypotheses. Thus the ways in which our
conceptual grasp on the target phenomena come into play in how the data
represents the target are specific to the epistemic concerns of a particular sci-
entific/modelling exercise.3 In big data analysis and applied ML, we are often

3 This in stark contrast to Bogen and Woodward’s (1988) claim that data are limited to
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handed data corpora or else construct them from amalgamations of preexisting
datasets. This means that a significant amount of the interpretive work, the
work of mapping the data onto target phenomena—imbuing it with representa-
tional status and content—is work done before we are ever in contact with the
data. Theoretical or interpretive work typically comes in again in the problem
formulation, in the engineering of a model architecture and specification of loss,
and in training. Theoretical considerations further come in at the level of model
evaluation, in our formal assessments of the success of the exercise. Finally, such
considerations come into play in what we take ourselves to have learned from the
model output and, effectively, in how the model is wielded. The nature and role
of theoretical considerations in such a scientific workflow are somewhat baffling
if our template for how science works is based in, say, classical mechanics.

The landscape of science is also undergoing significant changes today that
are worthy of popular and philosophical scrutiny. There are many very real
and substantive changes to scientific practice occurring nowadays, to the so-
cial, institutional, state, and economic infrastructures that support it, and to
the knowledge economies it results in. These include the fragmentation and
specialisation of science, the proceduralisation of science, its automation, the
progressive increase in the distribution of intellectual labour it involves, the
extraction of the knowledge of domain experts and its mechanisation and codi-
fication into formulae. Reactions to the adoption of ML in science have largely
framed ML as catalyst to these changes. We wish to counter that we can instead
view ML as symptomatic of a much older and deeper trend in the development
of scientific practice, one which often replicates the form of the society in which
scientific practice is embedded in its social structure, its economic model, and
its governance. The causal arrow runs at least as much from the automation of
scientific practice to the adoption of the tools of ML in science as it does in the
reverse.

To make sense of the present day landscape of science and the directions in
which it is evolving, we will require a philosophy of science of machine learning.
This must, however, be a philosophy of science willing to cast off an outdated,
monolithic, and overly-restrictive conception of scientific methods and the epis-
temic outputs of science. This must be a philosophy of science willing to weigh in
on debates and draw boundaries between admissible practices and the pseudo-
scientific or pseudo-statistical. It must be a philosophy of science that is not
conned by the hyperbolic narrative of the inscrutability of machine learning
methods; that is willing and able to comprehend the techniques and how they
are wielded to empirical ends.
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