
Informative Models: Idealization and Abstraction  Mauricio Suárez 

 1 

Forthcoming	in	A.	Cassini	and	J.	Redmond,	eds.	(2021),	
Idealizations	in	Science:	Fictional	and	Artifactual	Approaches,	Springer.	

	

	

Informative	Models:	Idealization	and	Abstraction	

Mauricio	Suárez	
Department	of	Logic	and	Theoretical	Philosophy,	

Complutense	University	of	Madrid	
msuareza@ucm.es	

	
and	
	

Agnes	Bolinska,	
Department	of	Philosophy,	
University	of	South	Carolina	
bolinska@mailbox.sc.edu	

	
	

	

	 	 	 Final	2021	Version		 	 	 7,288	words	

	

	 Abstract:	Mauricio	 Suárez	 and	Agnes	Bolinska	 apply	 the	 tools	 of	 communication	
theory	 to	 scientific	 modelling	 in	 order	 to	 characterize	 the	 informational	 content	 of	 a	
scientific	model.	They	argue	that	when	represented	as	a	communication	channel,	a	model	
source	conveys	information	about	 its	target,	and	that	such	representations	are	therefore	
appropriate	whenever	modelling	is	employed	for	informational	gain.	They	then	extract	two	
consequences.	First,	the	introduction	of	idealizations	is	akin	in	informational	terms	to	the	
introduction	of	noise	in	a	signal;	for	in	an	idealization	we	introduce	‘extraneous’	elements	
into	 the	 model	 that	 have	 no	 correlate	 in	 the	 target.	 Second,	 abstraction	 in	 a	 model	 is	
informationally	equivalent	to	equivocation	in	the	signal;	for	in	an	abstraction	we	‘neglect’	in	
the	model	certain	features	that	obtain	in	the	target.	They	then	conclude	becomes	possible	
in	principle	to	quantify	idealization	and	abstraction	in	informative	models,	although	precise	
absolute	quantification	will	be	difficult	to	achieve	in	practice.	
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1.	Introduction	
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	 Scientific	models	are	often	employed	to	gain	 information	regarding	 their	 targets.	
The	building	of	the	model	is	guided	by	preliminary	knowledge	of	some	phenomenon,	and	
the	 model	 aims	 to	 provide	 further	 information	 regarding	 unknown	 aspects	 of	 the	
phenomenon,	or	its	underlying	causes.	This	is	evident	in	most	models	with	predictive	power	
that	 we	 know,	 but	 it	 applies	 to	 most	 other	 models	 whenever	 some	 cognitive	 gain	 in	
understanding	is	sought	(for	compilations	of	an	array	of	case	studies	in	physics,	economics,	
and	 other	 sciences,	 see	 e.g.,	 Morgan	 and	 Morrison,	 1999;	 Jones	 and	 Cartwright,	 2005;	
Suárez,	2009).	A	key	feature	of	scientific	representations	is	their	capacity	to	enable	users	to	
draw	informative	inferences	from	what	we	may	call	representational	vehicles,	or	sources,	to	
their	target	systems.	This	has	been	studied	in	depth	and	is	by	now	widely	accepted	(Boesch,	
2017;	Bolinska,	2013;	Contessa,	 2007;	 Suárez,	 2004).	1	What	 is	not	 so	 established	 is	 the	
nature	of	the	information	that	is	conveyed	by	models.	In	this	paper	we	focus	on	the	nature	
of	the	information	provided,	and	apply	the	tools	of	communication	theory	in	order	to	draw	
a	 few	 interesting	 lessons	 regarding	 some	 approximation	 techniques	 typical	 in	 scientific	
modelling.	When	 a	model	 is	 represented	 as	 analogous	 to	 a	 communication	 channel,	 the	
sources	 of	 informational	 noise	 and	 equivocation	 have	 correlates	 in	 different	 forms	 of	
idealization	and	abstraction	in	modelling	practice.	This	sheds	some	light	on	some	common	
methods	for	minimizing	idealization	and	abstraction,	as	well	as	their	rationale.	

	

	 The	 relevant	 information	 theoretical	 concepts	 are	 introduced	 in	 section	 2:	 They	
originate	in	Shannon’s	classic	(1948)	and	have	been	discussed	in	an	epistemological	context	
by	Dretske	(1981).	2	The	central	analogy	between	communication	channels	and	scientific	
models	is	laid	out	in	section	3.	The	following	section	4	expounds	on	a	case	study	within	the	
kinetic	theory	of	gases,	and	it	argues	for	a	role	for	informational	noise	and	equivocation	in	
standard	understandings	of	idealization	and	abstraction.	The	concluding	section	5	wraps	
up	the	main	claim,	and	raises	some	questions	prompted	by	the	analogy	that	deserve	further	
exploration.	

	

	

2.	The	Mathematical	Theory	of	Communication	(MTC)	

	

	 In	a	communication	system,	a	message	travels	from	an	emitting	source	to	a	receiver	
through	some	medium,	such	as	a	radio	signal.	Communication	channels	are	noisy:	part	of	

 

1	So	is	the	concomitant	terminology	of	‘sources’	and	‘targets’	(Suárez,	2004);	yet,	for	reasons	that	will	
become	apparent,	it	is	best	for	the	purposes	of	this	article	to	refer	to	representational	vehicles	and	
targets,	to	aptly	distinguish	them	from	the	terms	employed	in	information	theory.	

2	See	Bolinska	(2015)	for	an	application	of	these	notions	in	the	philosophy	of	science.	
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the	 message	 can	 be	 obscured,	 for	 instance,	 through	 crosstalk	 in	 the	 radio	 signal,	
interference,	or	a	random	noise	generator	mixing	into	the	signal.	On	the	other	hand,	there	
is	always	less	than	perfect	quality	in	the	transmitted	message,	i.e.,	every	signal	suffers	from	
loss,	also	known	as	equivocation,	due	to	impurities	in	the	transmission	channel,	or	in	the	
coding	and	decoding	of	 the	message.	 In	other	words,	no	communication	channel	 is	ever	
100%	efficient.	 	The	goal	of	effective	communication	is	thus	rarely,	if	ever,	to	completely	
eliminate	or	eradicate	the	inefficiencies	in	the	form	or	either	noise	or	equivocation	–	since	
to	 bring	 those	 inefficiencies	 to	 0%	 in	 practice	 is	 an	 impossible	 task.	 Rather	 the	 goal	 of	
effective	communication	 is	 to	maximise	 the	efficiency	of	 the	signal	within	 the	bounds	of	
what	is	in	fact	possible	for	any	given	channel.	For	a	complete	array	of	possible	signals,	every	
channel	will	have	some	limit	to	what	is	capable	of	transmitting	from	emission	to	reception.	
The	 limit	 is	 the	 average	 efficiency	 of	 the	 channel.	 In	 other	 words,	 the	 informational	
efficiency	of	any	communication	channel	is	an	average	property	of	the	channel	relative	to	
all	possible	transmissions	through	that	channel.	The	goal	of	communication	efficiency	is	to	
maximize	 this	 quantity	 –	 and	 it	 entails	 choosing	 a	 channel	 with	 as	 great	 a	 ratio	 of	
information	to	noise,	or	equivocation,	as	is	possible	for	transmissions	of	information	from	
a	given	source	to	a	receiver.		

	

	 A	 communication	 system	 comprises	 minimally	 five	 separate	 parts:	 an	 emitting	
source;	an	encoder	or	transmitter;	a	signal;	a	decoder	or	receptor;	and	a	receiver.	(See	figure	
1:	Shannon’s	information	theory).	The	source	possesses	or	generates	certain	quantitative	
properties,	which	the	encoder	or	transmitter	(some	sort	of	machine	or	mechanism)	codifies	
in	a	signal.	The	signal	carries	the	information	over	to	a	decoder	that	extracts	the	relevant	
information	regarding	the	source	in	a	form	that	is	adequate	for	the	purposes	of	a	receiver.	
In	practice	there	is	a	degree	of	information	loss	at	every	stage	(e.g.,	Pierce,	1961):	the	source	
properties	may	not	all	get	adequately	codified,	or	not	codified	at	all	in	the	signal.	The	signal	
may	lose	some	of	its	properties	or	resolve.	The	decoding	may	be	deficient	and	fail	to	extract	
all	 the	 information	 in	 the	 source.	 The	 receiver	 may	 in	 principle	 be	 inefficiently	 geared	
towards	the	information	received.	In	other	words,	there	are	many	sources	of	what	we	call	
equivocation:	relevant	information	regarding	the	source	that	is	not	transmitted	over	to	the	
receiver.		

	

Dretske	(1981,	pp.	16ff.)	represents	equivocation	formally	as	follows.	Let	us	refer	to	
the	source	as	s	and	the	receiver	as	r.	And	let	us	refer	to	the	total	amount	of	 information	
contained	in	s	as	I(s),	and	to	the	total	amount	of	information	received	at	r	as	I(r).	Then	we	
can	 denote	 the	 total	 amount	 of	 information	 about	 s	 that	 is	 received	 at	 r	 as	 Is(r).	 A	
straightforward	measure	of	equivocation	is	then	given	as:	

	

		 E(r)	=	I(s)	-	Is(r)		 	 	 	 	 	 [Equivocation]		
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That	is,	the	equivocation	of	a	communication	system	is	the	amount	of	information	
that	 gets	 lost	 in	 the	 transmission	 from	 the	 source	 to	 the	 receiver,	 i.e.,	 the	 amount	 of	
information	generated	at	the	source	that	fails	to	be	transmitted.	Dretske’s	formula	applies	
to	average	equivocation	in	a	particular	communication	channel	between	a	given	source	s	
and	 a	 given	 receiver	 r.	 It	 is	 clear	 that	 in	 order	 to	 compute	 it	 quantitatively	we	 need	 to	
possess	measures	of	the	information	contained	in	the	source	I	(s),	and	of	the	part	of	this	
information	 that	 is	 in	effect	 transmitted	 to	 the	 receiver,	 Is	(r).	Dretske	points	out	 that	 in	
communication	 theory	 we	 can	 quantify	 the	 information	 contained	 in	 any	 system	 by	
calculating	the	reduction	in	the	number	of	possible	states	of	the	system,	as:	 I	(s)	=	 log	n,	
where	n	is	the	number	of	possibilities	that	get	reduced	to	1.	(This	is	sometimes	known	as	
the	information	entropy	of	the	source,	and	assumes	that	the	source	is	some	kind	of	process	
or	phenomenon	endowed	with	some	dynamics	that	reduce	a	large	space	of	possibilities	into	
one	–	an	assumption	that	I	shall	return	to	later	on	in	the	discussion	of	the	case	study).		

	

	 Reducing	 the	 equivocation	 in	 a	 channel	 increases	 completeness	 –	 a	 channel	 that	
equivocates	a	 lot	provides	an	 impoverished	rendition	at	reception	of	 the	qualities	of	 the	
source.	 Dretske	 suggests	 (1981,	 p.	 25)	 that	 we	 can	 calculate	 the	 equivocation	 in	 a	
communication	system	as	follows.	Suppose	that	there	are	only	eight	possible	events	at	the	
source	{s1,	s2,	…,	s8},	and	correspondingly	eight	possible	events	at	the	receiver	{r1,	r2,	…,	r8}.	
Now,	suppose	that	the	signal	is	such	as	to	generate	each	event	at	the	receiver	with	a	given	
probability	given	each	event	at	the	source.	That	is,	there	are	well	defined	values	of	P	(ri	/	sj)	
for	 every	 couple	 {ri,	 sj}.	 We	 may	 focus	 on	 a	 particular	 event,	 say	 r7,	 and	 work	 out	 the	
equivocation	for	that	event	as	follows:	Es(r7)	=	-	S	P	(si	/	r7)	log	P	(si	/	r7).	This	is	just	the	
probabilistically	weighted	average	of	the	equivocation	for	each	of	{si}	with	respect	to	r7.	To	
compute	the	average	equivocation	for	the	channel	we	need	only	sum	up	the	contributions	
made	to	it	by	each	of	the	events,	weighted	by	their	probabilities:		

	

	 E(r)	=	Sj	P(rj)	E(rj)		 	 	 	 	 [Average	Equivocation]	

	

	 In	other	words,	the	equivocation	of	a	communication	channel	is	an	average	quantity	
computed	over	each	of	the	possible	values	of	the	properties	of	the	source,	weighted	by	the	
conditional	 probability	 that	 each	 of	 those	 values	 generates	 a	 particular	 value	 of	 some	
property	 in	 the	 receiver.	 We	 calculate	 the	 equivocation	 for	 each	 value	 of	 the	 receiver	
property	by	estimating	the	probability	that	information	loss	may	occur	for	this	value	of	the	
receiver	property.	And	then	we	sum	over	all	the	values	weighted	by	their	corresponding	
probability.	 Whenever	 applicable,	 the	 procedure	 yields	 quantitative	 values	 for	 the	
equivocation	 and	 this	 constitutes	 a	 measure	 of	 the	 channel’s	 efficiency.	 The	 larger	 the	
equivocation,	 the	 larger	 share	 of	 information	 is	 lost	 in	 the	 transmission	 from	 source	 to	
receiver,	 since:	 I(r)	 =	 I(s)	 -	 E(r).	 The	 smaller	 the	 equivocation,	 by	 contrast,	 the	 larger	
proportion	of	the	information	contained	in	the	source	is	transmitted	to	the	receiver.	At	the	
limit,	 when	 the	 equivocation	 is	 zero,	 all	 the	 information	 contained	 at	 the	 source	 is	
completely	transmitted:	I(s)	=	Is(r).	
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	 The	 other	 important	 source	 of	 inefficiency	 in	 a	 communication	 channel	 is	noise.	
Roughly,	 the	 noise	 of	 a	 communication	 channel	 is	 whatever	 extraneous	 information	 is	
picked	up,	and	thus	added	to	the	signal	as	it	travels	from	source	to	receiver.	It	may	be	added	
at	the	stage	of	coding,	e.g.,	at	the	source,	or	it	may	get	added	later	on	during	the	transmission	
or	at	the	stage	of	decoding	at	the	receiver’s	end.	At	any	rate,	the	noise	in	a	communication	
channel	is	defined	as	whatever	information	is	transmitted	to	the	receiver	which	does	not	
originate	in	the	source:	

	

N(s)	=	I(r)	-	Is(r).	 	 	 	 	 	 [Noise]	

	

	 Hence	the	greater	the	noise	the	 larger	share	of	 the	 information	received	was	not	
actually	 generated	 at	 the	 source;	 the	 smaller	 the	 noise	 the	 greater	 proportion	 of	 the	
information	did	 actually	 originate	 at	 the	 source.	At	 the	 limit	where	noise	 is	 null,	 all	 the	
information	received	faithfully	originates	at	the	source:	I(r)	=	Is(r).	

	

Reducing	 the	 noise	 over	 a	 communication	 channel	 increases	 faithfulness,	 or	
reliability.	We	can	calculate	the	average	noise	over	a	communication	channel	in	converse	
fashion	 to	 equivocation	 as	 follows.	 First	 calculate	 noise	 for	 every	 possible	 event	 in	 the	
source.	 Thus,	 for	 instance,	 for	 event	 s7	 at	 the	 source,	 its	 contribution	 to	 the	 average	 or	
overall	noise	is	given	as:	N	(s7)	=	-	Si	P	(ri	/	s7)	log	P	(ri	/	s7).	Then	the	noise	of	the	channel	is	
simply	 the	statistical	average	of	each	of	 these	contributions,	 i.e.	 the	contribution	of	each	
weighted	according	to	its	probability:		

	

	 N	(s)	=	Sj	P(sj)	N(sj).	 	 	 	 	 [Average	Noise]	

	

	 In	many	 cases,	 noise	 detracts	 from	 signal	 transmission,	 preventing	 some	 of	 the	
information	from	the	source	to	be	transmitted	to	the	receiver,	i.e.,	increasing	equivocation.	
But	this	need	not	be	the	case:	it	is	possible	for	the	receiver	to	contain	additional	information,	
information	 that	 didn’t	 originate	 in	 the	 source,	 which	 doesn’t	 detract	 from	 signal	
transmission.	 Thus,	 an	 increase	 in	 noise	 need	 not	 logically	 or	 conceptually	 imply	 a	
corresponding	increase	in	equivocation	(Dretske	1981,	pp.	20-21).	

	

	 Most	communication	channels	operate	on	signals	of	much	greater	complexity,	with	
a	much	larger	and	more	complex	space	of	possibilities	at	the	source	than	here	described.	
But	 the	 basic	 notions	 stand,	 and	 they	 will	 suffice	 for	 the	 purposes	 of	 this	 paper.	 It	 is	
particularly	relevant	that	informational	quantities	like	equivocation	and	noise	are	averages	
and	therefore	properties	of	the	communication	channel,	not	of	any	particular	signal.	While	
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this	 averaging	 feature	 of	 informational	 notions	 is	 not	 particularly	 suited	 to	 Dretske’s	
purposes	(he	chooses	to	concentrate	instead	on	concrete	signalling	actions),	it	is	well	suited	
for	 the	 purposes	 of	 the	 analogy	with	 scientific	modelling	 that	 shall	 be	 explored	 here	 A	
complex	 communication	 channel	 comprises	 five	 elements,	 and	 its	 most	 relevant	
informational	 quantities	 must	 be	 computed	 as	 averages	 pertaining	 to	 the	 channel	 as	 a	
whole.		

	

	

3.	An	Analogy:	Models	as	Communication	Channels	

	

	 The	practice	of	model	building	displays	considerable	sensitivity	to	some	notion	of	
fit	between	a	representational	vehicle	and	its	target.	The	fit,	however,	very	rarely	involves	
matching	 pairwise	 structural	 properties;	 more	 often	 than	 not	 what	 is	 at	 stake	 is	 how	
relevantly	 informative	 the	 source	 is	 as	 an	 inferential	whole	 about	 certain	 aspects	 of	 the	
target.	3	However,	the	notion	of	information	at	work	here	is	suitably	thin,	for	any	kind	of	
model.	A	richly	informative	model	describes	its	target	in	great	detail;	yet	not	all	the	detail	
need	be	a	guide	to	what	the	target	really	is	 like	–	sometimes	the	detail	serves	pragmatic	
purposes	 in	understanding	or	predicting	 the	 ensuing	phenomena.	Many	models	 idealise	
their	 targets	a	great	deal,	presupposing	point	mass	particles,	 frictionless	planes,	and	 the	
like.	These	are	detailed	and	are	in	some	sense	informative,	but	for	all	we	know	they	are	not	
faithful	to	their	targets.	By	contrast,	a	powerful	or	deep	model	may	not	be	rich	in	detail	but	
is	nonetheless	informative	in	some	sense	about	the	main	or	critical	characteristics,	those	
that	 are	 more	 central	 to	 the	 production	 of	 the	 phenomena.	 What	 is	 the	 sense	 of	
informativeness	 that	 is	 involved	 in	 these	models?	From	an	 inferential	point	of	view,	 the	
richer	model	is	most	informative	in	the	sense	that	it	licences	a	large	number	of	inferences	
to	many	different	aspects	of	the	phenomenon.	A	deep	model	may	licence	fewer	inferences,	
and	to	fewer	aspects	of	the	phenomenon,	but	they	are	inferences	to	aspects	that	we	have	
reason	to	suppose	are	more	central,	including	some	of	its	putative	causes.		

	

	 In	other	words,	models	encode	information.	The	kind	of	information	will	differ	in	
different	 types	 of	 model,	 and	 the	 nature	 of	 the	 information	 involved	 will	 also	 differ	
depending	 on	 the	 account	 of	 representation	 endorsed.	 But	 in	 any	 case,	 information	
transmission	is	often	a	main	aim	of	modelling.	4	This	observation	suggests	an	analogy:	the	
target	of	the	model	acts	often	as	an	information	source	for	the	representational	vehicle	to	

 

3 In fact, a 1-1 copy of the target – as in Borges’ (1954) beautiful parable – would be a 100% informative 
‘channel’ and, yet, a perfectly useless model. 

4 Indeed, one of us (Bolinska, 2016) has explicitly understood models as tools for conveying information, 
identifying features responsible for their informativeness. See also the discussion of ‘objectivity’ in Suárez 
(2004, forthcoming). 
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transmit	 to	 the	 user	 of	 the	 model.	 In	 other	 words,	 modelling	 often	 is	 in	 some	 sense	 a	
communication	practice,	and	a	model	may	be	thought	of,	at	some	level	of	abstraction,	as	a	
communication	channel.	It	could	help	understand	the	practice	of	modelling	to	make	it	more	
precise	what	this	sense	is.		

	

	 Nevertheless,	 a	 cogent	 application	 of	 the	 analogy	 meets	 some	 challenges.	 In	 a	
communication	 channel	 as	 described	 in	 Shannon’s	 theory	 (figure	 1),	 the	 source’s	
information	is	first	encoded	into	a	transmitter,	which	emits	a	signal.	The	signal	is	carried	by	
some	 means	 to	 a	 receiver,	 which	 decodes	 the	 information	 and	 provides	 it	 over	 to	 its	
destination.	There	are	thus	five	objects	laid	out	in	a	communication	system,	and	we	need	to	
fix	on	the	respective	analogues	in	the	case	of	modelling	if	Shannon’s	theory	is	to	apply.		Now,	
we	are	not	suggesting	that	models	are	just	communication	channels,	but	only	that	there	are	
helpful	analogies	that	may	be	exploited	to	better	understand	modelling	practice.	There	may	
well	 be	 different	 ways	 of	 helpfully	 laying	 out	 the	 analogy,	 depending	 on	 both	 types	 of	
models,	and	the	underlying	account	of	representation.	In	other	words,	I	make	no	claim	that	
the	 proposal	 advanced	 here	 will	 always	 be	 applicable	 or	 helpful,	 in	 every	 instance	 of	
modelling,	regardless	of	how	the	case	is	understood	or	interpreted.	And	we	are	certainly	
not	 claiming	 that	 the	 analogy	 presented	 here	 exhausts	 everything	 that	may	 be	 claimed	
about	modelling	practice,	even	from	an	informational	point	of	view.	Our	more	modest	claim	
is	 that	 the	analogy	provides	some	 tools	 to	better	understand	 the	kind	and	nature	of	 the	
information	transmission	that	takes	place	in	some	instances	of	modelling,	as	pertains	their	
inferential	function	in	particular.		

	

	 The	proposal	is	thus	to	treat	the	system,	process,	or	phenomenon	of	interest	(the	
representational	 “target”)	 as	 the	 informational	 source	 in	 a	 communication	 channel.	 The	
system	or	phenomenon	of	interest	is	typically	a	dynamical	process,	or	it	involves	one,	and	
it	is	often	represented	to	us	already	in	some	preliminary	or	antecedent	description.	(The	
apparent	circularity	is	a	well-known	issue	in	the	representation	literature,	which	there	is	
no	space	to	broach	here	–	see	Van	Fraassen,	2008,	Ch.	11	and	part	IV,	for	further	discussion).	
The	information	about	this	dynamical	process	is	then	encoded	in	at	least	either	of	two	ways.	
It	 can	 be	 studied	 empirically,	 on	 the	 basis	 of	 the	 static	 data	 that	 it	 elicits	 in	 some	
experimental	trial,	and	the	resulting	information	can	be	built	into	what	is	known	as	a	data-
model	(in	the	sense	of	e.g.,	Suppes,	1962).		Or	it	can	be	modelled	dynamically,	in	terms	of	a	
given	parameter	set,	in	what	is	a	phenomenological	model.	Different	ways	of	encoding	the	
same	information	may	be	more	or	less	appropriate	for	the	purposes	at	hand.		

	

In	either	case,	the	model	then	acts	as	a	courier	of	information,	a	tool	to	compactly	
convey	 codified	 information	 regarding	 the	 system	 of	 interest.	 At	 the	 other	 end	 of	 the	
process,	the	model	needs	to	be	interpreted	in	ways	that	make	the	information	salient	for	
the	purposes	of	prediction,	understanding,	explanation,	or	generalisation.	This	will	typically	
require	a	scientist	to	employ	a	theory	or	sets	of	theories	(sometimes	high-level	theories,	
such	as,	in	physics,	the	kinetic	theory	of	gasses,	the	theory	of	general	relativity,	or	quantum	
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mechanics;	other	times	medium-level	theory,	such	as	diffraction	optics,	radiation	theory,	or	
the	molecular	hypothesis	for	gases)	to	interpret	the	phenomenological	or	data	model.	The	
information	at	the	source	is	thus	finally	transmitted	over	to	its	final	destination,	the	model	
user.	It	is	important	to	note	the	multiple	steps	involved	in	this	communicative	act,	and	the	
concomitant	 judgements	 along	 the	 way:	 The	 source	 has	 to	 be	 competently	 and	 aptly	
described,	 the	 information	 it	 contains	 must	 then	 be	 codified	 /	 transposed	 into	 an	
appropriate	model	that	will	act	as	an	information-carrier,	and	this	model	must	be	correctly	
interpreted	in	the	light	of	some	theoretical	knowledge	for	the	information	to	be	relevant,	
comprehensive	and	/	or	apt	for	the	purposes	of	the	model	user.	The	overall	communication	
channel	may	be	schematically	described	as	follows:	

	

	 	 Phenomenon	(source)		—>	Phenomenological	/	data	model	(coding)	—>		

	

	 	 	 —>	[Transmission]	—>	

	

	 	 	 —>	Theoretical	model	(decoding)	—>			User	(receiver)	

	

	

	 In	 this	 picture	 the	 communication	 system	 also	 has	 five	 steps,	 the	 middle	
transmission	step	being	the	immersion	of	the	phenomenological	description	or	model	into	
the	theoretical	explanation	or	interpretation	of	the	phenomenon.	Information	loss,	in	the	
shape	of	either	noise	or	equivocation,	is	possible	in	every	step	in	this	chain.	There	is	bound	
to	be	information	loss	in	the	choice	of	data	or	phenomenological	model	(here	understood	
in	informational	terms	as	the	selection	of	the	coding	system);	in	the	actual	embedding	of	the	
data	or	phenomenon	 into	 the	 theoretical	description	(understood	 informationally	as	 the	
transmission	 of	 a	 signal);	 and	 in	 the	 choice	 of	 the	 theoretical	model	 that	 interprets	 the	
phenomenon	 (the	 choice	 of	 the	 information	 decoding	 system).	 	 There	 are	 no	 doubt	
judgements	 in	all	 three	cases	as	to	what	 is	most	 likely	to	preserve	the	largest	amount	of	
information	or	the	most	critical	kind	of	information.	But	such	judgements	are	also	involved	
in	any	communication	channel	(for	some	insight	into	the	kinds	of	practical	choices	those	
working	in	information	theory	have	to	routinely	make,	see	MacKay,	2003).	All	these	choices	
must	be	fit	for	purpose,	so	a	lot	will	depend	on	the	actual	goals	pursued	by	the	user	of	the	
model	–	and	these	may	vary	greatly	depending	on	the	context	of	use.		

	

	 The	kind	of	 contextuality	of	use	 involved	 in	modelling	practice	 is	by	now	widely	
accepted	(cf.	Bailer-Jones,	2003;	Giere,	2004,	2009;	Mäki,	2009;	Teller,	2001),	and	it	cannot	
be	easily	algorithmically	or	automatically	done	away	with,	if	at	all.	This	severely	constrains	
the	analogy	in	at	least	two	different	ways	–	which	explain	why	modelling	practice	cannot	be	
simply	reduced	to	the	building	of	effective	communication	channels.	In	a	communication	
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system,	the	goal	is	for	the	message	at	the	receiver	end	to	identically	reproduce	the	message	
at	the	source,	or	at	least	to	do	so	with	minimal	information	loss.	Yet,	as	noted,	a	scientific	
model	rarely	aims	to	reproduce	the	target	system	in	its	entirety	exactly.	More	often	than	not	
a	 scientific	model	aims	 to	 capture	certain	consequences	of	 central	 features	of	 the	 target	
system	 –	 those	 consequences	 that	 are	 of	 importance	 for	 the	 purposes	 of	 prediction,	
explanation,	generalization,	etc.		

	

	 There	are	at	least	two	forms	of	helpful	‘distortion’	in	modelling	practice	that	need	
to	 be	 explained	 from	 an	 informational	 point	 of	 view.	 They	 correspond	 roughly	 to	
abstraction,	 and	 idealization.	 5 	Consider,	 for	 instance,	 the	 oft-discussed	 example	 of	 the	
simple	harmonic	oscillator	as	a	model	of	a	pendulum	subject	to	no	friction	(Giere,	1988).	
There	are	 two	ways	to	understand	the	absence	of	 friction	 in	 these	models.	The	 first	one	
assumes	the	model	 is	an	abstract	rendition	of	the	phenomenon	that	 ignores	some	of	the	
complexity:	 the	 real	 target	 phenomenon	 possesses	 friction,	 but	 the	 model	 does	 not.	 In	
informational	terms,	this	means	that	some	of	the	information	available	at	the	source	is	not	
represented	 in	 the	 model	 of	 the	 phenomenon	 in	 any	 way	 that	 can	 be	 interpreted	
theoretically	as	friction.	As	a	result,	the	information	does	not	get	transmitted	over	to	the	
receiver.	 Thus,	 in	 informational	 terms,	 there	 is	 ‘equivocation’	 involved	 in	 the	 simple	
harmonic	oscillator	model	of	a	real	pendulum.	

	

	 Now	consider	the	alternative	reading	of	“frictionless”	according	to	which	the	simple	
harmonic	oscillator	model	is	an	idealization.	On	this	reading	the	model	includes	a	property	
(“lack	of	friction”,	or	“frictionlessness”)	that	the	phenomenon	that	it	models	does	not	in	fact	
possess.	The	model	idealizes	the	phenomenon	by	introducing	properties	that	are	not	there	
in	 the	 source	 phenomenon.	 This	 understanding	 is	 of	 interest	 too,	 and	 rather	 typical	 in	
modelling:	it	entails	introducing	properties	in	the	model	description	for	ease	of	calculation,	
manipulation,	 prediction,	 etc.	 The	 “frictionlessness”	 of	 the	 ideal	 pendulum	 is	
informationally	akin	to	‘noise’	–	it	is	present	in	the	model	yet	does	not	originate	in	the	source	
but	is	“extraneous”.	One	can	thus	see,	following	these	two	interpretations	of	“frictionless,”	
that	abstraction	will	typically	be	analogous	in	informational	terms	to	‘equivocation’,	while	
idealization	is	analogous	to	informational	‘noise’.		

	

It	is	clear	that	a	lot	in	the	building	and	applying	of	models	depends	on	controlling	
and	 monitoring	 both	 “equivocation”	 and	 “noise.”	 As	 regards	 equivocation,	 reducing	 its	
presence	 in	a	model	 is	essential	 to	 the	aim	of	comprehensiveness	–	a	model	with	100%	
equivocation	 is	 a	 model	 where	 none	 of	 the	 information	 originating	 in	 the	 source	 is	
transmitted	(Is(r)	=	0)	and	is	hence	perfectly	useless.	As	regards	noise,	a	model	is	helpful	
only	in	as	much	it	transmits	faithfully	the	features	of	the	source.	Otherwise	we	run	the	risk	

 

5	My	use	of	the	terms	is	inspired	by	the	definitions	in	Cartwright	and	Jones	(2008),	and	Weisberg	
(2012);	and	is	reflected	most	precisely	in	those	used	in	Pero	and	Suárez	(2016).	
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of	incorrectly	ascribing	to	the	phenomenon	properties	that	it	does	not	possess	-	a	model	
where	100%,	of	the	information	received	is	‘extraneous’	is	again	useless,	since	Is(r)	=	0,	i.e.	
none	of	the	information	received	originates	in	the	source.	

	

	 	

	

4.	Modelling	and	the	Transmission	of	Information:	Some	Examples	

	

	 One	of	the	paradigmatic	case	studies	in	the	contemporary	literature	is	the	billiard	
ball	model	of	gases.	It	is	first	treated	as	part	of	an	extensive	discussion	of	the	kinetic	theory	
of	gases	in	Campbell	(1920)	and	thereafter	in	great	depth	in	Mary	Hesse’s	masterly	(1963).6	
In	the	kinetic	theory	of	gases,	the	dynamics	of	molecules	in	a	gas	is	modelled	as	if	it	were	a	
system	of	perfectly	elastic	microscopic	balls	in	collision–	a	set	of	miniature	‘billiard	balls’	in	
constant	motion.	Let	us	refer	to	the	real	properties	of	actual	gas	molecules	as	{G1,	…,	Gn}	and	
those	of	billiard	balls	as	{B1,	…,	Bm}.	Then	the	model	sets	up	a	correspondence	between	a	
subset	({G1,	…,	Gi},	with	i	<	n)	of	the	properties	of	gas	molecules	and	a	subset	({B1,	…,	Bi},	
with	i	<	m)	of	the	properties	of	billiard	balls.	We	say	that	gas	molecules	are	billiard	balls	as	
regards	their	collision	dynamics,	but	this	does	not	mean	that	they	share	all	the	properties	
of	billiard	balls.	Billiard	balls	are	coloured	and	shiny	and	reflect	 light,	but	gas	molecules	
possess	 none	 of	 these	 properties.	 Even	 as	 regards	 their	 dynamical	 properties	 there	 are	
significant	differences.	Billiard	ball	motion	is	subject	to	limited	friction	against	the	surface	
on	which	 they	move,	while	gas	molecules	presumably	 interact	 freely.7	And	conversely,	a	
system	of	gas	molecules	exhibits	macro-properties	that	no	system	of	billiard	balls	can	ever	
display,	such	as	viscosity	or	free	expansion.		

	

	 In	other	words,	the	model	omits	certain	properties	of	gas	molecules,	while	including	
others	 that	molecules	don’t	 in	 fact	have.	 In	 accordance	with	 the	analogy	 laid	out	 in	 this	
paper,	 the	model	may	 for	 the	 purposes	 of	 information	 be	 taken	 to	 be	 a	 communication	
channel	 transmitting	 information	 from	 the	 source	–	 a	 gas	 –	 encoded	and	 transmitted	 in	
accordance	with	 some	phenomenological	model	 (in	 the	 form	of	 the	billiard	ball	model),	
interpreted	in	the	terms	of	kinetic	theory	of	gases,	for	the	sake	of	the	receiver’s	information	
(the	physicist	able	to	interpret	or	decode	the	information	in	the	signal).	Properties	of	the	
gas	that	are	ignored	in	the	model	will	contribute	equivocation	in	the	signal,	impoverishing	

 

6	More	recently,	Pero	and	Suárez	(2016),	Suárez	and	Pero	(2019)	and	Suárez	(forthcoming)	contain	
an	extended	historical	discussion	of	this	example	that	corrects	some	philosophical	misconceptions.		

7	It	is	actually	worse	than	that:	contrary	to	assumptions	billiard	balls	are	not	perfectly	elastic,	but	of	
course	experience	minor	energy	loss	in	the	form	of	heat	in	collisions;	but	then	again	neither	are	gas	
molecules	perfectly	elastic,	since	they	also	experience	loss	of	(kinetic)	energy	in	collision.	See	the	
discussion	in	Pero	and	Suárez,	2016,	pp.	75-76. 
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the	communication,	while	features	in	the	model	that	do	not	correspond	to	properties	of	the	
gas	will	contribute	noise.	In	line	with	the	discussion	in	the	previous	section,	while	we	would	
ideally	reduce	both	noise	and	equivocation	to	zero,	if	we	could,	their	introduction	turns	out	
to	be	unavoidable	for	any	practicable	model	at	all.		

	

	 The	main	 difficulty	 in	 applying	 the	 informational	 framework	 to	 the	 billiard	 ball	
model	is	in	laying	down	the	appropriate	probability	distributions.	We	shall	have	to	make	a	
number	of	assumptions	at	this	point	–	including	some	prior	distributions	for	the	different	
combinations	 of	 values.	 Fortunately,	 however,	 the	 assumptions	 are	 warranted	 by	 the	
physical	model	 itself	 as	well	 as	 the	 philosophical	 discussions	 regarding	 the	 billiard	 ball	
model.	8	We	shall	therefore	assume	a	normal	distribution	over	the	values	of	the	properties	
of	 the	 source	 system	 (the	 gas	 molecules).	 This	 is	 warranted	 by	 the	 physics,	 since	 the	
standard	 assumption	 regarding	 the	 velocity	 of	 free	 molecules	 in	 a	 gas	 is	 that	 they	 are	
distributed	 in	accordance	 to	Maxwell-Boltzmann	statistics.	To	be	more	precise	 this	 says	
that,	 in	a	vessel	containing	m	particles	 in	equilibrium,	 the	proportion	of	particles	with	a	
particular	velocity	v	is	n	(where	n	<	m)	and	is	given	by	the	Maxwell-Boltzmann	distribution	
as:	

	 𝑓(𝑣)=&' 𝑚
2𝜋𝑘𝑇(

3
4𝜋𝑣2𝑒𝑥𝑝 '−𝑚𝑣

2

2𝑘𝑇 (		 [Maxwell-Boltzmann	distribution]	

	

	 This	probability	distribution	function	depends	only	upon	the	initial	velocities	of	the	
gas	 molecules,	 since	 the	 so-called	 Boltzmann	 constant	 k	 and	 the	 thermodynamic	
temperature	 of	 the	 gas	T	 are	 both	 constants	 of	motion.	We	 shall	 assume	 that	 all	 these	
velocities	have	correlative	properties	 in	 the	velocities	of	 the	billiard	balls	 in	a	system	of	
billiard	balls.	However,	there	is	no	reason	in	principle	why	the	velocities	of	an	equally	large	
group	of	billiard	balls	should	also	obey	a	Maxwell-Boltzmann	distribution.	In	fact,	the	notion	
of	equilibrium	itself	makes	no	sense	for	billiard	balls.	We	may	assume	by	fiat	that	the	set	of	
billiard	balls	 in	our	model	obeys	 the	Maxwell-Boltzmann	distribution,	and	 this	 is	 indeed	
commonly	done.	What	this	means,	from	the	point	of	view	of	information	theory,	is	that	we	
assume	that	there	is	no	information	loss	in	the	description	of	the	molecules’	velocities	in	the	
billiard	ball	model.		

	

	 But,	 of	 course,	 these	 are	 not	 the	 only	 properties.	 Let	 us	 begin	with	 all	 the	 noise	
introduced	into	the	system:	the	properties	of	billiard	balls	that	are	irrelevant	to	the	kinetic	

 

8	Although,	certainly,	these	assumptions	can	be	contested.	But	nothing	much	hinges	on	the	particular	
values.	The	only	claim	that	needed	 for	 the	present	proposal	 to	go	through	 is	 that	 there	are	some	
values	for	these	probability	distributions	–	whether	they	are	not	within	our	reach	to	know	is	not	
essential.	As	Dretske	points	out	(ibid,	p.	55)	the	probability	distributions	that	go	into	communication	
theory,	and	in	particular	the	conditional	probabilities	in	the	definition	of	equivocation,	are	objective,	
and	may	be	very	hard	to	get	to	know.		
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theory	of	gas,	such	as	their	colour,	their	shine,	and	of	course	their	rigid	solid	structure.	Take	
colour,	and	assume	for	the	sake	of	argument	that	billiard	balls	can	be	any	of	seven	colours	
from	the	deep	red	to	the	violet	end	of	the	spectrum,	and	that	each	colour	is	as	likely	as	any	
other	(this	is	just	an	assumption	about	the	entities	in	the	model,	for	which	it	is	not	relevant	
whether	or	not	it	contradicts	standards	in	e.g.	ordinary	sets	of	billiard	balls	in	the	game	of	
pool!).	This	already	entails	that,	 in	the	equation	for	the	average	noise	in	the	channel,	the	
value	of	the	probabilistic	distribution	is	uniform	over	all	the	colours:	

	 	 N	(s)	=	Sj	P(sj)	N(sj),	is	such	that	P	(si)	=	P	(sj)	=	a	for	all	i,	j.		

	

	 But	now,	a	further	substantial	assumption	must	be	made,	namely	that	the	colour	of	
the	 balls	 is	 not	 correlated	 with	 any	 of	 the	 properties	 of	 the	 gas	 molecules	 that	 they	
represent.	The	assumption	seems	intuitive,	and	it	would	be	a	strange	model	that	correlated	
the	properties	across	in	this	way,	but	it	is	not	an	in	principle	impossible	model.9	So	we	shall	
just	have	to	assume	that	the	model	does	not	work	that	way	and	that	the	colour	of	the	balls	
is	 completely	 uninformative	 with	 respect	 to	 any	 of	 the	 physical	 properties	 of	 the	 gas	
molecules.	There	is	no	correlation.	This	entails	that	the	cross	or	conditional	probabilities	in	
the	expression	for	the	noise	are	equal,	and	the	conditional	probability	distribution	is	flat:	P	
(ri	/	sk)	=	P	(rj	/	sk)	=	b,	for	any	i,	j,	and	any	property	sk	of	the	source.		

	

	 Now,	once	we	have	established	that	the	probabilities	are	constant	numbers	across	
the	average,	we	can	easily	see	that	the	contribution	to	the	noise	for	each	event	at	the	source	
is:	N	(sk)	=	-	Si	P	(ri	/	sk)	log	P(ri	/	sk)	=	-	b	Si	log	P(ri	/	sk).	But	as	we	had	already	found	out	the	
noise	to	be	a	constant	of	the	average	of	the	noise	contribution	from	each	value,	we	obtain:	
N	(s)	=	a	Sj	N(sj)	=	a	.	b	Sik	-	log	P(ri	/	sk).	In	other	words,	the	noise	is	just	a	constant	function	
of	each	of	the	conditional	events.	If	those	are	zero,	then	the	noise	goes	down	to	zero	and	the	
signal	achieves	maximal	efficiency.	

	

	 What	 does	 this	mean	 for	 our	 billiard	 ball	model?	 It	means	 that	 the	 information	
transmitted	by	the	model	about	the	system	of	gas	molecules	is	only	as	efficient	as	the	‘noise’	
by	spurious	variables	in	the	models	is	low	–	and	this	depends	only	on	how	much	every	one	
of	 the	 possible	 values	 of	 any	 of	 the	 spurious	 variables	 is	 correlated	 with	 the	 relevant	
physical	variables	in	the	source.	Bear	in	mind	that	the	correlation	is	objective,	so	even	if	we	
lack	any	knowledge	–	even	if	we	assume	there	to	be	no	correlation	–	the	actual	noise	in	the	
signal	depends	on	the	existence	of	the	correlations,	independently	of	our	knowledge.	So,	we	

 

9	For	instance,	one	could	imagine	a	model	where	the	colour	of	the	elastic	‘billiard’	balls	is	taken	to	
represent	the	initial	velocity	of	each	corresponding	molecule	in	the	gas,	with	purple	representing	the	
larger	 speeds	 and	 red	 representing	 the	 smaller	 speeds	 and	 all	 the	 other	 colours	 representing	
intermediate	 speed	 ranges	 in	 the	prescribed	order	 in	 the	electromagnetic	 visible	 spectrum.	Such	
model	would	not	be	very	useful,	but	it	is	perfectly	possible,	for	any	given	gas.	
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are	never	in	a	position	to	rule	out	informational	noise	(because	we	can	never	completely	
de-idealize	the	model).	

	

	 Let	 us	 now	 consider	 equivocation.	 Very	 similar	 considerations	 will	 apply,	 even	
though	we	are	now	interested	in	the	properties	in	the	source	that	are	ignored	or	abstracted	
away	in	the	model.	As	mentioned,	all	the	macroscopic	properties	of	the	gas	(free	expansion,	
viscosity)	 are	 derived	 from	 theory	 on	 the	 basis	 of	 the	model,	 but	 do	 not	 appear	 in	 the	
analogy	 itself:	 systems	 of	 billiard	 balls	 exhibit	 neither	 viscosity	 nor	 free	 expansion.	
However,	 the	 same	 reasoning	 we	 applied	 to	 noise	 will	 also	 apply	 to	 the	 equivocation	
function:	E(r)	=	Sj	P	(rj)	E(rj),	even	if	equivocation	depends	upon	the	probabilities	of	the	
receiver,	not	the	source.	If	the	model	is	deterministic,	we	can	assume	all	the	probabilities	to	
be	 zero	 or	 one	 for	 all	 the	 values	 of	 all	 the	 dynamical	 variables	 of	 interest.	10 	Then	 the	
equivocation	depends	only	 on	 the	 contribution	made	by	 the	 value	 that	 actually	 obtains,	
suppose	r7.	This	in	turn	is	given	by	E(r7)	=	-	S	P	(si	/	r7)	log	P	(si	/	r7).	Yet,	if	the	value	at	
reception	is	uniquely	picked	out,	it	should	then	not	depend	statistically	on	the	values	of	any	
other	variables	at	the	source	(the	position	of	a	billiard	ball	in	the	model	ought	to	depend	
only	 on	 the	 position	 of	 the	 corresponding	 gas	 molecule	 in	 the	 gas).	 So	 once	 again	 the	
conditional	probability	function	is	one	or	zero	(P	(si	/	r7)	=	1	if	i	=	7,	and	=	0	otherwise).	So,	
we	obtain	the	result	that	the	equivocation	can	only	go	to	zero	if	every	variable	in	the	source	
has	 a	 correlated	 variable	 in	 the	 model-signal.	 Patently	 this	 is	 not	 the	 case	 for	 the	
macroscopic	 variables,	 in	 which	 case	 E(r)	 ¹	 0	 and	 the	 model	 displays	 a	 degree	 of	
inefficiency.	

	

	 While	it	is	not	possible	to	quantify	the	inefficiency	in	detail,	it	should	be	clear	that	
the	way	to	reduce	equivocation	is	to	tightly	correlate	every	dynamical	variable	in	the	source	
to	a	variable	in	the	model.	This	ensures	completeness	in	the	description	the	model	provides	
of	 the	 phenomena	 (e.g.	 by	 building	 additional	 properties	 into	 billiard	 ball	 systems	 that	
account	 for	 the	 macroscopic	 properties	 of	 the	 gas),	 so	 not	 surprisingly	 equivocation	
inefficiency	goes	down.	In	other	words,	from	an	informational	point	of	view,	idealization	
introduces	 noise	 into	 the	 signal	 transmission	 provided	 by	 the	model;	while	 abstraction	
introduces	 equivocation;	 and	 the	way	 to	 reduce	 the	 inefficiency	generated	by	both	 is	 to	
tightly	match	the	properties	in	the	model	to	those	in	the	source,	and	vice-versa.	No	model	
is	 ever	 perfect,	 in	 the	 sense	 of	 ever	 achieving	 this	 kind	 of	 one-to-one	matching.	 On	 the	
contrary	 every	 model	 contains	 some	 degree	 of	 each	 kind	 of	 inefficiency.	 The	 art	 of	
modelling,	 in	 informational	 terms,	 involves	 a	 trade-off	 between	 noise	 and	 equivocation.		
	 	

 

10	Determinism	is	also	arguably	an	assumption	for	systems	of	billiard	balls,	if	we	assume	an	initial	
probability	distribution	over	the	dynamical	variables	of	interest	(as	is	done,	e.g.,	in	the	tradition	of	
the	 method	 of	 arbitrary	 functions).	 I	 shall	 ignore	 this	 complication	 and	 assume	 deterministic	
Newtonian	dynamics. 
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5.	Conclusion	

	 	

	 Many	scientific	models	aim	at	conveying	information	regarding	their	targets.	When	
a	model	does	so	–	and	in	so	far	as	it	does	so	–	a	model	functions	as	a	communication	channel.	
We	have	in	this	paper	endeavoured	to	take	this	insight	seriously,	and	to	apply	the	rudiments	
of	 communication	 systems	 theory	 to	 scientific	modelling.	 The	 result	 is	 no	doubt	 just	 an	
analogy	–	since	models	are	per	se	not	built	as	communication	channels,	nor	may	they	be	
entirely	 treated	 as	 if	 they	 were.	 But	 it	 is	 an	 instructive	 analogy,	 which	 already	 at	 a	
preliminary	 stage	 sheds	 considerable	 light	 on	 some	 aspects	 of	 modelling	 practice.	 In	
particular,	 we	 have	 shown	 that	 some	 typical	 modelling	 techniques	 have	 correlates	 in	
informational	terms.	The	analogy	shows	that	often	tractability	is	gained	at	the	expense	of	
informational	 faithfulness	 or	 completeness.	 There	 is	 therefore	 a	 certain	 trade	 off	 taking	
place	 in	modelling	which	 is	 best	 explained	 in	 terms	 of	 informational	 cost.	 Philosophers	
interested	in	modelling	have	not	so	far	appreciated	this	informational	cost,	nor	have	they	
considered	 its	 diverse	 forms.	 	 We	 try	 to	 provide	 a	 first	 approximation	 in	 terms	 of	
informational	equivocation	and	noise.	These	are	technical	terms	–	and	we	have	employed	
the	definitions	in	Shannon’s	mathematical	theory	of	communication.	On	this	informational	
analogy,	 roughly,	what	 is	known	as	 idealisation	can	be	understood	as	 introducing	noise;	
while	abstraction	introduces	a	form	of	informational	equivocation.	

	

	 Shannon’s	theory	moreover	provides	precise	ways	to	quantify	over	informational	
loss,	 by	 measuring	 the	 informational	 content	 in	 the	 source,	 and	 detracting	 noise	 and	
equivocation	 in	 the	 signal.	 It	 then	becomes	possible	 to	derive	a	quantitative	measure	of	
information	effectively	transmitted.	The	application	of	such	severe	quantitative	methods	to	
scientific	 modelling	 is	 limited,	 and	 this	 shows	 some	 of	 the	 limitations	 of	 the	 analogy.	
Measuring	 the	 informational	 content	 of	 a	 dynamical	 system	or	 phenomenon	 is	 far	 from	
trivial,	as	it	depends	on	the	description	of	the	parts	and	their	interrelation.	In	other	words,	
the	informational	content	of	a	system	or	phenomenon	often	sensitively	depends	upon	what	
we	call	the	phenomenological	model.	Yet,	once	this	model	is	in	place,	it	becomes	possible	to	
establish	relations	between	its	parts	(which	are	genuinely	probabilistic	correlations	in	the	
case	of	statistical	physics	models)	and	compare	them	to	those	in	a	higher-level	theoretical	
description.	We	have	illustrated	how	this	would	work	in	the	case	of	the	billiard	ball	model	
of	 gases	–	a	phenomenological	description	of	 a	gas	within	Maxwell’s	kinetic	 theory.	The	
result	is	a	rendition	in	informational	terms	of	the	idealizations	and	abstractions	that	operate	
in	 the	model.	 This	 analogy	 is	 sufficiently	 robust	 to	 allow	 us	 to	 draw	 some	 conclusions	
regarding	what	a	more	realistic	(either	less	idealized,	or	more	concrete)	description	would	
involve;	 it	 also	 provides	 a	 better	 understanding	 of	 the	 trade-offs	 involved	 between	
tractability	and	information	efficiency.	

	

	 Furthermore,	the	analogy	between	scientific	models	and	communication	channels	
is	suggestive	of	a	number	of	further	methodological	and	epistemological	issues	that	deserve	
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to	be	explored	–	although	there	is	no	space	in	a	single	article	to	address	them	in	any	detail.	
The	more	obvious	methodological	questions	concern	 the	goals	 that	 trump	 informational	
efficiency	 –	 and,	 in	particular,	whether	 they	 carry	 an	 expectation	of	 greater	 informative	
efficiency	down	the	line.	If	so	even	the	divergences	from	the	goal	of	informational	efficiency	
described	 here	 -	 in	 terms	 of	 idealization	 and	 abstraction	 in	 scientific	 models	 -	 would	
ultimately	 be	 accountable	 by	 recourse	 to	 presumed	 informational	 gains	 further	 on.	 The	
analogy	would	become	more	 than	 just	 suggestive:	 It	would	provide	 the	 rudiments	of	an	
account	of	modelling	as	a	branch	of	information	theory.	From	an	epistemological	point	of	
view	a	question	that	deserves	to	be	studied	is	the	status	of	the	so-called	veridicality	thesis,	
which	assumes	all	information	to	be	true.	The	thesis	has	as	many	defenders	as	detractors	
(Floridi,	2007;	Scarantino	and	Piccinini,	2010),	and	we	have	attempted	to	keep	all	our	claims	
neutral	in	this	paper.	(In	other	words,	the	hope	is	that	every	claim	in	this	paper	is	acceptable	
to	 epistemic	 realists	 and	 antirealists	 alike).	 Yet,	 it	 is	 reasonable	 to	 suppose	 that	 the	
veridicality	thesis	will	apply	in	some	cases	of	informative	modelling,	but	not	in	all	cases.	If	
so,	it	would	be	worth	figuring	out	a	principled	way	to	draw	the	relevant	distinctions	within	
modelling	practice	 itself	–	 thus	rendering	the	realism-antirealism	debate	about	scientific	
models	an	internal	issue	in	science	itself.	
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