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Abstract

Pure shape dynamics (PSD) is a novel implementation of the relational frame-
work originally proposed by Julian Barbour and Bruno Bertotti. PSD represents
a Leibnizian/Machian approach to physics in that it completely describes the
dynamical evolution of a physical system without resorting to any structure ex-
ternal to the system itself. The chapter discusses how PSD effectively describes a
de Broglie-Bohm N -body system and the conceptual benefits of such a relational
description. The analysis will highlight the new directions in the quest for an
understanding of the nature of the wave function that are opened up by a modern
relationalist elaboration on de Broglie’s and Bohm’s original insights.
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1 Introduction
The modern landscape of fundamental physics is dominated by quantum theories. Non-
relativistic quantum mechanics is used to describe low-energy systems, while quantum
field theory is the standard framework for high-energy physics. Quantum theories are
so empirically successful that, nowadays, there is a wide consensus about the fact that
the fundamental description of the gravitational field must be quantum as well.

However, all quantum theories—whether relativistic or not—have to face a plethora
of conceptual problems, irrespective of their predictive success. In particular, there are
two questions that the quantum formalism used by physicists is unable to address:
First, how can the stable and determinate features of the world, such as macroscopic
material structures, be accounted for by a dynamics that just deals with the linear
and unitary evolution of the wave function? Second, what is the nature of the wave
function itself? Is it a concrete object, like a field, or just a compact way to describe how
quantum systems behave (including our expectations about measurement outcomes)?

The consequence of these issues is that the picture of the physical world entailed
by quantum theories is somewhat obscure, which is a severe drawback if we want to
take these theories at face value in a scientific realist spirit. Quoting a recent overview
of the foundations of quantum mechanics:

[M]any physicists have come to believe that fundamental physics is in a
state of stagnation, with little meaningful progress having been made in
the last few decades [reference omitted]. It seems entirely possible that
this has arisen because physicists never properly got to grips with what
quantum mechanics tells us about the world, and therefore all subsequent
physics has been based on an improper understanding of the earlier theory,
leading us into a dead end (Adlam, 2021, p.2).

Usually, this “improper understanding” is taken to imply the need for an inter-
pretation—which, simply speaking, means supplying the quantum formalism with a
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clear metaphysics (see, Maudlin, 2019, for a recent textbook on this topic). In this
vein, the work of Louis de Broglie (de Broglie, 1928, 1960) and David Bohm (Bohm,
1952a,b) contributed a great deal to overcome the conceptual issues that plague the
“orthodox” take on quantum mechanics. In doing so, de Broglie and Bohm shed a
new light on quantum physics, especially as far as the problem of bridging the con-
ceptual gap between the Schrödinger-like dynamics and the existence of stable and
determinate features of the world is concerned. The way the de Broglie-Bohm (dBB)
approach to quantum physics achieves that is nowadays very well known and under-
stood (see, e.g., Passon’s and Bricmont’s chapters in this volume). In a nutshell, the
key insight is that quantum physics is not just about the wave function: There are ex-
tra degrees of freedom that account for the physical development of material structures
in spacetime—e.g., the spatial degrees of freedom of material particles. In this sense,
the dBB approach comes to grips with the first question mentioned above. However,
the question concerning the nature of the wave function remains open in this context.
This is because the dBB approach just introduces a “guidance principle” according to
which the wave function qua mathematical object determines the equations of motion
for the material degrees of freedom, but it leaves the question open as to what kind of
physical mechanism this “pilot wave” picture refers to.

Indeed, two different broad views on the wave function can be recognized in the
dBB context. Some people think that this piece of the formalism is best understood as
referring to some kind of field-like entity that physically determines in a straightforward
sense the evolution of the material degrees of freedom (Bohm, 1952a,b is the most
famous example; more recent proposals include Albert, 1996; Romano, 2020), while
others argue that the wave function is just a way to codify the physical information
representing the evolution of the material degrees of freedom (Bohm and Hiley, 1993;
Goldstein and Zanghì, 2013). In this chapter, we will argue that, in order to better
understand what the nature of the wave function is in a dBB setting, a further step away
from “orthodox” physics is needed. This different perspective on physics is represented
by the modern Leibnizian/Machian take on dynamics.

As the designation suggests, this approach to dynamics is rooted in age-old rela-
tional and empiricist ideas, which have been revived and adapted to a modern phys-
ical framework starting with the seminal work of Julian Barbour and Bruno Bertotti
(Barbour, 1974; Barbour and Bertotti, 1977, 1982). The main realization behind the
framework is that an empirically adequate ontology of the physical world should avoid
structures whose variation makes no physical difference or which lack explanatory
power to account for said differences. The immediate consequence of this metaphysical
tenet is that the dynamical description of a closed system should be given in intrin-
sic terms, namely, in terms of relative changes between the degrees of freedom of the
system only. This is because Leibnizian/Machian relationalism avoids reference struc-
tures external to the system, which are there only to account for some sort of absolute
change. The obvious examples of such structures are Newtonian absolute space and
time.

This abhorrence for external reference structures further implies that each and ev-
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ery part of a closed system acquires a physical characterization by virtue of standing
in some type of physical relations to the rest of the system. A straightforward example
of this is the Machian take on inertia: According to Mach, the origin of inertia is not
local, that is, inertia is not inherent in the object of which this property is predicated.
Rather, inertia accounts for how a material body is dynamically related to the rest of
the universe. Note how this “holistic” perspective nicely fits the dBB setting, where
the fundamental dynamical description concerns the universal material system—with
a description in terms of subsystems that is attained only as an appropriate approxi-
mation.

In the present context, a Leibnizian/Machian approach can help in figuring out
to what extent the wave function can be seen as external to a quantum system (and,
thus, a “foreign” structure to be dispensed with in favor of a fully intrinsic descrip-
tion) or, in some way, part of the quantum system itself (meaning there is something
physically tangible about it). The chapter will attempt at answering this question by
introducing the Leibnizian/Machian approach to physics (§ 2.1) and discussing some
possible quantum implementations of the framework that exploit the dBB approach
(§ 2.2). In particular, the latest version of a de Broglie-Bohm-Barbour-Bertotti model
will be discussed in detail (§ 3.1), highlighting some interesting metaphysical morals
regarding the nature of the wave function (§ 3.2). Finally, some intriguing future lines
of research will be presented in § 4.

2 The Modern Leibnizian/Machian Approach to Physics

2.1 Classical Mechanics

Modern relational dynamics may be summarised in the following two tenets (Vassallo
et al., 2022a):

Tenet I (Spatial relationalism). The only physically objective spatial information
of a physical system is encoded in its shape, intended as its dimensionless and scale-
invariant relational configuration.

Tenet II (Temporal relationalism). Temporal structures, such as chronological or-
dering, duration, and temporal flow, must be defined only in terms of changes in the
relational configurations of physical systems.

The motivation for tenets I and II stems from the relationalist desire to elimi-
nate redundant structures from physical theories, which typically arises because of
the presence of various symmetries in the representation of a given physical system.
This distaste for redundant structures may be dressed with heavy empiricist overtones
by claiming that all structures whose variation amounts to no empirically observable
difference should be shunned from physics.

The work, pioneered by Barbour and Bertotti, on a theory that fully complies with
the relational tenets I and II eventually led to Shape Dynamics (SD; see, e.g., Mercati,
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2018). According to this theory, any closed (or, universal) material system should be
stripped of the redundant degrees of freedom resulting from its being embedded in an
external space, which means first of all that rigid translations and rotations should be
eschewed from the picture. This attitude is reminiscent of the Leibnizian static shift
argument: Taking the material content of the universe and rigidly moving or rotat-
ing it in an external Euclidean absolute space would make no empirically observable
difference, so why postulating the existence of such a “metaphysically inert” space?

SD, however, makes a step beyond this Leibnizian attitude. Such a step is motivated
by the observation that every measurement simply amounts to the comparison of two
physical systems. Formally, this means that only ratios of physical quantities carry
objective information. Going back to the case of space and time, this comparativist
attitude implies that the relationalist should let go also of any notion of size. What
remains is simply the shape of the system.

Mathematically, the procedure for systematically getting rid of the redundant struc-
ture associated with some symmetry is commonly known as quotienting out. Schemat-
ically, if Q is the relevant configuration space of a given system and G is the symmetry
group, the quotienting out yielding the space carrying truly physical information is
S := Q/G, whose dimension is simply dim(S) = dim(Q) − dim(G). In the case of N
classical particles, Q is standard configuration space, G = Sim(3), the joint group of
Euclidean translations T, rotations R and dilatations S (called similarity group), and
S = Q/Sim(3) is referred to as the shape space of the system.

Although dynamical geometry will not be considered in this paper, let us for com-
pleteness indicate the relevant symmetry group and the associated shape space. Let
us denote Riem the set of Riemannian 3-geometries and Diff(3) the group of spatial
diffeomorphisms. Then, Superspace = Riem/Diff(3). Further, let Sc be conformal su-
perspace Sc = Superspace/conformal transformations. Finally, the physical space of SD
is SV ≡ Superspace/VPCT = Sc ×R+, where VPCT is the group of volume-preserving
conformal transformations and R+ represents the spatial volume or its conjugate vari-
able, the so-called York time. The need to restrict the theory to the subset of conformal
transformations that keep the volume constant arises from the empirically falsified pre-
dictions of a theory taking the full group of conformal transformations: Such a theory
is unable to account for the expansion of the Universe (see Mercati, 2018 for details).

A precise mathematical articulation of tenets I and II yields what is today known
as the Mach-Poincaré principle:

Tenet III (Mach-Poincaré principle – classic version). Physical, i.e., relational
initial configurations and their first derivatives alone should uniquely determine the
dynamical evolution of a closed system.

Physically speaking, tenet III merges Mach’s idea that the fully relational charac-
ter of the dynamics can be attained only when the whole universe is considered with
Poincaré’s insistence on the amount of initial data needed to describe dynamics. A
distinction should be drawn between tenets I and II and tenet III: The former es-
tablishes an ontological commitment towards spatial and temporal notions, whereas
the latter refers to the least possible amount of initial data required to describe the
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dynamics. But we stress that tenet III also takes on an ontological stance (as does
tenet IV, which is introduced below). In this regard, the three tenets share the general
methodological principle of SD, intended as an ontological commitment, namely the
elimination of redundant structure, be it spatial and temporal notions (tenets I and
II) or unnecessary initial data (tenets III and IV).

The use of “first” derivatives is problematic because it places a very strict restriction
on the initial data formulation and makes it unavoidable the appearance of an exter-
nal parameter, w.r.t. which extrinsic derivatives are introduced, to account for the
dynamics, be it the ratio of dilatational momenta in particles models or York time in
dynamical geometry. These non-shape degrees of freedom seem to imply a commitment
to physical structures other than the relational configuration itself and, thus, mark a
conceptual tension with the Leibnizian/Machian spirit (See Vassallo et al., 2022b, § 2.2
for a discussion on this).

The need to overcome this conceptual tension led to the latest refinement of the
general framework of relationalism, dubbed Pure Shape Dynamics (PSD; see Koslowski
et al., 2022, for a general technical introduction to the framework). In a nutshell,
the qualifier “Pure” means that PSD describes any dynamical theory exclusively in
terms of the intrinsic geometric properties—which are completely defined in terms of
shape space structure alone—of the unparametrized curve γ0 traced out by the physical
system in shape space S. This ensures that there are no external reference structures
nor clock processes necessary to describe γ0 in S. Accordingly, tenet III has to be
slightly modified to match PSD’s “intrinsically geometric” nature:

Tenet IV (Mach-Poincaré principle – modern version). Physical, i.e., relational
initial configurations and their intrinsic derivatives alone should uniquely determine the
dynamical evolution of a closed system.

The key innovation brought about by tenet IV is to consider in general higher-order
derivatives of the curve, thereby allowing us to describe the dynamics of a physical
system in terms of the curve alone, without the need of any additional non-shape
parameters as in standard SD. Clearly, there is a sense in which tenet IV is weaker
than tenet III, for the former requires more initial data than the latter (higher-order
versus first derivatives) to describe a dynamical system. This weakening is anything but
a drawback from a modern relationalist standpoint since the upshot is the elimination
of any non-shape degree of freedom from the dynamical description of a system—thus
delivering a truly relational dynamics cast in terms of the degrees of freedom intrinsic
to the system only. This intrinsic character of the framework is achieved through
the notion of intrinsic derivative, namely an operation that takes the derivative of
variables w.r.t. parameters living in the very state space the variables belong to, unlike
the extrinsic derivatives appearing in tenet III. A paradigmatic example of intrinsic
derivative, which is the one used within PSD, is the derivative w.r.t. the arc-length.
Interestingly, any derivative w.r.t. an external parameter, be it Newtonian time or
otherwise, can be exchanged for an intrinsic derivative (through, for instance, the arc-
length parametrization condition; see discussion after equation (1)). The reason we
care about intrinsic derivatives is because they provide the mathematical structure to
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account for the ontological requirement imposed by tenet II: Dynamics must be given
intrinsically, from within the physical system.

Given an already “quotiented out” physical system, we shall express the equation
of state of the unparametrized curve γ0 in its associated shape space S as follows:

dqa = ua(qa, αa
I ) ,

dαa
I = Aa

I(q
a, αa

I ) ,
(1)

and demand that the right-hand side be described in terms of dimensionless and
scale-invariant quantities, whose intrinsic change is obtained employing Hamilton’s
equations of motion. In (1), qa are points in shape space, namely they represent the
universal configurations of the system, ua is the unit tangent vector defined by the
shape momenta pa:

ua ≡ gab(q)
pb√
gcdpcpd

,

which allows us to define the direction ϕA at qa. It is through the unit tangent vector
and the associated direction that the shape momenta enter Hamilton’s equations, which
are in turn used in the intermediary steps leading to the equation of state (1). Finally,
αa
I is the set of any further degrees of freedom needed to fully describe the system. It is

this set αa
I that includes higher-order derivatives of the curve and spares us of the need

of additional non-shape degrees of freedom. Among these, one parameter definitely
stands out: A measure of the deviation of the curve from geodesic dynamics (cf. κ
in § 3.1, equation (4)). For consistency, the elements in αa

I must exhaust the set of
all possible dimensionless and scale-invariant quantities that can be formed out of the
different parameters entering a given theory.

The derivatives appearing in (1) are intrinsic, as anticipated above. Their explicit
expression is dqa := dqa

ds
, where s denotes the arc-length parameter of the curve in

shape space, i.e., ds =
√
gab dqa dqb, with gab the metric in S. This expression, in

turn, enables us to write the relation between intrinsic and extrinsic derivatives by
means of the so-called arc-length parametrization condition:

(
ds
dt

)2
= gab q̇

a q̇b, with
q̇a being the derivative w.r.t. the external, Newtonian time t. Remarkably enough,
as shown in Koslowski et al., 2022, the equation of state should be taken as a whole
and interpreted as giving the relative rates of change of the degrees of freedom of the
curve in shape space. Thus, one has dqa/ds

dαa
I/ds

= dqa

dαa
I
, effectively rendering the dynamics

explicitly unparametrized, hence justifying the form adopted by (1).
Two crucial features of (1) have to be noted. First, by construction, a solution of

this set of equations represents the entire history of relational evolution of the universe
given certain initial conditions. Indeed, once such initial conditions are selected, (1)
provides all the physical information needed to fully characterize the universe (i.e., a
closed system): All there is to know about the universe is provided by this dynamical
evolution. Second, (1) has an obvious unifying nature. In principle, the whole of
relational dynamics, classical, relativistic, and quantum, boils down to the dynamical
structure encoded in the above equation of state, which means that all these theories
can be formulated in terms of some purely shape variables and their intrinsic derivatives
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of different orders within their corresponding shape space (Newtonian gravity, which
is the example taken in § 2.1, general relativity, which is not discussed here since it
requires a paper on its own, and de Broglie-Bohm theory, which we shall explore in
§ 3.1). This is one of the most remarkable features of PSD, that is, its flexibility to
describe an extremely wide range of relational motions: Simply speaking, the more
structured the system, the more geometric degrees of freedom are needed to describe
it.

Finally, it is important to point out how an arrow of time emerges from the dynamics
of the curve in shape space: As originally put forward in Barbour et al. (2014), the
function

Com(q) = − 1

m
5/2
tot

√
Icm VN =

ℓrms

ℓmhl

, (2)

where Icm is the centre-of-mass moment of inertia, VN is Newton’s potential and
ℓrms and ℓmhl account for the greatest and least inter-particle separations, respectively,
is a measure of the complexity of the N -body system: It accounts for the formation
of structures within the system, namely the extent to which particles are clustered.
The remarkable feature of (2) is its attractor-driven behaviour, whereby the direction
of secular growth of complexity defines the arrow of time. In general, the recovery of
standard temporal and spatial notions in this framework is carried out via the so-called
ephemeris constructions, which are equations relating said magnitudes to the geometric
properties of the curve in shape space. In a sense, these constructions represent the
“inverse” of the quotienting out procedure, in that they explain how and why the
impression of there being an external spacetime container emerges from a fundamental
dynamics that does not feature any spatiotemporal structure properly said.

The above applies to the universe as a whole, as per Mach’s insights. What about
subsystems? In the classical N -body case, as is well known, the dynamics features
generic solutions which break up the original system into subsystems, consisting of
individual particles and clusters, that become increasingly isolated in the asymptotic
regime (Marchal and Saari, 1976). Such almost isolated subsystems will develop ap-
proximately conserved charges, namely the energy E, linear momentum P, and angular
momentum J. Within the dynamically formed subsystems, there are pairs of particles
that may function as physical rods and clocks. These are referred to as Kepler pairs
because their asymptotic dynamics tends to elliptical Keplerian motion.

2.2 Quantum Mechanics

After the short discussion of modern relational theories in the classical case, we shall
now turn our attention to a couple of attempts to extend the program to the quan-
tum realm by focusing on non-relativistic dBB theory. The suggestion that the dBB
approach is a natural choice for constructing a quantum version of SD goes back at
least to Vassallo (2015). Indeed, the two frameworks share key insights into physical
reality in that both accord a privileged status to “spatial” descriptions of closed phys-
ical systems, so that each dynamical stage can be seen as a snapshot of a universal
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configuration of material bodies. Moreover, given that the standard dBB theory is
formulated on a (neo-)Newtonian background structure, the quotienting out required
to render the theory relational closely resembles the procedure carried out in classical
mechanics. In this section, we will be concerned with the two very first attempts at
a de Broglie-Bohm-Barbour-Bettoti theory. As we shall see, both are incomplete and
unsatisfactory on several grounds.

The first model was put forward in Koslowski (2017), and exploited the equivalence
between General Relativity (GR) and SD shown in Gomes et al. (2011). Koslowski
considered a simple quantum toy model whose classical analogue admits two formula-
tions, one possessing key features of the spacetime description of GR, while the second
sharing key features of SD.

There are two main results of this comparison. First, although both quantum
models yield the correct classical limit, the mechanism behind this is markedly different.
The timeless quantum constraint equation of the spacetime description typical of GR
is handled by taking one of its degrees of freedom as an internal clock, w.r.t. which the
constrained wave function evolves. The shape dynamics description, instead, exhibits a
time-dependent physical Hamiltonian, with this time parameter being the dilatational
momentum τ , whereby the shape dynamics analogue of the de Broglie-Bohm “quantum
potential” decays with this time parameter.

Second, the shape dynamics analogue of the quantum potential leads to an ex-
ponentially large correction to the apparent scale at early times (when |τ | is small).
Remarkably, this inflation of scale is not produced in the constrained spacetime formu-
lation. This suggests that inflation could have a natural explanation as semiclassical
effects of quantum shape dynamics.

However promising these two features of the SD quantum model may be, there
is a deep conceptual flaw, no wonder inherited from the general framework of SD
known back then. We are referring to the need for an external parameter to account
for dynamics. Closely related to this, this quantum model does not incorporate any
measure of complexity to give rise to an arrow of time, contra the understanding of
physical evolution stressed in § 2.1.

A second model of quantum shape dynamics has been put forward in (Dürr et al.,
2020), which discusses a dBB dynamics of the N -body system in shape space. This
latter model certainly shares some formal similarities with the one we will propose in
§ 3.1, but we claim that such similarities are rather shallow, as shall be argued for
presently.

First and foremost, these authors confine themselves to a purely geodesic dynamics
in shape space and attempt to reproduce the physics of known regimes through gauge-
fixings, effectively restoring the previously-eliminated absolute configuration space.
This is physically untenable, for the authors of Dürr et al. (2020) do not embrace the
fundamental insight of SD, namely, that shape space is thought of as the fundamental
arena where all physics unfolds. According to this insight, laboratory physics is arrived
at from the holistic fundamental dynamics in suitably effective regimes within shape
space. These effective regimes allow us to write shape space as the Cartesian product
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of configuration spaces of subsystems, thereby effectively expressing the fundamental
dynamics in terms of separate dynamical subsystems in each subspace. In particular,
local frames of reference, defined through distant stars and ephemeris time, are local
shape substructures within the global shape of the universe. This is in stark contrast
with the spirit of Dürr et al. (2020), where shape space seems to be taken as a con-
venient mathematical structure wherein physics is simplest (whence their insistence
on geodesic dynamics), only to get back standard configuration space physics through
suitable liftings and gauge fixings within their fibre bundle structure.

Moreover, the approach of Dürr et al. (2020) implies that the wave function is non-
normalizable precisely due to their insistence upon describing the interesting physics in
configuration space, not shape space. This choice bars the possibility to take advantage
of the fact that the shape space of the N -body system, the so-called shape sphere
(Mercati, 2018, § 13.1.7), is compact, which guarantees the normalizability of the wave
function. This is certainly desirable if one is to endorse the familiar interpretation
of |Ψ2| as a probability distribution. The authors of Dürr et al. (2020) argue that
the non-normalizability arises from unphysical differences and, further, that it is the
universal wave function that fails to be normalizable, while there being no reason why
the conditional wave functions, the ones accounting for laboratory physics, should fail
to be normalizable. This may be true, but the issue is clouded by their approach,
whereas in ours—which primarily relies on the shape space formulation—the matter
is readily seen.

Most importantly, these authors, like the model in Koslowski (2017), have not taken
into account the attractor-driven behaviour of complexity, required for the emergence of
an arrow of time and subsystems formation. This is the root of the physical differences
between the model of Dürr et al. (2020) and ours: We shall develop a model exhibiting
the modified geodesic dynamics typical of PSD, which by construction works within
shape space. We will then show that this model captures the observable features of
the Universe—like structure formation and the arrow of time—in appropriate regimes,
without betraying the very tenets of SD.

Thus, we claim that Koslowski’s and Dürr et al.’s models, although arguably do
implement relational tenets, fall short of providing a satisfactory account of quantum
phenomena because of conceptual reasons (that they are “simple” models is a separate
matter). We shall now turn to analyzing how PSD fares in this regard.

3 A de Broglie-Bohm Model of Pure Shape Dynamics

3.1 Implementation

Given that the standard dBB theory describes the motion of a universal configuration
of particles whose collective behavior is determined by the wave function associated
with the system, a full specification of the dynamics requires two equations. First, the
guidance equation, which implements the guidance principle constraining the physically
allowed motions based on the wave function’s form. Second, Schrödinger’s equation,
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which describes the dynamics of the wave function itself. Hence, an appropriate dBB
model of PSD is expected to exhibit the same dynamical features of the standard
approach, but cast in terms of the geometric properties of unparametrized curves in
shape space.

To obtain this, let us first define the relevant shape space, which is simply the same
as in the classical N -body system: S ≡ QN/TRS, with QN the configuration space of
the standard dBB theory. Obviously, also the wave function must be defined on S.
Physically, this simply means that all information encoded in Ψ regarding the embed-
ding of the N -body system in an external space must be dropped. Mathematically, this
is readily achieved as follows: If ΨN is the wave function living in QN , its restriction to
shape space is ΨS ≡ ΨN |Sim (strictly speaking, this reduction works only if the original
wave function ΨN is single-valued along orbits of Sim; we shall gloss over this, given it
will not affect our analysis). From now on, we will omit the label S from Ψ and work
with wave functions on shape space.

With this technical machinery in place, the calculations readily yield (see Farokhi
et al., 2023, for the technical details of the derivation):

dQa = ua(ϕ)
dϕA = ∂ΦA

∂Qa u
a(ϕ)− ∂ΦA

∂ua

(
1
2
gcd,a (Q)uc(ϕ)ud(ϕ) +

1
κ
VT,a(Q)

)
dκ = −2ua(ϕ)VT,a(Q) + K̃(κ, γ,Q, ϕ)

dR(q) = − 1√
κ

(
gab(q)R,a(q)S,b(q) +

1
2
R(q)∆S(q)

)
dS(q) = − 1√

κ

(
1
2
gab(q)S,a(q)S,b(q) + VT (q)

)
,

(3)

where VT (q) = V (q) − ∆R(q)
2R(q)

is the total potential and Ψ(q) = R(q) eiS(q). Also, we
have used the kinematic metric gab(q) on shape space to split S1

a := ∇a S(q)|qa=Qa into
directions ϕA and the additional degree of freedom κ, which plays a key role in PSD,
namely, a measure of the deviation of the dynamics from geodesic motion:

ua(ϕ) = S1
a√

gab(Q)S1
aS

1
b

κ =
gab(Q)S1

aS
1
b

Rα .
(4)

In the above equation, ua(ϕ) is a unit tangent vector (w.r.t. the kinematic metric gab)
at Qa that is determined by the direction ϕA, and R is the scale variable appearing in
a potential homogeneous in R of degree γ, which is required to match the dynamics
of the classical N -body system (see Koslowski et al., 2022). Finally, the function K̃ is
also specified when reproducing the correct classical limit.

To sum up, (3) represents the equation of state of a curve obeying the relational
counterpart of the dBB laws. The curve gives the succession of instantaneous config-
urations of the system, which are pairs (Qa,Ψ(q)) of shapes and wave functions on
shape space, with Q standing for the actual configuration of the N -body system and
q for an arbitrary configuration in shape space.

Note that the second term in the equation for κ in (3) violates the equality between
the shape momenta pa =

√
κua and S,a under evolution. This violation represents a

substantial departure from the standard theory, but it is not, by itself, a fatal flaw of
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the relational model: It just means that it is not trivial to find the regime in which
the guidance principle holds, i.e., pa = S,a is recovered. The physical significance
of such a departure from the standard theory is easy to grasp: According to (3),
the emergence of subsystems satisfying Born statistics, also referred to as “quantum
equilibrium condition”, is not always possible—the guidance principle is key to ensuring
it, in both dynamical relaxation and typicality arguments; see below. The investigation
of which conditions may restore Born statistics in this model is still work in progress.
In other words, we are not postulating the quantum equilibrium condition, but trying
to derive it from a more general dynamics. In this respect, some tentative arguments
for the recovery of the guidance equation can already be given.1

To this extent, let us consider two conditions on subsystems: (i) Isolation, whereby
the full configuration space may be written as S = SI × SJ × · · · for subsystems
I, J, . . ., and (ii) boundedness, that is, the scale RI of the subsystem I tends to a
constant value. From the classical case, KI = −γ κ DI

pI
, with γ the homogeneity degree

of the potential (see below), and dRI = RI
DI

pI
, which yield the desired result KI ≈ 0.

Thus, in the regime where (i) and (ii) hold, it can readily be shown from (3) that
the guidance principle pa = S,a is recovered and we may invoke either some sort of
typicality considerations (Dürr et al., 1992) or an analog of the subquantumH-theorem
(Valentini, 1991a,b) to dynamically arrive at an effective dynamics for subsystems
obeying the Born rule ρI = |ψI |2, for the probability distribution ρI and wave function
ψI . Both approaches are equally viable so, as the theory stands right now, there is no
indication of which of the two views should be regarded as the better one.

There is however a potential mathematical problem. Clearly, the equation of state
couples Qa with ψ through the quantum potential, so generally, entangled solutions
to Schrödinger equation are expected, meaning we will have to find regimes for the
existence of disjoint subsystems, H = H1 ⊗H2 ⊗ · · · . This is arguably a challenging
problem, whose resolution is necessary to provide a sound and robust mechanism for
the emergence of subsystems. This is being actively investigated.

Remarkably enough, the dynamics exhibited by the equation of state (3) shows
the attractor-driven behaviour in shape space already stressed in the classical case
(Barbour et al., 2014, Koslowski et al., 2022, §§ 3.5-3.6). In a nutshell, this means
that the direction of secular growth of complexity—which measures the amount of
structure or “clustering” inherent in a shape—defines the arrow of time (see Farokhi
et al., 2023, § 3.4, for the numerical analysis of the 3-body system, which highlights
how the attractor-driven behaviour in shape space is independent of Planck’s constant).
As already stressed earlier, the asymptotic evolution of the classical N -body system
gives rise to the formation of stable substructures, among which Kepler pairs play a
major role as physical rods and clocks. However, as already mentioned above, a full
technical characterization of the quantum counterpart of these Kepler pairs, being part
of the subtle question of the formation of subsystems satisfying effective Schrödinger
equations in the quantum model, is still work in progress.

Finally, the analysis of the classical limit of (3) is conceptually as simple as in the
1The gist of these arguments is due to joint work with Pooya Farokhi and Tim Koslowski.
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standard dBB case. In a nutshell, whenever the evolution of the quantum potential
VQ = −∆R

2R
(Q) along the curve becomes negligible, the evolution of the curve in shape

space is effectively described by classical equations of motion determined by the full
potential VT = V + VQ. Hence, the classical regime is attained when VQ goes to zero.
In this case, (3) reduces to the equation of state associated with the classical N -body
system:

dqa = ua(ϕ) ,
dϕA = ∂ΦA

∂qa
ua(ϕ)− ∂ΦA

∂ua

(
1
2
gbc,a (q)ub(ϕ)uc(ϕ) +

1
κ
V,a(q)

)
,

dκ = −2ua(ϕ)V,a(q)∓ γκ

√
−
(
1 + 2V (q)

κ

)
,

(5)

where κ := p2/Rγ, with Rγ the scale component of the potential.

3.2 Discussion

The dBB model of PSD just presented is a substantial step forward towards a de
Broglie-Bohm-Barbour-Bertotti theory. For starters, it is not a “shape space analog”
of standard dBB theory, contra the spirit of the model by Dürr et al. (2020). Indeed,
the fact that the guidance principle in the generalized PSD model is not automatically
fulfilled signals that this model is not a mere relational rendition of the standard dBB
dynamics. The novelty of the dynamical laws (3) resides exactly in the fact that a
dBB-like dynamics is not assumed ab initio, but it is reached when specific physical
conditions are met. This means that the dBB model of PSD has (i) a broader physical
significance than a standard dBB one, and (ii) it promises to shed light on the very
nature of a dBB-like dynamics once a good understanding is reached of the physical
conditions under which the guidance principle comes into effect.

What does (3) tell us about the nature of the wave function in a “truly” relational
setting? The first thing that has to be noted is that the dynamics depicted in this
system of equations features both geometrical and quantum degrees of freedom. The
quantum part boils down to the phase and amplitude of the relational wave function.
We immediately see that these two groups of degrees of freedom are coupled together,
with none of them being mathematically reducible to the other. In this sense, the
wave function in the dBB model of PSD is still a fundamental, irreducible piece of
formalism that cannot be “washed” away. In other words, the dBB-dynamics in PSD
takes on initial values of the form (Qa,Ψ(q)) that are analogous to the non-relational
case. However, the structure of (3) is still peculiar enough to suggest some features
that narrow down the possible choices for a metaphysics of the wave function and the
quantum degrees of freedom it represents.

To see the novel contribution that the PSD perspective on quantum physics brings,
it is sufficient to ask the question about where the quantum degrees of freedom live.
Indeed, much of the debate regarding the nature of the wave function in a dBB setting
touches upon the fundamental arena where the physical happenings take place. Real-
istic views of the wave function as a local field are often associated with a commitment
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to the existence of a higher-dimensional configuration space as the fundamental phys-
ical space. Likewise, stances that regard the wave function as some sort of law-like,
information-driven element of the formalism tend to accord a privileged ontological
status to 3-dimensional space. In this context, the dBB model of PSD represents a
third option on the metaphysical table.

At the beginning of the chapter, we said that the dynamical laws of PSD are for-
mulated in shape space, and that an entire history of a universe governed by (1) is
encoded in an unparametrized curve in this space, without the need of any information
external to such a sequence. This suggests that shape space as a whole has physical
meaning only insofar as it is considered as the collection of all physically possible curves
according to (1). Moreover, each and every relational configuration qa is not funda-
mentally placed in any external space, be it 3-dimensional or higher. Otherwise said,
fundamentally, PSD is not committed to the existence of neither configuration space
nor 3-dimensional space—with shape space being a mere abstraction over all physically
possible motions. The consequence for the debate regarding the nature of the wave
function is immediate: The quantum degrees of freedom are neither “external” to the
material ones (in the sense of there being a separate object encoding the “quantum-
ness” of the world) nor “internal”—in the sense of their being just a way to describe
the evolution of the material structures. Instead, the quantum degrees of freedom are
on a par with the material ones.

What does “being on a par” mean from a Leibnizian/Machian relational perspec-
tive? In discussing how spatial relationalism is implemented in the classical case, we
made it clear that being a material particle in that setting amounted to nothing over
and above standing in spatial relations with the other relata making up a shape. From
this point of view, the standard talk of degrees of freedom of Newtonian material parti-
cles is relationally translated into talk about differences in the web of spatial relations
making up the shapes ordered in a dynamical curve. Hence, there is a conceptual
link between the notion of relational degree of freedom and the relations making up
a shape. This is the sense in which we claim that material and quantum degrees of
freedom are on a par: The fundamental relation gluing together the relata in a dBB
shape is not just spatial but a quantum/spatial hybrid. These two components are
distinct, yet they are two sides of the same coin. We have argued at length elsewhere
for a metaphysics of hybrid entanglement/spatial relations in PSD (Vassallo et al.,
2023), so we refer the reader interested in knowing pros and cons of this choice to that
paper. What interests us here is that the dBB model of PSD delivers a new take on
the nature of the wave function in that it suggests that this mathematical object is
“diluted” inside a shape.

The metaphysical moral that (3) suggests is, hence, that the wave function is neither
an object nor a description of how quantum systems behave. Rather, it represents
(part of) what it is for a system to be quantum. But isn’t this going back to the
“orthodox” view that everything there is to know about a quantum system is encoded
in its quantum state? Granted, the dBB model of PSD puts an emphasis on quantum
relations, not quantum states, but the worry remains that we are back to deal with
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metaphysically suspicious entities with a feeble connection with the manifest image of
material objects inhabiting a 3-dimensional space. To put the issue in more vivid terms,
we may ask the question: How do we get from a picture of shapes being ordered “one
after another”, to a picture where a pointer on a display points in a certain direction
as a consequence of measurement-like interaction with a quantum subsystem of the
universe?

The answer to this question is twofold. The first part concerns the way we get
garden variety spatial and temporal notions out of a timeless sequence of shapes. The
details of such a construction are carried out in Vassallo et al. (2022b, § 4.2). The rough
idea is that, in order to recover space and time from a purely relational description,
it is sufficient to “reverse” the quotienting out procedure discussed in § 2.1 by using
the ephemeris constructions. The physical meaning of such constructions relies on the
notion of complexity, intended as a measure of the clustering among subsystems. As we
saw, the growth pattern of complexity makes it possible to assign a “time stamp” to each
and every shape in a dynamical curve, so that global notions of duration and directed
flow of time can be achieved. At the same time, this construction leads to a local notion
of rod and clock, as exemplified in the formation of Kepler pairs. As a result, we regain
a structured picture of the universe as a spacetimeful “arena” for material happenings.
Note how this construction does not display the conceptual obscurity with respect to
notions such as location and duration that are instead inherent into standard quantum
mechanics. This is for the reasons we already mentioned at the beginning of § 2.2, that
is, because the dBB framework privileges spatial concepts in the physical description,
which makes it possible to accommodate the key notion of Leibnizian shape from the
get-go.

The second part of the answer concerns how we can get a meaningful description
of quantum subsystems whose statistical behavior matches the Born’s rule of standard
quantum mechanics out of “undivided” shapes. This can easily be done in the regime
where the guidance principle holds. In this case, the decomposition of the global wave
function into effective wave functions associated to subsystems can be carried out in
the same vein as in the standard dBB theory.

Hence, assessing the prospects of a de Broglie-Bohm-Barbour-Bertotti theory boils
down to assessing whether and to what extent this twofold answer is viable. For
starters, it is still not clear what notion of complexity can be defined in a dBB context.
The simple definition (2) works well in classical mechanics, but it should be amended to
account for the more complex motions exhibited in a dBB context. This is by no means
an unsurmountable problem since nothing speaks against the possibility to define a
dBB-complexity that serves the same purposes of its classical counterpart in order to
implement the ephemeris constructions. Instead, a more delicate issue concerns finding
a recipe to define effective wave functions obeying the Born rule. First, at this stage,
it is not clear under which physical conditions (3) satisfies the guidance principle, and
which subset of such physical conditions allow for a rewriting of the wave function in
terms of effective terms with mutually disjoint supports. Furthermore, it is still an
open question whether the conditions under which the guidance principle is fulfilled
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will naturally select a probability distribution ρ = |Ψ|2 as a typicality measure or,
rather, will point toward a generic starting distribution that quickly evolves towards
|Ψ|2 as some sort of relaxation limit.

In conclusion, the model (3) is still far from being fully worked out but it represents
a window into what is to come as far as the dBB theory is concerned. As the previous
discussion hopefully highlights, by marrying the original approach to quantum physics
of de Broglie and Bohm with the deep insights into relational physics of Barbour and
Bertotti, it is possible to substantially progress the understanding of the quantum
world, which goes far beyond the picture originally suggested in Bohm’s 1952 seminal
papers in terms of material particles moving under the influence of a pilot wave. The
project may of course crash and burn at any point, but this is a virtue rather than a
vice: It testifies that the work on quantum PSD is a legitimate physical endeavor that
carries a deep ontological import, and not just an idle exercise in a priori metaphysics.
From this point of view, the prospects of a de Broglie-Bohm-Barbour-Bertotti theory
look as promising and exciting as ever.

4 Conclusion: On the “Geometrizing Away” of the
Wave Function

One of the key questions that motivated the research into a fully Leibnizian/Machian
formulation of the dBB theory concerned the possibility to reduce the wave function to
some geometric features of the framework. The essential intuition in this respect was to
show that the “influencing” role of the wave function on the material degrees of freedom
of the theory could be rendered as some geometric constraints on the physical curves
in shape space. The original suggestion made in the literature (Vassallo, 2015; Vassallo
and Ip, 2016) was to incorporate Bohm’s quantum potential into shape space’s metric in
a vein similar to how the gravitational potential is dispensed with in general relativity
(a similar idea in the quantum gravity context dates back to Pitowsky, 1991). The
expectation was that the geodesics motions in shape space would exhibit the quantum
behavior typical of the dBB theory. This target slightly changed with the onset of PSD,
where the interesting dynamical curves are no longer geodesics (recall the crucial role
of the “curvature” κ). In this new scenario, the geometrized wave function should have
been rendered as some additional geometric degree of freedom of the curve besides the
direction ϕA and κ. This option, however, is cumbersome to implement and, in the end,
isn’t really needed in order to make good sense of the model (3). Does it mean that
the dream of geometrizing away the wave function has been finally abandoned? Well,
not really. Indeed, preliminary research shows that this is the way to go if we want to
push the parsimony-driven reductionist spirit of PSD to its extreme consequences.

To better understand the direction we are heading to, recall the crucial role that the
quotienting out procedure plays in PSD. This procedure permits to rigorously eliminate
from the mathematical formalism any theoretical feature that is deemed redundant or
metaphysically suspicious under the Leibnizian/Machian lenses. The most vivid ex-
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ample is of course the elimination of the degrees of freedom related to the embedding
of a universal material configuration in an external space, as represented by the quo-
tienting out of translations, rotations, and dilations. Note that this reasoning can be
pushed beyond the spatial side, for example by quotienting out permutation transfor-
mations to signify that material particles bear no intrinsic identity. The metaphysical
significance of the quotienting out procedure is, hence, clear: A quotiented out formal
feature is something that does not belong to the fundamental ontology of the theory,
although it can be recovered in the appropriate limit via an ephemeris construction.

Compare this with what happens to the standard universal wave function of the
dBB theory in (3). In this case, this mathematical object is not strictly speaking
quotiented out; rather, it is mathematically restricted to the quotiented out space
constituting the dynamical arena of the theory. This restriction is sufficient to guar-
antee that all and only the relational physical information encoded in the original
wave function is translated into the PSD model. However, if we consider (3) from
this perspective, it is no surprise that there is no straightforward way to reduce it to
geometrical degrees of freedom of a dynamical curve: The quantum degrees of freedom
inherent into the wave function are rendered relational but they are still “out there,”
as opposed to the spatiotemporal degrees of freedom that are entirely eschewed from
the fundamental ontology via the quotienting out operation.

Here lies a possible key insight: Why not quotienting out the wave function itself,
instead of just restricting it to shape space? This obviously begs the question as to
what should be quotiented out in the wave function. Undoubtedly, the wave function
contains a tremendous amount of information, not least the statistical information
about possible measurement outcomes. So a more useful question to ask may be: What
is it that shouldn’t be quotiented out? There is no definite answer to this question as yet
but, intuitively, the most fundamental and indispensable information that we can think
of is that encoded in the guidance principle. This is because this principle encodes the
fundamental dynamical behavior of material structures. Everything over and above
this—e.g., statistical information about measurement outcomes—may be seen just as a
useful description to tie the fundamental behavior of matter to experimental procedures
that make this behavior empirically observable.

If it should be possible to quotient out the statistical information that leads to
Born’s rule—and if we agree that the manifest “quantumness” of the world is encoded
in |Ψ|2—this would mean that the fundamental theory would be pre-quantum in a
clear physical sense: It would be a theory that recovers Born’s rule in an appropriate
limit, thus implying that it is a non-fundamental feature of reality, but something
that “emerges” at a certain point. If, besides this, a complete quotienting out of the
spatiotemporal degrees of freedom should be possible, the end result theory would in
addition be non-spatiotemporal.

Such a speculative theory would be a game changer in the quest for a theory of
quantum gravity. Indeed, the common motivation for the pursuit of the many quan-
tum gravity programs active nowadays is superseding general relativity—and, possibly,
quantum field theory—by providing a quantum treatment of gravitational phenomena.
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The hidden premise behind this goal is that quantum physics is a window into the fun-
damental nature of the world. If pursued until its most extreme consequences, the
PSD program would challenge this received view about quantum physics by highlight-
ing how going quantum does not mean reaching the most basic layer of reality—in fact,
quantum phenomena would not be fundamental at all. This “final” PSD model would
constitute a radically novel framework for fundamental physics, according to which
quantum and gravitational phenomena emerge from a genuinely fundamental domain
that is inherently pre-quantum and does not feature the general relativistic spacetime.
This is, of course, pure speculation at the moment. However, it is thrilling to see how
far the original ideas of de Broglie, Bohm, Barbour, and Bertotti may lead in the quest
for the understanding of the deepest nature of reality.
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