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Abstract

In his The Road to Reality as well as in his Fashion, Faith and Fan-
tasy, Roger Penrose criticises string theory and its practitioners from a
variety of angles ranging from conceptual, technical, and methodological
objections to sociological observations about the string theoretic scien-
tific community. In this article, we assess Penrose’s conceptual/technical
objections to string theory, focussing in particular upon those which in-
voke the notion of ‘functional freedom’. In general, we do not find these
arguments to be successful.
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1 Introduction

In his The Road to Reality [19] as well as in his Fashion, Faith and Fan-
tasy [20], Roger Penrose criticises string theory and its practitioners from
a variety of angles ranging from conceptual, technical, and methodologi-
cal objections to basically sociological observations about the string the-
oretic scientific community. In this article, we assess Penrose’s concep-
tual/technical objections to string theory, focussing in particular upon
those which invoke the notion of ‘functional freedom’.

Roughly speaking, for a fairly arbitrary field theory formulated on
some smooth manifold, the notion of functional freedom seeks to quantify
the degrees of freedom associated with the given field. Intuitively, one
might be tempted to say that there is in some yet-to-be-specified sense
more freedom associated with a vector field in Minkowski spacetime than
with a mere scalar field because a vector is a multi-component object:
in order to specify fully a vector in tangent space one in general needs
to specify more than just one real number. A scalar field, on the other
hand, is specified fully by giving only a single number at every point of
the manifold. Functional freedom attempts to cast this yet rough idea in
more perspicuous and mathematically rigorous terms.

In §2, we attempt to give the most charitable reconstruction of the
notion of functional freedom but ultimately conclude that the concept
doesn’t stand up to philosophical scrutiny because it involves illegitimate
handling of infinite quantities which cannot meaningfully be compared
in size. This finding of course undermines severely any arguments which
utilize the notion in an essential way. After a brief introduction to pertur-
bative bosonic string theory in §3, in §4 we reconstruct, summarize, and
evaluate critically Penrose’s specific arguments which invoke the notion of
functional freedom.

2 Functional Freedom

Physics is replete with field theories in various guises. Some paradigmatic
examples include classical electromagnetism, fluid mechanics, Newton-
Poisson gravity, the general theory of relativity, analytical mechanics, and
quantum field theory.

Let’s attempt to be more precise about what’s meant by a ‘field the-
ory’. In each of the above cases, one starts by considering a smooth
manifold M , which can be thought of as a kind of background on which
a physical story unfolds. The physical story concerns some additional de-
grees of freedom called fields, which assign an attribute or some value to
each point in M . If one labels the fields by ϕi, one can think of them
as functions ϕi : M → Fi, where Fi is a differentiable manifold of field
values. On the semantic view of scientific theories, the kinematically pos-
sible models (KPMs) of a generic field theory are thus specified by ordered
tuples ⟨M,ϕ1, ..., ϕn⟩. The dynamically possible models (DPMs) are then
a subset of KPMs picked out by appropriate dynamics, e.g. the Einstein
field equations or Maxwell’s equations, or perhaps path integrals in the
case of quantum field theories. A field theory thus consists of a specifica-
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tion of the KPMs together with some dynamics which allow one to pick
out the DPMs from amongst the KPMs.

We have alluded above to the fact that functional freedom (henceforth
FF)—discussed by Penrose at [19, pp. 378–80] and [20, pp. 401–7]—can be
understood intuitively as a means by which to quantify and compare the
number of degrees of freedom present in field theories. In §2.1, we intro-
duce the concept as conceived by Penrose, quoting the relevant passages
from the above texts; in §2.2, we assess Penrose’s efforts through the lens
of conceptual engineering. We think that there are good reasons to believe
that FF may in fact be understood as an attempt at revision of the math-
ematical concept of quantity. Finally, in §2.3, we consider the relations
between functional freedom and notions of theoretical equivalence.

2.1 Penrose on Functional Freedom

In a generic field theory such as classical electromagnetism, the number of
possible field configurations over a background manifold is infinite. More
precisely, the cardinality of the set of KPMs will be ℵ1 regardless of the
precise dimension of M or of the Fi. We don’t provide a rigorous proof of
this statement but a reflection on the various examples mentioned above
hopefully lends it at least some plausibility. Furthermore, [19, pp. 378–
80] contains some discussion by Penrose of the various sizes of infinity
encountered in physics with the conclusion that most such physical sets
(manifolds, sets of continuous functions on manifolds, Hilbert spaces, pos-
sible particle trajectories) are invariably of cardinality ℵ1. But given that
this cardinality is the same for all such cases, if one is to quantify and
compare the degrees of freedom between field theories, how is one to pro-
ceed?

Penrose’s texts offer some intuitions. Let’s start by approximating M
and Fi by discrete, compact manifolds consisting of only a finite num-
ber of points. Note that one might try to recover the original manifolds
from this approximate picture by taking the limit as the number and
density of points grows to infinity. Subsequently, one might proceed by
counting combinatorially the number of possible field configurations since
discretization reduced the infinity to a finite number. We illustrate this
general procedure with a specific example from Fashion, Faith and Fan-
tasy [20].1

Consider the following simple field theory T whose KPMs are of the
form ⟨R3, v⟩, where v is a three-dimensional vector field on R3. For sim-
plicity, we don’t assume any dynamics for T so (in some sense) all the
KPMs are also the DPMs. One may try to approximate T by the fol-
lowing a discretized model following [20, pp. 401–4]. Consider a three-
dimensional cubic lattice of N3 points (formerly R3) on which there lives
a discretized three-vector field (formerly v). In other words, suppose that
each of the N3 points is assigned a vector whose components may take
one of K values. Note that N,K ∈ N. A simple combinatorial argument

then yields (K3)3N = K3N3

as the total number of possible field config-

1Note a related attempt to cash out functional freedom in terms of fibre bundles at [20,
pp. 439–45].
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urations on the lattice since each of the N3 points can be assigned one
of K3 possible vectors. Extending this construction to a more general
case, one finds that for a field with c independent components over a d
dimensional lattice, the same argument would give the functional freedom

of KcNd

. In the continuum limit, KcNd

becomes infinite and the above
analysis seems to break down. However, in trying to retain the sense of
magnitude elusively captured by the above analysis, Penrose opts for a

novel notation. He introduces the formal expression ∞c∞d

to denote the
functional freedom of T .

Suppose now that T does have non-trivial dynamics. Intuitively, dy-
namical equations should decrease the functional freedom since the fields
are now constrained by the dynamical equations. To capture this fact, we
introduce the following distinction. We call kinematical functional freedom
(KFF) the functional freedom of a theory obtained by ignoring its dynam-
ics. We call dynamical functional freedom (DFF) the functional freedom
which takes the full dynamics into account. Ultimately, DFF rather than
KFF will be at the centre of our attention in the subsequent discussion,
but (alas) determining DFF of theories with non-trivial dynamics is a
delicate issue.2

Let us demonstrate the procedure with the familiar example of vacuum
Maxwell theory in four dimensions whose KPMs are the triples ⟨M,η, F ⟩,
with M a smooth manifold, η a Minkowski metric on M , and F a two-
form. It turns out that for the purposes of obtaining DFF, it is actu-
ally convenient to represent this theory non-covariantly in terms of three-
component electric and magnetic field vectors E⃗ and B⃗. The KFF of

the theory is ∞6∞4

since one must populate four-dimensional spacetime
with two three-component vector fields. Dynamics is implemented via the
Maxwell equations

∇ · E⃗ = 0 (1)

∇ · B⃗ = 0 (2)

∇× E⃗ = −∂B⃗
∂t

(3)

∇× B⃗ =
∂E⃗

∂t
. (4)

Importantly, the above equations admit a convenient initial value for-
mulation. Consider a three-dimensional spacelike hypersurface Σ in M
which, for simplicity, may be taken to be the flat Minkowski spacetime
isomorphic to R4. Once the values of E⃗ and B⃗ are specified on Σ, one
can use equations (3) and (4) to evolve the fields to the future of Σ. This

would seem to decrease the FF from the original KFF of ∞6∞4

to ∞6∞3

since the equations ensure that to completely fix the DPMs one need only
populate the three-dimensional Σ with field values. However, one must
exercise further care when specifying E⃗ and B⃗ on Σ. In particular, the
two constraints (1) and (2) further decrease the freedom to specify the

2This is related to the fact that, for example, to identify the full set of symmetries of some
dynamics is a highly non-trivial task.
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fields on Σ. As a result, the FF further decreases to ∞4∞3

where one
degree of freedom is subtracted for each constraint equation. This is the
DFF of vacuum Maxwell theory in four-dimensions, in agreement with
[18, p. 186]. Heuristically speaking, one therefore needs to subtract one
from the lower exponent for each constraint equation and one from the
upper exponent thanks to the existence initial value formulation.

We stress that the above example is merely heuristic. In fact, it re-
mains somewhat unclear to us how DFF could be put on a rigorous foot-
ing. In particular, it seems problematic that the above derivation relies
crucially on (i) the existence of an initial value formulation for the the-
ory, and (ii) non-arbitrariness of the split between evolution equations
and constraints—a distinction which in fact often gets blurry.3 Further-
more, we wonder how non-physical gauge degrees of freedom should be
implemented in the above framework: should they be taken to contribute
fully to the DFF of the theory or should they be removed via a gauge-
fixing condition? How about non-physical ghost fields in QFT? As far
as we are aware, Penrose doesn’t elaborate the issues above; however, he
alludes (without elaboration) to the mathematics of K-jets and exterior
differential systems as the appropriate mathematical formalism for pre-
cise mathematical discussion of DFF.4 Having devoted thought to the this
question, we believe that with regards to formalizing DFF and justifying
its mathematical coherence, the ball is in Penrose’s court here.

Unfortunately, the above examples and other similar such examples
in [19, 20] seem to exhaust the discussion of the concept of FF present
in Penrose’s texts. Most regrettably, very little or none of the attention
is devoted to the apparent clash in linguistic practice which occurs when
one compares FFs to each other and refers to them as if they were regular
magnitudes. To this end, Penrose insists that FF does capture a sense of
magnitude of the set of DPMs or of its respective field theory (note: Pen-
rose does not use the terminology of ‘DPMs’), and yet resists stringently
its identification with Cantor’s theory of infinite cardinals. We quote at
length:

The first point I should make is that these infinite numbers do
not refer to the ordinary (Cantor) sense of cardinality that de-
scribes the sizes of general infinite sets. [...] Cantor’s theory of
(cardinal) infinities is really concerned just with sets, which are
not thought of as being structured as some kind of continuous
space. For our purposes here, we do need to take into account
continuity (or smoothness) aspects of the spaces that we are
concerned with. For example, points of the 1-dimensional line
R are just as numerous, in Cantor’s sense, as the points of the
2-dimensional plane R2 (coordinatized by the pairs x, y of real
numbers) [...]. However, when we think of the points of the
real line R or the real plane R2, respectively, as organized into
a continuous line or a continuous plane, the latter must indeed
be thought of as much “larger” entity, in the limit when the

3See e.g. [4, 14].
4In the framework of K-jets, solutions to partial differential equations are represented as

submanifolds of the larger jet space.
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finite N -element set R becomes continuous R. [20, pp. 405–7]
We take it to be manifest in the above that Penrose indeed takes ex-
pressions like ∞c∞d

to capture a meaningful sense of magnitude. This is
made evident further by his very explicit comparisons of such quantities.
For example, in the texts one finds arguments to the effect that when
one compares the functional freedom of two theories, it is the dimension
of the background manifold which effectively determines which functional
freedom is larger. This point is again justified by an analogy with the

finite cases where the inequality KCND

≫ KcNd

holds if D > d, the val-
ues of C and c being effectively irrelevant. In the continuum limit, one

then obtains the formal inequality ∞C∞D

≫ ∞c∞d

capturing the relative
magnitudes of the two functional freedoms. One is told that:

The double inequality sign “≫” is used in order to convey
the utter unassailable hugeness whereby the functional freedom
described by the left-hand side exceeds that described by the
right-hand side, when the spatial dimensionality is greater, no
matter what the component numbers C and c are [...] Such a
theory cannot be equivalent to another such theory on which
the initial space has a different number D of dimensions. If
D is greater than d, then the freedom in the D-space theory
always vastly exceeds that in the d-space theory! [20, p. 41,
emphasis added]

Importantly, note that in the above, Penrose sees FF as a criterion on
equivalence of theories. We will pick up this theme in §2.3, but before do-
ing so, here is yet another example which can be used to fire up intuitions
about FF. Consider elements of N2 arranged in a two-dimensional lattice.
One can then follow Cantor’s diagonal argument and trace out the entire
lattice with a ‘squiggly’ line to prove graphically that N2 is denumerable
and has the same cardinality as N. However, as per the above quote,
Penrose would like to claim in some sense N2 is larger than N. He makes
the following observation:

[That N2 is larger than N] is illustrated by the fact that the
counting procedure for pairs [i.e., Cantor’s argument] cannot be
made to be continuous. (Though “continuous” in the limited
sense that “close” elements of our counting sequence indeed
always give us “close” pairs (r, s), it is not true in the neces-
sary technical reverse sense that close pairs always give close
members of the counting sequence.) [20, pp. 405–7]

To reiterate, the suggestion seems to be that the existence or absence of
continuous maps between the two sets should capture the sense of magni-
tude and subsequent comparisons. Whether existence of continuous maps
could provide a good criterion to capture FF (and perhaps a definition)
is a mathematical question which for now we will not attempt to answer;
however, the example serves as a further datum for Penrose’s intuitions
regarding FF.

On more general grounds, it seems to us that one should be worried
about the soundness of comparisons of FF and about the apparent clash
in linguistic terminology between FFs and Cantor’s cardinals when both,

6



seemingly, are used to perform comparisons of magnitude. If Penrose
maintains that functional freedom is not a cardinal number, and yet be-
lieves that two functional freedoms may meaningfully be compared in size,
then it is tempting to simply accuse him of inconsistency. After all, the
standard linguistic practice in mathematics understands terms ‘larger’,
‘smaller’, ‘more’, and ‘less’ in terms of Cantor’s cardinals or (alterna-
tively) in terms of measure theory. Engaging with this linguistic practice
by making comparisons of functional freedom would therefore seem to
commit Pernose to FF just being Cantor’s cardinals, which is exactly
what he denies.5

So it seems that Penrose bears some further burden of explication. If
FFs are not cardinals and yet can meaningfully be compared, then how ex-
actly is this to be cashed out? What justifies drifting away from standard
linguistic practice? We suggest that Penrose might plausibly be under-
stood as attempting to revise the mathematical concept of magnitude.
We devote the following subsection to this line of thinking, invoking some
recent work on the topic of conceptual engineering.

2.2 Conceptual Engineering

At this point, we would like to make a connection with recent philosophical
literature on conceptual analysis and concept engineering [3]. We propose
that what Penrose seems to be doing in the above passages is instigating
an attempt to revise the accepted mathematical conceptual vocabulary.
As Cappelen reminds us, revision of concepts is an ubiquitous practice
in philosophy and other areas of human intellectual endeavour, so this
observation perhaps doesn’t come as a great surprise. Nevertheless, we
take it to be a sign of good philosophical practice to be explicit about
such moves in order for an evaluation of the proposed conceptual revision
to be available.

A brief survey of examples of conceptual engineering in philosophy and
beyond can be found in [3]. To illustrate the point, we mention here just
one example of what we take to be a successful instance of conceptual en-
gineering stemming from the metaphysics of race. There are at least three
metaphysical positions about race, reviewed nicely in [16, ch. 10]. These
positions regard race as either (i) a social kind, (ii) a biological, natural
kind, or (iii) an illusory non-existent category. Following Ney, we refer to
these views as social constructivism, biological realism, and eliminativism,
respectively. While debates are still ongoing, we believe that sufficient
philosophical, scientific, and political consensus has been reached on this
matter and races are now understood either in spirit of social construc-
tivism or eliminativism rather than biological realism. One can rightly

5Note that there are indeed good reasons for Penrose to deny this since if FFs are under-
stood as Cantor’s cardinals, then all their comparisons are rendered trivial as per our initial
discussion of infinities encountered in physics. Briefly, for any set S, such that |S| ≥ ℵ0, one
has |S|n = |S| for any n ∈ N. In other words, exponentiation of infinite cardinals by a natural
number doesn’t change their cardinality. This is particularly relevant to finite dimensional
differential manifolds in which we take interest in physics. The cardinality of such manifolds
is ℵ1 regardless of their dimension which means that all functional freedoms, if understood as

cardinal numbers, are the very same cardinal number, namely ℵℵ1
1 .
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regard this as an instance of conceptual engineering since historically race
was often regarded as a biological category.

We confessed already in §2.1 our limited understanding of the rigorous
mathematical underpinning of DFF; nevertheless, we are willing to grant
Penrose the benefit of the doubt on this matter and assume in the follow-
ing that DFF may be subject to rigorous treatment within the theory of
K-jets. That said, even if this approach to making DFF rigorous is indeed
to be undertaken, it doesn’t remove the burden explicating and arguing
for the relevance and general usefulness of such a notion. For it is one
thing to (i) meaningfully define a concept, another thing to (ii) demon-
strate its practical usefulness in applications, and yet another thing to (iii)
demonstrate its superiority over other linguistically entrenched concepts
and propose their revision in light of such findings. In the above passages,
we read Penrose as engaging most actively with (i) and (iii). Engagement
with (i) in Penrose’s texts seems indubitable due to his multiple exam-
ples which might legitimately be regarded as definition of a concept via
ostension. The theory of K-jets perhaps puts this ostensively defined con-
cept on a firm mathematical footing. Furthermore, frequent reference to
comparisons of size of FFs suggests strongly Penrose’s engagement with
(iii) since the linguistic territory previously reserved for the established
mathematics of Cantor’s cardinals might rightly be regarded as invaded by
the new concept of FF. Regardless of whether we read Penrose as merely
making a call for disambiguation or alternatively for a thorough revision
of our concepts, it is precisely this fact which makes FF interesting philo-
sophically. With regards to (ii), we prefer to read Penrose as finding use
for the concept of DFF in a kind of equivalence criterion for theories. We
formulate and evaluate this criterion in §2.3.

Speaking much more broadly, one can ask the following questions
about conceptual engineering and revision: what makes a revision of a
concept desirable? What makes it successful? When is it appropriate
to define a new concept? Below, we propose a defeasible list of ways in
which new concepts can be evaluated; however, we note that a proper
engagement with the above questions and relatedly with the criteria for
successful conceptual engineering and concept revision are well beyond
the scope of our current project:

• Coherence. A concept fails to be coherent if its application leads in
one way or another to a contradiction. For example, the composite
concept of being short and tall at the same time is incoherent be-
cause the properties of being short and being tall arguably cannot
be true of a single individual at the same time. Perhaps more con-
troversially, van Inwagen famously proclaimed the concept of free
will to be incoherent: see [3, p. 17].

• Metaphysical credibility. A concept is metaphysically credible just
in case it latches well onto salient features of reality.6

• Usefulness. Concepts may be useful in many ways. They may allow
us to talk about certain tasks meaningfully, via their connectedness
to other concepts, via their explanatory power, etc.

6Compare the distinction between sparse and abundant properties due to Lewis [13].
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• Connectedness of a concept captures how well the new concept fits
into the broader system of concepts which one has already adapted.

We’ll leave things here. We turn now to Penrose’s suggestion that FF
can be useful in adjudications on theoretical equivalence, which is relevant
to (ii) above.

2.3 Functional Freedom as a Criterion of Equiv-
alence

Recall that Penrose maintains that “a theory cannot be equivalent to
another [...] theory on which the initial space has a different number D of
dimensions,” since the “the freedom in the D-space theory always vastly
exceeds that in the [other] theory!” [20, p. 41]. Therefore, we believe we
are correct to read Penrose as proposing the following necessary condition
on equivalence of theories:

Equivalence criterion (EC): Theories T1 and T2 are equiv-
alent only if DFF(T1) = DFF(T2).

If EC turned out to be sound, this would certainly count towards the
usefulness of FF and perhaps also towards its explanatory power. As a
result, it would grant the concept of FF some legitimacy and support
in becoming a new mathematical notion of quantity as we discussed in
the previous section. To anticipate, however: we argue below that EC
doesn’t stand up to scrutiny; this will ultimately lead us to reject some of
Penrose’s arguments against string theory (§4).

The notion of theoretical equivalence which was invoked informally by
Penrose and features in EC calls urgently for clarification. Let us therefore
attempt to remove the point of confusion by offering some precisifications
of the term. First of all, are we indeed concerned with empirical equiva-
lence or perhaps with a stronger notion of complete physical equivalence?
Consider the following precisification of EC:

EC1: Theories T1 and T2 are physically equivalent only if
DFF(T1) = DFF(T2).

What exactly constitutes physical equivalence and identity of scientific
theories remains an unsettled point of discussion within the philosophical
community. For our purposes, it will be sufficient to observe that a mis-
match in DFF between two theories does not necessarily imply that they
are physically inequivalent which renders this notion of theory-equivalence
obviously unsuitable as a candidate reading since Penrose’s claim that
discrepancy in DFF implies inequivalence would plainly be false on this
reading.

To demonstrate this claim, let us first consider a (somewhat artificial
and ultimately merely apparent) counterexample to EC1. Such counterex-
amples may be cooked up by simply adding gauge degrees of freedom to
one’s original theory out of thin air. For example, suppose that we en-
rich the F -field formulation of electromagnetism by an additional real
scalar field ψ which enters the Lagrangian only via a ψ2 ⊂ L term. In
principle, this would seem to be problematic for EC1 since such an ad-
dition leads to larger FF (provided we don’t impose gauge-fixing) while
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the physical content of the theory remains untouched by construction. As
a result, we believe this to be good reason to think that gauge degrees
of freedom should be subtracted from DFF via a gauge-fixing condition,
otherwise EC1 simply cannot get off the ground. Note that in this case,
the Hamiltonian formalism itself enforces the ψ = 0 gauge-fixing condi-
tion as a matter of dynamics; however, this doesn’t always need to be
the case.7 Thus, the apparent counterexample to EC1 can be evaded by
ensuring that gauge degrees of freedom are subtracted from DFF via a
gauge-fixing condition. That being said, it should be noted that whether a
particular degree of freedom counts as gauge is a strictly interpretational
matter, and so DFF would be too. In principle, there is nothing wrong
with this and in fact, whether two theories are physically equivalent is
surely also an interpretation-dependent notion.

Unfortunately for EC1, more serious and natural counterexamples are
in the offing. Let us return to vacuum Maxwell theory but this time
formulated in terms of the four-potential. The KPMs of this theory are
the tuples ⟨M,η,A⟩ where A = Aµdx

µ is a one-form possessing a gauge
redundancy A→ A+ dχ. The KFF of the four-potential theory therefore

is ∞4∞4

. DPMs are picked out by

□Aµ − ∂µ(∂ ·A) = 0. (5)

Consider once again a three-dimensional spacelike hypersurface Σ in M .
Since (5) is second-order in time, one needs to specify both A as well as
the time derivatives of A in order to fix the evolution to the future of Σ. In
total, this amounts to eight components which (prior to gauge fixing) are
not subject to any constraints. The DFF of the four-potential theory is

then ∞8∞3

or ∞7∞3

after subtracting a degree of freedom for the gauge-
fixing condition. Thus it seems that the DFF of the four-potential theory
doesn’t seem to match the DFF of the field-tensor theory! This suggests
that two theories can be physically equivalent and yet disagree on DFF,
thus ruling out EC1 as a plausible precisification of EC. Furthermore,
if two theories are physically equivalent, they are a fortiori empirically
equivalent and so the example above seems to suggest that DFF is likewise
not a good criterion of empirical equivalence. This point deserves further
attention.

As far as empirical equivalence is concerned, philosophy of science
operates with two version of this concept: weak empirical equivalence
and strong empirical equivalence, which roughly translate to empirical
equivalence on phenomena observed so far (or on phenomena belonging
to some limited subset, e.g. observed before some time T ) and empirical
equivalence on all possible phenomena, respectively. Could we precisify
EC in either of the above senses? Let’s consider

EC2: Theories T1 and T2 are weakly empirically equivalent
only if DFF(T1) = DFF(T2).

EC3: Theories T1 and T2 are strongly empirically equivalent
only if DFF(T1) = DFF(T2).

7Just consider the Newton-Poisson equation for the gravitational potential which has a
gauge freedom but no gauge-fixing is imposed by variation of the action.
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EC2 is quite plainly false. As history seems to suggest, at least some in-
stances of progress in physics have been accompanied by the discovery of
new degrees of freedom. For example, the gravitational field in Newtonian
gravity is fully determined and characterized by a single scalar potential
ϕ whereas in general relativity a ten-component metric tensor is required.
And yet, GR and Newtonian gravity are in the appropriate regime em-
pirically equivalent; they are therefore weakly empirically equivalent. For
housekeeping purposes: FF of general relativity as given by Penrose in

[18, p. 189] is ∞6∞3

and the DFF of Newton-Poisson theory is something

like ∞2∞2

.8

We don’t mean to argue that progress in physics must be accompa-
nied by a discovery of new degrees of freedom which increase FF, but we
would like to make the point that discrepancy is to be expected either
way.9 Furthermore, such discrepancy doesn’t need to prevent the succes-
sor theory from being empirically adequate unless a clear link between
the new degrees of freedom and empirical predictions is provided. Once
such a link is provided, it still remains to be shown how the empirical
predictions conflict with the ones of the predecessor theory; however, one
doesn’t seem entitled to make claims about weak empirical equivalence
on the basis of DFF alone.

This leaves EC3 the only option on the table. Unfortunately for EC3,
four-potential theory and field tensor theory are examples of strongly em-
pirically equivalent theories with differing DFF so EC3 cannot be correct
either.10

Having rejected all conceivable precisifications of EC, we conclude that
EC simply can’t be true. We take these considerations to demonstrate
that one isn’t entitled to make judgements about any kind of equivalence
on basis of DFF alone. The importance of this conclusion will become
apparent in §4. Since we cannot see any other uses of DFF beyond EC,
we take a sceptical stance towards the alleged usefulness of the notion and
towards its purported revision of the mathematical concept of quantity.

3 String Theory as a Field Theory

In this section, we outline the basics of perturbative string theory (PST)
and string field theory (SFT), couching both in the field-theoretic lan-
guage of §2. For the sake of simplicity, we discuss here only the the bosonic
string; however, it should be pointed out that realistic string models of
quantum gravity necessarily will be superstring models which equip the
theory with (worldsheet or target space) supersymmetry. For introduc-
tion to the bosonic string, see the canonical texts such as Polchinski [21,
ch. 1], or Green-Schwartz-Witten [9, chs. 1–3]. A nice and elementary
introduction to the bosonic string intended for philosophers is given by
Huggett and Wüthrich [12].

8A scalar field and its derivative need to be specified on a two-dimensional initial surface.
9Note that the it’s also logically possible that the successor theory might not even be

formalizable as a field theory, in which case Penrose’s argument is not applicable in any
straightforward way.

10Neglecting boundaries; see [27] for further discussion.
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The structure of the section is this. In §3.1, we introduce the classical
relativistic string. In §3.2, we discuss quantization of the bosonic string.
In §3.3, we introduce string field theory.

3.1 The Classical Relativistic String

Discussions of perturbative string theory (PST) usually begin with a clas-
sical treatment of a relativistic string propagating in a flat Minkowski
spacetime of arbitrary dimension D. Classically, a relativistic string in
Minkowski spacetime is described by the ‘Nambu-Goto action’

SNG = − 1

2π

∫
Σ

d2σ

√
−det

(∂Xµ

∂σa

∂Xν

∂σb
ηµν

)
, (6)

where Σ denotes the string worldsheet and the functions Xµ describe
the embedding of the worldsheet into the Minkowski spacetime. Impor-
tantly, note that SNG is Poincaré invariant and is also invariant under
worldsheet reparametrizations. One may recognize that the Nambu-Goto
action in fact calculates the spacetime area of the string worldsheet which
supplies it with a nice geometrical interpretation. Due to this geometri-
cal interpretation, Poincaré invariance and reparametrization invariance
shouldn’t come as a surprise since this area is a coordinate-independent
and parametrization-independent quantity. What makes SNG a natural
choice for the string action is the analogy with the worldline action of
a bosonic point particle which is proportional to the length of its the
worldline. The action of the bosonic point particle is given by

SBP = −m
∫
γ

√
−ηµνdXµdXν = −m

∫
dτ

√
−Ẋ2. (7)

Starting with a classical action such as (6) or (7), one can employ various
methods of quantization in order to obtain a quantum theory associated
with the original classical theory. However, quantization of theories like
(6) is intractable due to the square roots appearing in the action. In
string theory, one therefore resorts to the classically equivalent ‘Polyakov
action’,

SP = − 1

4π

∫
Σ

d2σ
√
−hhab∂aX

µ∂bX
νηµν , (8)

where one introduces the auxiliary worldsheet metric hab which may be
removed via its equation of motion to return (6). Note that on top of
the reparametrization and Poincare invariance of (6), SP is also invariant
under Weyl rescaling hab → eω(τ,σ)hab, which is of crucial importance
when it comes to quantizing the theory. It is this quantization of SP

which we next describe.

3.2 Quantization of the Bosonic String

In theoretical physics, quantization is often regarded as ‘educated guess-
work’ or as a kind of ‘toolbox of methods’ with varying success rates and
sometimes even questionable mathematical coherence. And yet quanti-
zation of course enjoys considerable authority due to its success. As a
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result of its logical role and status, many conceptual questions regarding
quantization arise: Is quantization of a classical theory unique? Can the
procedure be made rigorous? And so forth. But despite these concep-
tual questions, quantization remains an indispensable tool in theoretical
physics and continues to yield new results.

Consonant with the above, there are various ways in which one can
quantize (8). To take here just one: one views the Polyakov action as
describing a two-dimensional conformal field theory on the worldsheet
and performs a path integral over the worldsheet fields which include the
Xµ as well as the worldsheet metric hab and a set of so-called ghost fields
which don’t admit of any physical interpretation but the introduction of
which is a necessary mathematical trick required by the reparametrization
invariance of (8). From this point of view, the FF of PST turns out to be

something like ∞a∞1

, where a is the number of degrees of freedom hidden
in all the worldsheet fields.11

The spectrum of the string (i.e., the Hilbert space of string states)
can be found in the cohomology of the so-called BRST operator. The
BRST operator is a nilpotent operator constructed from the ghost fields
and generators of gauge symmetries of (8). We need not concern our-
selves with the technical aspects of the BRST approach; however, let us
describe briefly the structure of the open/closed string Hilbert space. It
turns out that the Hilbert spaces of both open and closed bosonic string
contain infinitely many states corresponding to particles of ever-increasing
mass and tensorial rank. For example, the open string spectrum famously
contains the scalar tachyon, a massless gauge-field reminiscent of the fa-
miliar Maxwell field, and further excited states of higher mass. The closed
string spectrum too contains a tachyon state; however, the first excited
state is no longer a vector field but rather a massless rank-two tensor field
fµν which may be decomposed into three parts: an antisymmetric tensor
Bµν , a traceless symmetric tensor hµν , and the trace part Φ, which are
commonly referred to as the Kalb-Rammond field, the graviton, and the
dilaton, respectively. In light of the presence of the hµν field in particular,
a quantum description of the gravitational field is said to emerge naturally
from the closed string spectrum.

Let’s turn our attention back to the path integral over worldsheet
fields mentioned above. The path-integral quantization is fraught with
anomalies: failures of the classical symmetries to be preserved also at
the quantum level. Imposing anomaly-freeness as a consistency condi-
tion of the entire process, one obtains further physically interesting con-
ditions on the background fields in which the string propagates. First
of all, anomaly-freeness requires one to set the critical dimension of the
Minkowski background to D = 26 (for the superstring, the critical dimen-
sion is D = 10). Furthermore, the background metric is required to satisfy
the Einstein field equations (EFEs) to first order in perturbation theory
and corrections thereto in higher orders. More specifically, the dynamics
of the background fields is dictated by the vanishing of beta functions (see

11As mentioned above, it is somewhat unclear whether one should count the ghost fields
as contributing towards the FF of the theory or whether one should count only the physical
degrees of freedom.
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e.g. [21, ch. 3])

βg = α′Rµν + 2α′∇µΦ∇νΦ+O(α′2)

βΦ =
D − 26

6
− α′

2
∇2Φ+ α′∇µΦ∇µΦ+O(α′2). (9)

Thus, familiar dynamics of the background fields emerges as a byproduct
of the quantization process. For more on quantization of the bosonic
string, see [9, chs. 2–3].12

There seems to be a common consensus in the string-theoretic commu-
nity that the background fields themselves are not ontologically primitive
objects but become identified with the so-called coherent string states
which are constructed from the string spectrum itself. Coherent states
are defined as the eigenstates of the lowering operator which one encoun-
ters in the quantum treatment of the harmonic oscillator; however, the
term has attained a somewhat broader meaning and is nowadays also used
in QFT to denote a special ‘quasi-classical state’ of the quantum field. A
quick rundown of the standard string-theoretic argumentation regarding
the stringy origin of the background fields is provided in [23, ch. 5]; a
thorough analysis of the background field reduction may be found in [12].
Whether the appeal to coherent states amounts to a legitimate and com-
plete ontological reduction of the background fields still remains a moot
point. For example, Read worries whether such a reduction presupposes
an appeal to a spacetime theory beyond PST itself (a theory such as string
field theory which we introduce shortly in §3.3) [23, ch. 5]. We do indeed
believe that such an appeal is required and we return to this problem
again in the following section. Its significance will become clear as we
progress through many of Penrose’s criticisms; for now, we observe only
that näıvely the theory of string background fields seems to have KFF

of the form ∞b∞D

, where b comprises the degrees of freedom of all the
background fields considered.13

At this point, we would like to suggest—as an aside—a potential con-
nection between the discussion of background fields in PST and the lit-
erature on principle and constructive theories, this of course being a dis-
tinction going back to Einstein [7].14 While it would be nice if PST could
provide an ontological reduction of the background fields, the success of
the theory itself doesn’t seem to hinge on this particular project. String
scattering amplitudes (which exhaust the empirical content of the theory)
can still be calculated once the background is imposed ‘by hand’, subject
to all the relevant constraints such as the EFEs. The background fields
in PST would thus simply be treated as primitive entities with behaviour
constrained by imposing the condition of anomaly-free quantization. Such
a refusal to provide an ontological reduction doesn’t seem to hinder the
predictive power of PST; however, it does hinder its explanatory power.
If more variables are treated as primitive/imposed by hand in theory T1

12For discussions of these issues in the philosophical literature, see [11, 22].
13In the full theory, there are of course infinitely many such fields, as each excited state of

the string gives rise to at least one such background field.
14For well-known philosophical discussion of this distinction, see [2].
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as opposed to T2, then T1 would perhaps be regarded as less explanatory
than T2 which does offer a reduction.15

We suggest there to be a grain of analogy between this interpretative
stance on PST and Einstein’s distinction between principle and construc-
tive theories. On this analogy, PST itself could be understood as a princi-
ple theory of scattering processes, while a spacetime theory such as string
field theory (on which see the next subsection) would be its construc-
tive counterpart. Recall that Einstein characterized principle theories as
theories which take a set of basic, empirically grounded postulates and
elevate them to the status of axioms which are subsequently employed in
deductive reasoning about the phenomena which are thus explained by
constraint but fall short of a constructive explanation. A constructive
theory, according to Einstein, would then be one which provides explana-
tion in terms of the microphysical underpinnings of the processes involved.
Arguably, PST too proceeds from a postulate of some sort (although, of
course, less directly connected to the empirical than those of Einstein in
his 1905 article on special relativity [6]): one presupposes the existence
of strings in background spacetime and proceeds to seek an anomaly-free
Lorentz covariant quantum theory thereof. Whether the postulate is em-
pirically well-grounded is perhaps questionable (see our above parenthet-
ical); however, what in our opinion makes PST a principle(-like) theory
is this axiomatico-deductive construction.16 Furthermore, the dynamics
of the background fields are explained by constraint rather than by con-
structive microphysical underpinning, which is again seems characteristic
of principle theories.

But if PST is indeed in this sense akin to a principle theory, does
there exists a constructive counterpart governing the same phenomena?
We believe that the constructive counterpart of PST could perhaps be
found in string field theory, which we now introduce and interrogate.

3.3 String Field Theory

The moral of the previous discussion can be summarized as follows: per-
turbative string theory can be viewed as a two-dimensional conformal field
theory which upon path integral quantization yields a recipe for calcula-
tion of S-matrix elements of various string scattering events as well as
consistency conditions on the background in which the strings propagate.
In the field theoretic framework of §2, the KPMs of PST are thus picked
out by the tuples ⟨Σ, X1, ..., XD, ci⟩, where ci stands for the ghost fields.
There exists, however, an alternative and more general point of view in
which string theory is formulated as a field theory onD-dimensional space-
time rather than the two-dimensional worldsheet: it is the open/closed
bosonic string field theory (SFT). A recent and extensive introduction to
both closed and open SFT can be found in [8].

15This point is nicely exemplified in the relationship between thermodynamics and statis-
tical mechanics. While thermodynamics treats all the thermodynamic variables as primitive,
statistical mechanics explains their origin via properties of statistical ensembles. As a result,
one usually regards statistical mechanics as more explanatory.

16Cf. [1].
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The fundamental objects of SFT are the so-called open/closed string
fields Φ and Ψ, respectively, which live on a background spacetime mani-
fold M . From the field theoretic perspective, the KPMs of SFT are thus
tuples ⟨M,Φ,Ψ⟩, but the simple appearance is highly misleading since
both Φ and Ψ are both highly structured objects involving infinitely many
degrees of freedom. Recall from our previous discussion of the string spec-
trum that excitations of the open string give rise to a tachyon, a massless
gauge boson, and infinitely many more massive particles of higher spin
labelled by a discrete quantum number α and a continuous momentum
label k. In SFT, one incorporates all these excitations into a single math-
ematical object: the open string field

|Φ⟩ =
∑
α

∫
dDk

(2π)D
ψα(k)|k, α⟩. (10)

Fourier transforming the components ψα(k) then yields a spacetime field
corresponding to each label α. Furthermore, substituting (10) into an
appropriate action functional yields a total spacetime action for all the
fields in the spectrum of the open string.17 According to Erbin, one should
therefore view SFT as an ordinary QFT with the following features: the
amplitudes agree with the worldsheet amplitudes, but the number of fields
is infinite, and their interaction non-local, see [8, p. 26]. To put it mildly, a
theory like SFT is thus very difficult to grasp from the point of functional
freedom. Because the KPMs are in fact infinite tuples, the KFF of the

full SFT must be something like ∞∞∞D

.
We would like to leave the technical details of the SFT project aside

and instead briefly fill in the gaps in the story of ontological reduction of
the background fields outlined in §3.2. Recall that background fields are
supposed to be ontologically reduced coherent string states spread across
spacetime. In SFT one can accommodate this requirement straightfor-
wardly since the string field is by construction a quantum field on space-
time (in fact, infinitely many quantum fields). Thus, in our view, back-
ground fields in string theory should be thought of as coherent states of the
string field. We believe that this appeal to SFT completes the ontological
reduction outlined in [12] and thus clarifies the origin of background fields
in string theory.

4 Penrose’s Arguments

Having explicated what Penrose means by functional freedom, we proceed
now to assess what we take to be Penrose’s main arguments against string
theory. The arguments assessed in §4.1 are those which involve explicitly
the counting FF in string theory; as a result, our above criticisms of the
concept of FF undermine at least partially these arguments. The objec-
tions to string theory assessed in §§4.2–4.4 don’t depend in any crucial
way on the concept of FF and so warrant independent assessment.

17For the free open SFT, this action takes the form SSFT = 1
2
⟨Φ|QB |Φ⟩.
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4.1 Counting Functional Freedom

There are three main ‘FF counting arguments’ against string theory scat-
tered across [19] and [20]:

1. The ‘classical physics argument’.

2. The ‘heterotic string argument’.

3. The ‘AdS-CFT argument’.

In the following three subsections, we present and assess each of these in
turn.

4.1.1 The Classical Physics Argument

In Fashion, Faith and Fantasy, Penrose says the following regarding bosonic
string theory formulated as a two-dimensional conformal field theory on
the worldsheet:

In my attempts to get to grips with the various developments
in string theory, there has been as additional point of poten-
tial confusion for me, particularly when trying to understand
the issues of functional freedom. [...] It is particularly difficult
to assess the functional freedom that is involved in a physical
theory unless one has a clear idea of its actual space-time di-
mensionality. To be more explicit about this issue, let me turn
to one of the particularly appealing aspects of the early string
ideas [...] [I]n the early days of string theory, the subject was
sometimes viewed from the point of view of a 2-dimensional
conformal field theory [...] This would lead us to a picture

in which the functional freedom had the form ∞a∞1

for some
positive number a. How are we to square this with the far

larger functional freedom ∞b∞3

that is required for ordinary
physics? [...] The point I am making here is certainly not
that functional freedom might in some sense be ill defined or
irrelevant. The point is, however, that for a theory formulated
in a way dependent on things like power series coefficients or
mode analysis, it may not be at all easy to ascertain what the
functional freedom actually is [...]. [20, pp. 62–3]

We read Penrose as expressing in the above passage a twofold worry. He
observes the discrepancy in DFF between worldsheet PST on the one hand
and what he calls ‘ordinary physics’ on the other and concludes that this is
somehow problematic. We take this to be an implicit appeal to some form
of EC, presumably EC2. Secondly, he observes that the full functional
freedom of worldsheet string theory might not be easily ascertainable (or
perhaps manifest) from the formulation of the theory. The two worries
are importantly of entirely different philosophical character: the former is
metaphysical while the other is epistemic.

We don’t see why the epistemic worry should count as an objection to
string theory. After all, it seems to point at limitation of theorist rather
than at a problem within the theory. Admittedly, easily ascertainable
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functional freedom could be seen as a super-empirical virtue of a theory,
but certainly absence of this quality can’t be seen as a vice.

With regards to the metaphysical worry, we would like to make clear
that we don’t believe that either PST or SFT should be obliged to some-
how reproduce the FF of ‘ordinary physics’ as Penrose insists; further,
the implicit appeal to EC is illegitimate. Setting aside the question of
what ‘ordinary physics’ means in this context and, relatedly, the question
of what exact FF should these theories aim to reproduce, we recall that
based on our previous discussion EC is not a sound principle! Thus, we
don’t see any problem in the DFF discrepancy between the worldsheet
theory and ordinary physics. The former may still plausibly reproduce
predictions of the latter in the appropriate experimental regime.

At the risk of superfluity, we mention one further notable counterex-
ample to EC1 which seems particularly pertinent to the above passage. A
philosopher well-acquainted with modus tollens could perhaps twist Pen-
rose’s argument on its head and conclude that the worldsheet string theory
is itself in fact a counterexample to EC2; however, this would clearly be
begging the question against Penrose. However, we believe there to exist a
sufficiently similar example: the worldline approach to QFT (see e.g. [26])
which blatantly contradicts EC and (unlike PST itself) perhaps would be
accepted by Penrose as a legitimate counterexample. The worldline ap-
proach to QFT can be thought of as the ‘one-dimensional analogue’ of
PST: scattering amplitudes are no longer calculated from spacetime fields
but rather from worldline fields by performing the path integral of world-
line models such as (7). Remarkably, the scattering amplitudes obtained
via the worldline methods agree with the ones obtained from second quan-
tization of fields in spite of the fact that the functional freedoms of the
two theories differ significantly! This is because the base manifold of the
worldline models is one-dimensional and so the DFF involved would be
something like ∞c∞0

which is clearly much less than the DFF usually
encountered in the empirically equivalent spacetime field theory. The
moral, then, is the following: if low DFF is no obstruction to the world-
line models reproducing the correct amplitudes, then why should it be
an obstruction in the case of PST? Previously, we rejected EC on various
grounds; however, it seems to us that worldline models present a partic-
ularly convincing problem case for using functional freedom as guide to
empirical equivalence in the above passage because of the direct analogy
to PST.

Penrose seems to appeal to EC also in the following passage; however,
this time the problem seems to be excessive DFF of the background fields:

Accordingly, deep questions are raised concerning the physical
relevance of quantum theories such as supra-dimensional string
theories, for which the number of spatial dimensions is greater
than three we directly perceive. What happens to the floods of
excessive degrees of freedom that now become available to the
system, by virtue of the huge functional freedom that is poten-
tially available in the extra spatial dimensions? Is it plausible
that these vast numbers of degrees of freedom can be kept
hidden away and prevented from completely dominating the
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physics of the world in such schemes? [20, pp. 41–2]

But what exactly does it mean for degrees of freedom to ‘dominate the
physics of the world’? The most plausible reading of this phrase seems
to be that the mismatch in DFF would threaten the empirical adequacy
of theories like PST or SFT which in an appropriate experimental regime
should aim to reproduce predictions of general relativity and quantum
field theory. As such, the claim then seems to be once again appealing to
EC2 or EC3, both of which we have refuted in §2.3.

Notwithstanding our above criticisms, we share sympathies with Pen-
rose insofar as he can be read as asking for a clear geometrical picture of
string theory and in particular, clarification of the status of background
fields in PST—a topic we have investigated in §3.3. We agree that unless
one appeals to (e.g.) SFT and coherent states of the string field, the move
from the worldsheet formalism to the background fields remains obscure
and in those circumstances, asking how is it possible to make a leap from
the worldsheet formalism to the spacetime theory of background fields
would be entirely apposite.18

4.1.2 The Heterotic Sting

Another FF-counting objection concerns one of the superstring theories:
the heterotic string (for an introduction, see e.g. [21]). Once again, Pen-
rose seems to be calling for a consistent geometrical picture:

The strange feature about heterotic string theory is that it
appears to behave simultaneously as a theory in 26 space-time
dimensions and in 10 space-time dimensions (the latter with
accompanying supersymmetry), depending upon whether we
are concerned with left-moving or right-moving excitations of
the string [...] This dimensional conflict would seem to cause
us problems if we are to try to work out the functional freedom
involved [...] I find it very difficult to form a consistent picture
of what is going on here, and I have never even seen these
geometrical issues properly discussed. [20, pp. 63–5]

In principle, we don’t see why our discussion of coherent string field states
wouldn’t extend also to the superstring case. One must remember that
the number of spacetime dimensions, should confusion arise, is in the
worldsheet formalism precisely the number of bosonic Xµ fields. Erbin
sums up the situation regarding the heterotic string as follows:

The ghost super-CFT is characterized by anti-commuting ghosts
(b, c) (left-moving) and (b̄, c̄) (right-moving) with central charge
c = (−26, 26), associated to diffeomorphisms, and by commut-
ing ghosts (β, γ) with central charge c = (11, 0), associated
to local supersymmetry. As a consequence the matter SCFT
must have a cetral charge c = (15, 26). If spacetime has D
non-compact dimensions, then the matter CFT is made of:

• a free theory of D scalars Xµ and D left-moving fremions
ψµ (µ = 0, . . . , D − 1) such that cfree = D;

18However, we still maintain that FF isn’t relevant to these considerations.
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• an internal theory with cint = 15−3D/2 and c̃int = 26−D.

The critical dimension is reached when cint = 0 which corre-
sponds to D = 10. [8, p. 245]

He even identifies the same problem as Penrose when he writes that “since
the critical dimension of the two sectors do not match, one needs to get
rid of the additional dimensions of the right-moving sector” [8, p. 19]. In
spite of this, the heterotic string field theory seems to be unproblemati-
cally formulated on D-dimensional spacetime. Would this be a consistent
geometrical picture for Penrose?

At the same time, we repeat that we remain sceptical with regards to
the relevance FF considerations. Our inability to ascertain FF shouldn’t
be taken as a vice of the theory.

4.1.3 The AdS-CFT Correspondence

Finally, we would like to draw attention to FF-related concerns which
Penrose raises in the context of the AdS-CFT correspondence (first devel-
oped in [15]; for a philosophical introduction, see e.g. [25]). Put simply,
Penrose sees a problem in the mismatch in dimensionality (and hence FF)
between the AdS and CFT sides of the duality and consequently takes this
to indicate that the theories cannot in fact be equivalent. Consider a par-
ticular instantiation of the AdS-CFT correspondence and let M be the
ten-dimensional product AdS5 × S5 and E be the conformal infinity of
AdS5. Penrose then notes that

[h]ere there is no chance of appealing to the type of ‘quantum-
energy’ argument put forward in §31.10 [see §4.2] for explaining
away the gross discrepancy between the functional freedom of

an ordinary field on M , namely ∞M∞9

and an ordinary field

on [E], namely [∞E∞3

]. Since the extra dimensions of M are
in no way ‘small’—being of cosmological scale—the flood of ad-
ditional degrees of freedom, from the fields’ dependence on the
S5 part of M , would spoil any possibility of an agreement be-
tween the two field theories. The same would apply to ordinary
QFTs on M and [E], since one-particle states are themselves
described simply by ‘ordinary fields’ [...]. The only chance of
the holographic principle being actually true for these spaces
is for the QFTs under consideration to be far from ‘ordinary’.
[19, p. 921]

On pain of repetition, we would like to make clear that we once again fail to
see how FF considerations should bear on the issue of theory equivalence.
Our argumentation is therefore perfectly analogous to the one delivered
in §4.1.1.

4.2 Excitation of Extra Degrees of Freedom

It is now time to introduce and assess two central arguments presented
in [19] and [20] which regard, respectively, ‘quantum’ and ‘classical’ con-
siderations. In this subsection we take up the quantum argument only to
connect it with the classical argument in the following subsection.
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First, let us give a brief primer on compactification in string theory.
We have seen above that vanishing of the relevant (‘Weyl’) anomaly en-
forces a ‘critical dimension’ on string-theoretic spacetimes which turns
out to be 26 for the bosonic string and 10 for the superstring. In order
to recover four-dimensional phenomenology, string theorists have studied
models in which the ‘additional’ 22 or 6 dimensions are compactified into
a manifold of small size. ‘Four-dimensional phenomenology’ in the above
refers, foremost of all, to the phenomenology of particles which we have
observed so far in particle accelerators. For the superstring, this compact
manifold is further required to be a special kind of complex three-manifold,
a Calabi-Yau threefold, so that the string-theoretic spacetime takes the
product form M ×X, where M is the four-dimensional Minkowski space-
time and X is the Calabi-Yau. The number of possible Calabi-Yau com-
pactifications is enormous (10500 is sometimes quoted) and this leads to
a proliferation of string theoretic particle models since different compact-
ifications generically yield different string spectra. This has led some to
worry about predictive and explanatory power of string theory giving rise
to the so-called landscape problem of string theory, on which see [24].

Before we articulate the quantum argument, let’s consider one moti-
vating example. Following Penrose, we analyze the Klein-Gordon theory
of a single scalar field ϕ on a spacetime with a single compactified dimen-
sion. Specifically, we consider the product form M × S1 where M is the
familiar four-dimensional Minkowski spacetime and S1 is a circle of small
radius ρ. The Klein-Gordon equation on M × S1 then takes the form(

□− 1

ρ2
∂2

∂θ2
+m2

)
ϕ = 0, (11)

where θ denotes a coordinate along the S1-compactified dimension and
□ is the d’Alembertian in M . One may then separate out the modes
associated with S1 by taking ϕ = einθψ so that the Klein-Gordon equation
reduces to (

□+
n2

ρ2
+m2

)
ψ = 0. (12)

On a standard particle physics reasoning, one can then interpret the n2

ρ2

term in the above as effectively contributing to the mass of the particles
described by the scalar field. Furthermore, if the radius is small compared
to the length scale of m, that is if ρ≪ m−1, the effective mass of the par-
ticle would be so large that it would be virtually undetectable by current
particle accelerators. The reason for this is that energy-mass equivalence
would prohibit creation of such particles since the local particle collisions
occur at much smaller COM energies in current particle accelerators.

It is exactly this piece of particle physics reasoning (as employed by
string theorists) which Penrose attacks with his quantum argument. As
we will see shortly, Penrose seems to believe that such heavy particles
could be created given the conditions present in our universe. But before
we analyze his claims, let us rephrase the above motivating example in
string-theoretic terms.

Recall again that string-theoretic spacetimes take the product form
M×X whereX is a Calabi-Yau. Following Penrose [18], one may privilege
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a time axis on M and study the dynamics of fields on M ×X as an initial
value problem of modes on R3 × X. Due to the compactness of X, the
modes associated with X would form a discrete family in analogy to the
Klein-Gordon example. Penrose then notes that

[...] the energy of excitation of a [X-mode] is expected to be
very large because of the very minute scale of [X] itself. A dy-
namical ‘standing wave’ on [X] would have a tiny wavelength,
comparable to the Planck distance of 10−33 cm, and would
therefore have something like a Planck frequency of 10−43 sec-
onds. The energy required to excite such a mode would be of
the general order of a Planck energy, [...], which is nearly twenty
orders of magnitude larger than the largest energies involved
in ordinary particle interactions. It is accordingly argued that
the modes that affect [X’s] geometry will remain unexcited, in
all particle-physics processes that are of relevance to physical
actions available today. [18, p. 191]

The problem with this kind of reasoning in string theory, Penrose con-
tends, is that the Planck-order energies are in fact available in our uni-
verse which means that the X-modes should get excited arguably leading
to the “unleashing of floods of extra-dimensional degrees of freedom that
are potentially there by virtue of the freedom that is in the Planck-scale
geometry” and to “devastating effects on the macroscopic dynamics” [20,
p. 74] presumably in the form of a proliferation of otherwise-unobserved
heavy particles. Penrose thus asks:

[A]re the positive energy (Planck-scale) modes of vibration of
the six extra dimensions immune from excitation? Although
the Planck energy is indeed very large when compared with
normal particle-physics energies, it is still not that big an en-
ergy, being comparable with the energy released in the explo-
sion of about one tonne of TNT. There is, of course, enormously
more energy than this available in the known universe. For ex-
ample, the energy received from the Sun by the Earth in one
second is some 108 times larger! On energy terms alone, that
would be far more than sufficient to excite the [X] space for
the entire universe! [19, p. 903]

In particular, passages such as [20, pp. 72–3] indicate that Penrose rejects
the idea that such an energy would need to be delivered in a localized
manner by an energetic particle:

But we must bear in mind that the picture that the string the-
orists are presenting is one in which the space-time [...] would
be taken as a product spaceM×X [...]. If the extra dimensions
themselves were to be excited, the relevant ‘excited mode’ [...]
of the space-time would be exhibited as our higher-dimensional
space-time having the formM×X ′, where X ′ is the perturbed
(i.e. ‘excited’) system of extra dimensions. (Of course, we have
to think of X ′ as being, in some sense, a ‘quantum space’,
rather than a classical one, but this does not seriously affect
the discussion.) A point that I am making here is that in
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perturbing M × X to M × X ′, we have perturbed the entire
universe [...] so that when we are thinking of the energy re-
quired to effect this mode of perturbation as being ‘large’ we
must think of this in the context of the universe as a whole.
It seems to me to be quite unreasonable to demand that the
injection of this quantum of energy be necessarily effected by
some fairly localized high-energy particle. [20, p. 72]

Let us now take a step back to assess this criticism. Crucial in the
above passage seems to be the notion of exciting a degree of freedom. Un-
fortunately, what exactly this means (especially in the context of string
theory) is unclear to us. All the reader is offered is an analogy concerning
the quantized energy levels of a hydrogen atom which in non-relativistic
QM become excited by incoming photons [20, p. 70]. While such a pic-
ture might serve as useful heuristic or approximate description of atomic
processes, the extension of this concept to fields or modes requires fur-
ther justification. In the context of atomic transitions, it may be argued
that the appeal to abrupt transitions between energy levels is in fact just
a proxy description justified by the underlying theory of light and mat-
ter. So what could be the underlying microphysical story for background
string theory? Unless such a story is provided, it one may doubt whether
Penrose engages in sound physical reasoning in the above passages.

Perhaps one attempt to cash out this story would be via an appeal to
SFT. String fields Φ and Ψ are fields on spacetime and their various com-
ponents may become excited as ordinary quantum fields. We note though
that Penrose doesn’t mention SFT explicitly in the relevant passages and
in fact discussion of SFT is completely absent from his exposition to string
theory. Thus, whether the picture Penrose has in mind in the above pas-
sages is something along the lines of SFT or perhaps something completely
different is a question which we cannot answer definitively. We believe
there are reasons to think that Penrose in fact didn’t have the SFT pic-
ture in mind because it doesn’t quite square with the rest of the quantum
argument. For if excitations of the string field around the background
coherent state were to occur, they would surely need to be facilitated by
localized means rather than TNT explosions, something which Penrose
explicitly rejects.19

Let us be a little more explicit about this issue. The difference between
localized and non-localized energy injections is presumably in energy den-
sity, or more precisely, in the values of the stress-energy tensor. The
energy of a macroscopic event such as a TNT explosion is spread across
much larger spacetime volume than the energy of a localized energetic
particle and as a result, the energy density of a TNT explosion will gen-
erally be much smaller than the density of an energetic particle despite
the total energy being roughly similar. The crucial point is this: from a
QFT perspective (which we can take to coincide with the SFT perspec-
tive), it is energy density which matters for field excitations to occur, not
the total energy. Heuristically speaking, this is because smaller values of
stress-energy tensor at a point correspond to smaller field values at that
point and any kind of point-wise interaction between fields would also in

19For simplicity, we neglect the fact that SFT actually involves non-local interactions.
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turn out to be smaller.
Independently of the above, there are further reasons to be sceptical of

the claims about TNT explosions and energy delivered by the sun. First,
we don’t see why the the problem should be any more relevant to string
theory than it is to ordinary quantum field theory. If TNT explosions
or sunlight were sufficient to create particles in string theory, surely they
would also be sufficient to create particles in the Standard Model and yet,
Penrose doesn’t seem to be worried about the same problem in the Stan-
dard Model. Why not? Second, we note that TNT explosions are not the
typical kind of regime in which predictions of particle physics ordinarily
get tested. In principle, there’s nothing wrong with that but since this
is the case, more should be said about how exactly would predictions of
string theory get violated during, e.g., a TNT explosion. After all, string
theory and the Standard Model are tested primarily in scattering experi-
ments, so what predictions do they make for a TNT explosion anyway?

Let us summarize the discussion so far. We began by pointing out the
difficulty in understanding what Penrose means by excitation of degrees of
freedom, that is unless one adopts a field theory perspective such as SFT or
QFT. However, in field theories energy needs to be delivered in a localized
manner for excitation of quantum fields to occur and consequently, claims
about TNT explosions and sunlight exciting degrees of freedom don’t make
much sense. Furthermore, we see neither how these considerations apply
to string theory any more than they do to ordinary quantum field theory,
nor what their precise empirical significance is in fact supposed to be.

Later on, Penrose also mentions the tension between his hypostatized,
abrupt quantum transitions and a commonsense notion of locality. He
writes:

[...] the ground state of X is, by its very nature, of necessity
not localized at any particular place in our ordinary space-
time M , being supposed to be omnipresent, permeating the
structure of space-time throughout the entire universe. The
geometrical quantum state of X is supposed to influence the
detailed physics that is going on in the most remote galaxy,
just as much as here on Earth. The string theorist’s argument
that Planck-scale energy would be far too great, in relation
to what is available, to be able to excite X seems to me to
be inappropriate on various counts. Not only are such ener-
gies amply available through non-localized means [...], but if
we were to imagine that X were actually to be converted to an
excited state X ′ by such a particle transition (perhaps owing
to some advanced technology making a Planck-energy particle
accelerator), [...] this would be clearly absurd, as we could not
expect the physics on the Andromeda Galaxy to be instantly
changed by such an event here on Earth! We should be think-
ing more in terms of a much milder event in the vicinity of
the Earth propagating outwards with the speed of light. Such
things would be described much more plausibly by nonlinear
classical equations, rather than abrupt quantum transitions.
[20, pp. 74–5]
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We find the above passage puzzling because the tension with locality cer-
tainly doesn’t stem from string theory but rather from the quantum tran-
sitions themselves. Brief inspection of (9) shows that dynamics of back-
ground fields in string theory are codified in covariant equations which
enforce relativistic causality. As a result, we fail to see how the above
passage constitutes an objection against string theory, in spite of being
phrased as such. More plausibly, we believe that it highlights the inap-
propriateness and limitations of using quantum transitions to describe the
system.

One should also be aware of a potential point of confusion. When Pen-
rose says that the “entire universe” is excited, thereby affecting physics
in e.g. the Andromeda galaxy, this would seem to presuppose that all
copies of X distributed over M will get excited in the same way. But
how does this follow? Surely, M ×X is a product space and any excita-
tion of X would happen locally in M ×X! That is, at a particular point
p ∈ M one excites the X space but this does not automatically translate
to excitations of X in the Andromeda galaxy.

In summary, we believe there to be much confusing terminology and
unclear argumentation involved in the quantum argument. The notion of
excitaiton of degrees of freedom is insufficiently cashed out and although
it could perhaps be made sensible by an appeal to SFT, we don’t think
this squares well with what Penrose says.

4.3 Classical Instability of Extra Degrees of Free-
dom

Let us now investigate the argument from classical instability of string
theoretic spacetimes which may be found in both [19] and [20]. The ar-
gument relies on a singularity theorem in general relativity proven by
Hawking and Penrose [10]; subsequently, Penrose applies it to compacti-
fied spacetimes of the kind encountered in string theory. The assumption
behind Penrose’s reasoning seems to be that background fields in string
theory are to an excellent approximation described by the EFEs derived
from the vanishing of the beta functions, as we discussed in detail in §3.2.
However, note that this is indeed only an approximation and that the
full dynamics of the background fields is governed by the vanishing of the
entire power series (9), not merely the first couple of terms in string con-
stant α′. Setting this issue aside for a moment, let us delve deeper into
the singularity theorem.

The statement of the singularity theorem is roughly the following.
Once again, consider a compactified string-theoretic spacetime M × X,
where X is a small Calabi-Yau threefold and M is the Minkowski space-
time. Since M = R3 × R, we can regroup the product terms and define
Z := R ×X. We now impose petrubations on an initial-value surface in
Z and study the propagation of this perturbation into the future. The
theorem of Hawking and Penrose then states that the evolution will result
in a singularity provided that:

1. The dimension of Z is n ≥ 3 and Z contains a compact (n − 1)
dimensional hypersurface without closed timelike curves.
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2. The Einstein tensor satisfies the strong energy condition (SEC).20

We note with Penrose that a singularity by itself doesn’t necessarily imply
infinite curvature but simply a failure to continue the evolution of the
initial data surface into the future. Such a failure might arise due to
infinite curvatures of the subspace Z but need not necessarily do so. On
this point, Penrose observes that “[a]lthough there are alternative things
that can in principle happen in exceptional cases, it is to be expected that
the general reason for the impossibility of continuing the evolution is that
curvatures indeed do diverge”, [20, p. 81]. What seems to be at risk again
is the empirical adequacy of string theory since we don’t seem to observe
such violent instabilities in our universe. We quote:

What this singularity theorem appears to be telling us is that
so long as the perturbations of the extra dimensions can be
treated classically—as indeed appears to be a reasonable thing
to do, as a clear conclusion of our earlier considerations [...]—
then we must expect a violent instability in the 6 extra spatial
dimensions, in which they crumple up and approach a singu-
lar state. [...] Whatever the extra dimensions might crumple
to, the observed physics is not likely to be other than drasti-
cally affected. This is hardly a comfortable picture of the 10-
dimensional space-time that string theorists have been propos-
ing for our universe. [20, pp. 81–2]

Although the conclusion drawn from the singularity theorem indeed sounds
serious, we aver that one should be suspicious the applicability of the the-
orem in the context of string theory. In particular, we question the appli-
cability of the SEC to this context. Penrose seems to believe that SEC is
“certainly satisfied” [20, p. 81] in string theory because it follows directly
from the vacuum EFEs which Penrose assumes to hold on M ×X. But
this supposition is twofold inaccurate. Recall that the full dynamics of
background fields in string theory is not given by the EFEs but rather by
the vanishing of the entire beta functions (9) which include infinitely many
more terms and that EFEs emerge only as a low-order approximation, so
an appeal to the EFEs in justifying the SEC can be at best only approx-
imate.21 However, even granting Penrose the low-order approximation of
the full dynamics, the vacuum EFEs are most certainly not an accurate
model for string theoretic backgrounds. This is because the spectrum of
the string contains not only the graviton, but also infinitely many more
massive particles which all jointly contribute to the total energy tensor
featuring on the right-hand side of the equations. To assume a vacuum
would be to neglect degrees of freedom which, importantly, cannot be
neglected in string theory.

20For a statement and general discussion of energy conditions, see [5].
21This, furthermore, gives rise to an ambiguity in what SEC actually means. Once higher

order corrections to EFE are taken into account, one has to be careful about whether the
geometric or physical SEC is to be imposed because the two are no longer straightforwardly
equivalent via the EFE (see [5] for a review of energy conditions). Since Penrose talks about
the Einstein tensor satisfying the SEC, we will assume that he in fact means the geometric
SEC, which states that RµνXµXν ≥ 0 for all timelike Xµ.
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Answering the following thus appears to be crucial for the classical-
instability argument go through: does the full stress-energy tensor of back-
ground fields in string theory satisfy the physical SEC? In a recent article
[17], Parikh and van der Schaar prove that the geometric null energy con-
dition (NEC) is satisfied in string theory. However, we note that while
geometric SEC implies geometric NEC, the converse doesn’t hold so the
result unfortunately doesn’t help the argument to get off the ground.

Penrose himself raises the concern that the SEC might fail to obtain
once higher-order terms in α′ are taken into account. Yet he proceeds
with his argument justifying this step by an appeal to practices of string
theorists:

Another point of relevance here is that the strong energy con-
dition being assumed here, although automatically satisfied by
[Rµν = 0], certainly cannot be guaranteed if we are to con-
sider what happens with the higher-order terms in the power
series in α′, referred to above. Yet, most current considera-
tions of string theory seem to operate at the level where these
higher-order terms in α′ are ignored [...] [20, p. 81]

As we argued above, this move is insufficient to get the argument off the
ground since neglecting the matter fields is a highly unrealistic scenario
in string theory. In [19, p. 907], Penrose comments further on the ex-
tendibility of his theorem to the cases when the full dynamics is taken
into account:

We should also take note of the fact [...] that (1+9)-dimensional
Ricci flatness is not precisely the requirement that string theory
demands. We recall that Ricci flatness is regarded merely as
an excellent approximation to that requirement, coming about
when terms higher than the lowest order in the string constant
α′ are ignored. Maybe the ‘exact’ requirement, involving all
orders in the string constant α′, could evade the above sin-
gularity theorem. However, if this requirement provides us
with a condition on the Ricci tensor for which the usual local
energy-positivity demands are satisfied [...], then the singular-
ity theorem would still apply. On the other hand, violations of
such local energy conditions can certainly occur in QFT [...],
so these issues are far from conclusive. [19, p. 907]

And so it seems that the status of the classical instability argument too is
far from conclusive. The next term in the expansion of the gravitational
beta function (9) is proportional to RµκλτR

κλτ
ν [9, p. 178] but higher

order terms are notoriously difficult to calculate. In light of the above
discussion, it would be interesting to see whether the theory enriched by
this additional term satisfies the geometric/physical SEC. However, as we
have argued, that SEC obtains hasn’t been demonstrated convincingly
even in the first-order approximation given by the EFE. So, in our view,
the classical instability argument remains inconclusive.
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4.4 The Problem of Initial Data

The final argument from Penrose against string theory which we consider
in this article once again concerns the dynamics of the background fields
which, as we have repeated many times now, are described by the system
of equations (9) containing infinitely many terms of ever-increasing order.
This feature of the system is allegedly problematic:

More serious, to my mind, is the fact that the full requirement,
involving all orders in the string constant α′, is actually and
infinite system of differential equations of unbounded differen-
tial order. Accordingly, the data that would be needed on an
initial 9-surface would involve derivatives of all orders in the
field quantities (rather than just thee first or second deriva-
tives that are needed in ordinary field theories). The number
of parameters per point needed on the 9-surface is then infi-

nite, so we get a functional freedom greater than ∞M∞9

, for
any positive integer M . This would seem to make the problem
of excessive functional freedom even worse than before! I am
not aware of any serious discussion of the mathematical form
of this full requirement, and of what kind of initial data might
be appropriate for it. [19, p. 907]

Having dispatched FF-counting arguments in §4.1, we don’t dwell on the
FF-related point in the above passage but discuss rather the alleged prob-
lem with infinitely many terms and unbounded order. We don’t regard the
infinitude of terms and their unbounded differential order as inherently
problematic for string theory because, in principle, the Cauchy problem
could be still well-defined and the system’s solutions existent and well-
behaved. That is, as long as convergence is secured. It is precisely this
silent assumption which Penrose calls into question when he notes that

[b]ecause of the extreme smallness of α′, however, the higher-
order terms are usually ignored in specific versions of string
theory that are put forward (though the validity of doing this
is in some doubt, as there is no information concerning the
convergence or ultimate behaviour of the series [...]). [20, p. 78]

With regards to convergence we believe that Penrose’s criticism is per-
fectly justified and to this day, we are unaware of any discussion of the
convergence problem in the literature. In fact, beta functions generically
don’t converge which seems to make the problem yet more pressing. Un-
fortunately, calculation of higher-order terms in (9) has proven computa-
tionally challenging which hinders progress with regards to this question.
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