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Recent work in explainable artificial intelligence (XAI) attempts to render opaque AI 
systems understandable through a divide-and-conquer strategy. However, this fails to 
illuminate how trained AI systems work as a whole. Precisely this kind of functional 
understanding is needed, though, to satisfy important societal desiderata such as safety. 
To remedy this situation, we argue, AI researchers should seek mechanistic 
interpretability, viz. apply coordinated discovery strategies familiar from the life sciences 
to uncover the functional organisation of complex AI systems. Additionally, theorists 
should accommodate for the unique costs and benefits of such strategies in their 
portrayals of XAI research. 
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1. Introduction 

Over the past decade, the term “AI” has increasingly become a synonym for deep artificial neural 

networks (ANNs) trained with machine learning (ML). These ANNs are often complex and opaque, 

approximating target functions through the mutual contribution of millions or even billions of 

parameters with values learned during an automated training process (Baraniuk et al., 2020; Chollet, 

2021; Russell & Norvig, 2020). On the one hand, this setup allows ANNs to exhibit flexible and 

expressive behaviour, developing sophisticated ways of representing and processing information. On 

the other hand, these systems can be surprisingly brittle and prone to unpredictable and catastrophic 

failure (Fawzi et al., 2018; Raghu et al., 2017). Since the functional organisation of ANNs is both 

complex and machine-learned, how their internal structure implements the mapping from inputs to 

outputs often remains unknown. Despite this, AI systems based on ANNs are increasingly used to 

support or take over human tasks – from making music recommendations to medical decisions (Huang 

et al., 2020; Jugovac & Jannach, 2017). Especially in high-stakes1 circumstances, regulators, 

philosophers and AI researchers increasingly call for making AI systems explainable (Burrell, 2016; 

Zednik, 2021).  

To address this need, a research field has developed under the heading of explainable AI (XAI). But far 

from being unified, research under this umbrella tackles a range of distinct, though interrelated issues: 

Computer scientists take on the technical challenge of developing computational methods to produce 

explanations of AI systems (Guidotti et al., 2018; Ribeiro et al., 2016; Wachter et al., 2017). 

Philosophers attempt to characterise relevant societal desiderata such as safety, trustworthiness, 

reliability, and fairness (Durán & Jongsma, 2021; Langer, Oster, et al., 2021; Páez, 2019). And 

psychologists grapple with the problem of quantifying epistemic outcomes like understanding (Langer, 

Baum, et al., 2021; Sloman & Rabb, 2016). In the face of this complexity, scholars have tried to 

coordinate these different strands of research, highlight how they might be mutually advantageous, 

and assess the extent to which (and at which costs) XAI can achieve its goals. To this end, scholars 

have developed taxonomies of explainability methods (Nunes & Jannach, 2017; Speith, 2022), offered 

conceptual models of the so-called explainability problem (Langer, Oster, et al., 2021; Zednik, 2021), 

and proposed simplifying unifications (Fleisher, 2022; Nyrup & Robinson, 2022). We applaud these 

contributions, and agree that AI explainability is a multifaceted issue which resists any one-size-fits-all 

solution (cf., Langer, Oster, et al., 2021; Zednik, 2021). However, the picture of XAI research that is 

typically presented is one in which computational methods deliver explanations for specific 

stakeholders in particular contexts. We think this is crucially incomplete: we must also consider the 

 
1 We refrain from committing to any particular definition of ‘high-stakes’. See Title III, Chapter 1 of the Artificial 
Intelligence Act (Artificial Intelligence Act, 2021) for one proposal. 
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potential of coordinated research strategies aiming to uncover the functional organisation of trained 

AI systems. 

So far, however, research to this end has been largely neglected. By focusing on how individual 

methods might deliver explainability in specific contexts, contemporary XAI effectively pursues a 

divide-and-conquer strategy. While this strategy can successfully highlight which features were 

influential for a given outcome, or how input features would need to be changed to obtain a different 

decision, this is only a small part of the story if we are seeking to explain and understand how AI 

systems work. In fact, what we should aim for to ensure that AI systems fulfil desiderata commonly 

demanded of AI systems by society – such as safety – goes far beyond specific contexts: We need 

generalizable insights about how the systems in question work as a whole; for only such insights about 

the functional organisation that elicits behavioural patterns and dispositions will allow us to anticipate 

how the system might respond to novel inputs and how it might behave when exposed to yet 

unexplored contexts.2 Crucially, these insights cannot usually be extrapolated from applying individual 

XAI methods tailored to specific contexts – we would simply be missing the forest for the trees.  

We propose that to remedy this situation XAI researchers should take a mechanistic interpretability 

(MI) approach for complex AI systems. The approach we suggest starts from the premise that once AI 

systems become sufficiently complex, they are best investigated and explained through the same lens 

as biological organisms (rather than being treated as technical artefacts). Thus, practitioners should 

seek to characterize AI systems in terms of their functional organisation (the organized activities of 

their functionally relevant components). This requires the application of coordinated discovery 

strategies familiar from life sciences, such as pattern recognition, functional decomposition, 

localization, and systematic experimental manipulations. As such, MI research may be significantly 

more resource-intensive (both in terms of time and in terms of labour) than developing specific XAI 

methods. In return for this investment, we gain a deeper and more holistic understanding of how 

trained AI systems work, thus enabling us to meet important societal desiderata. Given these 

distinctive costs and benefits, we think it is crucial for XAI theorists to accommodate for this research 

strategy in their analyses of the field. For only by having the full range of strategies for explaining AI 

systems in view can we make appropriate choices about which research to pursue, and thereby ensure 

that crucial desiderata will actually be satisfied when employing opaque AI systems in society. 

 
2 Importantly, what is of interest here is not the architecture that an AI system’s programmers have specified 
prior to training. Rather, we are interested in the learned structure that has emerged through the automated 
training procedures the system underwent after its initial specification; hence it is also referred to as emergent 
structure (Manning et al., 2020). 
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We shall proceed as follows: In section 2, we briefly discuss achievements and limitations of 

contemporary XAI research. In section 3, we propose that rather than adopting a divide-and-conquer 

strategy, XAI researchers should seek explainability through mechanistic interpretability. We illustrate 

this approach by examining the case of Distill. In section 4, we discuss possible objections to our 

proposal. In section 5, we conclude. 

 

2. Contemporary XAI: The Divide-and-Conquer Strategy 

For current purposes we focus on ML-based AI systems (with ANNs being a paradigm case) that are 

opaque due to the scale and complexity of their learned structure (Burrell, 2016). Following 

Humphreys (2009), we characterise opacity as a lack of knowledge about a system’s epistemically 

relevant elements (EREs) (see also Zednik, 2021).3 The term ERE is deliberately non-specific. It captures 

any robust patterns which underlie or maintain a system’s behaviour and are relevant to the epistemic 

goals of an agent. Thus, a system’s opacity is relative both to an agent’s (e.g., a company, AI user, or 

developer) interests and their knowledge about the system at a given time. Against this backdrop, we 

assume that any information eliminating opacity (by uncovering EREs) can function as an explanation 

(cf., Nyrup & Robinson, 2022; Zednik, 2021). We take making AI systems explainable by reducing their 

opacity to be the goal of XAI.4  

Contemporary XAI research tries to achieve this goal through technical means. Specifically, it aims to 

develop algorithmic procedures – so-called XAI methods – that generate explanatory information 

about AI systems. Hence, XAI is very much “in the business of developing analytic techniques with 

which to render opaque computing systems transparent” (Zednik, 2021, p. 285; see Mittelstadt et al., 

2019; Rudin, 2019 for similar claims). Since the kind of explanatory information needed to eliminate 

opacity depends on numerous factors (Kirsch, 2017; Langer et al., 2021), XAI researchers have 

developed a range of methods with different properties (e.g., scope, detail, format) (Guidotti et al., 

2018; Molnar, 2022; Speith, 2022). Further work has addressed which methods are best suited for 

concrete scenarios in which stakeholders interacts with AI systems (Barredo Arrieta et al., 2020; Belle 

& Papantonis, 2021). This assumes that rendering AI systems explainable requires i) developing a 

range of XAI methods, ii) identifying specific explainability contexts, and iii) mapping XAI methods to 

these contexts. The result is a divide-and-conquer strategy: XAI research seeks, in any given case, to 

 
3 Notice that while we adopt Humphreys’ framing in terms of knowledge of EREs, this can be adapted to an 
account centred on understanding by defining opacity as the lack of a grasp of EREs. Grasping an ERE involves 
making use of it to perform inferences, take decisions, or complete downstream tasks (Keil, 2019; Strevens, 
2013).  
4 Achieving this outcome does not require comprehensive explanation of all AI systems. For systems that operate 
in low-stakes environments, fewer elements of the system may be deemed epistemically relevant. 
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provide “the most appropriate explanation for a specific ML solution in a given context on a given 

task” (Zhou et al., 2021, p. 2; see also Fleisher, 2022, p. 12). 

The divide-and-conquer strategy has its merits. It naturally accommodates the insight that there 

cannot be a one-size-fits all XAI approach, and that different stakeholders, contexts and AI systems 

pose different constraints on feasible XAI methods.  Further, the divide-and-conquer strategy has been 

and continues to be productive, both in terms of novel methods and conceptual analysis (e.g., Barredo 

Arrieta et al., 2020; Belle & Papantonis, 2021; Köhl et al., 2019; Langer et al., 2021; Ribeiro et al., 2016; 

Sokol & Flach, 2020; Zhou et al., 2021). Indeed, contemporary XAI research successfully produces tools 

enabling stakeholders to understand narrow aspects of AI systems (Belle & Papantonis, 2021; Guidotti 

et al., 2018; Lapuschkin et al., 2019; Molnar, 2022; Ribeiro et al., 2016; Ribeiro et al., 2018; Wachter 

et al., 2017). One prominent example is Local Interpretable Model-Agnostic Explanations (LIME) 

(Ribeiro et al., 2016). This technique, applicable to any AI classification system, produces linear 

surrogate models which highlight the importance of particular features for a given classification. LIME 

has been shown to improve stakeholders’ ability to assess the quality of rival classifiers and, as such, 

may prove an adequate solution in specific contexts where such skills are required. Another success 

story for the divide-and-conquer strategy is research on counterfactual explanations and algorithmic 

recourse (Karimi et al., 2022; Wachter et al., 2017). This family of XAI methods can inform subjects of 

algorithmic decisions which alterations to the input data would have been resulted in a desired 

outcome. Such methods are crucial to enabling agency in an increasingly algorithmic world 

(Vredenburgh, 2022).   

Despite these successes, however, the divide-and-conquer strategy is also limited. Neither LIME nor 

counterfactual explanations can provide a comprehensive understanding of how the systems under 

investigation work as a whole. They do not tell us how exactly the internal structure of the model 

maps inputs to outputs, neither do they allow us to predict how a system will behave in novel contexts. 

Indeed, in an influential paper, Rudin criticizes the enterprise of XAI for this reason, asserting that XAI 

methods “do not provide enough detail to understand what the black box is doing” (2019, p. 208). 

Importantly, this information cannot be inferred even by examining many instances of various XAI 

method outputs. What is needed instead is systematic investigation that yields generalizable insights 

about systems’ overall functional organization.  

The need for such insights is expressed vividly in current debates about AI regulation in politics and 

society. Take the European Commission’s proposed regulatory framework for AI systems (Artificial 

Intelligence Act, 2021). Article 14 states that adequate human oversight in high-risk scenarios 

demandsthat an overseer should “fully understand the capacities and limitations of the high-risk AI 
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system and be able to duly monitor its operation, so that signs of anomalies, dysfunctions and 

unexpected performance can be detected and addressed as soon as possible” and “be able to 

intervene on the operation of the high-risk AI system” (Artificial Intelligence Act, 2021, art. 14). With 

regards to both requirements, a detailed (and generalizable) understanding of a trained systems’ 

overall functional organization is crucial. For illustration, consider the phenomenon of typographic 

adversarial examples in the image model CLIP (Goh et al., 2021). CLIP was trained to predict which 

text was paired with a given image on the internet. However, researchers found that CLIP was easily 

fooled by simply sticking a written label (e.g., “phone”) on an object (e.g., an apple), causing the image 

to be classified according to the written label rather than the object (e.g., as phone rather than apple). 

This behavior was not foreseeable from ordinary reliability testing. Neither does highlighting the paper 

label as relevant to the classification output explain why CLIP relied on the labels rather than the 

objects in the images for classification. However, through systematic investigation into the model 

researchers revealed high-level neurons in CLIP which are sensitive to both images and text (Goh et 

al., 2021). Understanding this feature of the model’s functional organisation made it easy to explain 

and predict CLIP’s behavior when faced with written labels in images.  

Luckily, CLIP is not in use in high-stakes domains . However, consider the dangers of deploying a system 

with similar vulnerabilities to, e.g., scan for weapons at an airport. Here, as in many other cases where 

AI is deployed in the real world, safety is among the chief desiderata. It is even listed as the first 

objective in the EU AI Act (Artificial Intelligence Act, 2021, sec. 1.1).5 One way to ensure safety and 

prevent harm is to subject AI systems to rigorous testing before deploying them in high-stakes 

situations (Durán & Jongsma, 2021). However, doing this exhaustively will often be infeasible due to 

the dimensionality of the input space (Hacker et al., 2023; Keogh & Mueen, 2017). This makes it 

difficult to rule out the possibility of unpredictable failure when systems encounter novel inputs 

(Amodei et al., 2016; Hendrycks et al., 2018, 2023; Wei et al., 2023). A necessary complementary 

strategy, we think, is to characterise how the systems in question function in terms of how relevant 

components work together to elicit the behaviour we observe. Based on such characterisations, we 

can anticipate system behaviour even for novel situations, helping us to ensure system reliability and 

safety. The case of CLIP goes to show that insights into a system’s functional organisation can help us 

understand a system’s capabilities and limitations and avoid unforeseen failures. 

Importantly, the issue we are getting at here is a principled one; it is not a criticism of any particular 

XAI method. We acknowledge that certain methods are sufficient for explaining particular instances 

 
5 While there is no domain-general definition of what it means for an AI system to be safe, safety is typically 
associated with the avoidance of both physical and psychological harm to human beings (Steimers & Schneider, 
2022). 
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of system behaviour. But when deploying AI systems in the real world, fulfilling important societal 

desiderata requires a kind of holistic explainability that provides generalizable insights into how a 

system’s functional organisation elicits its behaviours or outputs.6 This project will never be 

adequately achieved through employing specific XAI methods in particular contexts. Instead, we 

propose, it can be achieved by mechanistic interpretability (MI). That is, by developing (human-

interpretable) mechanistic explanations of systems’ functional organisation. So far, this kind of project 

has been underappreciated by both philosophers and computer scientists.  

 

3. Augmenting Contemporary XAI Through Mechanistic Interpretability 

We suggest taking a mechanistic interpretability (MI) approach to complex AI systems that starts from 

the following premise: once AI systems become sufficiently complex, they are best investigated and 

explained through the same lens as biological organisms rather than being treated merely as technical 

artefacts (cf., Eden, 2007). Taking inspiration from successful scientific inquiry in the life sciences, we 

propose that XAI practitioners should apply coordinated discovery strategies (such as pattern 

recognition, functional decomposition, localization, and systematic experimental manipulations) to 

characterize AI systems in terms of their functional organisation, i.e., the organized activities of their 

functionally relevant components. At the same time, theorists should accommodate the unique costs 

and benefits of this research strategy in their portrayals of XAI research. With the full range of 

strategies for explaining AI systems in view, we can make appropriate choices about how to ensure 

that crucial desiderata will be satisfied when deploying trained AI systems in society.  

3.1. Mechanistic Interpretability 

If we want to explain how AI systems work as a whole, we are essentially interested in their functional 

organisation or structure. That is, we seek to understand what system properties support their 

behaviour and how system functions are implemented by the orchestrated interactions of relevant 

component parts. This kind of project is neither new nor unique to XAI research.7 And it is highly 

familiar from recent discussions on how to explain biological systems mechanistically (see Bechtel, 

2009; Bechtel & Richardson, 1993; Craver, 2001; Craver & Darden, 2013). Therefore, we suggest 

 
6 We use the term ‘holistic’ to signal a focus on how AI systems’ organisation implements their behaviour. As we 
will show, this need not be opposed to reductionist methodologies (see also Burnston, 2021). Note also that this 
reasoning does not only apply to local XAI methods (i.e., those that apply to single predictions), but also to global 
XAI methods (i.e., those that produce explanatory information pertaining to whole models). 
7 The idea that certain aspects of computer science should be treated as empirical inquiry goes back at least as 
far as Newell and Simon (1976).  
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adopting strategies familiar from mechanistic inquiry in the life sciences to develop mechanistic 

explanations of the capabilities and behaviours of opaque AI systems. 

Recall that ANN’s acquire their functional organisation through automated training procedures. After 

training, components within the system (the EREs of mechanistic explanations) will adopt specialised 

roles that programmers do not usually anticipate. These components will be organized in ways 

allowing them to work together to elicit the behaviours we observe (Manning et al., 2020; Richards et 

al., 2019). The task for researchers seeking MI will be to uncover the relevant components along with 

their organization. This task may not be simple, for it will often go beyond investigating the functional 

roles of pre-individuated ANN structures like neurons and layers (Bau et al., 2017). Frequently, it may 

involve characterising more exotic and distributed structures like circuits (see section 3.2) and 

representational subspaces (see Elhage et al., 2021). 

To achieve such characterizations of functional components (EREs) in AI systems, researchers must 

detect and describe the robust patterns that underlie or maintain the system’s behaviour (Wimsatt, 

1994). In other words, they must engage in a pattern recognition practice (Haugeland, 1998; Kästner 

& Haueis, 2021), where patterns are any non-random arrangements within systems (Dennett, 1991) 

which (in virtue of their orderly character) serve as candidates for recognition. As such, patterns 

constitute potential EREs when seeking MI for AI systems.  

Pattern recognition practices in science are collective endeavours involving the coordinated 

application of shared skills, tools, and concepts (Brigandt, 2011; Kästner & Haueis, 2021). They consist 

in a set of epistemic activities which conform to epistemic norms shared and continuously refined by 

the research community throughout scientific inquiry. Epistemic activities include such things as 

decomposition and localization (cf. Bechtel & Richardson, 1993; Brigandt, 2011; Kästner & Haueis, 

2021) or recomposition (cf. Bechtel & Abrahamsen, 2005). Decomposition involves breaking a 

phenomenon down into a set of constitutive sub-functions and is often applied recursively to produce 

multi-level functional characterisations (Craver, 2007). Localization is the assignment of a sub-function 

to a particular part of the system which is hypothesised to implement it. Recomposition involves 

building a system back up in a functionally informed manner. To carry out an epistemic activity, 

researchers will typically engage in a variety of epistemic operations. These are the atomic units of 

scientific inquiry; they consist of concrete actions that track, measure, or manipulate the components 

of the target system, or generate, transform, and visualise data. In practice, epistemic activities are 

typically applied in an iterative manner to create a growing store of collective knowledge and fine-

tune hypotheses about which system components are functionally relevant, how they are organized, 

and how they interact to produce characteristic phenomena.  
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As such, we argue, pattern recognition practices are ideally suited to produce interpretable, functional 

characterisations of how AI systems work as a whole. They deliver mechanistic explanations (Bechtel 

& Abrahamsen, 2005; Craver, 2001; Kästner & Haueis, 2021) of how the functionally relevant 

components of a system interact to produce a phenomenon of interest. In the best case, these 

explanations are comprehensive, providing a detailed, multi-level account how a system works (see 

Figure 1). This holds for artificial systems just as for biological ones. 

 

 

Figure 1: The application of coordinated discovery strategies uncovers the functional organisation of 

trained AI systems. The system’s overall behaviour (black circle at the top) is elicited by the relevant 

components (smaller circles) working together. Components can be further analysed into sub-

components to reveal a nested hierarchy (see also Craver 2007). 

 

3.2. The Case of Distill 

We shall now illustrate the MI approach with a concrete example. In their work on the image 

classification ANN InceptionV1 (Cammarata et al., 2020; Olah et al., 2018), Chris Olah and colleagues 

explicitly endorse applying life science research strategies to ANNs, suggesting that “neural networks 

are an object of empirical investigation, perhaps similar to an organism in biology” (Olah et al., 2020). 

Hence, they set out to characterise the functional structure of InceptionV1 using coordinated 

discovery strategies as described above.  
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For reasons of space, we cannot describe the InceptionV1 architecture in detail here; but a brief 

introduction to the structure of convolutional ANNs (cANNS) will aid understanding of what follows. 

As this family of models was designed to process image data, their architecture reflects an attempt to 

match the compositional and hierarchical properties of natural images (Chollet, 2021). The 

convolutional layers that give cANNs their name consist of filters which cover a small portion of the 

input image (represented as an array of raw pixel values). These filters slide over the image, computing 

activations (dot products of input and filter plus bias) at each spatial position. By analogy with 

biological neural networks (and mathematical equivalence with other ANN architectures), filters can 

be thought of as the receptive fields of neurons, with one neuron corresponding to each spatial 

position the filter covers.8 As filters consist of trainable parameters, neurons can learn to respond to 

different features in the image, producing maps reflecting the presence or absence of features (e.g., 

edges) to feed to downstream layers. Through composition of simple features, neurons in these 

downstream layers can thus become sensitive to complex features like shapes, objects, and people. 

Thus, the very structure of cANNs (their depth, connectivity, and layer design) are adapted to the 

hierarchical compositionality that characterises images.  

Olah and colleagues (Cammarata et al., 2021) discover and analyse a curve detector circuit within 

InceptionV1. Circuits are sub-graphs of neural networks which, crucially, are not specified as distinct 

parts of the ANN’s architecture. Instead, circuits are part of the model’s learned structure. They are 

functional units which neurons self-organise into during the training process. As such, the curve 

detector circuit, consisting of a group of neurons spanning five early layers and encompassing around 

50 thousand parameters, is a compelling example of an ERE that can only be rendered accessible 

through a pattern recognition process seeking MI. To uncover this circuit, Olah and colleagues utilize 

various epistemic activities including decomposition and localization. They begin by using feature 

visualization, a technique in which an image is synthesized to maximise the activation of a given ANN 

component (Olah et al., 2017).9 The Distill team use the term features to mean human interpretable 

concepts that components in ANNs become functionally specialised for.10 They taxonomize the 

neurons in the first 5 convolutional layers of InceptionV1 into layer-wise “families” (i.e., functional 

groups) based on which features they are sensitive to (e.g., Gabor filters, colour contrasts, lines, 

curves). Using feature visualizations to represent neurons and families in diagrams of the ANN makes 

 
8 In biological brains, each neuron’s weights have to be learned separately, even if they are learning to detect 
the same visual feature (e.g., edges). In ANNs, exploiting the assumption that features may appear anywhere in 
any image, weights can be shared among neurons for computational efficiency.  
9 For reasons of space, we will not go into specific formal details but paint the general picture in relatively broad 
strokes. For technical details see the referenced work. 
10 The authors conceive of features as corresponding to directions in neuronal activation space. In theory, these 
directions can be defined across the vector space determined by the activity of arbitrary groups of neurons. 
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reasoning about their functional relationship significantly more tractable. Notice that this epistemic 

activity is composed of iterating multiple epistemic operations: producing visualisations for each 

neuron, applying labels to them, and grouping the neurons into families. 

Taxonomizing neurons serves as a useful starting point, but a mechanistic explanation of InceptionV1 

also requires characterising the interactions between neurons. To achieve this, having documented 

the presence of curve detector neurons in InceptionV1’s third layer, the investigators followed their 

connections to see how upstream neurons (those closer to the input layer) were contributing to their 

capabilities. This required the application of additional tools, such as methods to visualize the 

connection weights between neurons (Voss et al., 2021). Iterating this strategy all the way back to the 

input layer allowed the researchers to develop a holistic view of the circuit. Ultimately, the Distill team 

concisely describe the mechanistic structure of the curve circuit as follows: “Gabor filters turn into 

proto-lines which build lines and early curves. Finally, lines and early curves are composed into curves” 

(Cammarata et al., 2021). Through coordinated and systematic application of epistemic activities, the 

full curve circuit becomes recognisable as an ERE distinct from the rest of the network within which it 

is embedded.  

To ensure that discovered patterns are robust, pattern recognition must adhere to epistemic norms 

such as integrating multiple sources of evidence.11 Otherwise, overreliance on visualisation techniques 

which involve researcher degrees of freedom risks falling foul of common scientific blunders like 

confirmation bias (Gelman & Loken, 2019; Pu & Kay, 2018). In line with this, the Distill researchers 

used multiple techniques to verify their hypotheses. For example, they observed the responses of 

curve detector neurons to natural images to confirm they played their hypothesised roles with real 

stimuli. However, this raises the possibility of a rival hypothesis; could the curve detectors actually 

specialise in detecting a finite set of specific curved objects, rather than the more general sub-function 

of curve detection? To exclude this rival hypothesis, Olah and colleagues systematically tested the 

neurons with synthetic stimuli, determining that the curve detection neurons in layer 3b of 

InceptionV1 are invariant to both fill and colour (i.e., they really are curve detectors).  

In addition to applying decomposition and localization to the trained network, Olah and colleagues 

carried out a (computational) recomposition of the curve detection circuits they had investigated 

(Cammarata et al., 2021). To do this, one of the authors, leveraging the insights gleaned from the 

discovery process, designed a curve detection algorithm with the same structure as InceptionV1’s by 

hand. That is to say, they manually set the values of the weights between the neurons. Having done 

so, the behaviour of the hand-designed network could be compared to that of InceptionV1 by 

 
11 For more on robustness see, e.g., Wimsatt (1981). 
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exposing them to identical stimuli and observing their responses. A highly similar response profile was 

demonstrated, suggesting that Olah and colleagues really had recomposed the curve detection circuit.  

The Distill investigation into InceptionV1 exemplifies all of the properties of a pattern recognition 

practice, viz., the coordinated application of epistemic operations consisting of a shared set of 

concepts, tools, and skills.12 Olah and colleagues organised their investigation around core concepts: 

features and circuits.13 When it comes to tools, various visualisation techniques, synthetic stimuli, and 

explainability interfaces were developed and employed throughout the discovery process. Finally, 

implementing a pattern recognition practice on ANNs demands multiple skills. Unlike in a wet lab, 

manipulation of physical instruments is not required. Rather, a firm grasp of the mathematics 

underlying ANNs is critical. What is shared with discovery processes in the life sciences are the 

reasoning skills required, i.e., choosing which system properties to track and visualise, abductive 

reasoning to generate hypotheses, and design of experimental procedures to test those hypotheses. 

 

3.3. Benefits of the MI Approach 

Unlike the divide-and-conquer strategy, the pattern recognition practice applied by Olah and his 

colleagues followed a coherent, systematic research agenda. The scientists’ goal was to uncover 

functional components within the classifier and to illuminate how they work together in the system’s 

overall functional architecture. To this end, they (i) systematically searched for functional units (i.e., 

EREs) that had not been explicitly coded, (ii) coordinated different epistemic activities to help reveal 

the relationships between different measurements, and (iii) iteratively refined hypotheses concerning 

various EREs, their activities and interactions. Eventually, they stitched together a mechanistic 

explanation rendering intelligible how the first five layers of InceptionV1 work. With respect to curve 

detection specifically, the authors note that “although curve detection involves more than 50,000 

parameters, those parameters actually implement a simple algorithm that can be read off the weights 

and described in just a few English sentences” (Cammarata et al., 2021). 

The case of Distill highlights that MI research has two distinct advantages. First, it can shed light on 

EREs (e.g., the curve detection circuit) of opaque AI systems that are inaccessible through individual 

 
12 Note that in some cases the computational methods described above have direct analogues in biology and 
neuroscience. However, the similarity we wish to evoke holds at the level of research strategies not at the level 
of individual methods. For detailed discussion of methodological similarities see Ivanova et al. (2021). On how 
probing methods in MI were derived from multivariate pattern analysis in neuroscience see, e.g, Bashivan et al. 
(2019) utilizing synthetic visualisations in a neuroscience context. On how interventionist theories of causality 
can be applied to test causal hypotheses in ANNs see Geiger et al., (2021). 
13 The investigation of circuits as a relevant unit of analysis has been adopted by further researchers (Wang et 
al., 2022), highlighting the cumulative nature of research from the scientific perspective. 
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XAI methods. There are two reasons for this. The first is that, like measurement tools in the life 

sciences, individual XAI methods are tuned to picking up specific kinds of information. While tools 

specialised for answering specific questions are clearly useful, they are also crucially limited. For 

instance, EEG measures electrical potentials, but it cannot tell us about brain structure. The second 

reason is that while a lot of information may be gathered from applying different XAI methods, that 

information will often stand unconnected. By contrast, successful pattern recognition (yielding ERE 

identification) crucially depends on the coordinated application of many relevant instruments and the 

integration of multiple sources of evidence in conjunction with careful scientific reasoning (cf., 

Kästner, 2018). By identifying previously unknown EREs, researchers pursing MI research will often be 

rewarded with deeper explanations revealing a wider set of EREs and uncovering the functional 

architecture of AI systems (see Figure 1). We think this is precisely what is needed to render AI systems 

holistically explainable. 

This leads us to the second advantage of MI research. Characterizing a system’s functional structure 

in terms how relevant components work together enables domain experts to control (e.g., through 

targeted interventions) and predict system behaviour even for novel situations. As such, it helps 

prevent unexpected failures and thus contributes to satisfying important societal desiderata. We 

already briefly outlined how MI contributes to system reliability and safety in high-stake domains (in 

section 2). While image recognition may not be such a domain per se, the case of Distill serves as proof 

of principle that a fine-grained characterisation of the functional architecture of complex ML-based 

systems is possible.14 Besides, ML-based image recognition is likely to be utilized by AI systems 

employed in high-stakes domains such as traffic control, law, and surveillance. In addition to ensuring 

safety, the kind of understanding MI elicits is also crucial to support trust. While the relationship 

between interpretability, trust, and trustworthiness is complicated (Markus et al., 2021), it is widely 

agreed that if AI systems are going to be employed to make socially and morally consequential 

decisions, they need to be trustworthy (Kästner et al., 2021). The trust that laypeople have in 

technological systems is often founded upon their belief that someone, somewhere understands the 

system deeply (Sloman & Rabb, 2016). For sufficiently complex AI systems, we believe, such deep 

understanding depends upon uncovering EREs that are not attainable through the divide-and-conquer 

strategy. By contrast, MI has the potential to produce the kind of expert understanding that supports 

trust. 

 
14 See (Bricken et al., 2023; Wang et al., 2022; Wu et al., 2023) for recent work applying MI to language 
models.  
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Another desideratum for which MI is likely to be important is scientific understanding. ANNs have 

already had a large impact on many scientific fields (Boge, 2022; Bouatta et al., 2021; Cichy & Kaiser, 

2019). They achieved unrivalled predictive success for complex phenomena as diverse as neural 

activity, protein folding, and particle physics. However, philosophers have expressed concern that 

ANN models, while undoubtedly impressive, do not confer scientific understanding (Chirimuuta, 

2021). This limitation is usually traced to the inscrutable learned structure of these models. However, 

this structure is precisely what MI seeks to characterise – and once it is captured successfully, formerly 

opaque ML-based systems may be re-engineered as transparent or interpretable ones. Therefore, we 

expect MI to play an increasingly important role for scientific research in the coming years (see also 

Crook and Kästner, Manuscript).  

Though our discussion in this section has focused on the potential of MI, we want to be clear that we 

are not calling to eliminate traditional XAI methods. Rather, we take both approaches to be 

complementary. MI research requires extensive technical knowledge, scientific skill, financial 

resources, and time. Just as in life science research, it may take several iterations before a relatively 

stable mechanism for a phenomenon is uncovered (cf. Craver & Darden, 2013, Kästner & Haueis, 

2021). Thus, seeking MI for AI systems will usually incur much greater investment (both financial and 

labour) than developing XAI methods and applying them in well-defined contexts. These higher costs 

might only be worth paying in high-stakes scenarios. Likewise, understanding the overall functional 

organisation of a system might simply not be relevant in some cases (Durán & Jongsma, 2021). Besides, 

we think that both MI research and applying traditional XAI methods in a divide-and-conquer fashion 

will often be mutually supportive. Researchers seeking MI can employ specific XAI methods as tools to 

support some of their coordinated epistemic activities. Likewise, MI research may help refine specific 

XAI methods, e.g. by revealing new EREs, or improve the mapping between different XAI methods and 

contexts for the divide-and-conquer strategy. Thus, to what extent MI research and traditional XAI 

research will be required or useful will depend on the questions at hand, the stakeholders involved, 

and the specific desiderata at play. Still, it is important that MI research and its unique potential is not 

overlooked – neither by practitioners nor theorists of XAI. 

 

4. Worries and Responses 

Before closing, we shall briefly outline and respond to some possible objections to the MI approach. 

Though the list below is not exhaustive, we take it to capture the most common worries our proposal 

will face. Some critics might worry that the chances of successful MI research are too low. For instance, 

because (#1) the complexity of large models (due to their number of parameters and non-linearities) 
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makes explaining them mechanistically hopeless (e.g., Cearns et al., 2019). Consider GPT3, which 

contains 175 billion parameters (Brown et al., 2020). Clearly, manually investigating every parameter 

of such large models one-by-one is infeasible. However, this is not required for MI. Instead, 

researchers are seeking patterns within the complex system to characterise its function. These 

patterns may not only involve many parameters, they can also recur multiple times within the system, 

dramatically reducing effective complexity (recall the ‘neuron families’ discussed in section 3.2, (Olah 

et al., 2020)). Besides, models need not be explained exhaustively “all the way down” to parameter-

level to accrue important benefits. In many cases, relatively abstract descriptions will be sufficient. 

Others may worry that (#2) we might be lacking the right concepts to accurately characterise an AI 

system’s functional organisation (Boge, 2022). We think that even if this is true for now, it is not an 

argument against seeking MI. It can make implementing a pattern recognition practice harder, but 

forming new concepts is part of the ordinary business of scientific discovery (cf. Craver & Darden, 

2013, chapter 5). Besides, the entire history of the life sciences speaks to humans’ ability to 

characterise unfamiliar and complex domains in various useful ways (Bechtel & Richardson, 1993; 

Mitchell, 2002). Thus, we see little reason (theoretical or empirical) to think that trained AI models 

contain structure so alien that human beings are fundamentally unable to grasp it. Where concepts 

are lacking, they can be invented (see Schubert et al., 2021 for an example of this in Distill's work). 

Science frequently operates by making domains interpretable through visualization, simplification, 

idealization, and abstraction (Fleisher, 2022; Levy & Bechtel, 2013).  

Besides, a critic might protest that (#3) the analogy to life sciences research is flawed because we do 

not actually understand how living systems work either. Indeed, many neuroscientists admit that we 

do not yet have a comprehensive mechanistic understanding of how the brain works despite decades 

of effort (Buzsáki, 2020; Pessoa, 2023). Yet, we see reasons to be more optimistic about understanding 

AI systems through MI than explaining the brain: (i) since AI systems are designed and trained by us, 

we have exhaustive knowledge about their architectures, learning algorithms, objective functions, 

training data, and learned connection weights, (ii) we can perform any conceivable experiment with 

arbitrary precision and complete access to the causal consequences of our interventions, and (iii) we 

can choose to develop models which are tailored to be amenable to scientific investigation.  

Even if MI research is successful, some might worry that the benefits we highlighted above (see section 

3.3) will not be worth the trouble. For instance, those sympathetic to our approach in principle may 

argue that (#4) it will be impossible for researchers to seek MI for large AI systems as quickly as they 

are developed. It would just be too resource intensive. While we acknowledge MI research requires 

significant resources (see section 3.3), we think there are good reasons to pursue it anyway. First, it 
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might simply be worth the investment if otherwise we cannot safely deploy AI in high-stakes scenarios 

(see section 2). Second, because mechanistic insights may be transferable from one system to another, 

the investment might pay off more quickly than we think. For instance, insights about the functional 

organisation of one language model may well transfer to other language models (mutatis mutandis 

for other domains). Theoretical reasons for this optimism are provided by Cao and Yamins’ (2021) 

contravariance principle, which implies that functional convergence should be expected in systems 

that can perform complex tasks efficiently (see also Bansal et al., 2021; Schrimpf et al., 2020). Besides, 

researchers are increasingly converging on architectural choices for AI systems (Bommasani et al., 

2022). Since model architecture constrains both the kind of functional structure that can emerge and 

the kind of epistemic operations researchers can apply, this is positive news for MI. Moreover, the 

resource intensive nature of pattern recognition practices can be viewed as a feature, rather than a 

bug. There is still understandable resistance to large AI systems being deployed in high-stakes 

scenarios (Rudin, 2019). In light of these concerns, it may be reasonable to propose some degree of 

mechanistic explainability as a pre-requisite for adopting technological innovations that could prove 

consequential and difficult to reverse (Stirling, 2007). A time-consuming requirement could give slow 

political processes time to react and inject democratic influence into decisions that impact all of 

society (Bender et al., 2021; Floridi et al., 2018).  

Other critics may worry that (#6) MI will not yield accurate predictions of AI systems’ behaviours in 

social contexts – though this is what really matters when we think about deploying AI in modern 

society (Bender et al., 2021). We acknowledge MI will not be sufficient to precisely predict all effects 

of deploying models in specific real-world contexts (such prediction is generally intractable, see Shalizi, 

2006). However, given MI research seeks to reveal how AI systems work as a whole, it yields deeper 

and more generalizable insights into how a system may behave in novel (social) contexts than applying 

the divide-and-conquer strategy. Thus, even if MI is costly and the benefits are not all-encompassing, 

it may still be superior to its alternatives.  

In a nutshell, MI research can offer answers to research questions which are in principle unavailable 

to those pursuing a divide-and-conquer strategy (see section 2). As such, it is not only important for 

practitioners to pursue MI to gain explainability where other strategies are unproductive. It is also 

crucial for theorists to accommodate MI in their in their portrayals of the XAI research landscape (see 

section 3.3). For only by having the full range of strategies for explaining AI systems in view can we 

make appropriate choices about which research to pursue to ensure societal desiderata are satisfied. 

 

5. Conclusion 
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Contemporary XAI research is seeking explainability for opaque AI systems in a divide-and-conquer 

fashion, viz. by employing specific XAI methods in various contexts. While this strategy has its merits, 

it fails to illuminate how trained AI systems work as a whole. Yet precisely this kind of holistic 

understanding is needed to satisfy important desiderata placed on AI systems by society. We argued 

that mechanistic interpretability research, though it is resource intensive, can serve as a remedy: by 

uncovering a wider range of EREs than any individual XAI method, MI contributes to a deeper and 

more holistic understanding of complex AI systems’ functioning. These insights can be utilized to 

predict and control system behaviour beyond pre-defined contexts, which is crucial to satisfy societal 

desiderata. Appreciating these unique benefits of MI research will help scholars to make adequate 

choices about what research to pursue to ensure we can safely and reliably deploy ML-based systems 

in modern society.  

 

Acknowledgements 

We are indebted to the members of the project “Explainable Intelligent Systems (EIS)”, the 

participants of the Philosophy Breakfast in Bayreuth, and the audience at GAP.11 for feedback on 

earlier versions of this paper. We are especially thankful to Johanna Thoma, Marius Backmann, Olivier 

Roy, Paolo Galeazzi, Sara Mann, Andreas Sesing-Wagenpfeil, Eva Schmidt,  for detailed comments. 

Funding 

Work on this paper was funded by the Volkswagen Foundation grant AZ 9B830. The authors declare 

no conflicts of interest. 



 18 

References 

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete 

Problems in AI Safety (arXiv:1606.06565). arXiv. https://doi.org/10.48550/arXiv.1606.06565 

Bansal, Y., Nakkiran, P., & Barak, B. (2021). Revisiting Model Stitching to Compare Neural 

Representations. Advances in Neural Information Processing Systems, 34, 225–236. 

https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-

Abstract.html 

Baraniuk, R., Donoho, D., & Gavish, M. (2020). The science of deep learning. Proceedings of the 

National Academy of Sciences, 117(48), 30029–30032. 

https://doi.org/10.1073/pnas.2020596117 

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-

Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial 

Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible 

AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 

Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis. 

Science (New York, N.Y.), 364(6439), eaav9436. https://doi.org/10.1126/science.aav9436 

Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network Dissection: Quantifying 

Interpretability of Deep Visual Representations. 3319–3327. 

https://doi.org/10.1109/CVPR.2017.354 

Bechtel, W. (2009). Looking Down, Around, and Up: Mechanistic Explanation in Psychology. 

Philosophical Psychology, 22. https://doi.org/10.1080/09515080903238948 

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and 

Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical 

Sciences, 36(2), 421–441. https://doi.org/10.1016/j.shpsc.2005.03.010 

Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as 

strategies in scientific research (pp. xiv, 286). Princeton University Press. 



 19 

Belle, V., & Papantonis, I. (2021). Principles and Practice of Explainable Machine Learning. Frontiers 

in Big Data, 4. https://www.frontiersin.org/articles/10.3389/fdata.2021.688969 

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic 

Parrots: Can Language Models Be Too Big? !"#$%&. Proceedings of the 2021 ACM Conference on 

Fairness, Accountability, and Transparency, 610–623. 

https://doi.org/10.1145/3442188.3445922 

Boge, F. J. (2022). Two Dimensions of Opacity and the Deep Learning Predicament. Minds and 

Machines, 32(1), 43–75. https://doi.org/10.1007/s11023-021-09569-4 

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., 

Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, 

A., Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (2022). On the Opportunities and Risks of 

Foundation Models (arXiv:2108.07258). arXiv. https://doi.org/10.48550/arXiv.2108.07258 

Bouatta, N., Sorger, P., & AlQuraishi, M. (2021). Protein structure prediction by AlphaFold2: Are 

attention and symmetries all you need? Acta Crystallographica. Section D, Structural Biology, 

77(Pt 8), 982–991. https://doi.org/10.1107/S2059798321007531 

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A., Conerly, T., Turner, N., Anil, C., Denison, 

C., Askell, A., Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell, T., Joseph, N., Hatfield-

Dodds, Z., Tamkin, A., Nguyen, K., … Olah, C. (2023). Towards Monosemanticity: 

Decomposing Language Models With Dictionary Learning. Transformer Circuits Thread. 

Brigandt, I. (2011). Explanation in Biology: Reduction, Pluralism, and Explanatory Aims. Science & 

Education, 22(1), 69–91. https://doi.org/10.1007/s11191-011-9350-7 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., 

Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., 

Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-

Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. 



 20 

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-

Abstract.html 

Burnston, D. C. (2021). Getting over Atomism: Functional Decomposition in Complex Neural Systems. 

The British Journal for the Philosophy of Science, 72(3), 743–772. 

https://doi.org/10.1093/bjps/axz039 

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. 

Big Data & Society, 3(1), 2053951715622512. https://doi.org/10.1177/2053951715622512 

Buzsáki, G. (2020). The Brain–Cognitive Behavior Problem: A Retrospective. eNeuro, 7(4). 

https://doi.org/10.1523/ENEURO.0069-20.2020 

Cammarata, N., Carter, S., Goh, G., Olah, C., Petrov, M., & Schubert, L. (2020). Thread: Circuits. 

Distill, 5(3), 10.23915/distill.00024. https://doi.org/10.23915/distill.00024 

Cammarata, N., Goh, G., Carter, S., Voss, C., Schubert, L., & Olah, C. (2021). Curve Circuits. Distill, 

6(1), e00024.006. https://doi.org/10.23915/distill.00024.006 

Cao, R., & Yamins, D. (2021). Explanatory models in neuroscience: Part 2 -- constraint-based 

intelligibility. arXiv:2104.01489 [Cs, q-Bio]. http://arxiv.org/abs/2104.01489 

Cearns, M., Hahn, T., & Baune, B. T. (2019). Recommendations and future directions for supervised 

machine learning in psychiatry. Translational Psychiatry, 9(1), Article 1. 

https://doi.org/10.1038/s41398-019-0607-2 

Chirimuuta, M. (2021). Prediction versus understanding in computationally enhanced neuroscience. 

Synthese, 199(1), 767–790. https://doi.org/10.1007/s11229-020-02713-0 

Chollet, F. (2021). Deep Learning with Python, Second Edition. Simon and Schuster. 

Cichy, R. M., & Kaiser, D. (2019). Deep Neural Networks as Scientific Models. Trends in Cognitive 

Sciences, 23(4), 305–317. https://doi.org/10.1016/j.tics.2019.01.009 

Craver, C. F. (2001). Role Functions, Mechanisms, and Hierarchy. Philosophy of Science, 68(1), 53–74. 

Craver, C. F. (2007). Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience. Oxford 

University Press. 



 21 

Craver, C. F., & Darden, L. (2013). In Search of Mechanisms: Discoveries across the Life Sciences. 

University of Chicago Press. 

https://press.uchicago.edu/ucp/books/book/chicago/I/bo16123713.html 

Dennett, D. C. (1991). Real Patterns. Journal of Philosophy, 88(1), 27–51. 

https://doi.org/10.2307/2027085 

Durán, J. M., & Jongsma, K. R. (2021). Who is afraid of black box algorithms? On the epistemological 

and ethical basis of trust in medical AI. Journal of Medical Ethics, medethics-2020-106820. 

https://doi.org/10.1136/medethics-2020-106820 

Eden, A. H. (2007). Three Paradigms of Computer Science. Minds and Machines, 17(2), 135–167. 

https://doi.org/10.1007/s11023-007-9060-8 

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A., 

Conerly, T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Jones, A., 

Kernion, J., Lovitt, L., Ndousse, K., … Olah, C. (2021). A Mathematical Framework for 

Transformer Circuits. Transformer Circuits Thread. 

Artificial Intelligence Act, (2021). https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:52021PC0206 

Fawzi, A., Fawzi, H., & Fawzi, O. (2018). Adversarial vulnerability for any classifier. Advances in Neural 

Information Processing Systems, 31. 

https://papers.nips.cc/paper/2018/hash/851ddf5058cf22df63d3344ad89919cf-

Abstract.html 

Fleisher, W. (2022). Understanding, Idealization, and Explainable AI. Episteme, 19(4), 534–560. 

https://doi.org/10.1017/epi.2022.39 

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., 

Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical 

Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. 

Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5 



 22 

Geiger, A., Lu, H., Icard, T., & Potts, C. (2021). Causal Abstractions of Neural Networks. Advances in 

Neural Information Processing Systems, 34, 9574–9586. 

https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-

Abstract.html 

Gelman, A., & Loken, E. (2019). The garden of forking paths: Why multiple comparisons can be a 

problem , even when there is no “ fishing expedition ” or “ p-hacking ” and the research 

hypothesis was posited ahead of time ∗. https://www.semanticscholar.org/paper/The-

garden-of-forking-paths-%3A-Why-multiple-can-be-a-Gelman-

Loken/b63e25900013605c16f4ad74c636cfbd8e9a3e8e 

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M., Schubert, L., Radford, A., & Olah, C. (2021). 

Multimodal Neurons in Artificial Neural Networks. Distill, 6(3), 10.23915/distill.00030. 

https://doi.org/10.23915/distill.00030 

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A Survey of 

Methods for Explaining Black Box Models. ACM Computing Surveys, 51(5), 93:1-93:42. 

https://doi.org/10.1145/3236009 

Hacker, P., Engel, A., & Mauer, M. (2023). Regulating ChatGPT and other Large Generative AI 

Models. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and 

Transparency, 1112–1123. https://doi.org/10.1145/3593013.3594067 

Haugeland, J. (1998). Having Thought: Essays in the Metaphysics of Mind. Harvard University Press. 

Hendrycks, D., Mazeika, M., & Dietterich, T. G. (2018). Deep Anomaly Detection with Outlier 

Exposure. ArXiv. https://www.semanticscholar.org/paper/Deep-Anomaly-Detection-with-

Outlier-Exposure-Hendrycks-Mazeika/6cf1d69e447e9687dbd2d92572f44bddbabd8192 

Hendrycks, D., Mazeika, M., & Woodside, T. (2023). An Overview of Catastrophic AI Risks 

(arXiv:2306.12001). arXiv. https://doi.org/10.48550/arXiv.2306.12001 



 23 

Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and 

prognosis: Opportunities and challenges. Cancer Letters, 471, 61–71. 

https://doi.org/10.1016/j.canlet.2019.12.007 

Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 

615–626. https://doi.org/10.1007/s11229-008-9435-2 

Ivanova, A. A., Hewitt, J., & Zaslavsky, N. (2021). Probing artificial neural networks: Insights from 

neuroscience (arXiv:2104.08197). arXiv. https://doi.org/10.48550/arXiv.2104.08197 

Jugovac, M., & Jannach, D. (2017). Interacting with Recommenders&#x2014;Overview and Research 

Directions. ACM Transactions on Interactive Intelligent Systems, 7(3), 10:1-10:46. 

https://doi.org/10.1145/3001837 

Karimi, A.-H., von Kügelgen, J., Schölkopf, B., & Valera, I. (2022). Towards Causal Algorithmic 

Recourse. In A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-R. Müller, & W. Samek (Eds.), xxAI 

- Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 

18, 2020, Vienna, Austria, Revised and Extended Papers (pp. 139–166). Springer 

International Publishing. https://doi.org/10.1007/978-3-031-04083-2_8 

Kästner, L. (2018). Integrating mechanistic explanations through epistemic perspectives. Studies in 

History and Philosophy of Science Part A, 68, 68–79. 

https://doi.org/10.1016/j.shpsa.2018.01.011 

Kästner, L., & Haueis, P. (2021). Discovering Patterns: On the Norms of Mechanistic Inquiry. 

Erkenntnis, 86(6), 1635–1660. https://doi.org/10.1007/s10670-019-00174-7 

Kästner, L., Langer, M., Lazar, V., Schomacker, A., Speith, T., & Sterz, S. (2021). On the Relation of 

Trust and Explainability: Why to Engineer for Trustworthiness. 2021 IEEE 29th International 

Requirements Engineering Conference Workshops (REW), 169–175. 

https://doi.org/10.1109/REW53955.2021.00031 

Keil, F. (2019). How Do Partial Understandings Work? (pp. 191–208). 

https://doi.org/10.1093/oso/9780190860974.003.0010 



 24 

Keogh, E., & Mueen, A. (2017). Curse of Dimensionality. In C. Sammut & G. I. Webb (Eds.), 

Encyclopedia of Machine Learning and Data Mining (pp. 314–315). Springer US. 

https://doi.org/10.1007/978-1-4899-7687-1_192 

Kirsch, A. (2017). Explain to whom? Putting the User in the Center of Explainable AI. CEx@AI*IA. 

https://www.semanticscholar.org/paper/Explain-to-whom-Putting-the-User-in-the-Center-

of-Kirsch/da43f222f009a587381a2aa8e145f5a45c26db9f 

Köhl, M. A., Baum, K., Langer, M., Oster, D., Speith, T., & Bohlender, D. (2019). Explainability as a 

Non-Functional Requirement. 2019 IEEE 27th International Requirements Engineering 

Conference (RE), 363–368. https://doi.org/10.1109/RE.2019.00046 

Langer, M., Baum, K., König, C. J., Hähne, V., Oster, D., & Speith, T. (2021). Spare me the details: How 

the type of information about automated interviews influences applicant reactions. 

International Journal of Selection and Assessment, 29(2), 154–169. 

https://doi.org/10.1111/ijsa.12325 

Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt, E., Sesing, A., & Baum, K. (2021). 

What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective 

on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 

296, 103473. https://doi.org/10.1016/j.artint.2021.103473 

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K.-R. (2019). Unmasking 

Clever Hans predictors and assessing what machines really learn. Nature Communications, 

10(1), Article 1. https://doi.org/10.1038/s41467-019-08987-4 

Levy, A., & Bechtel, W. (2013). Abstraction and the Organization of Mechanisms. Philosophy of 

Science, 80(2), 241–261. 

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., & Levy, O. (2020). Emergent linguistic structure 

in artificial neural networks trained by self-supervision. Proceedings of the National 

Academy of Sciences, 117(48), 30046–30054. https://doi.org/10.1073/pnas.1907367117 



 25 

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explainability in creating trustworthy 

artificial intelligence for health care: A comprehensive survey of the terminology, design 

choices, and evaluation strategies. Journal of Biomedical Informatics, 113, 103655. 

https://doi.org/10.1016/j.jbi.2020.103655 

Mitchell, S. D. (2002). Integrative Pluralism. Biology and Philosophy, 17(1), 55–70. 

https://doi.org/10.1023/A:1012990030867 

Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining Explanations in AI. Proceedings of the 

Conference on Fairness, Accountability, and Transparency, 279–288. 

https://doi.org/10.1145/3287560.3287574 

Molnar, C. (2022). Interpretable Machine Learning (2nd ed.). 

https://christophm.github.io/interpretable-ml-book/ 

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. 

Communications of the ACM, 19(3), 113–126. https://doi.org/10.1145/360018.360022 

Nunes, I., & Jannach, D. (2017). A systematic review and taxonomy of explanations in decision 

support and recommender systems. User Modeling and User-Adapted Interaction, 27(3–5), 

393–444. https://doi.org/10.1007/s11257-017-9195-0 

Nyrup, R., & Robinson, D. (2022). Explanatory pragmatism: A context-sensitive framework for 

explainable medical AI. Ethics and Information Technology, 24(1), 13. 

https://doi.org/10.1007/s10676-022-09632-3 

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M., & Carter, S. (2020). Zoom In: An 

Introduction to Circuits. Distill, 5(3), e00024.001. https://doi.org/10.23915/distill.00024.001 

Olah, C., Cammarata, N., Voss, C., Schubert, L., & Goh, G. (2020). Naturally Occurring Equivariance in 

Neural Networks. Distill, 5(12), e00024.004. https://doi.org/10.23915/distill.00024.004 

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature Visualization. Distill, 2(11), 

10.23915/distill.00007. https://doi.org/10.23915/distill.00007 



 26 

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., & Mordvintsev, A. (2018). The 

Building Blocks of Interpretability. Distill, 3(3), 10.23915/distill.00010. 

https://doi.org/10.23915/distill.00010 

Páez, A. (2019). The Pragmatic Turn in Explainable Artificial Intelligence (XAI). Minds and Machines, 

29(3), 441–459. https://doi.org/10.1007/s11023-019-09502-w 

Pessoa, L. (2023). The Entangled Brain. Journal of Cognitive Neuroscience, 35(3), 349–360. 

https://doi.org/10.1162/jocn_a_01908 

Pu, X., & Kay, M. (2018). The Garden of Forking Paths in Visualization: A Design Space for Reliable 

Exploratory Visual Analytics : Position Paper. 2018 IEEE Evaluation and Beyond - 

Methodological Approaches for Visualization (BELIV), 37–45. 

https://doi.org/10.1109/BELIV.2018.8634103 

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., & Sohl-Dickstein, J. (2017). On the expressive power of 

deep neural net-works. https://arxiv.org/pdf/1606.05336.pdf 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions 

of Any Classifier. 97–101. https://doi.org/10.18653/v1/N16-3020 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. 

Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Article 1. 

https://doi.org/10.1609/aaai.v32i1.11491 

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, 

R. P., de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D., Kepecs, A., Kriegeskorte, N., Latham, 

P., Lindsay, G. W., Miller, K. D., Naud, R., Pack, C. C., … Kording, K. P. (2019). A deep learning 

framework for neuroscience. Nature Neuroscience, 22(11), 1761–1770. 

https://doi.org/10.1038/s41593-019-0520-2 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and 

use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. 

https://doi.org/10.1038/s42256-019-0048-x 



 27 

Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition). Pearson. 

http://aima.cs.berkeley.edu/ 

Schrimpf, M., Kubilius, J., Lee, M. J., Ratan Murty, N. A., Ajemian, R., & DiCarlo, J. J. (2020). 

Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. 

Neuron, 108(3), 413–423. https://doi.org/10.1016/j.neuron.2020.07.040 

Schubert, L., Voss, C., Cammarata, N., Goh, G., & Olah, C. (2021). High-Low Frequency Detectors. 

Distill, 6(1), e00024.005. https://doi.org/10.23915/distill.00024.005 

Shalizi, C. R. (2006). Methods and Techniques of Complex Systems Science: An Overview. In T. S. 

Deisboeck & J. Y. Kresh (Eds.), Complex Systems Science in Biomedicine (pp. 33–114). 

Springer US. https://doi.org/10.1007/978-0-387-33532-2_2 

Sloman, S. A., & Rabb, N. (2016). Your Understanding Is My Understanding: Evidence for a 

Community of Knowledge. Psychological Science, 27(11), 1451–1460. 

https://doi.org/10.1177/0956797616662271 

Sokol, K., & Flach, P. (2020). Explainability fact sheets: A framework for systematic assessment of 

explainable approaches. Proceedings of the 2020 Conference on Fairness, Accountability, and 

Transparency, 56–67. https://doi.org/10.1145/3351095.3372870 

Speith, T. (2022). A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods. 2022 

ACM Conference on Fairness, Accountability, and Transparency, 2239–2250. 

https://doi.org/10.1145/3531146.3534639 

Steimers, A., & Schneider, M. (2022). Sources of Risk of AI Systems. International Journal of 

Environmental Research and Public Health, 19(6), 3641. 

https://doi.org/10.3390/ijerph19063641 

Stirling, A. (2007). Risk, precaution and science: Towards a more constructive policy debate. Talking 

point on the precautionary principle. EMBO Reports, 8(4), 309–315. 

https://doi.org/10.1038/sj.embor.7400953 



 28 

Strevens, M. (2013). No understanding without explanation. Studies in History and Philosophy of 

Science Part A, 44(3), 510–515. https://doi.org/10.1016/j.shpsa.2012.12.005 

Voss, C., Cammarata, N., Goh, G., Petrov, M., Schubert, L., Egan, B., Lim, S. K., & Olah, C. (2021). 

Visualizing Weights. Distill, 6(2), e00024.007. https://doi.org/10.23915/distill.00024.007 

Vredenburgh, K. (2022). The Right to Explanation*. Journal of Political Philosophy, 30(2), 209–229. 

https://doi.org/10.1111/jopp.12262 

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual Explanations Without Opening the 

Black Box: Automated Decisions and the GDPR. SSRN Electronic Journal. 

https://doi.org/10.2139/ssrn.3063289 

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., & Steinhardt, J. (2022). Interpretability in the Wild: 

A Circuit for Indirect Object Identification in GPT-2 small (arXiv:2211.00593). arXiv. 

https://doi.org/10.48550/arXiv.2211.00593 

Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How Does LLM Safety Training Fail? 

(arXiv:2307.02483). arXiv. https://doi.org/10.48550/arXiv.2307.02483 

Wimsatt, W. C. (1981). Robustness, Reliability, and Overdetermination (1981). In L. Soler, E. Trizio, T. 

Nickles, & W. Wimsatt (Eds.), Characterizing the Robustness of Science: After the Practice 

Turn in Philosophy of Science (pp. 61–87). Springer Netherlands. 

https://doi.org/10.1007/978-94-007-2759-5_2 

Wimsatt, W. C. (1994). The Ontology of Complex Systems: Levels of Organization, Perspectives, and 

Causal Thickets. Canadian Journal of Philosophy Supplementary Volume, 20, 207–274. 

https://doi.org/10.1080/00455091.1994.10717400 

Wu, Z., Geiger, A., Potts, C., & Goodman, N. D. (2023). Interpretability at Scale: Identifying Causal 

Mechanisms in Alpaca (arXiv:2305.08809). arXiv. https://doi.org/10.48550/arXiv.2305.08809 

Zednik, C. (2021). Solving the Black Box Problem: A Normative Framework for Explainable Artificial 

Intelligence. Philosophy & Technology, 34(2), 265–288. https://doi.org/10.1007/s13347-019-

00382-7 



 29 

Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the Quality of Machine Learning 

Explanations: A Survey on Methods and Metrics. Electronics, 10(5), Article 5. 

https://doi.org/10.3390/electronics10050593 

 

 


