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Abstract

Machine learning is used more and more in scientific contexts, from the recent breakthroughs

with AlphaFold2 in protein fold prediction to the use of ML in parametrization for large cli-

mate/astronomy models. Yet it is unclear whether we can obtain scientific explanations from such

models. I argue that when machine learning is used to conduct causal inference we can give a new

positive answer to this question. However, these ML models are purpose-built models and there are

technical results showing that standard machine learning models cannot be used for the same type

of causal inference. Instead, there is a pathway to causal explanations from predictive ML models

through new explainability techniques; specifically, new methods to extract structural equation

models from such ML models. The extracted models are likely to suffer from issues though: they

will often fail to account for confounders and colliders, as well as deliver simply incorrect causal

graphs due to ML models tendency to violate physical laws such as the conservation of energy. In

this case, extracted graphs are a starting point for new explanations, but predictive accuracy is

no guarantee for good explanations.

1 Introduction

Machine learning models1 are quickly gaining ground in scientific practice. A particular success is the

use of deep learning model AlphaFold 2 to predict protein folding (Jumper et al., 2021), but examples

abound. There is, for example, usage of deep learning in climate models (Rasp et al., 2018), astronomy

(Agarwal et al., 2012), and materials science (Schmidt et al., 2019). These machine learning models

are primarily predictive models: they are used because they can very accurately predict outcomes (e.g.

protein folds, or climate parameters). An important exception is the case of neuroscience(Milkowski,

2013; Stinson, 2018; Piccinini, 2010) because of the direct modeling offered by machine learning models

∗TU Delft, Jaffalaan 5, 2628BX, Delft, The Netherlands. Email: s.n.r.buijsman@tudelft.nl
1It should be noted here that the term ’machine learning’ has both narrow and broad interpretations. In a broad

interpretation it is any computer method that solves a problem by fitting a function to data. In that case, simple models
such as those based on linear regression count as machine learning. I follow the narrower definition of machine learning
common in the literature discussed here, where the term is only applied to methods such as deep neural networks and
random forest algorithms, which are distinguished by their use of a large number of parameters and non-linearity.
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in that area. I will set aside that field here to focus on the other areas of science. There, it is not

clear that opaque machine learning models, which predict well but where we do not understand why

they arrive at a certain prediction (Das and Rad, 2020) can be used to arrive at scientific explanations

(López-Rubio and Ratti, 2021; Srećković et al., 2021). The most advanced machine learning tools, deep

neural networks, present us with two difficulties: they are very complex (easily containing millions of

parameters that are fine-tuned based on large data sets) and they lack internal representations that

are legible to us (other models have explicit variables standing for e.g. physical quantities, deep neural

networks have activation functions that respond to complex combinations of input features which we

cannot interpret). As a result, it is difficult to see how we can acquire causal explanations when using

these complex models. There are worries that “if you do molecular biology with machine learning

techniques, and if you want to have the best machine learning performances, then you cannot even in

principle elaborate fully-fledged mechanistic explanations.” (López-Rubio and Ratti, 2021, p.3152)

Recently, Sullivan (2019), Knüsel and Baumberger (2020), Jebeile et al. (2021) and Meskhidze

(2021) have argued that there is in fact a possibility to get more from these models than just predictions.

They focus precisely on the predictive machine learning models just mentioned, and follow the idea

that under certain conditions (primarily that link uncertainty is low, meaning that there is ”scientific

and empirical evidence supporting the link connecting the model to the target phenomenon” (Sullivan,

2019, p.30)) this is possible without the models being explainable. This approach has been extensively

criticized in a recent paper by Räz and Beisbart (2022). I agree with those criticisms, but will leave

that debate to the side for the current paper. Instead, my goal here is to offer a different positive

answer to the question whether we can arrive at scientific explanations from machine learning models.

First, I argue in sections 2 and 3 that machine learning models that are used in causal inference can

be seen as generating scientific explanations, at the very least if we take a causal account of scientific

explanation (Halpern and Pearl, 2005; Woodward, 2005). On such an account, we can explain a

target phenomenon by giving a cause for that phenomenon, which will cover both the actual case

and answer a range of what-if-things-had-been-different questions. The general approach of causal

inference (described in section 2) aims to determine such causal relations, and if successful, gives us

the cause(s) for the target phenomenon. My argument, then, is that if machine learning models can

provide us with causal relations for scientific phenomena, then they can thus provide us with (causal)

scientific explanations. After all, causal relations are precisely what we should be providing according

to Woodward (2005) and others in order to explain scientific phenomena. The challenge thus is to

show that machine learning models can, in some cases, provide these causal relations. In this, I extend

the work of Pietsch (2016) who argued that causal modeling is possible with big data. The added

contribution here is a close connection to causal inference techniques and a link to specific ML models
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that can be used for causal inference.

I follow the influential work of Pearl (2009) to structure the discussion on causal inference, and

whether machine learning can be used to arrive at causal explanations of scientific phenomena. On his

framework causal inference happens in essentially two steps: first, a directed acyclic causal graph (or,

equivalently, structural equations) is formulated for the specific case. This specifies which variables

influence which other variables, and is crucial for the causal inference process. Without a causal

graph in place, causal inference is not possible, and with different causal graphs the same data will

give different results in the second step. As such, these assumptions are crucial (and are often verified

afterwards by seeing how results respond to changes to the causal graph that should not have an effect,

such as introducing a random extra cause). The second step is to estimate the treatment effect(s) in

the causal graph. This comes down to estimating the strength along the arrows in the causal graph,

or the coefficients in the structural equations and effectively shows what the exact causal influence is

of a cause on the target phenomenon.

Interestingly, both causal inference steps can be accomplished using machine learning models, and

even using deep neural networks. Causal graphs can be learned from data with the help of machine

learning (section 2) and specific double machine learning techniques allow the calculation of treatment

effects using neural networks when given a causal graph (section 3). Together, this shows (so I argue)

that there are definitely some machine learning models that can provide causal explanations. In section

4 I then expand on these results to consider the prospects of scientific explanations from predictive

ML models. There, I argue that recent techniques to extract structural equation models from deep

neural networks give us good reason to think that through better explainability of such models we can

get (candidate) scientific explanations. However, these predictive models lack some of the properties

of the ML models considered in sections 2 and 3 and so these candidate explanations are likely to be

incorrect when adopted directly. Still, they can provide a good starting point for new causal scientific

explanations and thus explainable AI can help us extract explanations from predictive ML models as

well.

2 Learning causal graphs

Causal inference requires assumptions about the direction in which variables influence each other.

Where correlations go both ways and can be directly calculated from observational data, causal rela-

tions are not so easily inferred. After all, there are plenty of correlations that do not correspond to

causal relations (take the example of a correlation between drownings and ice cream sales, which is

the result of a common cause: nice weather). To arrive at causes, correlations thus fall short. As Pearl
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says: “Causal analysis goes one step further; its aim is to infer not only beliefs or probabilities under

static conditions, but also the dynamics of beliefs under changing conditions, for example, changes

induced by treatments or external interventions.” (Pearl, 2009, p.99) In order to get to these causal

relations assumptions need to be made. Again: “behind any causal conclusion there must be some

causal assumption, untested in observational studies.” (Pearl, 2009, p.100) These assumptions are the

causal graphs, or (equivalently) structural equations that describe our choices about the direction of

causation. In other words, these graphs/models describe whether X causes Y, or Y causes X (or that

the two are independent). They also tell us what variables are confounders (variables that influence

both the outcome and the treatment) and which are colliders (variables influenced by both the outcome

and the treatment), and how we can control for these to arrive at correct estimations of the strength

of causal relations (the treatment effect). An example causal graph with a confounder X for treatment

T and outcome Y is shown in figure 1.

Figure 1: A simple causal graph with a confounder X, treatment T and outcome Y. Change the
direction of both arrows from X and it becomes a collider.

How does machine learning come in here? Well, it turns out that to some extent causal graphs

can be learned from observational data (for a review see Glymour et al. (2019)). And (purpose-built)

machine learning models are one way to do so. To see how, I’ll discuss two methods to learn causal

graphs: constraint-based methods and scoring methods. For both I show how machine learning can

be applied and how they yield new causal graphs.

First, one can follow a constraint-based method (cf. Spirtes et al., 2000): starting with a maximally

connected graph one estimates conditional independencies between variables to remove edges (one

direction at a time) from that graph. Ideally this results in a graph where enough edges are removed

to fill in the direction of causal inference. This happens using two inference rules:

1. “For each triple of variables (A, B, C) such that A and B are adjacent, B and C are adjacent,
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and A and C are not adjacent, orient the edges A – B – C as A→ B← C, if B was not in the set

conditioning on which A and C became independent and the edge between them was accordingly

eliminated. We call such a triple of variables a v-structure” (Glymour et al., 2019, p.4)

2. “For each triple of variables such that A → B – C, and A and C are not adjacent, orient the

edge B – C as B → C. This is called orientation propagation.” (Glymour et al., 2019, p.4)

This will not always allow the learning of the full causal graph. There is, in other words, no guar-

antee that all edges will be covered by these two inference rules. As such, conditional independence

algorithms at best converge to the Markov Equivalence class (assuming that the conditional indepen-

dence estimates are correct and there are no unmeasured confounders) where some edges can go either

way. Learning causal graphs in this manner is thus both highly dependent on how conditional inde-

pendence is estimated (importantly Shah and Peters (2020) have shown that there exists no uniformly

valid test for conditional independence) and will not always produce a full causal graph. This nicely

illustrates the difficulty of learning causal graphs from data, and is in line with Pearl’s quote that there

are always some untested assumptions involved. In this case, those causal assumptions will be that the

particular conditional independence test used on the data allows us to conclude causal independence

of the two variables and is possibly supplemented by additional causal assumptions to complete the

causal graph. For example, in the situation where there are only two variables there is no way to

determine whether A causes B, or B causes A using independence testing. It is possible to observe

whether the variables influence each other, but without actually changing one variable and seeing the

effect of this intervention we cannot decide this situation. In practice we of course have access to many

more variables than just the two, but situations will still occur where the direction of certain edges

cannot be decided using a constraint-based method. Then, additional causal assumptions have to be

made.

To return to the focus of this paper, conditional independence tests can be performed with the

help of machine learning models. In this case, the method as reviewed by Glymour et al. (2019)

is thus executed using machine learning and thus gives us an instance of a causal graph learned

using machine learning. For example, Sen et al. (2017) do so by turning the question of conditional

independence testing into a classification problem, which machine learning models can handle. Their

basic idea is that if two variables are conditionally independent, then a classifier (such as a machine

learning model, including deep neural networks) will have a hard time to predict one variable based

on the other. If, on the other hand, there is some causal dependence there, then it will be possible

to predict the values of the first variable using the values of the second variable. Note, however, that

this requires a purpose-built machine learning model and that standard predictive models cannot be

used for conditional independence tests. Specifically, Sen et al. (2017) start with 3n independent and
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identically distributed samples from three variables X, Y and Z. They then process 2n samples in a

nearest-neighbour bootstrap algorithm to generate n samples that are close to how the three variables

would be distributed if X were independent from Y , given Z. These new samples are labelled with

a 1, the original n samples that were not used in the bootstrapping are labelled with a 0. Finally, a

machine learning model is trained on a mixture of the two sets of samples to predict whether it was an

original sample (labelled with 1) or a generated sample (labelled with 0). If the machine learning model

has a high accuracy, then the original samples are distinguishable from the conditionally independent

samples and so it’s likely that X and Y are not independent. If the model performs (close to) randomly,

then it is likely that X and Y are conditionally independent. As is clear, this requires quite a bit of

work and a specifically designed machine learning model. This is a feature that is repeated in other

approaches found in the literature: e.g. Bellot and van der Schaar (2019) and Shi et al. (2020) both

use specific generative adversarial networks (a type of deep neural network/machine learning model)

to approximate conditional distributions and test independence hypotheses on that basis. In short,

conditional independence testing with machine learning models is possible, but requires purpose-built

models.

It is thus possible to use machine learning for causal discovery (i.e. learning causal graphs from

data) when taking a constraint-based approach. A similar possibility for using machine learning is

seen for the other method, a scoring approach. Instead of estimating conditional independence, this

method uses a scoring function to search for the causal graph that best fits the observational data

(where the choice of scoring function contains causal assumptions). This effectively comes down to an

optimization problem (learning the graph that maximizes fit with the data) and so is well-suited for

the use of machine learning. And indeed, there is a good number of approaches to do so, of which I’ll

highlight two here to give an impression of the possibilities. As we’ll see, for all these approaches there

is again an important causal assumption: that a graph more similar to the actual causal graph will get

a higher score than one that is less similar. This assumption, that the scoring function tracks causality,

is a rather uncertain one, as scoring methods frequently give us incorrect causal graphs. Still, it can

be a useful method when arriving at a causal graph in other ways is difficult.

Lachapelle et al. (2019) propose a method that uses the inner workings of small neural networks

to learn causal graphs. The basic idea is that they train fully-connected neural networks to predict

each variable of interest, based on all the other variables that are considered. If variable X is not

used to predict the value of Y, then that is evidence that there is no arrow from X to Y. If X is used

to predict Y, then that is evidence for an arrow from X to Y. In a little more detail: this method

starts with the fitted neural networks and takes the sum of all path products from input (variable) i

to output (variable) k. That’s feasible, since the neural networks are small: e.g. when there are two
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hidden layers than there are three weights on any path from i to k, one from the input to hidden layer

1, one from hidden layer 1 to hidden layer 2 and a final one from hidden layer 2 to the output. If

every path from i to k has a product of the weights along that path that equals zero, then the two

are independent (i.e. there is no arrow between them in the causal graph). In practice, a threshold

of ϵ = 10−4 is applied during optimization, where any weights are permanently set to zero if they

fall below the threshold. The non-zero sums result in a matrix that then needs to be adjusted such

that the corresponding graph (with an arrow from i to j iff matrix entry Aij > 0) is acyclic. That

is where the scoring function comes in, and a maximum likelihood optimzation problem is formulated

using the acyclicality constraint, which is solved to provide the best fitting causal graph.2 As such, the

method produces a unique causal graph, but without strong guarantees that it is the correct graph.

For example, the method has to employ various strategies to avoid overfitting the neural networks to

the data to obtain more plausible graphs. Lachapelle et al. (2019) note that adding edges can never

reduce the maximal likelihood, and it is therefore necessary to stop training as soon as the performance

no longer increases, as well as to prune the graph after training and to do a preliminary selection for

any neural networks with more than 50 nodes. You get a unique, completely filled in, causal graph at

the end but there are no guarantees that any of the edges are correct.

The other approach to highlight has similar benefits and drawbacks. Kalainathan et al. (2018)

present a method to learn causal graphs using generative adversarial networks (a type of neural net-

work), and produce unique causal graphs – but with a good number of false positive and false negative

arrows in the resulting graphs. Still, the approach is interestingly different: instead of training shallow

neural networks for all the variables at the same time it uses a single, second, machine learning model

to score a range of neural networks representing alternative causal graphs. First, different machine

learning models are trained to generate the data distribution (predict the values of one variable) based

on constraints in line with alternative causal graphs. A model only uses those variables to predict Y

that have a path leading to Y in the candidate causal graph. So, a causal graph with an arrow from X

to Z but no arrow from Y to Z will be represented by a neural network that aims to predict/generate

values for Z based solely on the values of X. Had there been arrows from both X and Y in the causal

graph, then the values for Z would be generated based on the values of both X and Y. By creating

a large number of neural networks, each corresponding to different causal graphs, it then becomes

possible to evaluate which causal graph best fits the actual situation. To do so, a second machine

learning model is trained to distinguish between the true data and the data generated by the various

2To be precise, the method looks at neural networks j for each variable X (indexed 1 to d). The parameters (i.e.
weights) of these neural networks are represented in vector ϕ(j). The maximum likelihood problem solved over all these

neural networks is then the equation maxϕEX PX

∑d
j=1 log pj(Xj |Xπ

ϕ
j
;ϕ(j)), where X

π
ϕ
j

is the set of parents of node

j in graph Gϕ. Essentially, the idea is that one optimized the predictive accuracy of all these neural networks together,
where each neural network aims to predict the value of variable Xj in terms of the values of all the other variables.
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neural networks. Whatever generated data is discriminated worst from the true data (i.e. produces

the most realistic results) is then considered to be based on the true causal graph. Machine learning

does all the work here. At the same time, the results are imperfect. There is no guarantee that a good

score in mimicking the data distribution is due to a stronger similarity to the causal graph, and in

experimental findings a wide range of causal graphs is found for the same dataset. For example, for the

true arrow x1 → x2 the method only correctly identified this edge in 54 out of 100 runs, and included

the arrow in the opposite direction in 35 runs. Whether edges are correctly identified varied greatly;

some were found in 92 of the 100 runs, others in only 4, and finally one incorrect edge was included

in as many as 95 runs. The method is sensitive to how the weights are initialized, but even then it

performs better than many other causal discovery methods that do not use neural networks. Still, the

variation in causal graphs identified as well as the sometimes very confident false positives show the

difficulty of learning causal graphs from data. One misses the essential element of interventions in the

world that is the only sure way to identify causes, and so where the constraint-based method would

fall short in identifying some edges the scoring-based method will make mistakes in its push to always

return a fully filled-in, unique, causal graph.

How do all these machine learning models fit in with the overarching question of whether machine

learning can be used to arrive at new scientific explanations? In all of these cases, the machine learning

models are crucial to make the step from a situation/data set where we do not know what the causal

relations might be to a causal graph that maps out (possible) causal relations between the real-world

variables in the data. This means that the result of using the machine learning models is a causal graph,

which we didn’t have before, that describes which causal relations there are in relation to the target

phenomenon. As such, the machine learning models really take centre stage in the causal discovery

process (in virtue of them we get the causal graphs) and thus in the mapping of causal relations, which

on the causal accounts of explanations entails that they also provide scientific explanations. Moreover,

these are how-actually explanations (as opposed to how-possibly explanations) as they are, if all goes

well, the causal relations that are present in the actual world captured by the data. The only caveat

is that in all of the methods described in this section we get causal graphs with as of yet unknown

causal strengths. We may learn that X causes Y, but we do not know how big the influence of X is on

Y. To determine that, we need to calculate treatment effects, to which I turn next.

3 Calculating treatment effects

Given a causal graph (or an equivalent structural causal model) from the causal discovery phase

it is possible to estimate the strength of causal relations. Typically this is referred to as calculat-
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ing/estimating the (average) treatment effect, as the change of the value of the cause is called treat-

ment – and we want to know the effect of that change. And so put very simply, we can take a linear

scenario where this treatment effect is simply the coefficient θ regulating the effect of treatment T on

output y in the equation:

y = θT + g(X) + U

Where X is the set of variables that also influence y, and which thus need to be controlled for when

estimating the strength of the causal relation between T and y. This formulation also conforms well

to what standard predictive machine learning models do (in a more general setting where we take

y = g(T,X) +U to not assume linearity): they give the output as a function of the different variables

at play. However, simply estimating the treatment effect based on this single equation will not work:

it neglects the effect that variables X can have on treatment T . As Chernozhukov et al. (2017, 2018)

discuss in detail, direct estimations of treatment effects (i.e. based on standard predictive machine

learning models) are systematically biased precisely because they miss this extra effect. So, it isn’t

possible to correctly estimate the strength of causal relations using predictive machine learning models.

To illustrate that problem, it helps to look at an example of one such machine learning model.

Caruana et al. (2015) report on a machine learning model that predicted the risk of death for patients

entering the hospital with pneumonia. Curiously, this model assigns a lower risk score to patients with

asthma than to patients without asthma. It does so for the simple reason that in the data that the

model learned from, patients with both asthma and pneumonia are immediately sent to the intensive

care, and therefore receive more intensive medical treatment than patients without asthma. That

extra confounder (the level of medical care) biases the estimation of the causal effect (from asthma to

probability of dying from pneumonia). As such, the predictive model cannot be used to estimate the

strength of the underlying causal relations, because it isn’t possible to control for the effects of other

variables on the causal relation we’re interested in. What is needed instead is double machine learning,

as developed by Chernozhukov et al. (2017).

Their basic idea is that there are two equations that need to be taken into account (keeping it linear

for the sake of simplicity, but note that in general the equations are non-linear to take full advantage

of the machine learning techniques used):

y = θT + g(X) + E1

T = m(X) + E2

Where the second equation gives us the effect of the other variables on the treatment. If we look back
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at figure 1, that means that θ covers the arrow from T to y, g(X) the arrow from X to y and m(X)

the arrow from X to T that was previously missing. By solving two prediction problems it becomes

possible, then, to arrive at an unbiased estimation of the treatment effect. The first step here is to fit a

machine learning model to estimate m(X) in the bottom equation, and thus get an estimate of residual

Ŵ = T − m(X). Second, a different machine learning model is fitted to g(X) in the top equation,

giving the residual V̂ = y − ĝ(X). Finally, the residuals V̂ are regressed on Ŵ to remove the bias of

the effect from X to T, and yielding the ‘debiased’ treatment effect θ. A last bit of bias removal is done

by ensuring that the machine learning models are fit on different data than the residual regression, to

prevent overfitting should the error terms E1 and E2 be correlated (Chernozhukov et al., 2017).

While this involves some extra work, double machine learning has shown to be of value when

conducting causal inference, thus providing a clear case where machine learning models can help us

arrive at causal relations and with that causal explanations. For again it is really the machine learning

that does the work of inferring the treatment effect. Yes, we need a causal graph that is specified

beforehand to know which equations the machine learning models should be fitted to (supplying the

causal assumptions), but this is no different than standard practice in causal inference (which is also

split up into these two phases). We still go, thanks to machine learning, from a situation where we have

a causal graph with unknown treatment effects, to one where we have a causal graph with estimated

treatment effects. Moreover, machine learning (and especially deep neural networks) can have added

value to the process, as Baiardi and Naghi (2020) nicely discuss in the context of econometric research.

They highlight that the flexibility of complex machine learning models (in terms of what functions they

can approximate) is helpful when estimating treatment effects in situations with complex interactions

between variables. ML models also allow for the inclusion of a large number of covariates, where other

methods are often more limited. And, machine learning models are helpful for estimating heterogeneous

treatment effects, where the strength of the causal relation varies depending on other variables. In

short, the nonlinearity of machine learning models is a helpful feature for these estimations of treatment

effects and makes them more robust.

As a final example to show that we do acquire causal scientific explanations at the end of this

process of inferring a causal graph and estimating treatment effects, consider the work done in Cao

et al. (2022). They conducted a study on the use of chemical dispersants to tackle oil spills, and the

effect of the salinity of the water on their effectiveness. They start out with a causal graph (drawn in

figure 2) and used double machine learning to estimate the strenghts of the various causal relations.

As can be seen, this calculation directly explains why oil degrades in the presence of dispersants: the

dispersants increase cell abundance and productivity, after which it is these extra, and more productive,

cells that speed up oil degradation. This causal graph doesn’t show effects of salinity, but that is merely
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because it shows the average treatment effect. A calculation of heterogeneous treatment effects shows

that “dispersant addition had negative effects on oil biodegradation ratio under low salinities, but

positive effects under high salinities. On the other hand, the effects of dispersant addition on oil

biodegradation increased along with the salinity rise. The results indicated that dispersant addition

could alleviate the negative impact on oil biodegradation caused by salinity increasement.” (Cao et al.,

2022, p.7) A clear (how-actually) explanation of the degradation of oil, and one arrived at thanks to

a machine learning model.

Figure 2: Reproduction of the results in Cao et al. (2022), showing the estimated strengths of causal
relations obtained through double machine learning

To sum up, we see that machine learning models can be used arrive at a (causal, how-actually)

scientific explanation. Both causal inference steps can be conducted using machine learning, meaning

that we can go from a situation where we have merely observations of a target phenomenon to one

where we have identified possible causes, confounders and colliders (causal discovery) and where we

have quantified what effect these have on the phenomenon in question (estimated treatment effects)

using nothing but machine learning and the right data. Of course, in practice we will have to evaluate

the causal graph and we will have to be careful about the data we use, but that is no different for other

methods used to find the causes for a phenomenon. The important point is that it is, for a specific

set of machine learning models, clearly possible to use them to arrive at causal relations and thus at

scientific explanations (if something like the causal account is correct).

4 Prospects for explanations from other ML models

The above result is very specific to a class of especially designed ML models. So, what can we expect

from the more standard predictive ML models? Can we get scientific explanations from them? As
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mentioned in the introduction, a range of authors has answered this with a cautious yes, often giving

low link uncertainty as the criterion for acquiring such explanations. If we re-evaluate these claims in

the light of whether they produce clearly new causal scientific explanations, then it becomes clear that

low link uncertainty on its own does not automatically give us new causal explanations. As mentioned,

Sullivan (2019) has been thoroughly criticized by Räz and Beisbart (2022) and so I won’t discuss those

cases further. Instead, I will look at Meskhidze (2021) as a more detailed example arguing for the

ability to get scientific explanations from ML models.

Her example involves a machine learning model used in cosmology. She discusses PkANN, a

machine learning model that predicts the large scale distribution of matter, using as its training data

the outputs of a large number of runs of (physics-based) N-body simulations. The machine learning

model emulates these N-body simulations, and does so with good accuracy (less than 1% deviation

from the N-body simulation outputs) at a much lower computational cost. The setup is thus one where

a machine learning model has been trained on a physics-based model, and is used in practice primarily

for performance-based reasons. Meskhidze (2021) then proceeds to discuss what explanations can be

obtained from this machine learning model in detail. She relates this in particular to the distinction

Batterman (1992) makes between type (i) and type (ii) why questions: type (i) why questions ask

why a phenomenon occurred in some particular circumstance while type (ii) why questions ask why

phenomena of this general type occur across a variety of circumstances.

To start with, she sees limitations on what one can expect: “cosmological N-body simulations can

answer Batterman’s type (ii) why questions: why phenomena of this general type occur across a variety

of circumstances. As minimal models of structure formation, they allow one to abstract away from

any details of particular cosmological models, and, in doing so, reveal patterns evident across various

instantiations of cosmological parameters. Machine learning algorithms exploit these patterns. This

means, however, that machine learning algorithms cannot answer Batterman’s type (ii) why questions.”

(Meskhidze, 2021, p.12) In other words, the lack of physical representations and coherence with physical

laws is considered problematic to the acquisition of certain explanations. This is typical of ML models

trained in this way. Kawamleh (2021) gives a nice discussion of an ML model predicting climate

change which violates conservation of energy laws (especially outside its training domain) and argues

this is going to be the case for all similar ML models because they all lack physical representations.

And, indeed, Meskhidze (2021) observes the same thing for PkANN. However, she argues that another

type of why question can be answered by the machine learning model: “machine learning algorithms

can answer type (i) why questions: why, for example, our universe has the particular distribution of

matter it does. By filling out the parameter space of interest, such methods can point cosmologists

to the relevant values of the cosmological parameters that led to a particular distribution of matter.”
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(Meskhidze, 2021, p.12) As a machine learning model can supply particular values with high accuracy,

the idea is that it can therefore contribute to these ’how-actually’ explanatory questions.

Yet, are these particular values enough for an answer to the why question? If we look at causal

accounts of explanation, then something is missing. For Woodward (2005) a scientific explanation

consists of both the actual values and a generalization covering counterfactual cases. Similarly, for

mechanistic accounts one needs both a causal mechanism (sketch) and particular values to answer

these why questions. In the cosmology case we do, of course, have access to a covering rule (causal

relation) and mechanism sketch, in the form of the physical laws used in N-body simulations. So, we

can get the type (i) explanations by combining the correct values with these physics-based models.

But isn’t the physics-based model doing the explaining in that case? It seems that PkANN can make

finding values more efficient, but that it is not the machine learning model itself that supplies the

causal explanation. After all, the physics-based model is needed to meet the requirements of causal

accounts of scientific explanations. To make the same point in a different way: had we just had PkANN

then we would not have been able to supply a causal explanation, because PkANN does not give us

a causal mechanism sketch or the kind of generalization that Woodward (2005) is asking for. PkANN

just like other predictive ML models, does not account for confounding variables. Nor do we know

what function PkANN is approximating (Das and Rad, 2020), which further complicates the use of

just PkANN to provide a (causal) scientific explanation. As a result, the machine learning model plays

a very minor role here, as essentially a more convenient way to calculate the values figuring in an

explanation3 that still employs the physics-based model. Without a clearer path to getting a causal

explanation out of the ML model on its own I’m skeptical that this kind of case gives us an example

of how ML can be used to acquire (causal) scientific explanations.

Rather than looking at ML models in terms of accuracy compared to training data and physics-

based models (as Knüsel and Baumberger (2020) and Jebeile et al. (2021) do in a similar way to

Meskhidze (2021)), I find it more promising to look at the prospects of explainable AI techniques.

If we better understand why an ML system provides us with a certain prediction then we might use

that insight into the ML models to acquire explanations. Explainable AI has theoretically been linked

to causal scientific explanations (Beckers, 2022; Buijsman, 2022) and there have recently been some

attempts in explainable AI to extract structural equation models from standard (deep) neural networks

that naturally link to the question central to this paper. Biswas et al. (2022) is one example, where a

structural equation model is created using variables representing familiar properties in an attempt to

mirror the behaviour of the ML system. More interesting here are the techniques aiming to abstract

3Note that these are not, as in section 3, values of treatment effects but rather are values of variables figuring in the
explanation. The causal graph thus remains the same, it is only instantiated in a particular way based on the outcomes
of PkANN.
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a set of structural equation models from (deep) neural networks (Geiger et al., 2021, 2023; Wu et al.,

2023) based on theoretical work on abstracting causal models by Beckers and Halpern (2019). These

explainable AI techniques aim to abstract a set of structural equations (often displayed in graph form,

to mirror the graph representation of the neural network they start with) from the much larger set of

equations that make up the neural network. The idea is that we can start with the neural network as a

directed acyclic graph, and in fact one that meets all the requirements of a structural equation model.

However, it lacks representations and has so many nodes that some abstraction is needed. So, the

method aims to find a smaller, interpreted, structural equation model that is a more abstract version

(in the way defined by Beckers and Halpern (2019) in terms of there being a translation function τ

that maps the effects of interventions from the less onto the more abstract causal model) of the neural

network. Geiger et al. (2021) do this by first formulating a hypothesis structural equation model,

whose more abstract representations are then linked to parts of the neural network. The abstract

model is then verified through the performance of interventions on the abstract model, the effects

of which are checked against their effect on the neural network itself. Wu et al. (2023) applied this

technique to Alpaca, a large language model with 7 billion parameters. For a specific task consisting

of an instruction (‘Please say yes only if it costs between [X.XX] and [X.XX] dollars, otherwise no.’)

and then a price (e.g. ‘3.50 dollars’) they managed to formulate simple structural equation models

consisting of at most two additional nodes. Despite this simplicity these models correctly captured the

behaviour of Alpaca on the task in 85% of all test cases, additionally generalizing well to variations

of the instruction (different price boundaries). So, while there is undoubtedly a lot of work still to do

in developing this method, there are some promising first steps towards techniques that can extract

manageable structural equation models from (very large) deep neural networks.

As a cautionary note before moving on, the authors of these papers typically present the resulting

structural equation models as causal models. I am hesitant to directly speak of causation in the setting

where the output of an ML model is ’caused’ by the input of the ML model. ML models are best

seen as software and these are standardly classified as abstract objects (Turner, 2011; Duncan, 2017),

so applying talk of causation directly to the ML model (as opposed to a particular implementation

on a physical machine) is somewhat problematic. There is counterfactual dependence though, and

structured in such a way that it’s possible to use the techniques of causal inference. Thanks to

that the resulting models are structural equation models using physical variables (e.g. a temperature

variable as the outcome and variables for CO2 and amount of sea ice as initial variables) and can

therefore be interpreted as candidate causal models for the physical world, separately from their link

to an ML model.

This suggests an easy route towards (causal) scientific explanations from predictive ML models:
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we need to extract/abstract a structural equation model from the predictive model and then we have

a candidate explanation for the scientific phenomenon that the ML model predicts. However, I do not

expect things to be quite as easy as that. The problem of confounding variables remains, and if we were

to abstract a structural equation model from the ML model predicting risk of death from pneumonia

based on one’s medical information (see top of section 3) then we will still get a causal model on

which having asthma causes a lower risk of death from pneumonia. Likewise, if we were to abstract a

structural equation model from the climate ML model discussed by Kawamleh (2021) then the resulting

causal model would fail to respect conservation of energy laws. We may get a candidate for a causal

scientific explanation, but it is certainly not going to give us a correct explanation for one’s actual

risk of dying. In other words, the structural equation model may accurately capture the dependencies

inside the ML model, it does not capture the causal dependencies in the actual world. Perhaps if the

confounding variables, in this example that of receiving additional treatment, are included among the

input variables of the ML model such biases can be mitigated. Pietsch (2016) for example, argues

for a representative data set that includes all (or at least a substantial part) of the relevant variables.

However, the general issue that predictive ML models are biased will remain, and adding variables will

not be enough to get out of that problem, at the very least because a predictive ML model has nothing

that accounts for the causal relations between the input variables. Rather, it might be a way to end

up with more useful structural equation models that can then be refined through testing procedures

that involve interventions rather than mere predictions. If we obtain causal scientific explanations at

the end of such a longer procedure we can still say that the explanation was obtained in part because

of the initially extracted structural equation model from the ML model. Predictive machine learning

might not give us immediate explanations in such a scenario, but it still plays an important role in

finding new causal scientific explanations. For the more general case there is therefore also some reason

for optimism, though it is tied (on my exposition of it here) to identifying what dependencies the ML

model exploits to determine the output. That is precisely the kind of requirement of explainability

that Sullivan (2019) aim to avoid by focusing on link uncertainty.

5 Conclusion

Can we acquire scientific (causal) explanations from machine learning models? I argue that we can

answer positively, though with some reservations. I’ve shown that machine learning models specifi-

cally designed for the two steps of causal inference (learning causal graphs and estimating treatment

effects) fit the bill. We can identify possible causes using purpose-built machine learning models and

we can estimate the strength of the causal relations using double machine learning methods. How-
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ever, standard machine learning models are not suited for this type of causal inference, as they are

systematically biased due to the lack of control for confounding variables. Likewise, standard machine

learning models seem difficult to use for learning causal graphs/causal discovery as they do not give

us any information on the causal relations between the input variables.

That being said, there are promising techniques that aim to extract structural equation models from

predictive ML models. These can give us new candidate explanations to test, based on ML models

that manage to predict physical phenomena particularly well. As these structural equation models

will inherit the problems of predictive ML models (i.e. fail to account for confounding variables as

well as include violations of physical laws) I consider it unlikely that they will immediately yield

good explanations without further work on our part. Still, they may be valuable starting points in

the formulation of new scientific explanations and as such this gives us a route to causal scientific

explanations from ML models that is more concrete than that offered by e.g. Meskhidze (2021).

In addition, it introduces some caution to the arguments of Pietsch (2016), who does not discuss

confounders or the tendency of ML models or the law violations that complicate the extraction of

causal explanations from ML models.
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