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Abstract

Explicating the concept of coherence and establishing a measure for assessing the coher-
ence of an information set are two of the most important tasks of coherentist epistemology. To
this end, several principles have been proposed to guide the specification of a measure of co-
herence. We depart from this prevailing path by challenging two well-established and prima
facie plausible principles: Agreement and Dependence. Instead, we propose a new proba-
bilistic measure of coherence that combines basic intuitions of both principles, but without
strictly satisfying either of them. It is then shown that the new measure outperforms alterna-
tive measures in terms of its truth-tracking properties. We consider this feature to be central
and argue that coherence matters because it is likely to be our best available guide to truth, at
least when more direct evidence is unavailable.
KEYWORDS: coherence, epistemic principles, truth-tracking, Bayesian coherentism, formal
epistemology

If an information set is highly coherent in the sense that its elements fit well together, then
it is intuitively more plausible than a set where this is not the case.1 To illustrate this, consider
the following scenario: Study 1 reports that glaciers are melting, Study 2 reports that global sea
levels are rising, and Study 3 reports that sea surface temperature is rising. In another scenario,
Study 1 also reports glaciers melting, while Study 2 reports global sea level falling, and Study 3
reports sea surface temperature remaining more or less constant. Obviously, the three studies
mentioned in the first scenario are coherent, while in the second scenario, according to every-
thing else we know (that is, taking into account our scientific background knowledge), they are
in some tension with each other. Now, the higher degree of coherence of the three studies in the
first scenario is not a guarantee of their truthfulness, and yet their higher coherence makes the
studies in the first scenario seem more plausible overall than the studies in the second scenario.

While such coherence considerations are regularly used in everyday reasoning (see, for ex-
ample, Harris and Hahn, 2009 and Hahn et al., 2016), it is debatable whether they also have
normative epistemological significance. To resolve this issue, we need to be clear about what
coherence refers to, as its definitions often remain vague and the use of the concept is not uni-
form (Olsson, 2022). Furthermore, the question arises whether rational degrees of belief should
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1We follow Bovens and Hartmann (p. 10 2003) in taking coherence to be a property of information sets and not,
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be oriented to the degree of coherence of the corresponding information sets. To answer such
questions we need a way to quantify coherence. The literature in formal epistemology pro-
vides a number of probabilistic measures of coherence that are supposed to do just this (see
Shogenji, 1999; Glass, 2002, Olsson, 2002; Fitelson, 2003; Bovens and Hartmann, 2003; Douven
and Meijs, 2007; Schupbach, 2011; Koscholke et al., 2019). It turns out, however, that the various
proposed measures may differ fundamentally in their assessment. We therefore also need to
identify which measure is most appropriate for determining the normative role of coherence
considerations.

Three types of arguments are used for this purpose. First, the proposed measures are con-
fronted with test cases for which we have a clear intuition (for a survey, see Koscholke (2016)).
Unfortunately, these test cases usually involve only information pairs and triples, as it is diffi-
cult to develop reliable intuitions for larger information sets. Second, empirical studies are con-
ducted to determine which coherence measure best represents our coherence intuitions (Harris
and Hahn, 2009; Koscholke and Jekel, 2017). In addition to the controversial is-to-ought in-
ference (Elqayam and Evans, 2011), the available empirical results also cannot be used as a
normative guide because they are too diverse. Third, one can point to plausible normative
principles that a proposed coherence measure satisfies. Interestingly, it turned out that the two
most important normative principles, AGREEMENT and DEPENDENCE, are mutually exclusive
(Schippers, 2014). We will examine these two principles in more detail below and argue that
while they have some plausibility for smaller information sets, they are too strict for larger
information sets. Finally, we will argue that the best way to evaluate a proposed coherence
measure is to show that it serves a desirable function, namely that of helping us figure out
which information sets contain true information.

In the next section, we introduce the principles of AGREEMENT and DEPENDENCE, and use
counterexamples to show that both principles are generally implausible as well as largely inap-
plicable. If nothing else, this is bad news for the relative overlap measures currently discussed
in the literature, as we will show in Section 2. In Section 3, we introduce a new relative over-
lap measure and show that it satisfies DEPENDENCE for small information sets, which we also
consider desirable from a normative point of view. In the following Section 4, we will then ar-
gue that we should generally evaluate coherence measures according to how well they fulfill a
particular function. To do this, we examine the truth-tracking properties of coherence measures
and show that our new measure is a particularly good indicator of truth. We conclude with
some thoughts on the wider implications of our results (Section 5).

1 Agreement and Dependence

It is clear that not all information sets are equally coherent. For instance, there is an obvious
difference between the degrees of coherence of the information sets S = {“This man speaks
Italian”, “This man owns a copy of Dante’s La Divina Commedia”} and S′ = {“This man speaks
Italian”, “This man owns a copy of the US Declaration of Independence”}. The information
items in S fit more strongly together than those in S′. Any adequate measure of coherence
should reflect this. However, once we consider larger information sets, the intuitions are not
as clear. For instance, compare the information sets S′′ = {“This man speaks Italian”, “This
man owns a copy of La Divina Commedia”, “This man is a linguist”, “This man is from South
Korea”} and S′′′= {“This man speaks Italian”, “This man owns a copy of the US Declaration of
Independence”, “This man is a linguist”, “This man is from Italy”}. It is not clear which of the
two is more coherent. Some authors even claim that it cannot always be determined whether
one information set is more coherent than another (see, for example, Bovens and Hartmann,
2003).

Instead of referring to intuitions about specific test cases, an alternative approach to deter-
mining which measure of coherence is the most adequate relies on normative principles that
have a certain intuitive appeal. The idea is that any adequate measure of coherence should
satisfy these principles. For instance, consider the so-called Principle of Agreement (hereafter
simply AGREEMENT). The principle goes back to Bovens and Olsson (2000) and has been re-
vived by, for example, Schippers (2014) and Koscholke et al. (2019). It roughly states that in-
creasing conditional probabilities of information items given the other information items from
the considered information set should increase the coherence because there is then more mutual
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support. Here is a precise definition (following Koscholke et al., 2019):

Definition 1. (AGREEMENT) Let us assume that the following inequality holds for all non-empty dis-
joint subsets S′ and S′′ of an information set S for two probability distributions P1 and P2:

P1

( ∧
sj∈S′

sj

∣∣∣∣∣ ∧
sm∈S′′

sm

)
> P2

( ∧
sj∈S′

sj

∣∣∣∣∣ ∧
sm∈S′′

sm

)

Given a coherence measure Coh, we say that it satisfies AGREEMENT if it also holds that CohP1(S) >
CohP2(S), where the subscripts P1 and P2 refer to the two probability distributions.

Another principle that has an intuitive appeal is the Principle of Dependence (hereafter DE-
PENDENCE). Simply put, DEPENDENCE states that the coherence of an information set is above
(below) a certain threshold if the information it contains is positively (negatively) correlated. To
make the principle more precise, some definitions are in order:

Definition 2. A probability distribution P is defined over a set of propositional variables
V:={H1, . . . , Hn} with the values Hi and ¬Hi for all i = 1, . . . , n.

(i) V is independent (relative to P) iff P
(∧

i∈I Hi
)

= ∏i∈I P(Hi) for all non-empty subsets
I⊆{1, . . . , n}.

(ii) V is positively correlated (relative to P) iff P
(∧

i∈I Hi
)
≥ ∏i∈I P(Hi) for all non-empty subsets

I⊆{1, . . . , n} and at least one of the “≥” is a “>”.

(iii) V is negatively correlated (relative to P) iff P
(∧

i∈I Hi
)
≤ ∏i∈I P(Hi) for all non-empty sub-

sets I⊆{1, . . . , n} and at least one of the “≤” is a “<”.

Thus, the principle can be formulated as follows (again following Koscholke et al., 2019):

Definition 3. (DEPENDENCE) Given a coherence measure Coh, we say that it satisfies DEPENDENCE
if there is a threshold τ such that for any information set S:

• Coh(S)> τ if S is positively correlated,

• Coh(S) = τ if S is independent,

• Coh(S)< τ if S is negatively correlated.

Before proceeding, we note that DEPENDENCE refers to a threshold τ which can be used
to define absolute (or categorical) coherence and absolute (or categorical) incoherence: an in-
formation set S is absolutely coherent if Coh(S) > τ and absolutely incoherent if Coh(S) < τ.
(For the Shogenji measure, τ = 1, and for the Fitelson measure, τ = 0.) These are useful terms,
whose further investigation we leave open here. Instead, we examine how the two principles
are related.

In a seminal article, Koscholke et al. (2019) state (in their Theorem 5) that AGREEMENT and
DEPENDENCE are mutually exclusive: any measure that satisfies one principle, they claim, can-
not satisfy the other. Their proof refers to Schippers (2014), who shows that another principle,
which he calls INDEPENDENCE and which is weaker than DEPENDENCE, is inconsistent with
AGREEMENT for n = 2. It should be noted, however, that this result allows for the possibility
that AGREEMENT and DEPENDENCE are compatible for n≥ 3, which is the more interesting case
anyway. While this conjecture should be investigated further, for now we accept the incompat-
ibility of the two principles.2 This would be bad news, since both principles are intuitively
appealing to begin with. Koscholke, Schippers, and Stegmann accordingly advocate a pluralis-
tic position according to which we should, for each principle, find the best measures that satisfy
it. We do not think this is a good proposal because we do not think that AGREEMENT is an
acceptable condition for coherence measures. To this end, we consider the following counterex-
ample.

2At this point, it is helpful to note that increased mutual conditional probabilities are usually accompanied by in-
creased correlation. However, AGREEMENT and DEPENDENCE are defined as general principles, so they must hold in all
cases (or at least for all cases at a certain cardinality of the information sets under consideration). Since there are pairs of
probability functions over a given information set where increased conditional probability can change the correlation
from positive to independent or even to negative, it follows that the two principles are inconsistent (at least for n = 2).
This is because the two principles suggest inconsistent verdicts in these cases.
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PARTY PARTICIPATION: There is a large party tonight. Now consider two situations:

1. Mr A is very likely to attend the party. Ms B also plans to attend it. However, she
tends to avoid A. So, if A is not going to be at the party, B is very likely to join it. If
A goes, however, B may have second thoughts.
Suppose that the probability distribution is defined by the following three values:
P(A) = P(B | ¬A) = .9 and P(B |A) = .6, where A and B represent Mr A and Ms B
attending the party, respectively.

2. It is unlikely that Mr A attends the party. If he does not attend it, then Ms B is also
unlikely to attend it. However, she enjoys A’s company, so if A is going, B might
change her mind.
Let us assume that the probability distribution is defined by the following three val-
ues: P(A) = P(B | ¬A) = .1 and P(B |A) = .5.

In both cases, two independent witnesses each give the reports

R1: Mr A attended the party.

R2: Ms B attended the party.

In which situation do the two reports fit together better, 1 or 2?

The question is not in which case the two reports are more likely, but rather in which situa-
tion the two reports fit together better or, equivalently, in which situation there is less tension
between them. Taking this into account, it is rather clear that the two reports R1 and R2 fit to-
gether better in situation 2. In the first version, both Mr A and Ms B are likely to attend the
party, but they are negatively correlated: if Mr A goes, Ms B is less likely to go too. In situa-
tion 2, on the other hand, Mr A’s attendance encourages Ms B’s, and as DEPENDENCE requires,
the reports are therefore more coherent.

However, any measure that respects AGREEMENT will give an opposite response because
all the mutual conditional probabilities are greater in situation 1 than in situation 2: P1(A |B) =
.86 > P2(A |B) = .36 and P1(B |A) = .6 > P2(B |A) = .5. So, according to these measures,
situation 1 is the more coherent one. We believe that this is clearly wrong, because in situation 1
there is more tension between A and B than in situation 2, which suggests that AGREEMENT is
a problematic principle and that the same holds for any measure that satisfies it.

It also seems that AGREEMENT (or consideration of mutual conditional probabilities) does
not really have much to do with the concept of coherence. Take BonJour (1985, p. 93) as a
classical reference for what it means for an information set to be coherent:

It is reasonably clear that this “hanging together” depends on the various sorts of
inferential, evidential, and explanatory relations which obtain among the various
members of a system of beliefs, and especially on the more holistic and systematic
of these.

However, AGREEMENT is not related to any relevant aspects of inferential, evidential or ex-
planatory relations. The principle only considers conditional probabilities of various subsets,
so it does not capture relevant inferential relations between information items because it does
not measure whether some information item may be inferred from another. It also does not
capture evidential relations, because we cannot tell whether some information items provide
evidence for each other just by looking at the relations among conditional probabilities. Finally,
it is also clear that AGREEMENT does not capture the explanatory relations in an information
set, as these do not depend on conditional probabilities of various subsets. We therefore sug-
gest that AGREEMENT should not be seen as a desideratum for measures of coherence and that
any measure which satisfies it should be rejected.

Since DEPENDENCE corresponds to evidential relations, as it captures how information
items are mutually confirmatory, and since the principles AGREEMENT and DEPENDENCE are
known to be mutually exclusive, we still have the possibility of motivating coherence measures
that satisfy DEPENDENCE. However, it turns out that DEPENDENCE is too strict for larger infor-
mation sets and should thus not be a general desideratum for an acceptable coherence measure.
This is essentially because there are information sets in which all propositions are positively
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correlated but have almost no overlap. Without a sufficient amount of overlap, however, there
can be no “hanging together” in the first place, and thus no coherence.

We can show the issue with the following example. Suppose that there is a town where it
rains frequently. Let R represent that it is raining in the town, let B represent that a person in
the town is reading a book, and let C represent that a person in the town is wearing a raincoat.
Suppose that the probability of R (rain) is .5. The probability of B (reading a book) given R is .2,
meaning that when it rains, 20 % of people are expected to read books. The probability of B
given not-R (no rain) is .1 because fewer people read books on a non-rainy day. The probability
of C (wearing a raincoat) given R is .9 and only .3 given not-R. Assuming that the propositional
variable R probabilistically screens off the propositional variable B from the propositional vari-
able C (or, in causal language, R is the common cause of B and C), we have enough information
to calculate the joint probability distribution over all three variables.

Note that the set S = {R, B, C} is positively dependent, although there is very little relative
overlap of the three information items because most people of the town do not read books
regardless of the weather or what they are wearing. Hence, it is not clear whether the set S
should be considered as absolutely coherent. The set S′= {R,¬B, C} (rain, not reading a book,
but wearing a raincoat) has, after all, a much higher degree of relative overlap.

More generally, both DEPENDENCE and AGREEMENT may be criticized because they con-
sider subsets of an information set (see Olsson’s (2022, pp. 51-57) similar argument against
subset measures of coherence). The conditions specified in Definition 1 (for the latter) and in
Definition 2 (for the former principle), after all, refer to subsets of a given information set. Con-
sequently, these principles only provide guidance for cases where all non-empty subsets of an
information set are correlated in the same way (DEPENDENCE), or for cases where the condi-
tional probabilities of information conjuncts from specifically defined subsets are all greater
under one probability function than under another (AGREEMENT). For the vast majority of sets,
these conditions do not hold, as they are very demanding, and the principles do thus not apply.

For instance, if we use a few lines of code to generate 10,000 random probability distribu-
tions for variously-sized information sets we find the following: For sets with three information
items, DEPENDENCE only applies in 2400 cases. For sets with four information items, the num-
ber of cases where it is applicable drops to 227, and further to nine for sets with five, and all
the way down to zero for sets with six information items. This is because the larger a random
information set is, the more likely it is that it is neither independent nor positively/negatively
correlated as defined by the conditions of Definition 2. Notably, any information pair is ei-
ther independent or (positively/negatively) correlated. This provides a case in point of using
DEPENDENCE as a normative principle of coherence for information pairs.

On the other hand, AGREEMENT involves a comparison of two probability distributions, so
we assume that it provides normative guidance in even fewer cases than DEPENDENCE. In fact,
AGREEMENT does not even cover all information pairs. For instance, consider an information
set S = {A, B} and two probability distributions P1 and P2 such that3 P1(A, B) = P2(A, B), but
P1(A,¬B) = P2(¬A, B) and P1(¬A, B) = P2(A,¬B). It is easy to see that in this case P1(A |B) T
P2(A |B), but P1(B |A) S P2(B |A), so AGREEMENT does not apply.

Moreover, in cases of information pairs where AGREEMENT applies, it sometimes provides
the intuitively wrong assessment (recall the PARTY PARTICIPATION example). DEPENDENCE,
on the other hand, always provides reasonable guidance for information pairs but increasingly
fails to apply when larger information sets are considered. In summary, the two principles are
unlikely to be of much use in practice.

2 Relative Overlap Measures

Let us now consider the class of relative overlap measures. The idea underlying these measures
is that an inconsistent information set, whose joint probability is therefore zero, is maximally
incoherent, while an information set consisting wholly of equivalent propositions is maximally
coherent. The coherence of an information set then corresponds to the degree of relative overlap
of the propositions in the probability space (see Figure 1). These considerations motivate the fol-
lowing simple measure of relative overlap, CohOG(S), of an information set S = {H1, . . . , Hn},

3When appropriate, we use the convention of representing the conjunction A∧ B∧ . . . as A, B, . . . .
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H1 H2

H1, H2

Set 1

H1 H2

H1, H2

Set 2

Figure 1: The idea behind relative overlap measures: set 1 is more coherent than set 2 because
the two information items—H1 and H2—overlap more in set 1 than in set 2.

independently proposed by Olsson (2002) and Glass (2002). It is given by

CohOG(S) :=
P(H1, H2, . . . , Hn)

P(H1∨H2∨ · · · ∨Hn)
(1)

This measure has some initial plausibility. It has also been shown by Koscholke et al. (2019)
that it satisfies AGREEMENT for n = 2. Furthermore, when restricted to information pairs, such
as when considering the two-place relationship between explanans and explanandum, it may
be fruitfully used to rank explanations and to guide inference to the best explanation (Glass,
2012). Numerical studies suggest that it also satisfies AGREEMENT for n> 2, but a strict proof is
still lacking. Besides the already mentioned criticism of AGREEMENT, this measure faces other
serious objections.

Perhaps the most serious problem takes its cue from the observation that the joint prob-
ability of all propositions (that is, the numerator in eq. (1)) can never increase when another
proposition is added. Similarly, the probability of a disjunction (that is, the denominator in
eq. (1)) cannot decrease when another proposition is added. Consequently, when measured
by CohOG, the coherence of an information set cannot be increased by adding new information.
The following counterexample shows that this is counterintuitive (from Bovens and Hartmann,
2003). Consider the information pair S = {B, G} with B: “Tweety is a bird” and G: “Tweety
is a ground-dweller”. Obviously, S is not very coherent, since almost all birds can fly. An
overlap measure like CohOG captures this correctly, since there is not much overlap between
ground-dwelling animals and birds. However, adding the proposition P: “This animal is a pen-
guin” should increase the coherence, since all penguins are ground-dwelling birds, so the three
propositions fit together very well. That is, the coherence of S′ = {B, G, P} should be greater
than that of S. Unfortunately, CohOG cannot provide this result, because the joint probability of
B, G, and P (in the numerator) cannot be larger than the joint probability of B and G alone, for
purely mathematical reasons, while the probability of the disjunction B ∨G ∨ P (in the denom-
inator) cannot be smaller than the probability of B ∨ G, also for purely mathematical reasons.
Thus, according to CohOG, adding P does not increase coherence, although “Tweety is a pen-
guin” reduces the tension between “Tweety is a bird” and “Tweety is a ground-dweller”. This
and similar counterexamples were considered so damaging to the Olsson–Glass measure that
it was largely abandoned (note, however, that Olsson (2022) defends CohOG as a measure of
agreement, not coherence).

The aforementioned problem can be avoided if, instead of using only the relative overlap
of the entire information set S, that is, CohOG(S), one also considers the relative overlap of all
non-empty non-singleton subsets of S and then takes the average of all these values (see Meijs,
2005, 2006). This yields the following measure CohOG′ :

CohOG′(S) :=
1
m

m

∑
i=1

CohOG(S′i) (2)

where S′i represents any of the m non-empty non-singleton subsets of the information set S and
m := (2n−n)− 1. This measure resolves the Tweety counterexample we mentioned earlier
because, contrary to CohOG, the coherence of an information set may now increase, decrease,
or remain unchanged when we add new information. Alas, the measure CohOG′ suffers from
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a formal limitation. It cannot judge a given information set S as more coherent than its most
coherent two-element subset (see Koscholke and Schippers, 2016). This is a persistent issue:
even if the relative overlaps of subsets are averaged in some other way, the issue still remains.

Koscholke et al. (2019) therefore propose a new measure to overcome these problems. Their
measure takes the idea of relative overlap and combines it with the principle of average mutual
support (Douven and Meijs, 2007); that is, to judge how coherent an information set is, we
should take a look at how much all information items in subsets of the information set under
consideration support each other. The idea behind the measure is that we first consider all pairs
S′ and S′′ of non-empty disjoint subsets of S. Then we take the conjunction of the information
items in these subsets and use the simple measure CohOG to measure how much relative overlap
there is between them. In other words, to assess how coherent an information set S is, we need
to consider the average relative overlap of non-empty disjoint subsets of conjunctions in S.
Formally:

CohOG∗(S) :=
1
k

k

∑
i=1

CohOG

( ∧
sj∈S′

sj,
∧

sm∈S′′
sm

)
i

(3)

where k :=
[
(3n− 2n+1)+ 1

]/
2 and S′ and S′′ are subsets as described above.

This measure is relatively complicated, but that may be just the price we have to pay to
get a satisfactory solution. At first glance, it seems to do just that: it avoids the weaknesses of
the two relative overlap measures mentioned earlier, CohOG and CohOG′ . It also provides the
intuitively expected judgment in some standard test cases from the literature and satisfies the
principles one might expect from coherence measures. In particular, it satisfies AGREEMENT in
general (Koscholke et al., 2019, p. 1272).

Before continuing, it needs to be made clear that all three measures of relative overlap,
CohOG, CohOG′, and CohOG∗, are equivalent when information pairs are considered. More-
over, it can easily be proven that they satisfy AGREEMENT for information pairs (Koscholke
et al., 2019, p. 1272). However, although AGREEMENT is praised as an important principle,
it is an open question whether CohOG and CohOG′ satisfy the principle for sets with three or
more information items (Schippers, 2014, p. 3830). As discussed earlier, we take AGREEMENT
to be implausible, as the PARTY PARTICIPATION example and other identified issues from the
previous section show. Yet, the fact that it is unsettled whether it is satisfied by any additional
relative overlap measures (besides CohOG∗) further decreases the principle’s importance.

Unfortunately, the measure CohOG∗ also falls short. The measure is defined as the aver-
age coherence of conjunctions from all respective subsets. Hence, for n information items, the
measure averages over

[
(3n−2n+1)+1

]/
2 computations of relative overlaps (each computed us-

ing CohOG) in specifically defined subsets (Koscholke et al., 2019). This means that the computa-
tional load exponentially increases when the set under consideration increases and the measure
is therefore computationally intractable if we were to use it for large information sets. The au-
thors praise the measure for the fact that the amount of computation required is only half of
what is required to compute coherence using the recipe of Douven and Meijs (2007). This is not
much consolation, however, because the number of calculations required increases exponen-
tially with the size of the information set. For example, to compute the coherence of an infor-
mation set with ten information items, we need to perform 28,501 computations, and for twenty
information items we already need to perform almost 2 billion computations (1,742,343,625, to
be exact). The measure is therefore limited to information sets with low cardinality.

3 A New Relative Overlap Measure

All problems related to the so-far-mentioned measures of relative overlap seem to stem from
the fact that they do not respect DEPENDENCE—they may judge an information pair (as in
the PARTY PARTICIPATION example) or a triple of positively correlated information items as
less coherent than another information set with negatively correlated information. Note also
that although DEPENDENCE is plausible for smaller information sets (AGREEMENT is already
implausible for information pairs), for larger n it is not clear that strict versions of AGREEMENT
or DEPENDENCE make sense from a normative point of view. Requesting that either principle
hold may be too strict a requirement.
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For example, consider two information sets, each containing one million information items.
The first information set is only slightly positively correlated, while the second is strongly pos-
itively correlated, but there is some information that is slightly negatively correlated with the
rest of the information set. According to DEPENDENCE, the coherence of the first information
set is higher. But is this plausible? Should not rather the strong positive correlation of the bulk
of the second information set compensate for the (low) negative correlation of a few informa-
tion items with the rest, so that in this case the second information set can be classified as more
coherent than the first information set?

Note also that a measure of coherence may very well fail to satisfy either AGREEMENT or
DEPENDENCE. It may also only satisfy either principle in a limited sense, for example, only
for information sets of lower cardinality. What is clear, though, is that any admissible measure
should satisfy DEPENDENCE at least for information pairs. If two information items disconfirm
each other, then the information pair simply cannot be more coherent than another pair of mu-
tually confirmatory information items. Our PARTY PARTICIPATION case from above shows that
measures from the literature which satisfy AGREEMENT for information pairs fail in this regard.
However, this does not mean that all measures which take into account the extent of relative
overlap in one way or another suffer from this limitation.

To construct one such measure that avoids this problem, let us first consider the standard
independence deviation (that is, correlational) measure of coherence, which was provided by
Shogenji (1999):

CohSh(S) :=
P(H1, H2, . . . , Hn)

P(H1)P(H2) · · · P(Hn)
(4)

Although this measure suffers from its own problems4, it is easy to see that it satisfies DEPEN-
DENCE. If the information set under consideration is positively (negatively) correlated, then the
numerator is greater (less) than the denominator and the measure will judge an information set
to have coherence above (below) the threshold value of 1. If it is independent, then the numera-
tor and the denominator are equal and the amount of coherence is exactly at the threshold value
of 1.

We also observe that CohSh(S) is defined as the ratio between the joint probability of the
information items in the information set S and the probability of the same items if they were
probabilistically independent and had the same marginal probabilities. We can generalize this
construction principle to introduce independence deviation intuitions into a relative overlap
measure. Before that, however, we need to introduce a new concept, which will prove useful in
the further course.

Definition 4. A probability distribution P is defined over a set of propositional variables
V := {H1, . . . , Hn}. The associated probability distribution P̃ satisfies the following conditions: (i) P̃ is
defined over the same set V; (ii) V is independent relative to P̃; (iii) P̃(Hi) =P(Hi) for all i = 1, . . . , n.

The Shogenji measure of coherence of an information set S can then be written as

CohSh(S) =
P(S)
P̃(S)

(5)

Note that one of the simplest prima facie measures of coherence is obtained by merely consid-
ering the joint probability of the information set S, that is, coh(0)

P (S) := P(S) (Olsson, 2021).5

This measure is not particularly convincing, but we can consider CohSh(S) as its improvement,
which results from normalizing coh(0)

P (S) by coh(0)
P̃ (S) = P̃(S). Since we use the associated

probability distribution P̃ in this expression, we can say that CohSh(S) is the coherence mea-
sure associated with coh(0)

P (S). This example leads to the following definition, which provides
a general construction recipe for including independence deviation intuitions in a coherence
measure:

Definition 5. Let S be an information set and P be a probability distribution defined over the correspond-
ing set of propositional variables. Furthermore, let cohP be a prima facie measure of coherence (relative

4For some standard counterexamples see Fitelson, 2003; Bovens and Hartmann, 2003.
5Coherence measures are always relative to a probability distribution. To avoid confusion, this is made clear by

adding a subscript where appropriate.
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to P) and let P̃ be the associated probability measure. Then

CohP(S) :=
cohP(S)
cohP̃(S)

(6)

is the associated measure of coherence if cohP̃(S)> 0.

This approach is indeed a simple way to include the deviation from independence in a co-
herence measure, and it is easy to see that CohP(S) = 1 when S is independent. That is, the
recipe always satisfies the principle of independence (Schippers, 2014): if an information set is
independent, its degree of coherence is always at a certain baseline value τ (here: τ = 1). Note
also that the qualification cohP̃(S)> 0 rules out certain measures of coherence, such as Fitelson’s
(2003) measure CohF, since its baseline value is 0. This problem can be simply solved by using
Coh′F =CohF+1 instead, whose baseline value is 1.

Besides this limitation, the recipe remains open about what should be admitted as a prima
facie measure. However, suppose that we use CohSh as our prima facie measure of choice. Then
the denominator cohP̃(S) will always be 1 because 1 is the independence baseline for CohSh and
the obtained measure will simply reduce to CohSh. The same holds for any measure that has
1 as its independence baseline (including, for example, Coh′F). It is easy to see that the only
genuine candidate measures will therefore be those that are not already compatible with the
intuition of independence deviation mentioned above.

In addition, there are other requirements that we place on an admissible prima facie mea-
sure. One of these requirements is SYMMETRY: the coherence of an information set does not
depend on the order in which the information items are presented. This requirement is au-
tomatically satisfied in our discussion, since we have assumed from the beginning that the
argument of a coherence measure is an information set, and for sets it is always true that, for
example, {A, B} = {B, A}. It should be noted, however, that the symmetry requirement rules
out most confirmation measures as candidates for prima facie coherence measures (although
symmetrized sums of them are still an option).

Let us now construct the associated measure of coherence from the Olsson–Glass measure
CohOG. This new measure of coherence provides a promising compromise between the two
main intuitions behind the notion of coherence—probabilistic relevance (that is, DEPENDENCE)
and relative overlap (that is, AGREEMENT)—without strictly satisfying either of them. We ob-
tain:

CohOG+(S) :=
CohOGP(S)
CohOGP̃

(S)
(7)

=
P(H1, . . . , Hn)

P(H1∨ · · · ∨Hn)

/
P̃(H1, . . . , Hn)

P̃(H1∨ · · · ∨Hn)

=
P(H1, . . . , Hn)

P̃(H1, . . . , Hn)
· P̃(H1∨ · · · ∨Hn)

P(H1∨ · · · ∨Hn)

= CohSh(S) ·
P̃(H1∨ · · · ∨Hn)

P(H1∨ · · · ∨Hn)

= CohSh(S) ·
1− P(¬H1) · · · P(¬Hn)

1− P(¬H1, . . . ,¬Hn)
(8)

This measure corresponds to the ratio between the actual relative overlap (that is, for P) and
the relative overlap that would exist if the propositions in question were independent and had
the same marginal probabilities (that is, for P̃). CohOG+ may therefore also be used as a measure
of absolute coherence: If CohOG+(S)> 1, then we are above the independence baseline and the
information set S is absolutely coherent. And if CohOG+(S)< 1, then S is absolutely incoherent.
It is also interesting to note that, as eq. (8) shows, CohOG+ is closely related to the Shogenji
measure (and only a little more difficult to compute).6

6The second factor in eq. (8) is greater than 1 if P(¬H1, . . . ,¬Hn) > P(¬H1) · · · P(¬Hn). For n= 2, this is exactly the
case when P(H1, H2) > P(H1) P(H2). That is, for n = 2, CohSh and CohOG+ agree on whether a given information set
is coherent or not. Interestingly, the generalization of the above equivalence does not hold for larger information sets,
so CohSh and CohOG+ may come to different judgments.
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P(H1, H2, H3, H4) = .0696 P(¬H1, H2, H3, H4) = .1057
P(H1, H2, H3,¬H4) = .0564 P(¬H1, H2, H3,¬H4) = .0619
P(H1, H2,¬H3, H4) = .0701 P(¬H1, H2,¬H3, H4) = .0572

P(H1, H2,¬H3,¬H4) = .0018 P(¬H1, H2,¬H3,¬H4) = .0627
P(H1,¬H2, H3, H4) = .0830 P(¬H1,¬H2, H3, H4) = .1017

P(H1,¬H2, H3,¬H4) = .0303 P(¬H1,¬H2, H3,¬H4) = .0901
P(H1,¬H2,¬H3, H4) = .0266 P(¬H1,¬H2,¬H3, H4) = .0849

P(H1,¬H2,¬H3,¬H4) = .0591 P(¬H1,¬H2,¬H3,¬H4) = .0389

Table 1: An example of a probability distribution P of an information quadruple for which
CohOG+ does not satisfy DEPENDENCE.

Interestingly, and contrary to other measures of relative overlap considered so far, we can
show that CohOG+ satisfies DEPENDENCE for information pairs and triples. That is, our new
measure satisfies DEPENDENCE for information sets where any adequate measure of coherence
arguably should satisfy this principle, whereas the other overlap measures from the literature
all fail to do so. The following proposition shows that our proposed measure satisfies this
desideratum (all proofs are in the Appendix):

Proposition 1. An agent considers information items H1, H2, and H3 with a prior probability
distribution P defined over the corresponding propositional variables. Let S2 := {H1, H2} and
S3 := {H1, H2, H3}. Then the following hold for i = 2, 3: (i) CohOG+(Si) > 1 if Si is positively
correlated; (ii) CohOG+(Si) = 1 if Si is independent; (iii) CohOG+(Si)< 1 if Si is negatively correlated.

This is a significant result because it shows that a measure that takes the intuition of relative
overlap seriously can account for probabilistic relevance considerations, even though the cor-
responding baseline measure of coherence, CohOG, does not satisfy DEPENDENCE (Schippers,
2014, p. 3840). Remarkably, CohOG+ satisfies DEPENDENCE even for information triples.

Note, however, that DEPENDENCE does not generally hold for CohOG+ when larger infor-
mation sets are considered, as the example of an information quadruple S = {H1, H2, H3, H4}
in Table 1 shows. It is easy to verify that this information set is positively correlated. However,
CohOG+(S) ≈ .996 < 1, which is below the threshold for absolute coherence according to this
measure. Hence, DEPENDENCE does not hold in general for CohOG+ . This is a welcome result
because DEPENDENCE is a demanding principle and it is doubtful whether it is reasonable to
require it for information sets of any size. And yet, DEPENDENCE is eminently plausible for
smaller information sets and CohOG+ satisfies it for n = 2 and 3. We therefore conclude that
CohOG+ provides a good compromise between relative overlap and dependence (or relevance)
considerations.

However, the objection could be raised that it is not even necessary to consider relative
overlap: it seems that we would be fine with a simple measure that considers only correlative
aspects of coherence, since such measures also satisfy DEPENDENCE. As we will now show, this
is not the case: the amount of relative overlap between the information items should also be
taken into account when determining the coherence of an information set.

If we want to measure only the deviation from the independence baseline, then we can
use a measure such as Shogenji’s CohSh (Shogenji, 1999). This, however, cannot be correct.
As Fitelson (2003, p. 196) points out, an information set can be j-wise independent (corre-
lated), but not i-wise independent (correlated) for any i 6= j.7 The Shogenji measure only cor-
responds to the n-wise (in)dependence for information sets of n information items, that is, the
only (in)dependence that matters for this measure is the overall joint coherence.

Fortunately, however, these problems can be avoided with our new measure, which com-
bines relative overlap and dependence considerations. Suppose that we have an information
triple S={H1, H2, H3} and that H1, H2, and H3 are jointly independent, but pairwise positively
correlated. This means that H1 and H2, H2 and H3, and H1 and H3 are each in mutual confir-
matory relations, even though H1, H2, and H3 are jointly independent. The amount of 2-wise
correlation, however, suggests that the information set should be considered to be absolutely

7An information set is i-wise independent (correlated) when all and only the subsets of size i are independent
(correlated).
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coherent. This is exactly the result that our new measure, contrary to the Shogenji measure,
gives. Hence, it seems that we should not just take the overall deviation from the indepen-
dence baseline into consideration, but also how much agreement there is (see also Olsson, 2022,
pp. 44-45, for a helpful discussion). This point is made precise in the following corollary to
Proposition 1.

Corollary 1. An agent considers an information triple S3 = {H1, H2, H3} with a prior probability
distribution P defined over the corresponding propositional variables. The information items are pair-
wise positively correlated, but jointly independent. Then the following hold: (i) CohSh(S3) = 1, that
is, S3 is assessed to be neither absolutely coherent nor absolutely incoherent on the Shogenji measure.
(ii) CohOG+(S3)> 1, that is, S3 is assessed to be absolutely coherent on the proposed new overlap mea-
sure.

In contrast to the Shogenji measure, which measures the amount of independence deviation
alone, CohOG+ takes into account not only the overall independence or correlation of an infor-
mation set, but also the amount of relative overlap. The CohOG+ measure is moreover com-
putationally tractable, unlike subset-based measures such as CohOG′ and CohOG∗ (which are
based on the idea of relative overlap) as well as Fitelson’s (2003) and Schupbach’s (2011) mea-
sures (which are based on the idea of independence deviation), and the measures discussed by
Douven and Meijs (2007) (which are based on the idea of mutual support). In summary, the
proposed new measure CohOG+ represents a fruitful compromise between relative overlap and
independence deviation while remaining computationally manageable.

4 The Truth-Tracking Argument

We have seen that our new measure satisfies the desirable principle DEPENDENCE for informa-
tion pairs and triples. This gives it an advantage over pure relative overlap measures. However,
it is not clear what principles, if any, should apply to larger information sets. Furthermore, our
intuitions about the coherence of larger information sets are not clear at all (which is suggested
by the lack of test cases with more than four information items; see, for example, the standard
test cases of Koscholke (2016). This is problematic because coherentism should say something
about the coherence of larger information sets in order to investigate the holistic justification of
our beliefs—a central concern of coherentism.

Therefore, coherence measures should be evaluated for larger information sets to see how
well they perform a particular function. In our case, this is to indicate the truth of the infor-
mation set in question. An ideal coherence measure should correlate the degree of coherence
of the information set with its truth content. But how do we know that more coherent infor-
mation sets are more likely to contain true information? Here, different coherence measures
are likely to cut off differently, and are correspondingly more or less suitable for identifying
whether information is true or not.

This is not to say that it is not important to consider the performance of the measures in
standard toy cases from the literature, or that the intuitions behind the measures do not matter.
These two aspects help us to develop appropriate coherence measures. How well they are able
to measure the truth content of an information set, however, may be quite another matter. If we
are to claim that a certain degree of coherence (as determined by a measure) justifies our beliefs,
we also need to know which measures are the most sensitive and reliable indicators of truth.
Our goal is therefore twofold: First, we want to show that, under some plausible assumptions
which we describe below, coherence measures, in general, may indicate whether an information
set contains true information. Second, we want to show that the new measure CohOG+ is at
least as good in this respect as other pure measures of relative overlap that we have criticized
above for satisfying AGREEMENT when information pairs are considered. There we argued that
AGREEMENT is not a plausible principle, but if the measures that (at least partially)8 satisfy this
principle (that is, CohOG, CohOG′, and CohOG∗) were much more reliable indicators of truth,
then this would be a strong reason to reconsider this principle.9

8Recall that it is yet unsettled whether CohOG and CohOG′ satisfy AGREEMENT for information sets with three or
more items.

9This is also why we do not here further explore other measures that do not satisfy AGREEMENT at all, such as
CohSh, CohF, and the measures proposed by Douven and Meijs (2007).
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Douven (2021) has recently shown that we can use computer simulations to study how well
different probabilistic confirmation measures discriminate between true and false hypotheses.
In answering the puzzle of the truth-tracking abilities of coherence, we follow Douven’s ap-
proach and adapt it for our needs. We also note the previous simulation-based research on
coherence and truth-tracking, in particular byAngere (2007, 2008) and Glass (2012).Our interest
here, however, is not whether higher coherence of an information set means higher probabil-
ity on average. Instead, we focus on how well the coherence of an information set is able to
distinguish true and false information sets. Accordingly, the method of Douven (2021) is more
suitable here.

All relative overlap measures of coherence provide a numerical value that expresses how
coherent a given information set S supposedly is (relative to a probability distribution P). More-
over, the information set S can be described as true if all information items in S are true, and
as false otherwise. We can then use statistical techniques to find a particular threshold for co-
herence that best reflects the truth value of the information set. But even once we have found
these optimal thresholds, we can still assume that some measures are better able to distinguish
between true and false information sets. Thus, it can be assumed that some coherence measures
are better indicators of truth than others.

The flow of our simulations can be roughly described as follows (see Appendix A.3 for de-
tails): We generate n possible worlds over which we define a random probability distribution
(clearly, the probabilities of all possible worlds sum up to 1).10 We also generate an information
set where each information item obtains in randomly selected possible worlds. This suffices
to calculate the coherence of the information set by various probabilistic measures of coher-
ence. However, it is well known that internal coherence may be completely detached from
truth. Fairy tales, for instance, are internally highly coherent, but lack a veridical connection to
reality. In addition to each randomly generated information item, we therefore also randomly
generate a corresponding true piece of evidence which confirms it. The truth of evidence in our
simulations simply means that all pieces of evidence contain the true (actual) possible world.

We consequently randomly generate two sets: the information set S = {H1, . . . , Hn}, which
may or may not contain only true information (depending on whether the randomly chosen
actual world is included in the subset of all information items), and the set of corresponding
true evidence E = {E1, . . . , En}, all of which include the actual world. Finally, to establish a
reasonable connection to the truth, we require that each (true) item of evidence is positively
correlated with some information, that is, that P(Hi |Ei) > P(Hi | ¬Ei) for all i = 1, . . . , n.

This does not mean that any information item is automatically true (they may all be false),
but only that if it is true, it is true for a sensible reason. For example, suppose that Mary lives
on a farm. The information item “Mary has a little lamb” is then positively correlated with a
true piece of evidence, “Mary lives on a farm,” even if it turns out that Mary has another animal
(or none). Thus, this condition provides a sensible connection to the truth while keeping the
randomization process intact.

Once we have generated the information set S and a probability distribution P in the manner
described, we can calculate how coherent S is according to various coherence measures. We can
also easily determine whether the information in S is true by checking whether all information
items in S are true. Figure 2 illustrates how this works in a randomly generated case of three
information items.

After 100 simulations, we can then examine which coherence measure most reliably predicts
(discriminates) the truth value of the simulated information sets. Given a binary dependent
variable (here with the values “true” and “false”) and a continuous independent variable (that
is, the degree of coherence), this is accomplished by logistic regression by default. This statisti-
cal technique then allows us to estimate which measure of coherence provides the best model
for discriminating between the truth and falsehood of the information set, using the so-called
area under curve (AUC) value. The AUC value is usually understood to indicate the probabil-
ity with which an independent continuous measure distinguishes dependent binary categories
(here: true/false). In simple terms, an AUC value of 1 means that the amount of coherence
is a perfect predictor of the truth of information. This could happen, for instance, if all and
only the information sets with true information were determined to be maximally coherent and

10Similar to Douven (2021), we also note that the number of possible worlds we use in our simulations can matter, as
it affects how fine-grained the sample space Ω can be. To keep the simulations nontrivial, we only consider cases with
2n possible worlds or more, where n is the number of information items in a simulated information set.
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Figure 2: An example of a randomly generated set S = {H1, H2, H3} with the prior probabil-
ity P(S) = P(w4)+P(w8) = .5 when the probability space contains 10 possible worlds. The
world w9 is true. Each information item is confirmed by true evidence: P(H1 |E1) = .72 >
P(H1 | ¬E1) = 0; P(H2 |E2) = 1 > P(H2 | ¬E2) = .88; P(H3 |E3) = .68 > P(H3 | ¬E3) = .25.
In this case, all considered measures of coherence determine the set S as quite coherent, that
is, CohOG(S) = .54, CohOG′(S) = .65, CohOG∗(S) = .67, and CohOG+(S) = 1.66. Note that the
former three range between 0 and 1, and the last between 0 and ∞, with values over 1 denoting
absolutely coherent sets.

all and only information sets with false information were determined to be minimally coher-
ent. An AUC value of .5, on the other hand, indicates that a measure is about as reliable as
a random guess in predicting whether a given information set contains only true or also false
information.11

Finally, it has also been pointed out that the prior joint probability of an information set
plays an important role in evaluating its coherence (see, for example, Bovens and Hartmann,
2003, 2005, 2006). Therefore, we keep the prior joint probability of our simulated information
sets constant across all simulations—the example in Figure 2, for instance, has a prior joint prob-
ability of .5. Given an information set S, we consider prior probabilities P(S) ranging from .1
to .9 in steps of .2. In terms of cardinality, we consider information sets ranging in size from two
to seven information items. We avoid larger information sets for three reasons: First, our results
are relatively stable as we increase the size of the simulated information sets. Second, the com-
putations for the measures CohOG′ and CohOG∗, which account for the average coherence sets
in differently defined subsets, become increasingly expensive. Already to compute CohOG∗ for
an information set with seven information items, we need to perform 966 computations in each
of the millions of simulations; for each additional information item, we need about three times
as many computations (3025 for a set with eight information items and 9330 for a set with ten
information items). If we want to maintain randomization, it also becomes increasingly difficult
to generate suitable probability distributions that satisfy our conditions that each information
is confirmed by true evidence and that the prior probability is fixed. To achieve the desired
reliability of our results, we repeat each of these simulations 100 times.

Figure 3 shows the average AUC values over 100 simulations for different numbers of pos-
sible worlds in all variations (cardinality of information sets from 2 to 7 and prior probabilities
between .1 and .9 in steps of .2). It is immediately apparent from the figure that our new mea-
sure CohOG+ performs better in terms of its truth-finding capabilities than the other relative
overlap measures. Its performance in this respect is similar to that of CohOG∗, but it should
be stressed that CohOG+ is computationally much less demanding as it does not consider how

11The technical details behind the procedure are beyond the scope of this paper, but an interested reader can find a
brief summary in Douven, 2021, p. 404. For more details, see Fawcett, 2006.
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Figure 3: Average AUC values for different measures of coherence, averaged over all simulated
variations.

much each subset of an information set coheres. This means that in addition to having the de-
sirable properties we expect of a coherence measure, we can also use CohOG+ in distinguishing
truth from falsehood quite reliably under the assumption that the assessed information set is
confirmed by true evidence.

It should be noted that these results are aggregated over all variations in terms of the size
and the prior probability of the simulated sets. However, we get a more detailed insight when
we focus on the simulated information sets of specific sizes. Specifically, when we consider in-
formation sets consisting of two, three, or four information items, the differences between the
results of the respective measures are less apparent and are also not statistically significant (de-
spite CohOG+ being the best in truth-tracking on average). This is expected because there is less
variability in smaller sets, so the measures also provide more similar assessments. On the other
hand, if we consider larger information sets, the differences among the measures are ampli-
fied and two measures come out as significantly better indicators of truth than others: our new
measure CohOG+ and the measure CohOG∗ proposed by Koscholke et al. (2019) (see Figure 4).
Although this may seem like a somewhat troubling result (the performance of our new measure
is not significantly better than that of CohOG∗), it actually is not. Quite the opposite: it shows
that our new measure is among the best indicators of truth despite its computational simplicity
and without considering any specific subsets even when we consider larger sets. Furthermore,
it is interesting to note that all coherence measures discussed here are better than chance at
predicting the truth of information in the considered information sets.

Levi (1967, p. 58) famously argued that truth and relief from agnosticism are the most im-
portant desiderata of scientific reasoning and that other intuitively appealing desiderata may
be reducible to them. However, the impossibility results of Bovens and Hartmann (2003) and
Olsson (2005) show that coherence and truth are not related in a straightforward way. And yet,
our investigation suggests an answer to the question of why we value coherent information:
coherence matters because it is likely to be our best available guide to truth, at least when more
direct evidence is unavailable and when the information items are confirmed by veridical ev-
idence. In other words, coherence considerations provide an important heuristic of uncertain
reasoning.12

12See also Angere (2008) for a similar claim.
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Figure 4: Average AUC values for information pairs (top) and for information sets with seven
information items (bottom). Error bars represent the standard deviations. CohOG′, unlike other
measures, is very sensitive to the prior probability of larger information sets (bottom), which
explains the wide error bars.

5 Conclusions

The coherence measure CohOG∗ proposed by Koscholke, Schippers, and Stegmann seemed to
give new hope to the possibility of measuring the coherence of an information set by the relative
overlap of propositions in probability space. However, as we have shown, this measure fails
for a number of reasons. The most important reason is that it completely ignores how strongly
the information set in question is statistically correlated. Nevertheless, there is hope for relative
overlap measures if, in addition to relative overlap, we consider correlations in the information
set. The proposed new measure CohOG+ does just that. It is also superior to pure correlation
measures, such as the Shogenji measure CohSh. Our results suggest that all measures that focus
on only one main intuition about the coherence of an information set (that is, either deviation
from independence or relative overlap) perform less well than measures that, like the proposed
one, seek a productive compromise between the two main intuitions.

As we have seen in our exploratory computer simulations, the new measure CohOG+ is also
better at identifying true information than pure overlap measures. This is another argument
that both relative overlap and deviation from the independence baseline should be considered
when we want to determine how coherent a given set of information is. Examining the truth-
tracking properties of various measures of coherence also provides us with yet another argu-
ment for the importance of coherence considerations in justifying beliefs. Although pointing
to the degree of coherence of an information set is hardly sufficient to convince the hardcore
epistemic skeptic, our results may help to convince a mild skeptic who concedes the possibility
that there is at least some connection between coherence and the truth of our beliefs.
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Finally, it is plausible that scientific research resembles a weakly skeptical scenario because
we can reasonably assume that scientific insights provide us with at least somewhat reliable
representations of slices of the world. This may also be why coherence considerations seem to
play such an important role in scientific reasoning (see, for example, Thagard, 2007). Further
investigation of the role of coherence considerations in science (for example, using case stud-
ies) and of their normative underpinnings remains the task of future studies. Measures such
as CohOG+ could prove useful in these investigations.

A Proofs and Algorithms

A.1 Proof of Proposition 1

We assume that S2 and S3 are positively correlated. The proofs for negatively correlated and
for independent information sets can be obtained by the same steps as below, but with “<” (for
negatively correlated information sets) or “=” (for independent sets) instead of “>”.

Let us begin with S2. Then P(H1, H2)> P(H1) P(H2) implies that CohSh(S2)> 1. It therefore
suffices to show that the second factor in eq. (8) is greater than 1. This follows because that
factor is greater than 1 iff P(¬H1,¬H2)> P(¬H1) P(¬H2), which is equivalent to P(H1, H2)>
P(H1) P(H2). Hence, CohOG+(S2)> 1.

For S3, we define α1 := P(H1)+P(H2)+P(H3), α2 := P(H1, H2)+P(H2, H3)+P(H1, H3),
α3 := P(H1, H2, H3), β1 := P(H1)+P(H2)+P(H3) = α1, β2 := P(H1)P(H2)+ P(H2)P(H3)+
P(H1)P(H3), and β3 := P(H1) P(H2) P(H3). Then CohOG+(S3)> 1 iff

P(H1, H2, H3)

P(H1 ∨H2 ∨H3)
>

P̃(H1, H2, H3)

P̃(H1 ∨H2 ∨H3)

⇔ α3

α1−α2+α3
>

β3

β1−β2+β3
=

β3

α1−β2+β3

⇔ α3 (α1−β2) > β3 (α1−α2)

⇔ (α2−β2) β3 + (α1−β2)(α3−β3) > 0 (9)

Since S3 is positively correlated, it holds that α2 > β2 and α3 > β3. To complete the proof,
we only need to show that α1 > β2. This holds because each term in α1 is greater than the
corresponding term in β2.

A.2 Proof of Corollary 1

We use the same shorthands as in A.1 and note that the conditions specified in Proposition 1
imply that α2 > β2 and α3 = β3. Then CohSh(S3) = 1 and eq. (9) implies that CohOG+(S3)> 1.
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A.3 The Possible-Worlds Approach to Simulations of Truth-Tracking

The following pseudo-algorithm describes the simulations:13

FOR EACH cardinality of the information set S between 2 and 7
FOR EACH prior joint probability of S between .1 and .9 in
.2-increments

START simulation – REPEAT 100 times
FOR EACH number of possible worlds from 5 to 100 in increments of 5

REPEAT 100 times
WHILE not: P(Hi |Ei) > P(Hi | ¬Ei) for all i,

1. RANDOMLY SELECT which possible worlds are contained by
each evidence E1, . . . , En and ensure

⋂{E1, . . . , En} 6= ∅;
2. RANDOMLY SELECT which possible worlds are contained by
each information H1, . . . , Hn;

3. GENERATE a random probability distribution P over all possible
worlds;

4. RANDOMLY SELECT the true world wT from
⋂{E1, . . . , En};

5. IF wT ∈
⋂{H1, . . . , Hn} (from step 2), THEN information is true,

OTHERWISE false;
6. CALCULATE CohOG, CohOG′, CohOG∗, and CohOG+ according to the
probability distribution P (from step 3) and the probability of the
possible worlds contained by information (from step 2);

7. RETURN a vector with true/false (from step 5) and values of
coherence according to various measures (from step 6);

8. CONDUCT logistic regression on the data (from step 7) obtained in
100 repetitions to determine the AUC of each measure of coherence;

9. AGGREGATE the data (from step 8);
10. GENERATE AUC plots.
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