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isomorphism

Abstract

In this paper, I argue that the Hole Argument can be formulated without
using the notion of isomorphism and for this reason it is not threatened
by the criticism of Halvorson and Manchak (2022). I divide the Hole Ar-
gument, following Earman and Norton (1987), into two steps: the proof
of the Gauge Theorem and the transition from the Gauge Theorem to
the conclusion of radical indeterminism. I argue that the Gauge Theo-
rem does not rely on the notion of isomorphism, but on the notion of
the diffeomorphism-invariance of the equations of local spacetime theo-
ries; however, for this approach to work, the definition of such theories
needs certain amendments with respect to its formulation by Earman and
Norton. In the analysis of the second step, I postulate that we should use
the notion of radical indeterminism instead of indeterminism simpliciter
and that we should not decide in advance what kind of maps are to be
used in comparing models. Instead, we can choose tentatively some kind
of maps for this purpose and check whether a given choice leads to radi-
cal indeterminism involving empirically indistinguishable models. In this
way, the usage of the notion of isomorphism is avoided also in the second
step of the Hole Argument. A general picture is that physical equivalence
can be established by means of an iterative procedure, in which we ex-
amine various candidate classes of maps and, depending on the outcomes,
we need to broaden or narrow these classes; the Hole Argument can be
viewed as a particular instance of this procedure.

1 Introduction

The Hole Argument is one of the most important arguments in philosophical
debates about the significance of symmetries and about the (in)determinism
of physical theories. It has various versions that differ, among other things,
in what conclusion the argument is supposed to support. Einstein, who first
formulated the Hole Argument, regarded it as an argument against general co-
variance of the laws of physics (but later abandoned it). The Hole Argument was
reintroduced by Earman and Norton (1987), this time as an argument against
spacetime substantivalism. However, later some authors argued that certain
kinds of substantivalism are not prone to this argument (see, e.g., Brighouse
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1994, Hoefer 1996, Pooley 2006). In this paper, I will consider the Hole Ar-
gument as an argument for the thesis that diffeomorphism-related models (cf.
Def. 4 in section 4) of local spacetime theories represent the same physically
possible world, without presupposing anything about the relation of this thesis
to spacetime substantivalism.

The aim of this paper is to analyse the recent challenge to the Hole Argu-
ment made by Halvorson and Manchak (2022), who suggest that it crucially
relies on the notion of isomorphism and that among various possible readings
of this notion in the context of GR, none is suitable for underpinning the Hole
Argument. I will argue that the Hole Argument can be expressed without ever
mentioning the notion of isomorphism, so whatever problems are related to this
notion, they are not relevant for the assessment of this argument. This is, I will
claim, because of its dynamical nature: the mathematical fact that underpins
the Hole Argument is not that certain GR models are isomorphic but that the
dynamical equations of GR do not change their form under diffeomorphisms.

The paper is organised as follows. First, certain terminological issues con-
cerning isomorphic, isometric and diffeomorphic models will be clarified in sec-
tion 2. In section 3, I will review in detail the Hole Argument as formulated
by Earman and Norton. It is divided into two steps: the proof of the Gauge
Theorem (step 1, section 3.1) and the transition from the Gauge Theorem to
the conclusion of radical indeterminism (step 2, section 3.2). Next, the criticism
of this argument by Halvorson and Manchak will be sketched; I will focus on
the issue of where exactly in their view the notion of isomorphism is needed
in the Hole Argument (section 4). In section 5, I will present the version of
the Hole Argument that does not use the notion of isomorphism at any point.
This requires certain precisifications of this argument with respect to its ver-
sion by Earman and Norton. First, in the formulation of the Gauge Theorem
(i.e., step 1) we must restrict their notion of local spacetime theories because
its definition in Earman and Norton’s paper is too broad. Second, instead of a
fully developed definition of indeterminism, we should rather use (in step 2) a
partial definition of radical indeterminism that is relativised to the choice of a
kind of maps that serves as the standard of comparison of models (which at the
same time is a tentative proposal for the standard of their physical equivalence).
Then, by means of an iterative procedure, we can find what kind of maps should
be the mentioned standard, taking into account whether this particular choice
leads to radical indeterminism and what differences between models are empir-
ically detectable. In section 6, some further details of the paper by Halvorson
and Manchak are discussed in the light of the approach presented in section 5.
Additionally, I discuss there an earlier objection to the Hole Argument due to
Weatherall (2018). Finally, section 7 summarises the main points of this paper.
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2 Isomorphic models, isometric models and dif-
feomorphic models

The aim of this section is to clarify what could be meant by saying that two
models are isomorphic, isometric or diffeomorphic. Let us start with the notion
of isomorphism. I will understand it in an abstract way:

Definition 1. Two models, M and M′, are isomorphic iff they have the same
mathematical structure.

This definition on its own does not provide us with a practical criterion for
deciding whether two given models are isomorphic—for this aim, we need, in
addition, the information of what is the mathematical structure ofM andM′,
which might be disputable. Sometimes this issue is approached in the reversed
order: that is, for a given class of models, one can specify which of them are
isomorphic and which are not, and then define the mathematical structure of
the models in this class as whatever is left invariant by these isomorphisms.
However, one cannot have it both ways, that is, one cannot employ this strategy
and simultaneously use Def. 1, as this would be a vicious circle.

Let us now turn to the remaining two notions, which are more concrete. One
can define the meaning of the expression “models M and M′ are isometric” in
the following two ways:

Definition 2 (Isometric models, narrow sense). Two models,M = 〈M, gab, O2, . . . , On〉
and M′ = 〈M, g′ab, O

′
2, . . . , O

′
n〉, are isometric iff there is a diffeomorphism

φ : M →M such that g′ab = φ∗gab = gab.
1

Definition 3 (Isometric models, broad sense). Two models,M = 〈M, gab, O2, . . . , On〉
and M′ = 〈M ′, g′ab, O′2, . . . , O′n〉, are isometric iff there is a diffeomorphism
φ : M →M ′ such that g′ab = φ∗gab.

The expression “models M and M′ are diffeomorphic” is also used in two
different senses:

Definition 4 (Diffeomorphic models, narrow sense). Two models,M = 〈M, gab, O2, . . . , On〉
and M′ = 〈M ′, g′ab, O′2, . . . , O′n〉, are diffeomorphic iff there is a diffeomorphism
φ : M →M ′ such that g′ab = φ∗gab and O′i = φ∗Oi for i = 2, . . . , n.

Definition 5 (Diffeomorphic models, broad sense). Two models,M = 〈M, gab, O2, . . . , On〉
and M′ = 〈M ′, g′ab, O′2, . . . , O′n〉, are diffeomorphic iff there is a diffeomorphism
φ : M →M ′.

Both senses of isometric models and diffeomorphic models can be found in
the literature (e.g., Def. 2 is used in Hawking and Ellis 1973:43, Wald 1984:438;
Def. 3 is used in Butterfield 1989:5–6, Halvorson and Manchak 2022:5, Hawking
and Ellis 1973:56, Malament 2012:85, Roberts 2020:253, Weatherall 2018:335;

1We denote by φ∗O the pushforward of O by φ.

3



Def. 4 is used in Earman and Norton 1987:520; Def. 5 is used in Halvorson and
Manchak 2022:5).2

The relations between these notions are depicted in Figure 1. If two models
are isometric in the narrow sense, then they are also isometric in the broad
sense but not the other way around; and if two models are diffeomorphic in the
narrow sense, then they are also diffeomorphic in the broad sense, but not the
other way around. If two models consist only of a differential manifold and a
metric, then their being isometric in the broad sense is equivalent to their being
diffeomorphic in the narrow sense. However, if our models have a different form
(i.e., they include other objects besides the metric), then their being isometric
in the broad sense does not guarantee that they are diffeomorphic in the narrow
sense; for the same reason, their being isometric in the narrow sense also does
not guarantee that they are diffeomorphic in the narrow sense. For this reason,
I would prefer to use the notion of diffeomorphic models (in the sense of Def.
4) instead of isometric models, because we are going to investigate the whole
class of theories, called local spacetime theories, the models of which can have
various forms.3 From now on, “diffeomorphic models” (or “diffeomorphism-
related models”) without further specification will be understood in the narrow
sense of Def. 4.

Diffeomorphism–narrow Diffeomorphism–broad

Isometry–narrow Isometry–broad

Figure 1: The relations between Definitions 2–5 (“A⇒ B” means “being related
by A implies being related B”). Notice that being related by a diffeomorphism
in the broad sense is implied by all other relations, whereas being related by
an isometry in the narrow sense implies all other relations for models consisting
only of a differential manifold and a metric (but not in general).

3 Earman and Norton’s Gauge Theorem and
their version of the Hole Argument

Earman and Norton (1987) in their formulation of the Hole Argument use a
very general concept of local spacetime theories. They define such theories by
means of their models. A model of a local spacetime theory is an (n+ 1)-tuple
M = 〈M ;O1, . . . , Ok−1;Ok, . . . , On〉, where M is a differential manifold and

2It must be noted that some of these authors speak about isometries or diffeomorphisms
rather than about models being isometric or diffeomorphic, but I take these two ways of
speaking to be naturally inter-translatable.

3Butterfield (1989:6) calls models that are diffeomorphic in the narrow sense “isomorphic”.
However, this is not suitable for our purposes, as I would like to use the word “isomorphic” in
the abstract sense of “having the same mathematical structure” (cf. Def. 1). It is a part of the
debate what exactly this structure is and what transformations preserve it, so we should not
presuppose at the stage of the choice of terminology what are the answers to these questions.
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Oi for i = 1, . . . , n are fields of geometric objects defined everywhere on M .
For some k < n, the last n − k + 1 objects satisfy a further requirement of
being tensor fields4; the equations of the theory consist of the vanishing of these
tensor fields, i.e., Ok = 0, . . . , On = 0. I will call these vanishing tensor fields
the “LHSs of the dynamical equations” of the theory (so I will assume that
whenever we talk about some dynamical equations, all their terms are moved
to the left-hand side, so that they consist of equating the combination of these
terms to zero).

An example of a local spacetime theory is General Relativity (GR), the mod-
els of which can be represented asM = 〈M ; gab, O2, . . . , Ok−1;Gab−Tab, Ok+1, . . . , On〉,
where gab is a metric tensor (field), O2, . . . , Ok−1 are matter fields, Tab is
a stress energy tensor (field) of these matter fields, and Gab is the Einstein
tensor (field), expressed in terms of gab and its derivatives; the equations of
this theory are Gab − Tab = 0 (plus the equations for matter fields, Ok+1 =
0, . . . , On = 0). Alternatively, one might avoid considering explicitly the equa-
tions for matter fields, in which case the models of GR have the form M =
〈M ; gab, O2, . . . , Ok−1;Gab − Tab〉, where Tab is a function of gab, O2, . . . , Ok−1
and their derivatives (cf. section 5.1), and the Einstein field equations are the
only equations of this theory.

Given the Einstein field equations, one can uniquely reconstruct Tab from a
given gab, so the former does not need to appear explicitly in the model. More-
over, including the LHSs of the equations in the model explicitly as an additional
object, as Earman and Norton did, is rather unusual. For these reasons, many
authors represent models of GR in a simpler form, namely M = 〈M, gab〉. For
models of this form there is no difference between being diffeomorphic in the
narrow sense (Def. 4) and being isometric in the broad sense (Def. 3).

GR is not the only example of a local spacetime theory. Many other theories
can be formulated in this way: Special Relativity, all relativistic field theories
and even non-relativistic spacetime theories (for Special Relativity see, e.g.,
Pooley 2017:120–121; for Newtonian Gravity see, e.g., Weatherall 2017:17–21).

Given these background notions, in sections 3.1 and 3.2 I will formulate in
detail the Hole Argument. Following Earman and Norton, I will divide it into
two steps: the Gauge Theorem and its application to obtain the conclusion of
radical indeterminism.

3.1 Step 1: the Gauge Theorem

The first step in the formulation of the Hole Argument is the following theorem
by Earman and Norton (1987:520):

Theorem 1 (Gauge Theorem). If M = 〈M ;O1, . . . , On〉 is a model of a local
spacetime theory T and φ : M →M is a diffeomorphism, then the carried along
tuple M′ = 〈M,φ∗O1, . . . , φ∗On〉 is also a model of T .

4Tensor fields are smooth assignments of tensors to each point of M . One often uses the
abbreviation “tensors” for tensor fields, which is strictly speaking not correct but should not
lead to any confusions, as from the context it is clear that what is meant is the assignment of
tensors to the points of the manifold, and not tensors themselves.
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Models related by φ are diffeomorphic in the sense of Def. 4. I will present
the entire proof of this theorem because its details will be important for my
assessment of the objections against it. Let us assume that M is a model of T .
Recall that in the models of our theory T , the last n−k+ 1 geometrical objects
are the LHSs of the dynamical equations of T . Therefore, M needs to satisfy
the following equations:

Oi = 0 for i = k, . . . , n. (1)

These equations can be written in the coordinate form as5

(Oi)
m = 0 for i = k, . . . , n. (2)

To show that the transformed tensors φ∗Oi are also equal to zero, Earman
and Norton use the following trick. The new model M′ has been obtained by
using the diffeomorphism φ to transform geometric objects on M , leaving the
coordinates intact. However, we can also carry along the coordinate system
{xm} in which the equations (1) have been written, obtaining

{xm
′
} = {φ∗xm}. (3)

This expression means that xm
′
, which is an m-th coordinate in the new co-

ordinate frame, is equal to the m-th coordinate in the old coordinate frame
transformed by φ∗. Earman and Norton (1987:520) observe that performing
both active and passive transformations on a geometrical object at the same
time does not change it, so that the components of any object in the old coor-
dinate frame are the same as the components of an actively transformed object
in the new coordinate frame. In symbols:

(Oi)
m = (φ∗Oi)

m′
for i = k, . . . , n. (4)

By combining equations (2) and (4), we get

(φ∗Oi)
m′

= 0 for i = k, . . . , n. (5)

The next crucial observation is that the last n − k + 1 objects in M are
tensors. This is important because tensors have a special property: if their
components vanish in one coordinate frame, then they vanish in any coordinate
frame. Therefore, from (5) it follows that

(φ∗Oi)
m = 0 for i = k, . . . , n (6)

because (φ∗Oi)
m are just (φ∗Oi)

m′
expressed in the old coordinate frame {xm}.

In the coordinate-free formulation, the equations are

φ∗Oi = 0 for i = k, . . . , n. (7)

5I use the original notation of Earman and Norton’s paper, but it must be noted that it
is simplified at this point, since Oi can have more than one index. Therefore, in general,
equation (2) should be (Oi)

m1...mqmq+1...mr = 0.
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However, this is precisely what we wanted to establish—namely, that M′
satisfies the same dynamical equations as M, so it is a model of the same
theory T . At least this is what Earman and Norton conclude; I think that this
conclusion is too quick and more needs to be said about what does it mean that
two equations are the same and what conditions a local spacetime theory must
satisfy for this conclusion to be valid (see section 5.1).

3.2 Step 2: from the Gauge Theorem to radical indeter-
minism

Consider any local spacetime theory T and one of its modelsMhole = 〈M,O1, . . . , On〉.
Choose a bounded region H ⊂M and define the hole diffeomorphism φ : M →
M as follows: it acts as the identity outside of H but differs from the identity
within H (it needs to smoothly become the identity near the boundary of H).
Now, consider a new modelM′hole = 〈M,φ∗O1, . . . , φ∗On〉. By the Gauge The-
orem, it is also a model of T . As the chosen region H could be arbitrarily small,
the pair of models M and M′ witnesses the (radical) indeterminism of T . In
Earman and Norton’s words (1987:516):

In developing the dilemma, we shall see that the equations of these
theories are simply not sufficiently strong to determine uniquely all
the spatio-temporal properties to which the substantivalist is com-
mitted. The type of indeterminism involved will be a very radical one
indeed. Given some neighbourhood of spacetime we shall see that
these theories cannot uniquely determine the fields within the neigh-
bourhood from even the most exhaustive prescription of the fields
outside of it. This is true no matter how small the neighbourhood.
We have christened this behaviour ‘radical local indeterminism’.

However, the conclusion of radical indeterminism is avoided if one assumes
that althoughMhole andM′hole differ mathematically, they do not differ physi-
cally; that is, if one assumes that diffeomorphic models of the same local space-
time theory are physically equivalent. The principle that “diffeomorphic models
[of the same local spacetime theory] represent the same physical situation” is
called by Earman and Norton (1987:522) “Leibniz Equivalence”. They assume
that any substantivalist about spacetime must reject this principle, so they view
the Hole Argument as undermining spacetime substantivalism. The subsequent
development of the literature suggests that the connection between substantival-
ism and Leibniz Equivalence is more subtle. The position called “sophisticated
substantivalism” (Pooley 2006) or “dynamic structural realism” (Stachel 2014)
combines the assumption of the reality of spacetime points with Leibniz Equiv-
alence by claiming that spacetime points lack primitive identity. As declared
earlier, I will not discuss the issue of substantivalism here and focus solely on
Leibniz Equivalence.6

6It should be mentioned that Roberts (2020) recently argued that Leibniz Equivalence
is either false (in what he calls its strong version) or irrelevant to the Hole Argument (in
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4 Halvorson andManchak’s criticism of the Hole
Argument

Halvorson and Manchak (2022:2) take the Hole Argument to have three main
ingredients: the assumption of substantivalism, certain mathematical facts and
the conclusion of “pernicious indeterminism” (called by Earman and Norton
“radical indeterminism”). They observe that most of the hitherto literature
focused on clarifying the first and the last ingredient—that is, what substan-
tivalism exactly is and what it means that a theory is (in)deterministic. In
contrast, they want to focus on the second ingredient—that is, what exactly
mathematical facts are underlying the Hole Argument. Their argumentative
strategy is as follows (2022:3):

It seems that there are two mathematical claims that might be rel-
evant here. The first claim is that there are distinct but isomorphic
models. But that fact is not strong enough to support the rest of
the argument. The second claim is that there are isomorphisms that
only move elements inside a hole. But that claim, as we show, is
false.

This leads them to conclude that the Hole Argument is wrong because one
cannot find appropriate mathematical facts that could play the role of its second
ingredient.

Halvorson and Manchak’s analysis is based on the assumption that the no-
tion of isomorphism plays a central role in the Hole Argument (2022:10).7 On
their reading of Earman and Norton, the notion of isomorphism is needed both
to establish the Gauge Theorem (which I called “step 1”, see section 3.1) and to
make the conclusion about indeterminism (which I called “step 2”, see section
3.2).

Concerning step 1, according to Halvorson and Manchak (2022:13–14), the
justification of the Gauge Theorem relies on the notion of isomorphism: M and
M′ are regarded as models of the same theory because they are regarded as
isomorphic.

Concerning step 2, it requires the precisification of the meaning of inde-
terminism. According to Halvorson and Manchak (2022:12), the notion of in-
determinism can be spelt out (using my notation, not theirs) in the following
way:

Definition 6 (Indeterminism according to Halvorson and Manchak). A theory
T is indeterministic iff there are two models of T , M = 〈M ;O1, . . . , On〉 and
M′ = 〈M ′;O′1, . . . , O′n〉, such that there is a proper open subset O of M (where
M \O contains some initial segment of M), and an isomorphism φ : M →M ′

that changes things in O but not outside O.

its weak version). Here, I will understand Leibniz Equivalence as a principle about models
representing entire possible worlds, in which case, I think, it is valid and not threatened by
Roberts’s argumentation (I discuss this issue in more detail in [myreference]).

7I assume that they use the word “isomorphism” in the sense of Def. 1.
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This formulation is imprecise because we need to specify what it means that
φ changes (or does not change) things in O. For this purpose, we need the
standard of comparison for the pair of models M and M′—that is, a further
map that tells us which points in the base manifold of M′ should be regarded
as counterparts of which points in the base manifold ofM. Let us call this map
ψ : M →M ′. Halvorson and Manchak (2022:13) advocate that this map should
be an isomorphism. Then, the definition of indeterminism becomes as follows:

Definition 7 (Indeterminism according to Halvorson and Manchak, more pre-
cise version with isomorphism as the standard of comparison). A theory T
is indeterministic iff there are two models of T , M = 〈M ;O1, . . . , On〉 and
M′ = 〈M ′;O′1, . . . , O′n〉, such that there is a proper open subset O of M (where
M \ O contains some initial segment of M), and isomorphisms ψ : M → M ′

and φ : M →M ′ such that φ|M\O = ψ|M\O but φ|O 6= ψ|O.

Notice that there are two isomorphisms invoked by Def. 7: the first isomor-
phism, ψ, is the standard of comparison, whereas the second isomorphism, φ, is
a map that “generates” indeterminism (i.e., changes things in O but not outside
O, where “changing” and “not changing” are understood relative to ψ). An-
other option that they consider is that ψ should be the identity map 1 on M
(Halvorson and Manchak 2022:13), in which case the definition becomes:8

Definition 8 (Indeterminism according to Halvorson and Manchak, more pre-
cise version with the identity map as the standard of comparison). A theory
T is indeterministic iff there are two models of T , M = 〈M ;O1, . . . , On〉 and
M′ = 〈M ;O′1, . . . , O

′
n〉, such that there is a proper open subset O of M (where

M \ O contains some initial segment of M), and an isomorphism φ : M → M
such that φ|M\O = 1|M\O but φ|O 6= 1|O.

Observe that in contrast to Def. 7, Def. 8 can be formulated only for models
with the same base set (i.e., M ′ = M).

To sum up, the notion of isomorphism appears two or three times in my
reconstruction of Halvorson and Manchak’s interpretation of Earman and Nor-
ton’s Hole Argument: once in the justification of the Gauge Theorem, and once
or twice in the definition of indeterminism (Def. 7 or 8)—as a transformation
between models that witnesses indeterminism (i.e., φ) and as the standard of
comparison (i.e., ψ), unless it is chosen to be the identity map. Having set the
dispute in this way, Halvorson and Manchak argue that no candidate for the
notion of isomorphism of GR models is suitable to play all these roles at the
same time. For the sake of brevity, I will omit the details of their argumentation
because they are not important for my subsequent analysis.

8Cf. Weatherall (2018), who disregards the choice of the identity map as the standard of
comparison and endorses the choice of isomorphisms in this role.
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5 The two steps of the Hole Argument without
the notion of isomorphism

In this section, I will argue that Earman and Norton’s Gauge Theorem and the
Hole Argument (or at least their slightly modified versions) can be formulated
without using the notion of isomorphism. If I am right, then the criticism
of Halvorson and Manchak does not have any bearing on the validity of this
argument. In particular, the issue of what is the proper notion of isomorphism
for GR models is irrelevant for the assessment of the Hole Argument understood
in this way.

5.1 The notion of isomorphism is not needed for step 1 of
the Hole Argument

In section 3.1, I have presented a detailed proof of Earman and Norton’s Gauge
Theorem. Halvorson and Manchak suggest that the notion of isomorphism is
indispensable in the justification of the Gauge Theorem, but one can see that
in section 3.1 this notion has not been used even once. The claim that ifM is a
model of a theory T , then M′ is also a model of T , is justified by Earman and
Norton not by appealing to their being isomorphic, but to the fact that they
satisfy the same dynamical equations. The assumption that the last n − k + 1
objects9 (i.e., Ok, . . . , On) are tensor fields is used in the transition from (5) to
(6), but the property of tensors that is exploited here is not that diffeomorphisms
are their isomorphisms, but that if their components vanish in one coordinate
frame, then they vanish in any coordinate frame (which is independent of any
claims about which transformations are isomorphisms of tensors). Therefore,
the crucial notion in the Gauge Theorem is that of the dynamical equations of
a theory, not the isomorphisms of its models.

However, there is a significant subtlety here, which will ultimately lead us to
a modification of the notion of local spacetime theory. Even granting the above
explanations, one could have the following worry. The Gauge Theorem relies on
the assumption that equations (1) and (7) are the same equations. However, it
has not been made explicit which criterion of the identity of equations is used
here. One candidate would be the isomorphism of the tensors that appear on
the LHS of these equations. Under this approach, equations (1) and (7) are said
to be the same because Oi and φ∗Oi are isomorphic (for i = k, . . . , n). However,
this approach is not available to us as it smuggles the notion of isomorphism by
the back door.

Another candidate for the identity criterion for equations uses the notion of
the (functional) form of equations. Let us begin with a simple example. The
equations of the Newtonian mechanics of n pointlike particles with gravity as

9See the beginning of section 3 for the meaning of the division of {O1, . . . , On} into two
classes.
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the only force are as follows:

mi
d2

dt2
~xi(t)−

∑
j 6=i

Gmimj
~xi(t)− ~xj(t)
|~xi(t)− ~xj(t)|3

= 0 (8)

for i, j = 1, . . . , n.
It is well known that these equations are invariant under the symmetries of

the Galilean group. I will present the idea of the form of equations by using
the simplest of these symmetries—namely, translations in space. Translations
in space amount to a change of the spatial variable ~x 7→ ~x′ = ~x+ ~a, where ~a is
some fixed spatial vector. This transformation acts on the first term in (8) as
follows:

mi
d2

dt2
(~x′i(t)) = mi

d2

dt2
(~xi(t) + ~a) = mi

d2

dt2
~xi(t) +mi

d2

dt2
~a = mi

d2

dt2
~xi(t), (9)

whereas on the second term in (8) it acts as follows:∑
j 6=i

Gmimj

~x′i(t)− ~x′j(t)
|~x′i(t)− ~x′j(t)|3

=
∑
j 6=i

Gmimj
(~xi(t)− ~a)− (~xj(t)− ~a)

|(~xi(t)− ~a)− (~xj(t)− ~a)|3

=
∑
j 6=i

Gmimj
~xi(t)− ~xj(t)
|~xi(t)− ~xj(t)|3

.

(10)

From (9) and (10) it follows that whenever (8) is satisfied, also the following
“primed” equation is satisfied:

mi
d2

dt2
~x′i(t)−

∑
j 6=i

Gmimj

~x′i(t)− ~x′j(t)
|~x′i(t)− ~x′j(t)|3

= 0. (11)

The crucial observation here is that equations (8) and (11) have the same form:
(11) is just (8) with ~xi replaced by ~x′i and ~xj replaced by ~x′j . This is often
taken as the defining feature of a symmetry: the claim that spatial transla-
tions are symmetries of the Newtonian mechanics of n pointlike particles can be
understood as the claim that translations do not change the form of the equa-
tions of this theory, and analogously for other symmetries (see, e.g., Brading
and Castellani 2007:1342–1343, Giulini 2007:108, Saunders 2003:299; cf. Pooley
2017:114–120). This is sometimes called the “covariance” or “form-invariance”
of the dynamical equations under symmetries (although these terms are also
used with other meanings).10

10It might happen that the relation of having the same mathematical structure (i.e., of
being isomorphic) and being related by the transformation that does not change the form of
the dynamical equations of the theory (i.e., being symmetry-related) coincide extensionally
(i.e., two models are related by one of them iff they are related by the other), but (i) this is
not always the case (cf. footnote 24) and (ii) even if this is the case, the two relations are still
conceptually different, despite having the same extension. If we adopt a liberal understanding
of isomorphisms from category theory, then there will always be a category of models such
that the symmetries of a theory count as isomorphisms (cf. Dewar 2019). However, this is
not the reason why symmetries are distinguished, since there might also be other categories
involving the same set of models but with a different choice of isomorphisms. The reason why
symmetries are distinguished is their connection to the dynamical laws of the theory.
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One should distinguish here between two seemingly similar claims, one trivial
and the other nontrivial. The trivial claim is that if we replace in the LHS of
(8) all occurrences of ~x by ~x′, then we will obtain the LHS of (11), so such a
replacement transforms the LHS of (8) into an expression of the same form. This
trivial claim holds no matter what is the relation between ~x and ~x′ (and even if
they are entirely unrelated). In contrast, the nontrivial claim is that whenever
equation (8) holds for ~x, the equation of the same form holds for ~x′ = ~x + ~a.
This nontrivial claim is true only for very special choices of ~x′.11 For example,

if we have chosen ~x′ = ~x+~a(t), then we would get an additional term mi
d2

dt2~a(t)

in (9), so that equation (11) would follow from (8) only if d2

dt2~a(t) = 0 (i.e.,
~a = ~a1t+~a2), which is a restrictive constraint on ~a(t). For other choices of ~a(t),
the equation (11) would simply not follow from (8).

What does the form-invariance of equations look like in the case of GR?
Consider the Einstein tensor. It is a function of the metric as well as its first
and second derivatives—schematically, Gab(gab, ∂gab, ∂

2gab). Again, one should
distinguish between two seemingly similar claims, one trivial and the other
nontrivial. The trivial claim is that if we replace in Gab(gab, ∂gab, ∂

2gab) all
occurrences of gab by g′ab, then we will obtain Gab(g

′
ab, ∂g

′
ab, ∂

2g′ab), so such
a replacement transforms Gab(gab, ∂gab, ∂

2gab) into an expression of the same
form. This trivial claim holds no matter what the relation between gab and g′ab
is (and even if they are completely unrelated). In contrast, the nontrivial claim
is that φ∗Gab(gab, ∂gab, ∂

2gab) = Gab(φ∗gab, ∂φ∗gab, ∂
2φ∗gab), as it depends on

the details of the functional form of Gab and on φ’s being a diffeomorphism.
The nontriviality comes from the fact that this does not hold for all functions
of the metric and its derivatives but only for special ones, such as Gab.

More generally, for any local spacetime theory, the form-invariance of Oi’s
(for i = k, . . . , n), understood as functions of geometric objects O1, . . . , Ok−1
and their derivatives, under diffeomorphisms means that for any diffeomorphism

11And it is true because of the special features of Eq. (8): in the first term, the addition of
constant ~a is cancelled out by the derivation, whereas in the second term it is cancelled out
by taking a difference.
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φ,

φ∗Oi

(
O1, . . . , Ok−1,

∂

∂x1
O1, . . . ,

∂

∂xN
O1, . . . ,

∂

∂x1
Ok−1, . . . ,

∂

∂xN
Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
O1, . . . ,

∂N

∂x1 . . . ∂xN
Ok−1

)
=

Oi

(
φ∗O1, . . . , φ∗Ok−1,

∂

∂x1
φ∗O1, . . . ,

∂

∂xN
φ∗O1, . . . ,

∂

∂x1
φ∗Ok−1, . . . ,

∂

∂xN
φ∗Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
φ∗O1, . . . ,

∂N

∂x1 . . . ∂xN
φ∗Ok−1

)
.

(12)

Similarly, the form-invariance of the equations of a local spacetime theory means
that whenever

Oi

(
O1, . . . , Ok−1,

∂

∂x1
O1, . . . ,

∂

∂xN
O1, . . . ,

∂

∂x1
Ok−1, . . . ,

∂

∂xN
Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
O1, . . . ,

∂N

∂x1 . . . ∂xN
Ok−1

)
= 0

(13)

holds for i = k, . . . , n, then also

Oi

(
φ∗O1, . . . , φ∗Ok−1,

∂

∂x1
φ∗O1, . . . ,

∂

∂xN
φ∗O1, . . . ,

∂

∂x1
φ∗Ok−1, . . . ,

∂

∂xN
φ∗Ok−1,

. . . ,

∂N

∂x1 . . . ∂xN
φ∗O1, . . . ,

∂N

∂x1 . . . ∂xN
φ∗Ok−1

)
= 0

(14)

holds for i = k, . . . , n. This follows from the form-invariance of the LHSs of
these equations, given by (12).

The above considerations suggest that for the Hole Argument to work, we
need a modification to Earman and Norton’s notion of local spacetime theory.
To its characteristics reviewed in section 3, one should add the following condi-
tions:

13



� The last n − k + 1 objects (i.e., Ok, . . . , On), which are the LHSs of the
dynamical equations of the theory, are functions of O1, . . . , Ok−1 and their
derivatives.

� Ok, . . . , On (as functions of O1, . . . , Ok−1 and their derivatives) are form-
invariant under diffeomorphisms.

� Two models M and M′ are models of the same theory iff they involve
the same number of geometric objects of each type (e.g., if Oi is a vector
field, then O′i is also a vector field) and their dynamical equations have
the same form.12

In the original characterisation of local spacetime theories by Earman and
Norton, nothing is said about Ok, . . . , On besides that they are tensors. How-
ever, this is not enough for our purposes. For these tensors to be the LHSs of
the equations of a theory, they need to put some constraints on the behaviour
of other objects that appear in the models of this theory (i.e., O1, . . . , Ok−1),
which is where the first new condition comes from. Once their functional form
is identified, one can talk meaningfully about the invariance of this form under
diffeomorphisms, which is the subject of the second condition.13 Finally, all
models of the theory should satisfy the same dynamical equations, where “the
same” is understood as “having the same form” (which is not an arbitrary read-
ing of “the same” because equations of the same form can be regarded as just
the same equation written in a different notation).

One can ask how restrictive our additional conditions on local spacetime
theories are. Consider the example that is of the foremost importance in the
discussions about the Hole Argument—namely GR. GR is a local spacetime
theory not only in Earman and Norton’s broader sense reviewed in section 3,
but also in our more constrained sense. This is because Gab is a function of the
metric gab together with its first and second derivatives, andGab as well as Tab do
not change their form under diffeomorphisms. The latter means that whenever
gab satisfies the Einstein equations Gab − Tab = 0, the transformed metric g′ab
satisfies the equations of the same form but with gab replaced by g′ab in all its
occurrences (both in Gab and Tab) and Oi replaced by O′i for i = 2, . . . , k −
1 in all their occurrences. The same is true for the diffeomorphic-invariant
formulation of Special Relativity (see, e.g., Pooley 2017:120–121) because there

12Instead of this condition, Earman and Norton (1987:517) have only the completeness
condition, according to which if a local spacetime theory T has models of a certain form and
satisfying certain equations, then any model of this form that satisfies these equations is also
a model of T . However, this does not exclude that T also has models of different form or
satisfying different equations, which I think should be excluded.

13One can object that if we assume the diffeomorphism-invariance of the equations at the
outset, the intermediary steps in the proof in section 3.1 are redundant, as we could have moved
straight from (1) to (7). The validity of this objection depends on what exactly is assumed
to be diffeomorphism-invariant: the equations of the theory or the tensors Ok, . . . , On. If
the former, then these intermediary steps are indeed not needed, but if the latter, then these
steps are indispensable, as from the fact that φ∗Oi has the same form as Oi (for i = k, . . . , n)
it does not automatically follow that whenever Ok = 0, . . . , On = 0 holds, also φ∗Ok =
0, . . . , φ∗On = 0 holds. In the main text, the latter variant is chosen.
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the LHS of the dynamical equations is the Riemann curvature tensor, which is
diffeomorphism-invariant. To tackle this issue more generally, we would need
to know whether any tensor that is a function of some geometric objects and
their derivatives is form-invariant under diffeomorphisms. If this is so, then
Earman and Norton’s definition of local spacetime theories plus my first and
third conditions entail the second condition, so it does not add any genuinely
new constraint. However, I am not aware of any proof that this is indeed true.

5.2 The notion of isomorphism is not needed for step 2 of
the Hole Argument

According to Halvorson and Manchak, to define indeterminism precisely, we
need to use the notion of isomorphism at least once (Def. 6) and perhaps even
twice (Def. 7). If they are right, then step 2 of the Hole Argument relies on the
notion of isomorphism; but I will argue that this is not the case.

It seems that to decide whether two models related by a hole diffeomorphism
are a witness for indeterminism, we should define precisely the notions of de-
terminism and indeterminism. However, this task is beset with difficulties. A
general idea of indeterminism (as formulated for physical theories) is that two
models of a theory are a witness for indeterminism iff they agree on some (suf-
ficiently large) region but disagree elsewhere. To make this precise, one should
clarify what “agreement” and “disagreement” means in this context, as well as
specify what kind of “sufficiently large regions” should be taken into account.
Starting with the second issue, let us call this kind of regions: S-regions. An
idea explored in the mathematical physics literature is that S-regions should be
Cauchy surfaces (see, e.g., Ringström 2009), but this option is available only
for globally hyperbolic models of GR, which form a proper subclass of all mod-
els of GR. This is especially problematic because there are good candidates for
witnesses for the indeterminism of GR that are not globally hyperbolic (see,
e.g., Doboszewski 2017 and 2019). Another idea is to use a family of notions
of (in)determinism, one for each choice of the kind of regions (see, e.g., Butter-
field 1989:7–9 and Doboszewski 2019:10–11, who define S-determinism instead
of determinism simpliciter).

Fortunately, the family of models generated by hole diffeomorphisms from
some given model M is so specific that it would count as a witness for in-
determinism for various definitions of this notion. This is because the hole
diffeomorphism can be defined no matter how small is the “hole”.14 Therefore,
no matter how large the S-regions are, there will always be a hole diffeomor-
phism that is the identity on some S-region and is different from the identity
elsewhere, which is why this kind of indeterminism has been termed by Earman
and Norton “radical”.15 What is more, we do not even need the full definition

14By the “hole” I do not mean here the region without matter (as was the case in Ein-
stein’s original formulation of the Hole Argument), but just the region on which a given hole
diffeomorphism is not the identity map.

15Observe that among other differences between indeterminism and radical indeterminism,
there is this one: an instance of the former is a pair of models, whereas an instance of the

15



of radical indeterminism here—it suffices that we provide a partial definition
(which specifies a sufficient condition for radical indeterminism), as long as it is
satisfied in all cases of interest.

Another problem is how to tell whether two models (or their parts) “agree” or
“disagree”—that is, whether they are (physically) equivalent. Weatherall (2018)
uses the notion of the “standard of sameness” or “standard of comparison”;
the latter term is also adopted by Halvorson and Manchak. The standard of
comparison is a kind of maps K that determine which points in a given model
should be compared with which points in another model in assessing whether
these two models are the same or different.16 If there is no map of kind K
between two models, then they are surely different; but if there is a map of
kind K between two models, then in comparing these models, point by point,
we should use this map. The problem is that it seems that we should decide
in advance what is the standard of comparison, before we even start assessing
whether a class of models is an instance of radical indeterminism; but this
choice has significant influence on our verdict. According to Weatherall as well
as Halvorson and Manchak, the notion of isomorphism is crucial here because
for each theory, the isomorphisms of its models should serve as the standard of
comparison. It thus looks as if we needed to choose in advance the kind of maps
K that serves as the standard of comparison, but this impression is wrong, as
I will argue. Finding K is a part of our task of analysing the theory instead
of being the starting point of such an analysis; and the Hole Argument has a
role to play in finding K for local spacetime theories. What we can do is to
choose K tentatively and see what the consequences of a given choice are; and if
some choice has unfavourable consequences, we should try another one. For this
purpose, we can relativise our partial definition of radical indeterminism to the
choice of a kind of maps K that serve as the standard of comparison between
models of a given theory.

What is the meaning of this choice of the standard of comparison between
models? I think that it should always be regarded as a tentative proposal (i.e.,
a candidate) for the relation of physical equivalence. This is because we are not
interested here in models of a given theory as abstract mathematical entities,
but as representations of physical possibilities. If we choose as our standard of
comparison a kind of maps K, then models that do not differ as compared by a
map of kind K would count as the same relative to this choice; but this choice
would be inappropriate in the context of physics if the equivalence according
to maps of kind K did not coincide with the physical equivalence. Therefore,
the standard of comparison of models and the standard of physical equivalence
should be thought of as two aspects of the same notion. However, this does not

latter is a family of models such that one of them is the “original” model and the others are
generated from it by applying to it hole diffeomorphisms with various possible choices of the
“hole”.

16This is similar to the idea of counterparts in the Lewisian modal metaphysics (cf. Lewis
1968). However, our question makes sense also outside of the context of Lewis’ philosophy, as
it concerns models rather than possible worlds, and the former do not need to be in the one-
to-one correspondence to the latter. In fact, once we decide on the standard of comparison, we
can regard models that are the same according to it as representing the same possible world.
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mean that by tentatively choosing a certain kind K, we thereby settle the issue
of which models are physically equivalent. This is only a tentative proposal put
forward for investigation, and whether a given choice of K is accurate depends
on the nature of the physical world, not on our conventions.

I would like to propose the following partial definition of radical indetermin-
ism of a theory relative to maps of kind K:17,18

Definition 9 (Partial definition of radical indeterminism relative to maps of
kind K). If a theory T has a model M = 〈M ;O1, . . . , On〉 such that there exists
an infinite series of regions of M , H0 ) H1 ) H2 ) . . ., such that (i) for any ε >
0, there exists Hj that is included in an open ball with a diameter ε or smaller,19

and (ii) for any Hj, there exists another model of T , M′ = 〈M ;O′1, . . . , O
′
n〉,

with the following properties:

(1) there is a map between these models, φ : M →M , such that φ |M\Hj
is a

map of kind K,

(2) but there is no map of kind K between these models (i.e., on the whole
M),

then T is radically indeterministic relative to maps of kind K.

This definition expresses the following intuition: the radical indeterminism
of a theory means that no matter how large is the subset of M on which we
specify the values of physical quantities (i.e., no matter how large is M \Hj),
this would be not sufficient to determine the values of those quantities on the
entire M . Importantly, this definition is relative to the choice of K, so the same

17This definition is to some extent similar to Butterfield’s (1989) definition of determinism
Dm2 in that it involves two maps, the first of which relates the corresponding regions of two
models, and the second of which relates the two models taken as wholes. In contrast, it is
significantly different from Def. 7 used by Halvorson and Manchak (see section 6).

18It has been suggested to me that such a relativisation of the notion of indeterminism
to the choice of K is problematic because indeterminism is supposed to be a metaphysical
notion. Although I agree with classifying this notion as metaphysical, I also assume that the
only possible way of answering the question of whether our world is (in)deterministic is via
examining the question of whether our physical theories are (in)deterministic. As it turns
out, the interpretation of these theories is often not straightforward; in particular, from the
bare formalism of a theory it does not follow which states should be regarded as physically
equivalent and which not, which is of pivotal importance for our question. Therefore, I propose
to proceed by examining various candidates for the relation of physical equivalence between
the states instead of choosing one of them in advance; the consequences of each choice should
help us to decide which of them is the most plausible one. In this approach, the questions of
indeterminism and of physical equivalence (which are both metaphysical, not purely formal)
are considered jointly, not one before the other.

19This condition captures the idea that a hole can be chosen to be arbitrarily small. We
define ε in terms of a metric. Alternatively, we can postulate that the series {Hj} converges to
an empty set, in which case we can express condition (i) using only topology, without referring
to a metric. Despite the fact that the limit of this series is an empty set, every element of it
is a region, which I take to be by definition non-empty; therefore, for every Hj , two models
differing on Hj , M and M′, will always have different values of geometric object fields at
some points of M .
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theory might be radically indeterministic under some choices of K but not under
others.

Earman and Norton’s version of the Hole Argument can be conceived as
using the above partial definition of radical indeterminism with the full identity
as K (where the difference between the full identity and the standard identity
map is that the latter preserves only points of the manifold, whereas the former
also preserves all geometric objects at these points). For this choice of K, the
above partial definition becomes:

Definition 10 (Partial definition of radical indeterminism relative to the full
identity). If a theory T has a modelM = 〈M ;O1, . . . , On〉 such that there exists
an infinite series of regions of M , H0 ) H1 ) H2 ) . . ., such that (i) for any ε >
0, there exists Hj that is included in an open ball with a diameter ε or smaller,
and (ii) for any Hj, there exists another model of T , M′ = 〈M ;O′1, . . . , O

′
n〉,

with the following properties:

(1) there is a map between these models, φ : M → M , such that φ |M\Hj

is the full identity (i.e., for any p ∈ M \ Hj, φ(p) = p and O′i |M\Hj
=

φ∗Oi |M\Hj
= Oi |M\Hj

for i = 1, . . . , n),

(2) but there is no full identity map between these models (i.e., there is no
map φ : M →M such that for any p ∈M , φ(p) = p and O′i = φ∗Oi = Oi

for i = 1, . . . , n),

then T is radically indeterministic relative to the full identity.

To see that Def. 10 is satisfied in the case considered by Earman and Norton,
it suffices to consider, as they originally did, a series of “holes” {Hj} and, for
each hole Hj , a diffeomorphism φ that is the identity on M \ Hj and is not
the identity on Hj . This diffeomorphism φ can be used to generate a model
M′ from a given model M.20 Since the restriction of φ to M \ Hj is the full
identity, condition (1) of Def. 10 is satisfied; and since there is no full identity
betweenM andM′, condition (2) is also satisfied. It should be noted that even
if the metric is the same at every point of M , a non-trivial hole diffeomorphism
can be constructed (see Example 1 in Manchak and Barrett 2023 for such a
construction for Minkowski spacetime).

If using Def. 9 relative to K we obtain the conclusion of radical indetermin-
ism, we might wish to change our choice of the kind of maps that serve as the

20The word “generate” might misleadingly suggest that in this way we create a new model,
which previously was not there. However, this should rather be seen as a way of investigating
the space of models of a given theory, which is determined by the theory’s equations. There-
fore, by applying a diffeomorphism to a given model M and generating in this way a new
model M′, we do not add anything to the class of models of the theory, but only discover
that it has such diffeomorphism-related models. For this reason, I do not think that one can
“block” the Hole Argument before it starts by hypothesising that the hole diffeomorphism is a
mathematical operation without physical significance and as such should not be performed on
models (see Curiel 2018:452–453); we (as researchers) can stop the activity of applying diffeo-
morphisms to already known models of the theory, but this would not prevent the existence
of diffeomorphism-related models in the class of all models of this theory.
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standard of comparison of models (call this new choice K ′), so that the models
witnessing radical indeterminism relative to K would count as physically equiv-
alent relative to K ′. This K ′ should be chosen so that K ⊆ K ′, and the maps
that have been used to generate witnesses for radical indeterminism should also
belong to K ′ (otherwise, we would still retain the same witnesses for radical in-
determinism, which is what we wanted to eliminate). However, we are not forced
to reach this conclusion. In particular, if we know that models M and M′ are
empirically inequivalent (that is, they can be distinguished by some observation
or experiment), then we surely should not regard them as physically equivalent.
In such a case, radical indeterminism would need to be regarded as an empirical
hypothesis and not a methodological vice of our theory.21 Perhaps there might
also be other obstacles to regarding such models as physically equivalent, even if
they are also empirically equivalent.22 However, if there are no such obstacles,
the overall conclusion of the argument is that models related by maps of kind
K ′ are physically equivalent. The above reasoning might, of course, be repeated
for our new choice of the standard of comparison K ′. If it turns out that our
theory is still radically indeterministic relative to K ′, we should change K ′ to
another kind of maps K ′′ (provided that there are no obstacles to do this, such
as the empirical inequivalence of two models related by a map of kind K ′′); and
so on, until we do not encounter any new witnesses for radical indeterminism.
Therefore, our reasoning here is iterative.

The notion of isomorphism does not occur in the above reasoning. This
(together with the results of section 5.1) establishes the claim that appears in
the title of this paper: namely, that the Hole Argument does not (or at least
does not need to) rely on this notion. However, one can worry that even though
the notion of isomorphism is not used explicitly in our reasoning, perhaps it is
invoked there implicitly. For example, the following objection has been raised to
my approach. The mere fact that in addition to the original modelM the laws
of the theory allow another modelM′ does not in itself show that this theory is
indeterministic—having more than one model is not enough for indeterminism.
In addition, one needs to specify the relation between M and M′ that makes

21For this reason, I think that the two dilemmas that Earman and Norton present as two
separate motivations for regarding models related by a hole diffeomorphism as physically
equivalent (i.e., the verificationist dilemma and the indeterminism dilemma), are not in fact
independent: the radical indeterminism that arises in the Hole Argument (which is the subject
of the indeterminism dilemma) is methodologically problematic because the models that are its
witnesses are empirically indistinguishable (which is the subject of the verificationist dilemma).
At this point, I disagree with Pooley and Read (2021), who want to separate what they call
the “underdetermination version of the argument” and the “indeterminism version of the
argument” (closely corresponding to Earman and Norton’s two dilemmas). I think that even
though we do not need (empirical) underdetermination to establish (radical) indeterminism,
in the absence of such underdetermination, this indeterminism would be just an empirical
hypothesis, and not something inherently problematic. If this empirical hypothesis found no
support in our observations and experiments, then this, I think, would be a sign that our
theory (rather than its interpretation) is wrong and we should look for a different one (with
different dynamical equations).

22For example, Møller-Nielsen (2017) suggests that two models should be regarded as phys-
ically equivalent only if there is available a perspicuous account of their shared ontology, so
their empirical equivalence is not sufficient.
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this pair of models a witness for indeterminism, and this—the argument goes—
cannot be done without referring to the notion of isomorphism.

The two features of my formulation of the Hole Argument that are crucial
for seeing that we do not need the notion of isomorphism here is its reliance on
the notion of physical equivalence and its iterative nature. According to Def.
9, the relation that makes a pair of models a witness for indeterminism is the
existence of a map of kind K between proper parts ofM andM′ together with
the non-existence of any map of kind K betweenM andM′ (taken as wholes).
Since maps of kind K are taken (tentatively) at a given stage of our iterative
procedure as a standard of physical equivalence, this means that proper parts
of M and M′ are physically equivalent in the light of this standard, whereas
M and M′ are not physically equivalent in the light of this standard. If for
arbitrarily large proper parts ofM one can find suchM′, then the theory under
consideration is said to be radically indeterministic. Therefore, we require for
radical indeterminism much more than just the existence of two models of the
same dynamical equations—they need to be related in a particular way, which is
defined in terms of maps of kind K. Importantly, the notion of physical equiva-
lence is not the notion of isomorphism in disguise: at any stage of our iterative
procedure we may consider maps which are not mathematical isomorphisms of
the theory’s models, and there is no guarantee that at the end of this procedure
K will coincide with the class of such isomorphisms. Since the procedure is
iterative, we are not presupposing that a given kind of maps K coincides with
the actual physical equivalence relation: we tentatively choose some K, investi-
gate what are the consequences of this choice (among which there might be the
radical indeterminism of our theory relative to K), and then, on this basis, we
adjust our choice.

A general picture that emerges from these considerations is that physical
equivalence can be established by means of an iterative procedure, in which we
examine various candidate classes of maps and, depending on the outcomes,
we need to broaden or narrow these classes. The exact criteria that should be
used in assessing the proposed kinds of maps are a matter of debate. In this
paper one such criterion has been spelled out: if for a given K our theory T
turns out to be radically indeterministic relative to K in the sense of Def. 9 and
models belonging to the family that is a witness for radical indeterminism are
empirically indistinguishable, then this is a reason to replace K by some K ′ such
that K ( K ′ and such that the mentioned family of models is no longer a witness
for radical indeterminism of T relative to K ′.23 In this iterative procedure it
might also turn out that K is too broad a class of maps—for example, if models
related by K are empirically distinguishable; then we need to choose a narrower
class, while taking into account the outcomes of previous steps (in order to avoid
restoring the previously eliminated cases of radical indeterminism). The Hole
Argument can be viewed as a particular instance of this procedure, where T is

23This formulation is cautious in the sense that this conjunction of radical indeterminism
and empirical indistinguishability is said to be only a reason for changingK, which is consistent
with this reason being outweighed by other reasons for not changing K. It is a further question
whether this reason is always sufficient.
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GR (or any local spacetime theory) and K is the full identity.24

Why not just choose K, at the very beginning, to be the class of maps that
induces the empirical equivalence relation? There are several reasons for not
doing this. First, it might not be obvious from the start which models are
empirically equivalent and which are not, and establishing the empirical equiva-
lence relation might be a part of a larger work that involves also various formal
and conceptual analyses of the theory. Second (and relatedly), it might happen
that we first encounter a witness for the radical indeterminism of our theory (at
the level of formal calculations) and only after that we ask ourselves whether
models constituting it are empirically equivalent or not. This order of thought
is correctly captured by the procedure described here. Third, there might be
reasons for regarding empirically equivalent models as physically inequivalent
(cf. footnote 22) or at least we should not exclude this in advance.

An important question is where does the above iterative procedure end up
in the case of GR. Should we regard any two diffeomorphism-related models (in
the sense of Def. 4) as physically equivalent? I do not attempt to settle this
issue here. There are suggestions in the literature that our standard of physical
equivalence should be a class of maps narrower than all diffeomorphisms. For
example, Johns (2019) claims that only diffeomorphisms smoothly connected to
the identity can be used to run the Hole Argument; and Belot (2018) argues
that in certain contexts models related by a diffeomorphism are physically in-
equivalent if this diffeomorphism does not leave invariant certain fixed structure
(but see [myreference] for the polemics with this view).

If indeed the physical equivalence of GR models is given by the class of all
diffeomorphisms (or all diffeomorphisms smoothly connected to the identity),
then the final result of the iterative procedure formulated in this section is not
at all revolutionary. However, it was not my aim to suggest a new answer to
the question about which GR models are physically equivalent, but rather to
formulate explicitly a systematic way of settling questions of this kind. I believe
that something close to what I called here an “iterative procedure” is in fact
used implicitly by many researchers interested in physical equivalence, but I find
it valuable to make this procedure explicit and more precise.

6 Some further comments on papers by Halvor-
son andManchak (2022) andWeatherall (2018)

In this section, I collect a few remarks that clarify further the relationship
between the view on the Hole Argument developed in section 5 and papers by

24 Another instance can be found, arguably, in classical electromagnetism. If we start with
a theory formulated in terms of the electromagnetic potential Aµ and choose K to be the full
identity, then we can construct a family of models that are empirically indistinguishable and
are a witness for radical indeterminism in the sense of Def. 9. This suggests another choice
of K: namely models related by a gauge transformation Aµ 7→ A′µ = Aµ + ∂φ should also be
regarded as physically equivalent (even though they are not isomorphic because they differ in
the value of Aµ).
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Halvorson and Manchak (2022) and Weatherall (2018). I will first analyse the
relationship between Theorem 1 by Halvrson and Manchak and the existence of
the hole diffeomorphism that leads to radical indeterminism relative to the full
identity (in the sense of Def. 10). Then, I will compare my partial definition
of radical indeterminism (Def. 9) with Halvorson and Manchak’s definition of
indeterminism (Def. 7). After that, I will show how my approach can be used
to reply to an earlier criticism of the Hole Argument due to Weatherall. Finally,
I will make some comments on the usage of category theory in the discussion of
the Hole Argument.

It has been suggested to me that the main technical result by Halvorson and
Manchak, their Theorem 1, establishes that there is no hole diffeomorphism
that acts in the way needed to satisfy Def. 10. However, the content of that
theorem is tangential to what I have argued for in section 5. To recall, Theorem
1 (Halvorson and Manchak 2022:18) states that if φ and ψ are isometries (in
the sense of Def. 3) between models M = 〈M, g〉 and M′ = 〈M ′, g′〉 such
that φ |O= ψ |O for some nonempty subset O of M , then φ = ψ. The models
considered in this theorem in general might have different base sets, in which
case we cannot use Defs. 9 and 10 (and the full identity map cannot be defined).
Therefore, in order to relate Theorem 1 to my considerations, we need to assume
that M = M ′. The next difference is that Theorem 1 concerns two maps
between models, whereas Defs. 9 and 10 concern the existence of a map of kind
K between proper parts of models and the non-existence of a map of kind K
between these models taken as wholes—at no point a comparison of two maps
of kind K is considered. Finally, Theorem 1 does not say anything about full
identity maps, it is only about isometries. In particular, condition φ |O= ψ |O
does not guarantee that φ and ψ are full identity maps on O. And even if they
are, their being identical on the entire M (which is what Theorem 1 establishes)
does not guarantee that they are full identities on M ; it is fully consistent with
this theorem that φ = ψ is just some isometry on M that is not the full identity
on M despite being the full identity on O. Incidentally, even though Halvorson
and Manchak’s Theorem 1 is about isometries, it does not help to test whether
Def. 9 holds for K being the class of isometries because its presupposition is that
there exists an isometry between M and M′, while here we ask whether there
exists such an isometry, given that there exists an isometry between (sufficiently
large) proper parts of M and M′.25

This leads us to the issue of the relationship between Def. 9 (the partial
definition of radical indeterminism proposed in this paper) and Def. 7 (the
definition of indeterminism used by Halvorson and Manchak). I claim that
these definitions are significantly different in that Def. 7 can be applied only

25Corollary 1 of Theorem 1 (Halvorson and Manchak 2022:18) attempts to exclude the
existence of a hole diffeomorphism, but it is not applicable to situations that are relevant for
the Hole Argument, as it is understood in section 5. It states that if M = 〈M, g〉 is a model
of GR and φ : M → M is an isometry (between M and itself) that is the identity on some
non-empty open subset O of M , then φ = 1M (i.e., φ is the identity on entire M). However,
Corollary 1 is derived from Theorem 1 by taking M = M ′, g = g′ and ψ = 1M , and in the
cases relevant for the Hole Argument the last two assumptions do not hold: we have g 6= g′

and 1M is not an isometry between M and M′.
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to models between which there exists an isomorphism. This arguably results in
some incorrect verdicts concerning (in)determinism. If we take isomorphisms
of GR models to be isometries in the sense of Def. 3 (which is their preferred
choice), then some important examples of the indeterminism of GR, such as
non-isometric extensions of Taub-NUT (see Chruściel and Isenberg 1993, Do-
boszewski 2017:200–202), will be “invisible” for their definition (i.e., not clas-
sified as an instance of indeterminism), because there is no isometry between
them. Non-isometric extensions of Taub-NUT will also be invisible for my Def.
9 if we choose K to be isometries (in the sense of Def. 3), but this is a correct
result, because they are instances of “usual” indeterminism, not of radical inde-
terminism, and as such should not motivate us to change our tentative standard
of physical equivalence K. I suppose that the root of the problem with Def. 7
in this context is that it relies on the intuition that in order to tell that two
models differ (which is required for them to be a witness for indeterminism),
we need to be able to compare them, and such a comparison can be done only
by means of some map (which according to Halvorson and Manchak should be
an isomorphism). However, there is another way of telling that two models
are different—namely, by showing the non-existence of an appropriate map be-
tween them; this is (rightly, I think) captured by Butterfield’s (1989) Dm2 and
my Def. 9, and (wrongly, I think) neglected by Halvorson and Manchak’s Def.
7. Indeterminism is then the case where the models are not the same (there is
no map of kind K between them) but their sufficiently large parts are the same
(there is a map of kind K between these parts).

This aspect of Halvorson and Manchak’s approach can be traced back, I
think, to the paper by Weatherall (2018). Let me then reconstruct here briefly
Weatherall’s view. According to him, the Hole Argument relies on a confu-
sion arising from using two different standards of comparison of models at the
same time. On the one hand, the isometry (in the sense of Def. 3) between
M = 〈M, gab〉 and M′ = 〈M, g′ab〉 is used to establish that they are physically
equivalent; and on the other hand, the identity map on M is used to establish
that they are different. However, Weatherall (2018:338) claims,

[...] one cannot have it both ways. Insofar as one wants to claim that
these Lorentzian manifolds are physically equivalent, or agree on all
observable/physical structure, one has to use [the isometry map] to
establish a standard of comparison between points. And relative to
this standard, the two Lorentzian manifolds agree on the metric at
every point—there is no ambiguity, and no indeterminism. (This
is just what it means to say that they are isometric.) Meanwhile,
insofar as one wants to claim that these Lorentzian manifolds assign
different values of the metric to each point, one must use a different
standard of comparison. And relative to this standard—that given
by [the identity map on M ]—the two Lorentzian manifolds are not
equivalent. One way or the other, the hole argument seems to be
blocked.

How can one respond to this criticism of the Hole Argument in the light of the
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considerations of section 5? First, I agreed there that the standard of comparison
of models should be closely associated with physical equivalence. However, the
former is a matter of our choice, whereas the latter is not. We cannot turn
physically equivalent models into physically inequivalent ones (or the other way
around) merely by changing the way of comparing them. Whether two models
are equivalent or not depends partially on our representational conventions and
partially on which physical differences there are in the world. For this reason, I
said (in section 5.2) that the standard of comparison is a tentative proposal for
the relation of physical equivalence, not just the relation of physical equivalence.
In my approach, the (true) relation of physical equivalence is something that we
are going to find by using the iterative procedure, in which the Hole Argument
has an important role to play. Therefore, the choice of the full identity as K in
Def. 9 does not make any two models that are not related by the full identity
physically inequivalent; in our iterative procedure, we hypothetically assume
that they indeed are inequivalent, but the aim of this procedure is to examine
precisely this hypothesis.

Second, according to Weatherall (who is followed by Halvorson and Man-
chak) if maps of kind K are the standard of comparison for a given theory, then
in order to compare two models of that theory,M andM′, we should first find
a map of kind K between them, and then compareM andM′, point by point,
using this map. The drawback of this approach is that in many situations the
models will turn out to be incomparable because there is no map of kind K be-
tween them. In fact, since Halvorson and Manchak’s Theorem 1 shows that for
any pair of Lorentzian manifolds there is at most one isometry between them,
if we choose isometry to be the standard of comparison (understood in the
Weatherall-Halvorson-Manchak way), any two Lorentzian manifolds will turn
out to be either equivalent or incomparable. However, the verdict one should
expect in the case of non-isometric Lorentzian manifolds is that they are inequiv-
alent, not that they are incomparable. That difference between “incomparable”
and “inequivalent” might seem to be purely verbal and unimportant, but when
applied to the issue of (in)determinism, it leads (arguably) to some incorrect
verdicts, as explained in the third paragraph of this section.

The final issue to be considered in this section is an objection that has been
raised to my proposal in the category-theoretic terms. According to this objec-
tion, my “suggestion that one could use different standards of equivalence than
isomorphism is to deny (...) that the category used to represent the models of
such theory is the correct one”, which “does nothing to show that the standard
form of GR [based on the category of Lorentzian manifolds with isometries
as isomorphisms] is amenable to the Hole Argument”. This is close in spirit
to Weatherall (2018:331), who claims that “the default sense of ‘sameness’ or
‘equivalence’ of mathematical models in physics should be the sense of equiv-
alence given by the mathematics used in formulating those models”, which is
typically “some form of isomorphism”, where the term “isomorphism” is used “in
the broad sense of category theory”. In the case of GR, Weatherall (2018:343)
says,
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once one asserts that spacetime is represent[ed] by a Lorentzian man-
ifold, one is committed to taking isometric spacetimes to have the
capacity to represent the same physical situations, since isometry is
the standard of isomorphism given in the mathematical theory of
Lorentzian manifolds. To deny this would be, in effect, to insist that
it is some other structure—one that is not preserved by isometries
[i.e., different than a Lorentzian manifold]—that represents space-
time in relativity theory.

Therefore, in the end, the two ways of blocking the Hole Argument from the pre-
vious quote by Weatherall (2018:338) are not equally good according to him—
only the one that relies on isometries as the standard of comparison of Lorentzian
manifolds is in agreement with scientific practice.

In response let me make four points. First, as already stressed, I distinguish
mathematical equivalence (encoded in the isomorphisms between the models)
from physical equivalence—even if they happen to coincide, they are, from the
conceptual point of view, two different equivalence relations. Therefore, es-
tablishing the mathematical equivalence relation on the class of models does
not automatically lead to the conclusions concerning the physical equivalence
relation on that set.

Second, the formulation of the iterative procedure does not presuppose any-
thing about its outcome. In particular, it does not exclude that our conclusion
about the physical equivalence relation appropriate for GR models obtained by
means of this iterative procedure will be the same as that obtained by Weather-
all, Halvorson and Manchak (and many others), since the choice of K other than
the class of isomorphisms is here only tentative and subject to revision in the
light of the outcomes of relativising Def. 9 to this particular K. The difference
is that now this conclusion will be reached by using our iterative procedure,
which relies on the dynamical equations of the theory and our partial definition
of radical indeterminism, but does not presuppose that isomorphisms are the
standard of comparison and physical equivalence. Therefore, I do not “deny
(...) that the category used to represent the models of such theory is the correct
one”, although I also do not exclude this possibility in advance.

Third, even if we assume that the standard of comparison of models should
always coincide with their isomorphisms, the iterative procedure described in
section 5 still can be useful but needs to be reinterpreted. Namely, instead
of thinking about a fixed class of models and changing K’s, we should think
about changing a category of models with the choice of K being a part of the
specification of that category. Then, the question “which kind of maps K should
be the standard of comparison for the class of models of GR?” is replaced with
the question “what should be the kind of maps K, which partially specifies the
category of models of GR?” Our iterative procedure can be used to guide our
answering both of these questions, albeit with a slightly different interpretation
of the result in each case.

Fourth, a way of interpreting the discussed objection is that it was a mistake
to even consider the full identity as the candidate for the standard of comparison
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of GR models. If from the very beginning we choose the standard of comparison
of GR models (i.e., K in Def. 9) to be isometries (in the sense of Def. 3),
then we would not get the verdict of radical indeterminism at any stage of our
considerations. Does this mean that the Hole Argument is blocked before it
starts? No, since the Hole Argument relies on Def. 9 with K chosen to be the
full identity; what happens for a different choice of K is irrelevant. However,
one can attempt to undermine the significance of this argument by saying that
we should not consider the full identity as K at all for reasons independent of
the Hole Argument, which are much stronger and/or more obvious than the
reason provided by the Hole Argument.26 But do we have such reasons? The
bare appeal to scientific practice is very unilluminating; moreover, such practice,
if rational, should itself be based on some reasons, which philosophy of science
should try to uncover.

7 Summary

I have argued that the Hole Argument in its (what I claim to be) proper for-
mulation does not rely on the notion of isomorphism: this notion is not needed
in any of its two steps. The Gauge Theorem (step 1) establishes that if M
is a model of a local spacetime theory T (satisfying the additional condition
that Ok, . . . , On are functions of O1, . . . , Ok−1 together with their derivatives
and are form-invariant under diffeomorphisms), then anyM′ obtained fromM
by applying a diffeomorphism is also a model of T , because M and M′ sat-
isfy the same dynamical equations (and not because they are isomorphic). To
conclude from the Gauge Theorem that any local spacetime theory is radically
indeterministic unless we regard any two its diffeomorphism-related models as
physically equivalent (step 2), we do not need the notion of isomorphism, either:
we only need to choose tentatively the kind of maps that will serve as our stan-
dard of comparison of models and check whether our theory satisfies the partial
definition of radical indeterminism relative to this kind of maps. If we choose a
too narrow class of maps, then we will find instances of radical indeterminism,
in which case we should (other things being equal) broaden this class.

My conclusion that the notion of isomorphism is not needed to formulate
the Hole Argument does not imply that the notion of isomorphism cannot be
relevant to this argument. I think that it might be relevant: for example, if we
assume that from the fact that two models are isomorphic it follows that they
are physically equivalent, and that diffeomorphisms (in the sense of Def. 4) are
isomorphisms of GR models, then these assumptions imply that diffeomorphic
models of GR are physically equivalent, so the conclusion of radical indetermin-
ism of GR is blocked. However, the role of the notion of isomorphism is here
only intermediary and it is dispensable—one can consider directly the question
of which GR models are physically equivalent, without engaging in the debate
about isomorphisms.

26That seems to be, in the end, the point of Weatherall (2018:343): “the hole argument
merely supports a view one could have had independent reasons to accept”.
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But can these two issues, the mathematical equivalence of models given by
their isomorphisms and the physical equivalence of models, really be separated?
Weatherall (2018:337) seems to think that the only way to argue for the physical
and empirical equivalence of models is to establish a mathematical isomorphism
between them. If he is right, then the notion of isomorphism is not dispensable
for the study of physical equivalence, as I have suggested in the previous para-
graph. However, I find this view rather dubious: empirical equivalence is an
empirical issue after all, so it cannot be the case that the only way to establish
it is to analyse the mathematical formalism of the theory without any recourse
to empirical investigations. Physical equivalence is a more subtle issue, but it
also surely is not a purely formal feature of the theory, albeit it is also not the
same as empirical equivalence (unless we are radical empiricists).

An example from Weatherall (2020:86) can be used to support this point and
to show how isomorphisms and physical equivalence can come apart.27 He con-
siders a variant of GR, the models of which are Lorentzian manifolds enriched
with smooth individuating field (its role is to label all points of spacetime and
thereby make it possible to distinguish any point from the others). Diffeomor-
phisms are not isomorphisms of these new models because they (in general)
change the individuating field, which is a part of the structure of these models.
However, this does not influence the physical equivalence relation: our iterative
procedure should provide the same verdict for these models as for the original
ones (i.e., consisting of Lorentzian manifolds without the individuating field)
because physical situations represented by these two classes of models are the
same. In general, the models of our theories might possess too much or too little
structure compared with what is needed to account for the physical situations
they aim to describe, in which case their isomorphisms will be not identical with
the physical equivalence relation between them.
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