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Abstract

A formal theory of causal reasoning is presented that encompasses both
Pearl’s approach to causality and several key formalisms of nonmono-
tonic reasoning in Artificial Intelligence. This theory will be derived
from a single rationality principle of causal acceptance for proposi-
tions. However, this principle will also set the theory of causal reasoning
apart from common representational approaches to reasoning formalisms.
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1 Introduction

The primary aim of this paper consists in providing both rational foundations
and a principle-based description for a particular theory of causal reasoning.
This theory, called the causal calculus, has been born as part of a general
field of nonmonotonic reasoning in Artificial Intelligence,1 where it has been
shown to cover important areas and applications of AI, especially those that
had persistently resisted feasible representation and modeling using standard
logical methods. Moreover, an important advantage of the causal approach
to problems of AI has always been the fact that, by its very nature, causal
reasoning brings with it the promise of Explainable AI, an approach to artificial
intelligence that is not only practically successful but is also susceptible to
rational explanation and justification.

A new stage in the development of this theory has emerged with the real-
ization that it can also provide a formal representation for Pearl’s approach to

1See McCain and Turner (1997); Lifschitz (1997).
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causality in the framework of structural equation models (see Bochman and
Lifschitz (2015)). In addition, a number of applications of the causal calculus
outside AI have been developed, such as problems of causal attribution (actual
causality) in legal theory and causal representation of general dynamic reason-
ing. A detailed description of the causal calculus, as well as the range of its
current applications in AI and beyond can be found in Bochman (2021). Given
this ‘body of evidence’, a more ambitious aim of this study is to display the
causal calculus as a formal basis for a general theory of causal reasoning, an
important kind of reasoning that has deep historical roots and solid founda-
tions. Hopefully, it should facilitate the return of causation to its proper and
deserved place in the general picture of human reasoning.

Causation is a notoriously elusive and multifaceted notion, and its studies
too often have fallen into the parable of the blind men and the elephant by
choosing only one of its aspects as a key to the whole concept. This is the main
reason why in this study we will apply, in some sense, a venerated Hilbert’s
program to formalizing causal reasoning in that we will not define the meaning
of its key notions, namely causation, proposition, and acceptance. Instead,
we will assume that the content of these notions is determined globally by
the postulates we will require them to satisfy (similar to the formalization of
geometry in Hilbert’s program).2 Any philosophical approach or a theory of
causation that would do justice to these postulates could be appropriate for
our purposes. Moreover, just as in geometry, this approach will allow us to
investigate important variants of causal reasoning which are created by varying
these postulates.

In accordance with this approach, even the philosophical terminology that
we will occasionally use in this study, such as rationality, normativity, reasons,
and explanations, could be viewed as indicative and explanatory rather than
compulsory. Still, the natural and profound connections of causation with infer-
ence, reasons and explanations, though thoroughly ‘deconstructed’ by logical
positivists and analytic philosophy,3 will play an important role in informal
justifications of our formal constructions even though they will remain out-
side our formal theory. The existence of such connections should also augment
the intended understanding of causation with features and dimensions that
go beyond plain physical relations ‘out there’ in the world. In particular, we
will often point out an inherently normative character of the principles and
constructions of our theory.

At the beginning, the formalism of causal reasoning will be defined below
according to the usual format in which logical systems of reasoning are defined.
Namely, it will have a language that consists of a set of (causal) inference rules
that are defined on an underlying set of propositions. And it will also have
a semantics that will be defined in terms of valuations on propositions that

2This will also mean that our theory should not be viewed as an ‘explication’ of our
commonsense understanding of causation (if there is such a thing today).

3Some of these philosophical studies, however, also curiously reinforced these connections by
viewing, for instance, inference or explanation as a proper replacement (or disambiguation) for
the philosophically problematic notion of causation.
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are in accord with the causal rules. This semantics, however, will be based
on a radically different, causal principle of acceptance for propositions that
will set the corresponding reasoning system apart from traditional representa-
tional approaches to language and meaning. Moreover, our constructions and
postulates will create immediate challenges for approaches that are based on
the correspondence theory of truth. Thus, an important aspect of our general
approach to causal reasoning will amount to the fact that, though a causal the-
ory determines its associated rational semantics of acceptance, the latter does
not and even cannot determine the original causal theory. This fact will create
an entirely new reasoning situation that will have multiple consequences for
the corresponding theory of causal reasoning. It will lead, in particular, to an
entirely new agenda and desiderata for such a reasoning.

With a few exceptions, we will completely omit proofs of the results and
theorems in this paper. All of them can be discerned, however, from the ref-
erences provided in the bibliography. The exception will be made for proofs
of some small key facts that could also illustrate how we can actually use
causal reasoning in this setting. It should also be mentioned that the relevant
terminology in this study has been significantly changed (compared with cur-
rent and previous publications in this area) in order to make it more relevant,
convenient and friendly for a broader audience.

2 Causal Theories and their Semantics

As it is common for reasoning formalisms, our system of causal reasoning will
have a language and an associated semantics. Its language will be a set of causal
rules defined on an underlying language of propositions, while its semantics
will be a set of valuations on propositions that conform to the causal rules. At
the first stage, our underlying language L will be defined simply as a set of
(unstructured) propositions.

A causal rule is an inference rule of the form

a⇒A,

where a is a finite set of propositions and A a proposition. The rule says that
a set a of propositions causes proposition A.4

By a causal theory we will mean an arbitrary set of causal rules. A causal
theory will provide an ultimate basis of causal reasoning, mainly in the form
of constraints it imposes on acceptance of propositions.

The basic principle of causal reasoning will be formulated as the following
rationality postulate of acceptance for propositions:

4Thus, causal relata are propositions in our theory, in contrast to some other approaches that
take such relata to be events, properties, or even variables.
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Causal Acceptance Principle A proposition A is accepted with respect to
a causal theory ∆ if and only if ∆ contains a causal rule a⇒A such that all
propositions in a are accepted.

If we take causes as something that provide reasons for their effects (answer
the question why, using Aristotle’s phrase), then the above principle can be
viewed as expressing a constitutive principle of rationality in our context, since
it states that (acceptance of) propositions can both serve as and stand in need
of reasons (see Brandom (2000)). In what follows, sets of accepted propositions
that conform to the above principle will form the models of the corresponding
causal theory.

There are two parts that constitute the above principle. These two parts
could be expressed as two independent rationality postulates:

Preservation Principle If all propositions in a are accepted, and a causes
A, then A should be accepted.
Principle of Sufficient Reason Any proposition should have a cause for
its acceptance.

The Preservation Principle expresses a widely accepted claim that the very
concept of an inference rule (however understood) presupposes that such a rule
should preserve, or ‘transmit’, acceptance of the corresponding propositions.
On a normative reading, it states that existence of (good) reason is sufficient
for acceptance.

Leibniz’ Principle of Sufficient Reason is again a normative principle of
reasoning stating that propositions require reasons for their acceptance, and
such reasons are provided by establishing their causes. The origins of this
principle can be found in the well-known law of causality, but also in Aristotle’s
distinction between syllogisms and demonstrations.

Example 1 The following causal theory provides a causal description of some well-
known example originated in Pearl (1987).5

Rained⇒Grasswet

Sprinkler⇒Grasswet

Rained⇒Streetwet.

Just as for ordinary deductive inference systems, if, for instance, Rained is
accepted with respect to such a causal theory, then both Grasswet and Streetwet
should also be accepted. However, in a causal reasoning with this causal theory, any
acceptable set of propositions that contains Grasswet should contain either Rained
or Sprinkler as its causes. Similarly, Streetwet implies in this sense acceptance of
both its only possible cause Rained and a collateral effect Grasswet. Both deriva-
tions from causes to their effects and from effects to their possible causes constitute
essential parts of causal reasoning.

5We assume that the labels of associated propositions are self-explanatory.
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In the framework of causal reasoning described in this study, the relation
between the language (of causal rules) and its semantics (of acceptance) will
always remain unidirectional. In particular, it can be made clear already at
this stage that Preservation principle cannot be used as a sole principle of
validity for the causal rules themselves. Namely, we cannot follow Tarski in
defining causal rules as inference rules that preserve acceptance. This could be
seen already from the fact that such a stipulation would immediately sanction
the Reflexivity postulate of deductive inference (namely, all rules of the form
A⇒A) and this would trivialize in turn the second part of our rationality
postulate, the principle of sufficient reason: on a causal reading, rules A⇒A
will make all propositions self-justified (self-evident).6 Incidentally, this obser-
vation indicates also that (absence of) Reflexivity constitutes one of the key
differences between causal inference and deductive consequence.

Rational Semantics

The intended semantics of a causal theory that conforms to the above princi-
ples will be defined again along a standard route that employs valuations on
propositions for describing semantics.

A valuation is a function v ∈ {0, 1}L that assigns either 1 (‘truth’) or 0
(‘falsity’) to every proposition of the language. If v(A) = 1, we will say that
proposition A is accepted (‘taken-true’) in the valuation v. As usual, a valuation
can be safely identified with its associated set of accepted propositions, and
we will even abuse the above notation by viewing valuation v itself as a set of
(accepted) propositions.

Remark It should be mentioned already at this stage, however, that we will not
identify non-acceptance of proposition A in a valuation (namely v(A) = 0) with
rejection of A. Moreover, our semantic constructions will become at some point
openly asymmetric between acceptance and rejection;7 this asymmetry will play an
important constructive role in our subsequent constructions. Still, we will invariably
identify in what follows rejection of A with acceptance of its classical negation ¬A.

For any set u of propositions and a causal theory ∆, we will denote by
∆(u) the set of all propositions that are directly caused by u in ∆, that is,

∆(u) = {A | a⇒A ∈ ∆, a ⊆ u}.

This notation will help us in formulating the following basic definition of
semantics for our language.

6Cf. Prawitz (2019) for a similar point.
7In contrast to egalitarian bilateral approaches to inference and semantics; see, e.g., Restall

(2009); Rumfitt (2015); Fine (2018). As a side remark, most of these bilateral approaches also
readily adopt Reflexivity as a rule of inference.
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Definition 1 � A causal model of a causal theory ∆ is a valuation that satisfies
the following condition:

v = ∆(v).
� A rational semantics of a causal theory is the set of all its causal models.

The notion of a causal model provides precise formal expression of the
Causal Acceptance principle since it determines that a proposition is accepted
in a model if and only if it has a cause in this model.

∆(u) is a monotonic operator on the set of propositions, while causal models
correspond to fixed points of this operator. Consequently, any causal theory
has at least one causal model, so it always has a rational semantics.

As an important special case, a causal theory always has the least model.
This model can be obtained by applying the operator ∆() iteratively, starting
with the empty set ∅. This least model provides a faithful representation of
the concept of (deductive) provability in our causal framework. However, this
model expresses only a small part of the informational content embodied in
the source causal theory. Moreover, this observation can actually be extended
to the rational semantics itself.

A causal model, viewed just as a set of (accepted) propositions, and the
rational semantics in general contain only purely categorical, factual informa-
tion. In this respect, they provide only a possible factual output (a “factual
shadow,” if you like) of the rich causal information embodied in the origi-
nal causal theory. Unlike the case of an ordinary correspondence semantics,
even the whole set of such possible outputs is insufficient for determining,
or capturing back, the initial causal information, what causes what. We will
see, in particular, that essentially different causal theories could ‘accidentally’
have the same rational semantics. Nevertheless, just as for ordinary reason-
ing formalisms, the rational semantics will play a crucial, indispensable role in
evaluation and adjudication of causal theories. To begin with, we are going to
show that it determines the underlying logic of causal reasoning.

3 Causal Inference

It turns out that there are formal derivations (aka metainferences) among
causal rules that always preserve the rational semantics. Such metainferences
will be taken to constitute the underlying logic of causal reasoning. On our
current maximal level of abstraction, this logic can be described as follows:8

Definition 2 A causal inference relation is a set of causal rules that is closed with
respect to the following metainferences:

Monotonicity If a⇒A and a ⊆ b, then b⇒A;

Cut If a⇒A and a,A⇒B, then a⇒B.

8In order to simplify the notation, causal rules a⇒A are used in what follows both as formal
objects of our theory and as statements in the meta-language (saying that a causes A).
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The above notion of causal inference incorporates two of the three basic
postulates for ordinary Tarski consequence relations. It explicitly disavows,
however, the first postulate of Tarski consequence, the Reflexivity postulate. As
we will see, it is this ‘omission’ that creates the possibility of causal reasoning
in this framework. Still, we will see that the remaining two postulates of causal
inference are sufficient for a faithful characterization of a general notion of
derivability among propositions that is determined by a given set of (causal)
inference rules.

Remark Causal inference need not be anti-reflexive. Reflexive rules A⇒A can belong
to a causal theory, but in the framework of causal reasoning they already acquire a
nontrivial content. More precisely, such a rule says that A is a self-evident proposition
that does not require further justification for its acceptance. Propositions that satisfy
such rules will be called causal assumptions in what follows.

We will extend causal rules to rules having arbitrary sets of propositions
as premises using a familiar compactness recipe: for any set u of propositions,
we define u⇒A as follows:

u⇒A ≡ a⇒A, for some finite a ⊆ u.

For a set u of propositions, C(u) will denote the set of propositions caused
by u with respect to a causal inference relation ⇒, that is

C(u) = {A | u⇒A}.

As could be expected, the causal operator C will play much the same role
as the usual derivability operator for consequence relations. In particular, the
above postulates of causal inference can be recast as the following properties
of the causal operator:

Monotonicity If u ⊆ v, then C(u) ⊆ C(v).
Cut C(u ∪ C(u)) ⊆ C(u).

Thus, C is a monotonic operator. Actually, due to compactness, C is not
only monotonic, but also a continuous operator. Still, C is not inclusive, that
is, u ⊆ C(u) does not always hold. Also, it is not idempotent, that is, C(C(u))
can be distinct from C(u).9

On a positive side, causal inference preserves a number of familiar proper-
ties. Thus, any causal inference relation will already be transitive, that is, it
will satisfy

(Transitivity) If A⇒B and B⇒C, then A⇒C.

9For instance, A can directly cause B, though there are no intermediate causes between A and
B. In this case, B will belong to C(A), though not to C(C(A)).
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Transitivity corresponds to the following property of the causal operator:

C(C(u)) ⊆ C(u).

Note, however, that Transitivity is a weaker property than Cut, since it
does not imply the latter (in the framework of causal inference).

For an arbitrary causal theory ∆, we will denote by ⇒∆ the least causal
inference relation that includes ∆, while C∆ will denote the associated causal
operator. By this definition,⇒∆ is precisely the set of all causal rules that are
derivable from ∆ by Monotonicity and Cut.

3.1 Causal Inference vs. Deductive Consequence

A further insight into the properties of causal inference can be obtained by
comparing it with associated consequence relations.

As already mentioned, the only formal difference between causal inference
and ordinary Tarski consequence amounts to the Reflexivity postulate that
holds for the latter, though not for the former. Note also that any causal
theory, and hence any causal inference relation, can also be considered as an
ordinary conditional theory (a set of inference rules), so it determines the cor-
responding consequence relation. The following construction provides a direct
description of this consequence relation in terms of the source causal inference
relation. Namely, for a causal inference relation⇒, we can define the following
consequence relation:

u ⊢⇒ A ≡ A ∈ u or u⇒A.

Then the following fact can be easily verified.

Lemma 1 If ⇒ is a causal inference relation, then ⊢⇒ is the least consequence
relation containing ⇒.

Let Cn⇒ denote the derivability operator corresponding to ⊢⇒. Then the
above description can be reformulated as the following equality, for any set u
of propositions:

Cn⇒(u) = u ∪ C(u).
The above equality shows, in effect, that C(u) captures all nontrivial con-

sequences included in Cn⇒(u), except for u itself. Moreover, the Cut postulate
immediately implies the following equality:

C(u) = C(Cn⇒(u)).

Actually, the same Cut postulate implies also C(u) = Cn⇒(C(u)), so the
causal operator absorbs Cn⇒ on both sides:

Cn⇒ ◦ C = C ◦Cn⇒ = C .
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These equalities show that deductive consequences of a given causal theory
can be safely used as intermediate premises and conclusions in causal inference.
In a hindsight, this could explain why it has been so difficult to distinguish
causal reasoning proper from general deductive reasoning. In particular, the
above results allow us to see causal rules themselves as just a special kind
of deductive rules. This vision naturally corresponds to Aristotle’s theory of
reasoning in his Analytics where (causal) demonstrations were viewed as a
species of syllogisms (deductions) (see Bochman (2021)). It should be kept in
mind, however, that deductive inference alone is insufficient for determining
the causal consequences of a set of propositions.

Our final result here provides an alternative description of the causal
inference relation generated by a causal theory ∆.

Corollary 2 C∆(u) = ∆(Cn∆(u)).

The above equation says, in particular, that in order to obtain all causal
consequences of a given set of propositions, we can compute first all its deduc-
tive consequences (with respect to the original causal theory ∆), and then
find out only which propositions are directly caused by this derived set of
consequences.

Just as for ordinary deductive reasoning, propositional theories, that is,
sets of propositions that are closed with respect to inference rules still play an
important role in describing causal inference (especially in proofs).

Definition 3 A set u of propositions is a propositional theory of a causal theory ∆
if ∆(u) ⊆ u.

Since causal inference relations can also be viewed as causal theories (sets
of inference rules), we conclude that propositional theories of a causal inference
relation are sets of propositions that satisfy the inclusion C(u) ⊆ u for the
associated causal operator C.

A propositional theory of a causal theory is a set of propositions that is
closed with respect to its causal rules, namely, if a ⊆ u and a⇒B, then B ∈ u.
Accordingly, such theories have much the same properties as ordinary theories
(deductively closed sets) of consequence relations. Note, in particular, that the
set of propositional theories is closed with respect to arbitrary intersections,
and consequently any set of propositions is included in the least such theory.

As a consequence of the general correspondence between causal inference
and deductive consequence, we obtain that any causal inference relation ⇒
has the same propositional theories as the corresponding consequence relation
⊢⇒. Moreover, it is well known that any consequence relation is uniquely
determined by its propositional theories. A causal inference relation, however,
is not fully determined by its propositional theories.
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4 Causal vs. Semantic Equivalence

It will be shown now that causal inference provides an adequate and maximal
logical framework for reasoning with causal models.

Definition 4 Two causal theories will be called semantically equivalent if they
determine the same rational semantics.

Recall that a causal inference relation can also be considered as a causal the-
ory. Moreover, if ⇒∆ denotes the least causal inference relation that contains
a causal theory ∆, then we have:

Lemma 3 Any causal theory ∆ is semantically equivalent to ⇒∆.

Proof If v is a propositional theory of ∆, then v = Cn∆(v), and hence ∆(v) =
∆(Cn∆(v)). Consequently, v = ∆(v) iff v = ∆(Cn∆(v)). By Corollary 2, this implies
that v is a model of ∆ if and only if it is a model of ⇒∆. □

The above lemma implies that the postulates of causal inference, namely
Monotonicity and Cut, are adequate for reasoning with causal models since
they preserve the latter. This fact can be viewed as a primary justification for
these postulates. Moreover, we will show that this notion of causal inference
constitutes the maximal logic suitable for the rational semantics.

Definition 5 Two causal theories ∆ and Γ will be called logically equivalent, if
each can be obtained from the other using the postulates of causal inference. Or,
equivalently, when ⇒∆ coincides with ⇒Γ.

Now, as an immediate consequence of the previous lemma, we obtain:

Corollary 4 Logically equivalent causal theories are semantically equivalent.

The reverse implication in the above corollary does not hold, and a deep
reason for this is that the rational semantics does not fully determine the
content of the original causal theory. This means, in particular, that it may
well happen that two essentially (i.e., informationally) different causal theo-
ries could determine the same rational semantics. This under-determination is
closely related to a more general fact that both the rational semantics itself
and semantic equivalence of causal theories are nonmonotonic notions; they
are not preserved under extensions of causal theories with further causal rules.
The following simple example illustrates this.
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Example 2 Let as consider two causal theories: {A⇒B} and {A⇒C}. These causal
theories are obviously different, but they are semantically equivalent since they deter-
mine the same rational semantics, which contains a single model ∅ in which no
proposition is accepted. Now let us add to these causal theories the same causal rule
A⇒A. Then the first causal theory will already have an additional model {A,B},
while the semantics of the second theory will acquire a different model {A,C}.

What we need, therefore, is a stronger, logical counterpart of the notion
of semantic equivalence that would be preserved under addition of new causal
rules. This immediately suggests the following definition.

Definition 6 Two causal theories ∆ and Γ will be said to be strongly semantically
equivalent if, for any set Φ of causal rules, ∆∪Φ is semantically equivalent to Γ∪Φ.

Strongly equivalent causal theories are “equivalent forever”—that is, they
are interchangeable in any larger causal theory without changing the associated
rational semantics. This naturally suggests that strong equivalence could be
a kind of logical equivalence with respect to some background logic of causal
rules. And the next result will show that this logic is precisely the logic of
causal inference.

Theorem 5 Two causal theories are strongly semantically equivalent if and only if
they are logically equivalent.

Proof The direction from right to left follows from the preceding corollary and the
fact that, if ∆ and Γ are logically equivalent, then, for any Φ, ∆ ∪ Φ and Γ ∪ Φ are
also logically equivalent.

Assume now that ∆ is not logically equivalent to Γ. Then we may assume for
certainty that there are propositions a and B such that a⇒∆ B and a⇏Γ B. Let
u = CnΓ(a) (that is, the least theory of Γ that includes a). Then u⇒∆ B and u⇏Γ B.
Let us consider two cases.

Suppose first that u is not a theory of ∆. Then we choose Φ = {A⇒A | A ∈ u}
as a set of additional rules. Clearly, u will become a model of Γ ∪ Φ, though not of
∆ ∪ Φ, since u is still not a theory of ∆ ∪ Φ.

Suppose now that u is also a theory of ∆. Since u⇒∆ B, we have B ∈ u. Then we
define Φ as {A⇒A | A ∈ u\ C∆(u)}. Note first that we still have u⇏Γ∪Φ B (since
CΓ∪Φ(u) coincides with CΓ(u)), and hence u is not a model of Γ ∪ Φ. However, we
have u ⊆ C∆∪Φ(u), and therefore u is a model of ∆ ∪ Φ. This shows that ∆ and Γ
are not strongly equivalent. □

The above result implies that causal inference relations are maximal infer-
ence relations that are adequate for causal reasoning with respect to the
rational semantics: any derivation rule that is not valid for causal inference
relations can be “falsified” by finding a suitable extension of two causal theories
that would determine different rational semantics.
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Note also that discriminating sets of causal rules Φ were restricted in the
above proof to rules of the form A⇒A. As we will see, such rules play an
important general role in causal reasoning.

4.1 Axioms vs. Assumptions

The rational semantics of causal theories is based on the law of causality, or
Leibniz’s principle of sufficient reason, which requires that any accepted propo-
sition should have an accepted cause. Accordingly, justification of accepted
propositions (i.e., finding reasons for their acceptance) constitutes an essential
part of this semantic framework. In fact, this is a common feature of many
other formalisms of nonmonotonic reasoning in AI.10

The law of causality inevitably leads to a fundamental problem known
already in antiquity as the Agrippan trilemma: if we do not want to accept
infinite regress of causation, we should accept either uncaused or self-caused
propositions. Now, in the framework of causal theories, there are two kinds of
propositions that can play, respectively, these two roles:

Definition 7 � A proposition A will be called an axiom of a causal theory ∆
if the rule ∅⇒A belongs to ∆;

� A proposition A will be called a causal assumption of a causal theory if the
rule A⇒A belongs to it.

Example 3 Let us return to Pearl’s example (Example 1):

Rained⇒Grasswet Sprinkler⇒Grasswet Rained⇒Streetwet

Note first that, taken by itself, this causal theory does not have causal models
(more precisely, it has a single empty causal model), mainly because the causal
status of Rained and Sprinkler are not determined. But now let’s make Rained and
Sprinkler causal assumptions of our theory:

Rained⇒Rained Sprinkler⇒Sprinkler.

As a result, the rational semantics of this causal theory will acquire three
additional causal models:

{Rained,Grasswet, Streetwet} {Sprinkler,Grasswet}
{Rained, Sprinkler,Grasswet, Streetwet}

These models display already some correlations (or ‘regularities’) among the rel-
evant propositions. For instance, that Rained is always accompanied by Grasswet
and Streetwet in these models (deduction), but also that Streetwet is always
accompanied by Rained (abduction).

In clear contrast with deductive reasoning, both axioms and causal assump-
tions provide reasonable end-points of the justification process in causal

10See, e.g., Denecker et al. (2015) for an abstract theory of justifications in nonmonotonic
reasoning.
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reasoning: axioms do not require justification, while causal assumptions nat-
urally correspond in this sense to self-evident propositions. It is easy to show
that for causal inference relations, any axiom will also be an assumption,
though not vice versa. The difference between the two can be described as
follows. Every axiom must be accepted in any reasonable model, and hence
it should belong to every causal model. In contrast, any causal assumption
can be incorporated into a causal model when it is consistent with the lat-
ter, but it does not have to be included into it. As a result, causal theories
admit in general multiple causal models depending on the assumptions we
actually accept. This functionality makes causal assumptions much similar to
abducibles in a system of abductive reasoning. In fact, it has been shown in
Bochman (2007) that causal inference relations allow us to provide a uniform
and syntax-independent description of abductive reasoning. Moreover, it has
been shown that in many regular cases (notably, in the finite case) the cor-
respondence between causal and abductive theories is even bidirectional in
the sense that the rational semantics of a causal theory coincides with the
semantics of an associated abductive system.

5 Supraclassical Causal Reasoning

Now we are going to raise our abstract theory of causal reasoning to a
full-fledged reasoning system that will subsume, in particular, both Pearl’s
approach to causation and a number of prominent formalisms of nonmonotonic
reasoning in Artificial Intelligence.

It turns out that the most basic desideratum, or prerequisite, for such a
full-fledged system of reasoning amounts to the capability of using ordinary
classical entailment as an integral part of causal reasoning.

Technically, a solution to the task of accommodating classical logical rea-
soning in our causal framework is quite straightforward. Recall that any
causal theory has an associated (least) consequence relation, and this conse-
quence relation can be safely used as intermediate steps in causal derivations.
Accordingly, all we need is to require that this consequence relation should be
supraclassical, that is, it should subsume classical entailment.

Even at this stage, however, we have to cope with the fact that in our
construction of causal reasoning, the relation between the language of causal
rules and its semantics is asymmetric: though a causal theory determines its
associated rational semantics, the latter is insufficient for capturing back the
(causal) content embodied in a causal theory. Applied to our present aim of
incorporating classical logic into causal reasoning, the problem is that there
seems to be no compositional (atomist) way of expressing the usual truth-tables
of classical logical connectives ‘inferentially’ in terms of some derivation rules
for causal theories. Moreover, the extension of our ‘vocabulary’ with classical
logical connectives will actually extend our expressive capabilities beyond what
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is expressible in the causal language with propositional atoms only.11 This
expressive gain can even be considered as an advantage of the corresponding
extended language, an advantage that will be exploited in what follows.

For all these reasons, the suggested definitions of supraclassical causal
inference and its associated rational semantics below will be both minimal-
ist and holist; they will require only that an appropriate causal reasoning
system should respect (antecedently understood) classical entailment among
propositions.

Remark A more general picture of reasoning that naturally arises from the suggested
construction is that causal reasoning is not a replacement or competitor of logical
(deductive) reasoning, but its complement (or extension) for ubiquitous reasoning
situations where we do not have logically sufficient knowledge – see Bochman (2021)
for a more detailed discussion.

From now on, our underlying language L of propositions will be a classi-
cal propositional language with the usual classical connectives and constants
{∧,∨,¬,→, t, f}. The symbol ⊨ will stand for the classical entailment while
Th will denote the associated classical provability operator. In this and sub-
sequent sections, p, g, r, . . . will denote propositional atoms while A,B,C, . . .
will denote arbitrary classical propositions.

Definition 8 A causal inference relation in a classical language will be called
supraclassical if it satisfies the following additional rules:

(Strengthening) If b⇒C and a ⊨ B, for every B ∈ b, then a⇒C;

(Weakening) If a⇒B and B ⊨ C, then a⇒C;

(And) If a⇒B and a⇒C, then a⇒B ∧ C;

(Truth) t⇒ t;

(Falsity) f ⇒ f .

The origins of the above postulates can be found in Input/Output logics
of Makinson and van der Torre (2000), the only difference being the last pos-
tulate, Falsity. Taken literally, the latter could be viewed as a causal version
of the ancient principle ex nihilo nihil fit (‘Nothing comes from nothing”).
However, given the other postulates (especially Weakening), it also implies ex
falso quodlibet (“from falsehood, anything”), and its role consists, in effect, in
excluding classically inconsistent causal models.

Due to Strengthening, a causal rule a⇒A becomes equivalent to a single-
premise rule

∧
a⇒A. In addition, a rule ∅⇒A with an empty set of premises

becomes equivalent to the rule t⇒A. Consequently, a supraclassical causal

11In clear contrast both with modern proof-theoretic and inferentialist approaches in which the
reducibility of the logical language to its atomic (pre-logical) basis is commonly viewed as an
important desideratum.
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inference relation could already be viewed as a binary relation on the set of
(classical) propositions.

The classical conjunction ∧ can be given a fully modular description in this
causal context (as the main connective in propositions) using the following
double-line (bidirectional) derivation rules:

a,A,B⇒C

a,A∧B⇒C
(∧L) a⇒A a⇒B

a⇒A∧B (∧R)

Note that these metainferences are valid for supraclassical causal inference.
As a result, conjunctions of propositions can always be eliminated both in
antecedents and consequents of causal rules. Moreover, let us say that a causal
inference relation in a classical language is conjunctive if it is closed with
respect to the rule (∧R). Then we obtain that A ∧B is accepted with respect
to such an inference relation if and only if both A and B are accepted with
respect to it:

Lemma 6 If v is a causal model of a conjunctive causal inference relation, then
A ∧B ∈ v iff A ∈ v and B ∈ v.

However, such a modular description is impossible for the classical negation
in our causal context. Moreover, the fact that conjunction and negation form a
functionally complete set of classical connectives makes the classical negation
a culprit in the whole problem of (the absence of) a modular description for
the supraclassical causal inference. We will see, however, that the problem of
describing the behavior of negation in causal contexts is far from being trivial
(see Section 10).

Causal reasoning with classical propositions requires also an appropriate
‘upgrade’ of the corresponding rational semantics. Namely, it requires that
causal models should also be closed with respect to classical entailment.

Definition 9 � A classical causal model of a causal theory ∆ is a classically
consistent valuation (that is, f /∈ v) that satisfies the following condition:

v = Th(∆(v)).

� A rational supraclassical semantics of a causal theory is the set of all its
classical causal models.

A classical causal model is a set of propositions that is closed both with
respect to the causal rules and with respect to classical entailment. The princi-
ple of sufficient reason in such models is generalized, however, to the principle
that any accepted proposition should (at least) be a classical logical conse-
quence of accepted propositions that are caused in the model. In other words, a
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classical causal model is the least deductively closed model that is determined
by its causal consequences.

Remark Any classical causal model corresponds to a deductively closed set of classical
propositions. Such models need not satisfy bivalence: it may well happen that neither
proposition A nor its negation ¬A are accepted in such a model. Later we will consider
a restriction of the supraclassical semantics to causal models that are (classical)
worlds; it will be called a rational classical semantics (see Section 9). This latter
semantics will sanction, however, a stronger logic of causal inference.

It turns out that supraclassical causal inference provides an adequate logical
framework for reasoning with respect to the rational supraclassical semantics.

Definition 10 Two causal theories ∆ and Γ will be called semantically s-equivalent
if they determine the same rational supraclassical semantics, and strongly s-equivalent
if, for any set Φ of causal rules, ∆ ∪ Φ is semantically s-equivalent to Γ ∪ Φ.

As before, if ⇒s
∆ denotes the least supraclassical causal inference relation

that contains a causal theory ∆, then we have:

Lemma 7 Any causal theory ∆ is strongly s-equivalent to ⇒s
∆.

Thus, postulates of supraclassical causal inference are adequate for reason-
ing with respect to the rational supraclassical semantics since they preserve the
latter. Note also that, for supraclassical causal inference relations, any causal
model will already be a classical model (since it will be closed with respect to
classical entailment), so their general rational semantics will coincide with the
supraclassical semantics.

The following theorem shows that supraclassical causal inference consti-
tutes a maximal logic suitable for the supraclassical semantics.

Theorem 8 Two causal theories are strongly s-equivalent if and only if they
determine the same supraclassical causal inference relation.

Supraclassical causal inference preserves all the properties of general
causal inference. Moreover, the correspondence between causal inference and
deductive consequence can now be elevated to the correspondence between
supraclassical causal inference and supraclassical consequence.

A consequence relation ⊢ in a classical language is called supraclassical if
it subsumes classical inference, that is, ⊨ ⊆ ⊢. Informally, supra-classicality
means that the corresponding consequence relation includes classical entail-
ment as part of its inference rules, though it can include also ‘material’
inference rules that are not reducible to classical entailment.
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For any supraclassical causal inference relation there exists a least supra-
classical consequence relation that includes it. This consequence relation can
be described directly as follows:

A ⊢⇒ B ≡ A⇒(A→B).

Theorem 9 If ⇒ is a supraclassical causal inference relation, then ⊢⇒ is the least
supraclassical consequence relation containing ⇒.

Let Cn⇒ denote the consequence operator corresponding to ⊢⇒. Then the
above description can be extended to the following equality:

Cn⇒(u) = Th(u ∪ C(u)).

The above equality shows again that causal inference captures all nontrivial
consequences included in Cn⇒(u), save for u itself. Moreover, as in the general
case, we still have the following equalities:

C(u) = C(Cn⇒(u)) = Cn⇒(C(u)).

Accordingly, deductive consequences of a given causal theory (including
now all classical entailments) can be safely used as intermediate premises and
conclusions in supraclassical causal inference.

An important feature of supraclassical causal inference is that it already
allows us to express the logical notion of causal equivalence among propositions
of the underlying language.

Definition 11 Propositions A and B will be called causally equivalent with respect
to a supraclassical causal inference relation if the latter contains the rule

t⇒A ↔ B.

Thus, A and B are causally equivalent if A↔ B is an axiom of the causal
inference relation. The following result establishes precise sense in which this
equivalence can be termed a logical one.

Theorem 10 Propositions A and B are causally equivalent in a supraclassical causal
inference relation ⇒ if and only if any occurrence of A can be replaced by B in the
rules of ⇒.

Proof If A can be replaced by B in any rule of ⇒, then it can be replaced also in
t⇒(A↔A), which holds by Truth. Hence, t⇒(A↔B) holds in ⇒.

We will denote by X(A/B) an arbitrary classical proposition obtained from
a proposition X by replacing some of the occurrences of A in it by B. Clearly,
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A↔B ⊨ X↔X(A/B). Assume now that A and B are causally equivalent, and
X⇒Y . ThenX⇒(A↔B) by Strengthening, and henceX⇒(Y↔Y (A/B)) byWeak-
ening. Consequently, X⇒Y (A/B) by And and Weakening. Thus, B can replace A in
the heads of the rules from ⇒. In addition, we have X(A/B), A↔B ⊨ X, and there-
fore X(A/B)∧ (A↔B)⇒Y by Strengthening. But we have also X(A/B)⇒(A↔B),
so we can apply Cut and obtain X(A/B)⇒Y . This shows that A can be replaced
by B also in the bodies of the rules from ⇒. □

Due to the above result, causal equivalence of propositions can be used,
in particular, for describing definitional extensions of the underlying language
with new propositions (cf. Turner (1999)).

6 Structural Equation Models

Pearl’s approach to causal reasoning in the framework of structural equation
models (see Pearl (2009)) can be viewed as an important instantiation of our
general theory.

A structural equation model12 is a triple M = ⟨U, V, F ⟩, where
� U is a set of exogenous variables,
� V is a finite set {V1, V2, . . . , Vn} of endogenous variables that are determined
by other variables in U ∪ V , and

� F is a set of functions {f1, f2, . . . , fn} such that each fi is a mapping from
U ∪ (V \Vi) to Vi, and the entire set, F , forms a mapping from U to V .

Symbolically, F can be represented as a set of structural equations

Vi = fi(PAi, Ui) i = 1, . . . , n,

where PAi is the minimal set of variables in V \{Vi} (parents of Vi) sufficient
for representing fi, and similarly for the relevant set of exogenous variables
Ui ⊆ U . Each such equation stands for a set of “structural” equalities

vi = fi(pai, ui) i = 1, . . . , n,

where vi, pai and ui are, respectively, particular instantiations of Vi, PAi and
Ui. Such an equality assigns a specific value vi to a variable Vi depending on
the values of its parents and relevant exogenous variables.

In Pearl’s account, every instantiation U = u of the exogenous variables
determines a particular “causal world” of the structural model. Such worlds
stand in one-to-one correspondence with the solutions to the above equations
in the ordinary mathematical sense. However, structural equations also encode
causal information in their very syntax by treating every instantiation of the

12Pearl has also called it a causal model, but this would conflict with our terminology.
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variable on the left-hand side of the = as effect and treating the correspond-
ing instantiations of the variables on the right as causes.13 Accordingly, the
equality signs in structural equations convey the asymmetrical relation of “is
determined by.” This causal reading does not affect the set of solutions of a
structural model, but it plays a crucial role in determining the effect of exter-
nal interventions and evaluation of counterfactual assertions with respect to
such a model (see Section 8 below).

Since structural models are formulated in the language of structural
equations, their comprehensive logical description could be achieved only in
the first-order language. The corresponding generalization of the causal calcu-
lus to a first-order language has actually been described in Lifschitz (1997).
Still, for our current purposes we can obviate this limitation of our (proposi-
tional) formalism by considering the Herbrand base of this first-order language
as our propositional language in this section. This Herbrand base consists of all
propositions of the form X = x, where X is some (exogenous or endogenous)
variable while x is its particular admissible value. In other words, admissi-
ble value assignments to exogenous and endogenous variables of the structural
equations can be viewed as propositional atoms of the corresponding propo-
sitional language. In particular, instantiations of exogenous and endogenous
variables will be called, respectively, exogenous and endogenous atoms.

Using the above formulation, the representation of Pearl’s structural
models in the causal calculus, suggested in Bochman and Lifschitz (2015),
amounted in effect to viewing each structural equality vi = fi(pai, ui) for a
particular instantiation of the relevant variables as a causal rule saying that the
instantiation pai of the parent endogenous variables PAi and the instantiation
ui of exogenous variables Ui causes the instantiation fi(pai, ui) of Vi:

PAi = pai, Ui = ui ⇒ Vi = fi(pai, ui).

In the special case when all the relevant variables are Boolean, a Boolean
structural equation p = F (where F is classical logical formula) produces in
this sense two causal rules

F ⇒ p and ¬F ⇒¬p.

It should also be required that instantiations of exogenous variables (i.e.,
exogenous atoms) are causal assumptions of the corresponding causal theory.
In other words, for any exogenus atom U = u, we should accept the rule

U = u ⇒ U = u.

13This description presupposes a token interpretation of structural equations as expressing
relations among their instantiations, as opposed to a type-level interpretation according to which
a structural equation expresses a direct causal relation among variables themselves.
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For Boolean exogenous variables, this amounts to adding the following two
rules for any such variable:

p⇒ p and ¬p⇒¬p.

Given this translation, it has been shown that Pearl’s causal worlds corre-
spond precisely to classical causal models of the associated causal theory that
are worlds (maximal classically consistent sets of propositions).

Example 4 The following set of (Boolean) structural equations provides a represen-
tation of Pearl’s example (see Example 1) in structural models:

Grasswet = Rained ∨ Sprinkler Streetwet = Rained.

If Rained and Sprinkler are taken to be exogenous variables, while Grasswet
and Streetwet are endogenous ones, then the corresponding Pearl’s structural model
will have the same causal worlds as the following causal theory:

Rained⇒Grasswet Sprinkler⇒Grasswet Rained⇒Streetwet

¬Rained,¬Sprinkler⇒¬Grasswet ¬Rained⇒¬Streetwet

with an additional stipulation that Rained, ¬Rained, Sprinkler and ¬Sprinkler are
assumptions:

Rained⇒Rained ¬Rained⇒¬Rained

Sprincler⇒Sprinkler ¬Sprinkler⇒¬Sprinkler

Compared with our previous causal description of this example (see Example 3),
the above causal theory contains additional causal rules, namely causal rules for the
corresponding negative literals. As we will see, however, these negative causal rules
can be reproduced using a systematic procedure called negative causal completion
— see Section 11 below.

7 Defaults in Causal Reasoning

The causal calculus is a significant part of a general field of nonmonotonic
reasoning in Artificial Intelligence. As such, it has been shown to cover other
important parts of nonmonotonic reasoning such as abduction and diagnosis,
logic programming, and reasoning about action and change. As a further illus-
tration of its expressive capabilities, we will describe in this section a ‘causal
counterpart’ of one of the key, original formalisms of nonmonotonic reasoning,
default logic of Raymond Reiter (see Reiter (1980)). Among other things, the
corresponding causal representation will also allow us to clarify the meaning
of the main notions associated with default logic and first of all of the concept
of default itself. This concept will also be shown to play, in turn, an important
general role in causal reasoning.
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7.1 Defaults versus Facts

Default logic is based on the notion of default as its basic concept, so the task
of describing default reasoning in causal terms cannot be achieved without a
proper formalization of this notion.

Recall that causal assumptions are propositions that satisfy rules of the
form A⇒A. Such propositions can be accepted in a causal model (without
further justification) whenever they are consistent with the rest of accepted
propositions.

Now, defaults can be viewed as a special kind of assumptions. Under this
understanding, the difference between defaults and causal assumptions in gen-
eral can be informally described as follows: defaults are assumptions that we
must accept unless there are reasons to the contrary.

In order to formulate this (normative) requirement in causal terms, let as
say that a proposition A is rejected in a causal model if the model contains a
cause for the contrary proposition ¬A. Then we can formulate the following
(still informal) principle of Default Acceptance:

Default Acceptance A default is a causal assumption that is accepted whenever
it is not rejected.

The principle of Default Acceptance could be viewed as an ‘anti-Leibniz’
principle since it says, in effect, that a default assumption is not accepted only
if we have reasons for its rejection. Note, however, that the original Leibniz
principle of sufficient reason should still remain to hold in causal models. In
particular, a proposition ¬A is accepted in such a model only if it has a cause
in this model (that is, when A is rejected). Accordingly, the principle of Default
Acceptance in causal models boils down to the principle of Default Bivalence:

Default Bivalence For any causal model v and any default assumption A,
either A ∈ v or ¬A ∈ v.

The above principle of default bivalence can be considered as a character-
istic property of defaults (as a special kind of assumptions). Again, this is in
contrast with classical logical reasoning where all propositions are required to
satisfy bivalence. Note also that any axiom of a causal theory will also be a
default on this understanding (namely a default that cannot be refuted). In
this sense, defaults can be viewed as an intermediate concept between axioms
and causal assumptions in general.

Default reasoning as it is formalized in default logic amounts to deriving
justified conclusions from a default theory by using its inference rules and
default assumptions. However, in the case when the set of all defaults is jointly
incompatible with the background theory, we must make a reasoned choice
among the default assumptions. At this point, default reasoning requires that
a reasonable set of defaults that can be actually used in this context not
only should be consistent and maximal but also should explain why the rest
of the default assumptions should be rejected. An important prerequisite of
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such explanations is that the underlying inference system contains cancella-
tion rules by which some sets of defaults refute others (given the known facts).
The appropriate choices of default assumptions (called stable sets) will deter-
mine then extensions of a default theory which are taken to constitute the
(nonmonotonic) semantics of the latter.

Bipolarity

Turning to the justification status of the rest of propositions in default logic,
the notion of an extension of a default theory presupposes, in effect, that any
such proposition should be accepted only if it is grounded, ultimately, in the
set of accepted defaults. In other words, once we choose an acceptable (“sta-
ble”) set of default assumptions, the rest of acceptable propositions should be
derived from this set. This pertains, in particular, even to other causal assump-
tions that could belong to a (causal) theory; any such assumption becomes
unacceptable unless it is derived from accepted default assumptions.

The above stringent, ‘puritan’ understanding of acceptance for defaults and
the rest of propositions creates, in effect, a bipolar system of reasoning that
divides all propositions into two classes with opposite principles of acceptance.
The first class contains factual propositions that are viewed as unacceptable
unless they are derived from other propositions (and ultimately from accepted
defaults), while the second class contains defaults that are viewed as acceptable
unless they are refuted by other propositions (and, again, ultimately by other
accepted defaults). It is this understanding that also makes default logic a
principal instantiation of (assumption-based) argumentation Bondarenko et al.
(1997) where defaults play the role of arguments.

7.2 Default Causal Theories

A formal representation of default logic in the causal calculus can be described
as follows.

Definition 12 A default causal theory is a pair (∆,D), where ∆ is a causal theory,
and D a distinguished subset of its causal assumptions, called defaults.

In the formal descriptions below, C∆ will denote the causal operator cor-
responding to the least supraclassical causal inference relation that contains
a causal theory ∆. Our next definition describes the intended semantics of a
default causal theory.

Definition 13 � A default model of a default causal theory (∆,D) is a classical
causal model m of ∆ that satisfies the following two conditions:

(Default Grounding) m is caused by the set of its defaults:

m = C∆(m ∩ D).
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(Default Bivalence) For any default D ∈ D,

either D ∈ m or ¬D ∈ m.

� A default semantics of a default causal theory is the set of all its default
models.

It can be verified that if an arbitrary set m of propositions satisfies the
condition of Default Grounding, it will already be a causal model of the cor-
responding causal theory ∆, that is, m = C∆(m) will hold. Consequently, the
default semantics can be viewed as a special case of the general rational seman-
tics of causal theories. Still, there are two reasons why the reverse inclusion
does not hold in general. First, a causal model can be generated not only by
defaults, but also by other causal assumptions. Second, even when a causal
model is caused (generated) by some set of defaults, it may still not satisfy the
second condition of the above definition, the principle of default bivalence. This
might happen, in particular, even when the relevant set of generating defaults
is maximal in the sense that it is incompatible with every other default out-
side this set, but the background causal theory lacks appropriate cancellation
rules that would allow us to refute these other defaults. As an extreme case,
a default causal theory may even lack default models at all (though it always
has causal models).

The above formalism can be shown to provide an adequate description of
default logic in the sense that there are back and forth translations between
default causal theories and their default semantics and ‘plain’ default theories
in default logic with their semantics of extensions (see Bochman (2023)).

By the above representation, default logic can be viewed as a species of
general causal reasoning. However, its specific features make default logic less
suitable for some applications in AI, such as abductive reasoning (and diag-
nosis), or reasoning about actions that seem to require the use of assumptions
that are not defaults in the sense of default logic. Still, in many important
areas using defaults instead of general causal assumptions results in a more
adequate representation. For instance, even Pearl’s original approach to causal
reasoning (see the preceding section) can be viewed as an instantiation of a
default causal theory where exogenous atoms play the role of defaults, while
endogenous atoms play the role of factual propositions. Moreover, the whole
approach to causal reasoning in Bochman (2021) was essentially based on
viewing causal rules themselves as default assumptions in the above sense.

7.3 Causal Rules as Defaults

Already David Hume argued in Hume (1978) that causal reasoning cannot be
viewed as a kind of logical inference, because even the full knowledge of the
causes is insufficient for inferring effects a priori. Hume has suggested that
the “source” of our causal assertions can be found in the habit, or custom,
of inferences that we make on the basis of invariable regularities (‘constant
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conjunctions’) that we have observed in our past experience. However, John S.
Mill has added to this two further observations (see Mill (1872)). First, that
not every Humean regularity determines a causal relation (for instance, the
succession of day and night does not). According to Mill, only those regularities
could serve this causal role that both invariably occur and are unconditional of
any further circumstances. Still, Mill’s second important observation was that
“all laws of causation are liable to be counteracted or frustrated”. Nevertheless,
Mill has thought that the idea of an invariable and unconditional regularity
(viewed as an explication of causality) can still be preserved if we define the
cause as the “sum total of the conditions positive and negative taken together;
the whole of the contingencies of every description, which being realised, the
consequent invariably follows.”

The idea of laws as invariable, exceptionless regularities has been a received
understanding for most of the past century (see, e.g., Hempel (1965)), until
it has been qualified in studies of nonmonotonic reasoning in AI. One of the
central objectives of the latter has become a formalization of defeasible rea-
soning, a kind of reasoning in which inference rules and their conclusions can
occasionally be canceled, or defeated, in presence of other rules.

The phenomenon of defeasibilty is actually well known also in the causal
literature under the names prevention and preemption. These are causal situ-
ations in which some causal rules become disabled, or ‘canceled’ due to other
active causal rules.

The simplest way of dealing with defeasibilty in nonmonotonic formalisms
(that has been actually employed in such formalisms as default logic, logic pro-
gramming, and circumscription) amounts to adding auxiliary ‘presumptions’
to an inference rule such that only their refutation could lead to cancellation of
the rule. Applying this method to causal reasoning, we can represent defeasible
causal rules as rules of the form

C, n⇒E,

where n is a new proposition that refers to the underlying causal mechanism
or process that, given an “input” C, produces an “output” E. These auxiliary
premises can be viewed, however, as default assumptions, so they are presump-
tively accepted unless they are explicitly refuted. Accordingly, if the cause C
is accepted, we are entitled (justified) to infer the effect E, unless n is refuted,
that is, unless ¬n is caused. In the latter case, a rule C, n⇒E will be actually
defeated even though the cause C will still be accepted.14

Remark The default representation of defeasibilty provides a feasible and work-
ing account of the latter while preserving monotonicity of (causal) inference rules
themselves, in contrast to popular alternative approaches that are based on a total
rejection of monotonicity as a way of solving this problem. These latter approaches

14Note also that this refutation does not always change the acceptance status of the effect E,
since E can also have other causes.
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usually encounter an opposite problem, namely why an inference rule will (normally)
continue to hold even when new facts are added to the description.

The above more ‘articulated’ representation of causal rules has been called
a deep representation in Bochman (2021), whereas a representation that does
not explicitly mention the underlying mechanisms has been called a surface
representation. This terminology has been justified by the fact that, in most
cases of interest, the names of mechanisms can be systematically eliminated
(“forgotten”) without affecting the associated rational semantics, and thereby
a deep representation can be transformed into some surface representation.

Example 5 In our running example, let as suppose that the sprinkler can also wet
the street unless our garden is fully fenced. We can represent this causal situation
by adding the following two causal rules to our causal theory from Example 3:

Sprinkler, n⇒Streetwet Fenced⇒¬n,

where Fenced is a new causal assumption, whereas n is a default assumption about a
physical process by which the sprinkler waters the street (in the absence of obstruc-
tions). Then the associated rational semantics will obtain a number of new causal
models, in particular,

{Sprinkler,Grasswet, Streetwet, n}
{Sprinkler,Grasswet, Fenced,¬n}

{Rained, Sprinkler,Grasswet, Streetwet, Fenced,¬n}

Still, it can be shown that (given some auxiliary conditions) default assumption
n can be eliminated from this causal theory by replacing the above two rules with
the following rule:

Sprinkler,¬Fenced⇒Streetwet.

The default formulation of causal rules creates immediate advantages for
the representation of causal laws that has been a problem for the logic-based
accounts. Moreover, it makes the representation of causal claims much similar
to their commonsense language descriptions. It is perfectly legitimate to say
that A’s blow caused B’s nose to bleed and to feel confidence in this statement,
though we would find it difficult to formulate a general law purporting to spec-
ify conditions under which blows are invariably, or unconditionally, followed
by bleeding from the nose (see Hart and Honoré (1985)). Moreover, even in
this simple case, there is a logical possibility that just at the moment A struck,
B independently ruptured a blood vessel! In other words, even here our causal
claim is only a (defeasible) assumption, though a very plausible one.
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8 Counterfactual Equivalence and Basic
Inference

In structural equation models, the relation between causal theories and their
(rational) semantics surfaces as the relation between causal and purely math-
ematical understanding of structural equations. Thus, as in the general case of
causal theories, two informationally different sets of structural equations may
“accidentally” determine the same causal worlds. And at this point, a key fea-
ture of Pearl’s approach to causal reasoning amounts to the assumption that
the relevant differences between causal theories can be revealed by performing
the same interventions (“surgeries”) on them.

According to Pearl, in order to obtain answers to intervention (action) and
counterfactual queries, we have to consider submodels of a given structural
causal model. Given a particular instantiation x of a subset X of endogenous
variables from V , a submodel Mx of a structural modelM is the model obtained
from M by replacing its set of functions F by the following set:

Fx = {fi | Vi /∈ X} ∪ {X = x}.

In other words, Fx is formed by deleting from F all functions fi corresponding
to members of the set X and replacing them with the set of constant functions
X = x. A submodel Mx can be viewed as a result of performing an action
do(X = x) on M that produces a minimal change required to make X = x
hold true under any u. This submodel is used in Pearl’s theory for evaluating
counterfactuals of the form, “Had X been x, whether Y = y would hold?”

In order to simplify exposition, we will restrict the description below to the
Boolean case. Then the corresponding transformation of causal theories can
be described as follows:

Definition 14 For a causal theory ∆ and a set L of literals, a revision ∆∗L of ∆
with L is a causal theory obtained from ∆ by removing first all causal rules having
either literals from L or their negations in heads, and then adding L as a set of new
axioms (that is, adding rules t⇒ l for each l ∈ L).

It can be verified that revisions of causal theories exactly correspond to
submodels of Boolean structural models.

According to Pearl, every structural model stands not for just one but
for a whole set of its submodels that embody interventional contingencies.
These submodels determine the “causal content” of a given structural model
in Pearl’s approach. In accordance with that, we can introduce the following
definition:

Definition 15 Causal theories Γ and ∆ are intervention-equivalent if, for every set
L of literals, the revision Γ∗L has the same causal worlds as the revision ∆∗L.
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Now, at least in the finite case, it can be shown that intervention-
equivalence of two causal theories amounts to coincidence of their associated
causal counterfactuals (see Bochman (2021)).

The above considerations naturally suggest that Pearl’s approach is based
on a particular account of causation according to which the content of a causal
theory is fully determined by its ‘counterfactual profile’. In this sense, the
approach can even be viewed as a further development of the counterfactual
approach to causal reasoning initiated by David Lewis in Lewis (1973).

Recall that the connection between causal inference relations and a ratio-
nal semantics of causal theories has been established via the notion of
strong semantic equivalence, namely semantic equivalence that is preserved
under addition of further rules to a causal theory. Taken in this perspective,
the difference between our approach and that of Pearl amounts to taking
intervention-equivalence instead of strong semantic equivalence as a basic
information concept for causal theories. This alternative notion of equivalence
sanctions, however, a somewhat different logic for causal reasoning.

8.1 Basic Causal Inference

It turns out that the Cut rule of causal inference does not preserve intervention-
equivalence: there are causal theories that are equivalent with respect to
supraclassical causal inference, but their revisions with the same literals deter-
mine different causal worlds (and different counterfactuals). In order to cope
with this situation, we have to modify our postulates of causal inference.15

Definition 16 � A set of causal rules in a classical language will be called a
causal production relation if it satisfies all the postulates of supraclassical
causal inference except Cut.

� A causal production relation will be called basic if it satisfies the rule:

(Or) If A⇒C and B⇒C, then A ∨B⇒C.

The postulate Or sanctions reasoning by cases for causal rules. Now, as fol-
lows from the above definition, basic inference is obtained from supraclassical
causal inference by replacing the Cut postulate with Or. A detailed description
of this kind of causal inference and its connections with other nonmonotonic
formalisms in AI has been given in Bochman (2004, 2005). It has been shown,
in particular, that this kind of inference can already be given a logical interpre-
tation in possible worlds models; by this interpretation, a causal rule A⇒B
is representable as a modal conditional

A→ □B,

where □ is the usual necessity operator (see also Turner (1999)).

15Just as it happened once in geometry.
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The above modal representation makes it a relatively easy task to study
the properties of basic inference. It allows us to explain, in particular, why it
does not satisfy Cut. In fact, basic inference is not even a transitive relation.

It has been shown in Bochman (2018) that basic inference constitutes, in
effect, the internal logic of causal reasoning in Pearl’s causal models. More
precisely, it has been shown that basically equivalent causal theories are inter-
vention equivalent. Moreover, the reverse implication has been shown to hold
for the special case of Pearl’s causal theories, that is, for causal theories
obtained from structural equation models by the translation of Bochman and
Lifschitz (2015). Some consequences of this correspondence have been dis-
cussed in Bochman (2021) in the context of analyzing different approaches to
the notion of actual causality.

9 Classical Causal Inference and Causal Worlds

The differences between Pearl’s approach and our theory disappear, however,
once we restrict our rational semantics to causal models that are worlds (in the
usual classical meaning of the term). Note, however, that this move amounts
to imposing Bivalence on the set of accepted propositions.

Definition 17 � A causal world of a causal theory ∆ is a classical causal model
of ∆ which is also a world (maximal classically consistent set).

� A rational classical semantics of a causal theory is the set of all its causal
worlds.

The above notion of rational classical semantics moves us one last step
closer to the traditional correspondence semantics. Nevertheless, the distinc-
tion between rational and purely logical semantics remains, since even the
rational classical semantics is still nonmonotonic with respect to the source
causal theory, so the latter is not determined by the former.

It has been shown in Bochman (2004) that the postulate Or becomes an
admissible derivation rule with respect to the world-based rational semantics.

Definition 18 A causal inference relation will be called classical if it is supraclassical
and satisfies Or.

Classical causal inference combines the properties of both basic and supr-
aclassical causal inference. In particular, the causal rules of such an inference
inherit a logical semantics in the modal framework of possible worlds, in which
they are interpreted as modal conditionals A→ □B.

The following result will show that classical causal inference provides
an adequate framework of reasoning with respect to the rational classical
semantics. As before, we introduce first the following definitions:
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Definition 19 Causal theories Γ and ∆ will be called

� (strongly) objectively equivalent if they are (strongly) semantically equivalent
with respect to the rational classical semantics;

� c-equivalent if they determine the same classical causal inference relation.

Two causal theories are c-equivalent if each theory can be obtained from
the other using derivation rules of classical causal inference relations. Then the
following result demonstrates that classical causal inference is adequate for the
rational classical semantics.

Theorem 11 Two causal theories are strongly objectively equivalent if and only if
they are c-equivalent.

9.1 Factual and Explanatory Content of Causal Rules

In the framework of classical causal inference, the content of causal rules can
be given a more fine-grained description.

Recall that causal rules serve two functional roles in a rational seman-
tics. First, they propagate acceptance from their premises to their conclusions
and thereby determine ordinary ‘deductive’ constraints on possible valuations.
Their second function consists, however, in providing reasons, or explana-
tions, for accepted propositions. Fortunately, these two roles can be separated
in classical causal reasoning by decomposing any causal rule into a (fac-
tual) constraint and an explanation. More precisely, we have the following
decomposition of causal rules:

Lemma 12 Any causal rule A⇒B is c-equivalent to a pair of rules
A ∧ ¬B⇒ f and A ∧B⇒B.

Proof A ∧ B ∧ ¬B⇒ f by Falsity and Strengthening, and therefore A⇒B implies
A ∧ ¬B⇒ f by Cut. In the other direction, if A ∧ ¬B⇒ f and A ∧ B⇒B, then
A ∧ ¬B⇒B by Weakening, and hence A⇒B by Or. □

A rule A ∧ ¬B⇒ f is a reductio ad absurdum constraint saying that
proposition A ∧ ¬B is unacceptable. This implies, in particular, that classi-
cal implication A → B should hold in any causal world. Such a constraint
provides, however, only purely factual information in causal reasoning that
cannot be used, for instance, for deriving new causal rules in a causal theory.
These constraints only restrict the set of models that are admissible (causally
consistent) with respect to a causal theory. In this sense they play the role
of ordinary classical formulas, namely they just express facts. However, they
do not justify, or explain, anything, and hence they can be seen as devoid of
explanatory content.
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In contrast, causal rules of the form A∧B⇒B are deductively (‘factually’)
trivial, since they do not impose restrictions on admissible models. Neverthe-
less, they play an important explanatory role in causal reasoning. Namely, such
a rule says that, in any causal model in which A is already accepted, we can
freely accept B, since it is self-explanatory in this context. Accordingly, such
rules can be called (purely) explanatory rules.

Remark Explanatory causal rules could also be viewed as weak causal claims by
which the cause does not necessitate the effect, though it can explain why it occurred
(cf. Anscombe (1981)). Using an old example from the causal literature, syphilis does
not always cause paresis, though it is a reasonable explanation of why it happened.

Now the above lemma says that any causal rule can be decomposed
into a factual constraint and an explanatory rule. This decomposition neatly
delineates two kinds of information conveyed by causal rules. One is factual
information that constraints the set of admissible models, while the other is
explanatory information describing what propositions are caused (explainable)
in such models. Moreover, the decomposition shows that these two kinds of
content are actually independent of each other, so the full informational con-
tent of causal theories can be safely represented as a (disjoint) union of their
factual and explanatory contents.

The interplay of the factual and explanatory contents determines, eventu-
ally, the properties of the associated rational semantics. It is responsible, in
particular, for the nonmonotonic character of the latter. Namely, nonmono-
tonicity arises from the fact that these two kinds of content have opposite
impacts on acceptance of propositions. Thus, addition of constraints leads, as
expected, to reduction of the set of admissible causal models (and hence to
increase of factual information). However, the addition of explanatory rules
leads, in general, to increase of admissible causal models, and hence to decrease
of derived factual information.

9.2 Propositional Completion of Causal Theories

The overwhelming majority of applications of causal reasoning in AI and
beyond make use of only a restricted form of causal rules, often called deter-
minate rules, and there are deep reasons for this restriction that are grounded
in the very notion of determinism.

Definition 20 � A causal rule is determinate if it has the form A⇒ l, where
l is a literal or falsity f . A causal theory is called determinate if it contains
only determinate rules.

� A causal theory is definite if it is determinate and any propositional atom
appears in heads of no more than a finite number of its causal rules.
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It has been established already in McCain and Turner (1997) that the
rational classical semantics of a definite causal theory (being just a particular
set of classical worlds) coincides with the fully classical semantics of a certain
derived set of classical formulas called a propositional completion of this causal
theory.

Given a definite causal theory ∆, we can define its propositional completion
comp(∆), as the set of all classical formulas of the form

l↔
∨
{A | A⇒ l ∈ ∆},

where l is either a literal or falsity f . Then the following result shows that the
classical models of comp(∆) precisely correspond to causal worlds of ∆.

Theorem 13 Rational classical semantics of a definite causal theory coincides with
classical logical semantics of its completion.

Example 6 Using once more our running Pearl’s example, the causal theory from
Example 4 has the following propositional completion:

Grasswet ↔ (Rained ∨ Sprinkler)

¬Grasswet ↔ (¬Rained ∧ ¬Sprinkler)
Streetwet ↔ Rained

¬Streetwet ↔ ¬Rained

By the above theorem, the models of this classical propositional theory will
coincide with the causal worlds of the original causal theory.

Yet another observation that could be made about the above propositional com-
pletion is that the conditions for the negative literals ¬Grasswet and ¬Streetwet
are actually derivable from the conditions for the corresponding positive literals, so
the above propositional theory is logically reducible to

Grasswet ↔ (Rained ∨ Sprinkler) Streetwet ↔ Rained

Actually, this is yet another consequence of a more general fact that the negative
causal rules of the original causal theory can be derived from the corresponding
positive rules using negative causal completion — see Section 11 below.

An important practical consequence of the above theorem is the possibility
of using standard logical tools in computing the causal semantics. Still, it
should be kept in mind that the above construction of propositional completion
is global (holist) with respect to the original causal theory, so it could change
nonmonotonically with addition of further causal rules. That is why even in the
context of classical causal inference, deduction cannot replace causal reasoning.

10 Default Negation and Logic Programming

The problem of representing negation has emerged as one of the main prob-
lems of nonmonotonic reasoning, and it has immediate implications for causal
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reasoning. Accordingly, a proper treatment of negation in causal contexts can
be viewed as an important part of an adequate analysis of causal reasoning in
general.

So far, we have largely ignored the distinction between positive and negative
propositions and have treated both indiscriminately. This uniformity could
even be viewed as a significant theoretical advantage, and adherents of many
traditional approaches to reasoning in general and causality in particular have
justly celebrated it.

A large group of philosophers has rejected, however, this generalization of
causal relation to absences and negation, or at least its uniformity, though for
varying reasons. Beside some general metaphysical and conceptual objections,
the corresponding studies have pointed out some important differences between
these two kinds of causal assertions, as well as specific difficulties that arise in
interpreting and justifying negative causal claims.

It turns out that even the formalism of classical causal inference still has
required ‘degrees of freedom’ that allow us to formalize an important alterna-
tive understanding of negation, namely the concept of default negation. The
latter is based on the idea that a negative proposition can be accepted whenever
we do not have reasons for accepting the corresponding positive proposition.16

In this respect, the rational semantics complements this idea in that it embod-
ies a particular, causal closed world assumption, according to which the current
causal theory provides an exhaustive description of all the causal factors that
could be used as a reason for acceptance of propositions in a model.

The above notion of default negation allows us to provide a causal repre-
sentation of yet another key formalism of nonmonotonic reasoning in AI —
logic programming. On the causal interpretation described below, any gen-
eral logic program can be seen as a causal theory satisfying the principle of
negation as default (alias the closed world assumption). Moreover, given this
principle, the correspondence between logic programs and causal theories will
turn out to be bidirectional in the sense that any causal theory is reducible
to some logic program. A more detailed description of this correspondence as
well as corresponding proofs can be found in Bochman (2005).

Speaking generally, the causal interpretation of logic programs is based on
a recurrent idea that logic program rules provide definitions for the literals in
their heads. The declarative meaning of logic programs in modern logic pro-
gramming involves, however, an additional component: namely, an asymmetric
treatment of positive and negative information, which is reflected in viewing
the corresponding negation operator not appearing in program rules as nega-
tion as failure (see, e.g., Baral (2003); Lifschitz (2019)). It turns out that such
an understanding can be uniformly captured in our theory by accepting the
Default Negation postulate below that gives a formal expression to the closed
world assumption.

16It is essentially this idea that lies at the basis of one of the first formalisms of nonmonotonic
reasoning in AI, namely circumscription of McCarthy (1980).
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Definition 21 A classical causal inference relation will be called negatively closed,
if it satisfies

(Default Negation) ¬p⇒¬p, for any propositional atom p.

The above principle makes negations of atomic propositions causal assump-
tions in the corresponding causal inference relation. Moreover, given Bivalence
(that holds for causal worlds), the Default Negation postulate stipulates, in
effect, that negations of atomic propositions are defaults. As a result, the
principle of sufficient reason is reduced in such systems to the necessity of
explaining only positive facts. The postulate can be seen as giving a formal
expression to Reiter’s closed world assumption from Reiter (1978) and reflects
the main distinctive feature of reasoning behind logic programs and databases.

A logic program Π (see Baral (2003)) is a set of program rules of the form

not d, c← a,not b (*)

where a, b, c, d are finite sets of propositional atoms.
Now, a stable causal interpretation of logic programs amounts to interpret-

ing every program rule (*) as the following causal rule:

d,¬b⇒
∧

a→
∨

c.

Then it can be shown that a stable semantics of a program Π coincides with
the classical causal semantics of its translation. In addition, it can be shown
that negatively closed causal inference relations constitute precise causal logic
behind stable logic programming. Moreover, any causal rule can be identified
with some program rule under this interpretation. Accordingly, any causal
theory in which negated atoms are defaults is reducible to a logic program,
and vice versa.

11 Negative Causal Completion

The concept of negation as default (which is formalized in logic programming)
covers a significant portion of our understanding and use of negation in local
situations. Still, it does not fully reflect the behavior of negation in the con-
text of causal reasoning. The difference can be roughly described as follows.
When negation is viewed as default, negative propositions are exempted from
the need of causal explanation; in other words, they do not need causes for
their acceptance. The only thing we should care about is consistency of such
negative propositions with other, positive assertions and known causal rules.
Explanatory rules ¬p⇒¬p provide precisely this functionality. Commonsense
causal reasoning, however, tends to preserve the symmetry between positive
and negative assertions and treat also the latter as something that can be
caused and be causes themselves. For instance, a fully symmetric treatment of
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positive and negative propositions is implicit in Pearl’s approach to causality
(at least in the Boolean case).

From now on, we will restrict our attention to determinate causal theories
that involve only literals in the heads of their rules. For this case, a certain
mix of the above two views of negation suggests itself.17 It will be called the
principle of negative causation.

Definition 22 (Negative Causation Principle) A causal rule B⇒¬p is accept-
able with respect to a determinate causal theory ∆ if any causal rule of the form
A⇒ p that belongs to ∆ is such that A is (classically) incompatible with B.

According to this principle, B causes ¬p when it undermines all potential
causes of p in ∆. In some sense, this principle could be viewed as a “positive”
reformulation of the ancient principle ex nihilo nihil fit, namely,

Negation (absence) of effects follows from negation (absence) of causes.

Note that, like the concept of default negation itself, this principle is also
nonmonotonic: an acceptable negative causal claim can become unacceptable
with an addition of new positive causal rules to the causal theory.

The above principle of negative causation is actually directly encoded in
Pearl’s structural approach to causality (when applied to Boolean endogenous
variables). It is also compatible, however, with philosophical approaches to
causality according to which positive causation (or causation between real
events) is the only “genuine” causation, whereas negative causation is, at best,
a derivative notion (see, e.g., Armstrong (1997) and Dowe (2000)).

Now, the following completion construction is based on an idea that default
negation can be captured ‘causally’ (or inferentially) by adding to a positive
causal theory all acceptable rules of negative causation.

Let Ap denote the disjunction of all bodies of the rules from a causal theory
∆ that have an atomic proposition p as its head, that is

Ap =
∨
{C | C⇒ p ∈ ∆}.

Note that B⇒¬p is an acceptable rule if and only if B is incompatible with
Ap. Accordingly, all acceptable negative causal rules are subsumed by rules
of the form ¬Ap⇒¬p for each atom p. This sanctions the following notion of
negative completion:

Definition 23 A negative causal completion of a definite causal theory ∆ is a causal
theory Nc(∆) obtained from ∆ by adding rules of the form

¬Ap ⇒¬p,
for all atoms p that appear in the heads of causal rules from ∆.

17See Denecker et al. (2015).
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Negative completion can be used for completing positive causal theories
that do not contain negative literals in the heads of their rules.

Example 7 It can be verified that the ‘full’ causal theory for Pearl’s example (see
Example 4) can be obtained as a negative causal completion of the positive causal
theory from Example 3. Indeed, if we take the three rules

Rained⇒Grasswet Sprinkler⇒Grasswet Rained⇒Streetwet

and apply Definition 23 to them, we obtain the following negative causal rules:

¬Rained,¬Sprinkler⇒¬Grasswet ¬Rained⇒¬Streetwet.

Moreover, the same construction makes ¬Sprinkler and ¬Rained causal assump-
tions on the basis of the fact that Sprinkler and Rained are assumptions of the
original positive theory.

12 Conclusions

The causal calculus is a working theory of causal reasoning which has been
shown to provide a formal basis for reasoning and problem-solving in many
areas, especially in AI, but also in legal theory and dynamic reasoning. This
theory provides also a formal representation for Pearl’s approach to causation
and thereby suggests itself as a natural basis for a unified approach to causal
reasoning.

The theory of causal reasoning described in this study poses, however, a
lot of questions for a general theory of reasoning. The causal calculus is pri-
marily an inferential, rule-based formalism in which the language determines
its associated semantics, but the latter does not determine the original lan-
guage. Already this asymmetry should force us to reconsider the basic notions
associated with representational approaches such as the meaning/reference of
language expressions in the context of causal reasoning. In this respect, our
inferential theory shares many features as well as problems with the modern
proof-theoretic approach to language and semantics (see, e.g., Schroeder-
Heister (2012)). However, it is also an essentially nonmonotonic formalism,
and this puts into question, for instance, the very possibility, or even desir-
ability, of constructing a causal reasoning system or its semantics bottom up
from propositional atoms. Thus, we have employed a global, holist approach to
incorporating classical entailment into causal reasoning. Though this construc-
tion is obviously deviant from standard ways of describing logical reasoning
formalisms, it nevertheless provides all that is needed for an efficient use of
such a combined causal reasoning in applications, including derivations of con-
clusions and computation of the corresponding models. Actual work with this
formalism could defuse the suspicion that it is somehow deficient or flawed
in this respect. This construction distinguishes our theory, however, from
standard proof-theoretic approaches that attempt to provide a reductionist
inferential description of logical connectives in terms of associated introduction
and elimination rules.
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In a more general perspective, the miracle of resurrection of causal rea-
soning in artificial intelligence and other important fields of science confirms
once again that causation should be viewed as an essential part of our rea-
soning, a kind of reasoning that has deep, though almost forgotten, roots in
human history. Our inferential approach to causation largely endorses Eliza-
beth Anscombe’s claim that causality consists in the derivativeness of an effect
from its causes (see Anscombe (1981)), and it goes back as far as to Aristotle’s
theory of causal demonstrations as a special kind of syllogisms (deductions),
to Leibniz’s obliteration of the distinction between reasons and causes, and
even to Hume’s views of inference as an ‘impression source’ of causation. This
view of causal reasoning provides also natural connections of our theory with a
general approach of inferentialism (see, e.g., Peregrin (2014)), or at least with
a version of it that (in contrast to Sellars and Brandom) does not put concep-
tual barriers between causal and inferential (normative). But all this should
be a subject of an entirely different study.
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