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Resolution of the Miller-Popper paradox 
 
Abstract 
 
A longstanding paradox was first reported by David Miller in 1975 and highlighted by 
Karl Popper in 1979.  Miller showed that the ranking of predictions from two theories, in 
terms of closeness to observation, appears to be reversed when the problem is 
transformed into a different mathematical space.  He concluded that “… no false theory 
can … be closer to the truth than is another theory”.  This flies in the face of normal 
scientific practice and is thus paradoxical; it is named here the “Miller-Popper paradox”. 
 
This paper proposes a resolution of the paradox, through consideration of the inevitable 
errors and uncertainties in both observations and predictions.  It is proved that, for linear 
transformations and Gaussian error distributions, the transformation between spaces 
creates no change in quantitative measures of “closeness-to-observation” when these 
measures are based in probability theory.  The extension of this result to nonlinear 
transformations and to non-Gaussian error distributions is also discussed. 
 
These results demonstrate that concepts used in comparison of predictions with 
observations – concepts of “closeness”, “consistency”, “agreement”, “falsification”, etc. – 
all imply some knowledge of the uncertainty characteristics of both predictions and 
observations. 
 
  
1. Introduction 
 
Under the heading “Crucial experiments in physics”, Karl Popper (1979, Appendix 2, 
Section 5, pp.372-374) presented a result, which he credited to David Miller, addressing 
the question: how to make a rational choice between competing theories through 
comparison of their predictions with observations.  Miller’s result suggested the futility of 
any ranking of two false theories based on comparison of their predictions with 
observations, because a transformation of the problem into a different mathematical 
space could lead to the opposite ranking.  Following his original statement of the 
problem, Miller (1975a) concluded that “… no false theory can … be closer to the truth 
than is another theory”. 
 
Concerning this result, Popper wrote “Frege, when faced with Russell’s paradox, said 
‘Arithmetic is tottering’.  One is tempted to say that Miller’s result shows that physics is 
tottering.”  However, he added that we had very solid reasons to think that physics was 
not tottering and that Miller’s result could not be accepted, but he did not know of a 
general method by which the problem raised by Miller could be solved or avoided.  In 
this sense, the result is paradoxical: here it is called “the Miller-Popper paradox”.  It 
should not be confused with the Popper-Miller Theorem (Popper and Miller, 1983) or 
Miller’s Paradox of Information (Miller, 1966). 
 
Miller (2006, chapter 11) summarised discussion of and further work on the problem in 
the 30 years following its first statement.  He included examples of linear transformations 
(as in the original work) and also some nonlinear transformations.  Discussion of these 
developments is included in sections 5 and 6 of this paper.  More recently, David Miller 
has advised that he is not aware that the paradox has been successfully resolved 
(personal communication, 2022). 
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The purpose of this paper is to propose a resolution of this paradox, by considering the 
role of inevitable uncertainties in both observations and predictions.  Section 2 restates 
the paradox in the form presented by Popper (and using the same example).  Section 3 
offers a resolution of the paradox, for the case of a linear transformation in which error 
distributions take a Gaussian form.  It is proved that, in this case, the consistency of 
prediction with observation, as quantified using standard probability theory, is not 
changed by the transformation between mathematical spaces.  Section 4 presents some 
illustrative examples, starting with the one originally presented by Popper.  Section 5 
sketches the extension of these results to nonlinear transformations and to error 
distributions with more general probability density functions (PDFs).  Section 6 discusses 
these results and their implications, and Section 7 presents some conclusions.   
 
 
2. The paradox 
 
Popper (1979) presented the problem as follows: 
 
“… if a false theory T1 yields better metrical approximations than theory T2 to the true 
values (or else to the measured values) of at least two parameters, one can always 
transform these theories into logically equivalent theories which must be given the 
opposite ranking with respect to another set of parameters, definable in terms of the first 
set (and the definability is mutual).”   
 
He illustrated it with the following example.  Two sets (i) and (ii) of two equations are 
mutually deducible and therefore equivalent: 
 

(i) x = q − 2p   and y= 2q − 3p  , 

(2.1) 
(ii) p = y − 2x   and q = 2y − 3x  . 

 
Let us assume that the true or measured values are {x = 0, y = 1} and hence {p = 1,
q = 2}.  Let theory T1 entail prediction P1: {x = 0.100, y = 1.000} and hence {p =
0.800, q = 1.700}, and let theory T2 entail prediction P2: {x = 0.150, y = 1.225} and hence 
{p = 0.925, q = 2.000}.  These results are presented in Table 1, where O represents the 

“observed” (true or measured) values. 
 

 x y p q 

P1 0.100 1.000 0.800 1.700 

P2 0.150 1.225 0.925 2.000 

O 0.000 1.000 1.000 2.000 

 
Table 1. Comparing predictions P1 and P2 with O.  Figures in bold indicate the closer 

agreement between prediction and observation. 

 
It can be seen that, considering x and y, P1 appears more accurate (closer to O) than P2 
in both x and y.  However, considering p and q, P2 appears more accurate than P1 in 

both p and q.  
 
As discussed in Section 1, this result seems to suggest the futility of any ranking of 
theories in terms of the closeness of their predictions to truth or measurement, for any 
theory with at least two variables, because we can always find an equivalent set of 
variables that will lead to the opposite ranking. 
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It should be noted that “appearance of accuracy” is measured here by the simple 
arithmetic difference between predicted and observed values.  This notion of “accuracy” 
is challenged in this paper.  Also, in this example, predictions from one theory are closer 
to observations than predictions from another in all respects.  It is in this case that the 
paradox arises.  The case of predictions from one theory being closer to observations 
than predictions from another in some respects but not in others is discussed in section 
6. 
 
 
3. The proposed resolution 
 
Let us start by considering the assumption: “If a theory T1 yields better metrical 
approximations than T2 to the true values (or else to the measured values) …”.  We 
assume that there are such true values, but that we do not and cannot know what they 
are exactly; we cannot obtain them by measurement because all measurements contain 
uncertainty.  Turning to measured values, a (well trained) scientist knows that no 
observation (measurement) is complete without an estimate of its uncertainty – 
uncertainty is always with us.  Herein lies the resolution of the paradox. 
 
Predictions from a theory also contain uncertainties.  These arise either from 
inexactness in the theory, or from uncertainties and approximations in the predictive 
models that embody the theory, or from the initial conditions for the predictions, or from 
all three.  Uncertainties in the initial conditions are inevitable because they are based 
(ultimately) on observations, which are uncertain.  Note that, at this point, we are not 
trying to account for errors (falsities) in the theory itself; for the purposes of these 
calculations, we assume that a theory is true and we assess this claim through the 
subsequent calculations.  (The prejudgement of a theory as false is discussed in section 
6.) 
 
Let us generalise the notation of section 2: an observation or prediction {x, y} can be 
represented by a point 𝐱 in a 2-dimensional space.  Similarly, an observation or 

prediction {p, q} can be represented by a point 𝐩 in a different 2-dimensional space.  

(Note that this will allow us to use the same approach and notation for a general N-
dimensional space.) 
 
Let us assume, for the time being, that the two spaces are related linearly: 
 
 𝐱 = 𝐀𝐩    and    𝐩 = 𝐁𝐱  ,     (3.1) 
    
where 𝐀 and 𝐁 are matrices that transform between the two spaces, and 𝐁 = 𝐀−1 where 
-1 denotes matrix inverse. 

        
Now consider an observation or prediction 𝐱, equivalent to 𝐩.  Let the errors in 𝐱 and 𝐩 

be 𝛆𝑥 and 𝛆𝑝 respectively.  Note that this implies (unknown) true values, 𝐱𝑡 and 𝐩𝑡, with 

𝛆𝑥 = 𝐱 − 𝐱𝑡 and 𝛆𝑝 = 𝐩 − 𝐩𝑡.  Assume that these errors are drawn from a large ensemble 

with (provisionally, and for simplicity) zero mean and with covariance 𝐂𝑥 in 𝐱-space and 

𝐂𝑝 in 𝐩-space. 

 
Then, using (3.1), we can derive 
 

𝛆𝑝 = 𝐁𝛆𝑥 .         (3.2) 

 
The uncertainty in 𝐱 can be related to the uncertainty in 𝐩 by taking the expected values 

of 𝛆𝑥𝛆𝑥
𝑇 and 𝛆𝑝𝛆𝑝

𝑇, which leads to  
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 𝐂𝑝 = 𝐸{𝛆𝑝𝛆𝑝
𝑇} = 𝐸{𝐁𝛆𝑥𝛆𝑥

𝑇𝐁𝑇} = 𝐁𝐂𝑥𝐁𝑇 ,     (3.3) 

 
where 𝐸{… } is the expected value operator and T denotes matrix transpose. 

 
To measure the consistency between observation O with value 𝐱𝑜 and prediction Pn  
with value 𝐱𝑛, we evaluate, for all values of 𝐱, the joint likelihood of 𝐱 given 𝐱𝑜 and 𝐱 

given 𝐱𝑛, i.e. 𝑃(𝐱|𝐱𝑜 , 𝐱𝑛).  Assuming that the errors in 𝐱𝑜 and 𝐱𝑛 are independent, this 
gives: 
 
 𝑃(𝐱|𝐱𝑜 , 𝐱𝑛) =  𝑃(𝐱|𝐱𝑜)𝑃(𝐱|𝐱𝑛)      (3.4) 

 
or ln{𝑃(𝐱|𝐱𝑜 , 𝐱𝑛)} = ln{𝑃(𝐱|𝐱𝑜)} + ln {𝑃(𝐱|𝐱𝑛)} .    (3.5) 
 
The observation and prediction will be considered “consistent” if there exists a range of 𝐱 
for which the joint likelihood (or its logarithm) is sufficiently high.  Note that this implies 
that the concept of “consistency” involves not only the values 𝐱𝑜 and 𝐱𝑛 but also the 

PDFs of their uncertainties.  This is what we would normally mean by “consistency”; 
broadly speaking, two estimates of the same quantity are considered consistent if they 
agree to within their respective uncertainties. 
 
Assuming (again, provisionally and for simplicity) that the errors in the observation and 
the prediction have Gaussian PDFs, it can easily be shown that: 
 

 𝑃(𝐱|𝐱𝑜) ∝ exp {−½(𝐱 − 𝐱𝑜)𝑇𝐂𝑥
𝑜−1(𝐱 − 𝐱𝑜)}      (3.6) 

 

 𝑃(𝐱|𝐱𝑛) ∝ exp {−½(𝐱 − 𝐱𝑛)𝑇𝐂𝑥
𝑛−1(𝐱 − 𝐱𝑛)}      (3.7) 

 
where 𝐂𝑥

𝑜 and 𝐂𝑥
𝑛 are the error covariances of 𝐱𝑜 and 𝐱𝑛 respectively.   

 
Substituting (3.6) and (3.7) into (3.5), we obtain 
 
 −2 ln{𝑃(𝐱|𝐱𝑜 , 𝐱𝑛)} + 𝑘 = 

(𝐱 − 𝐱𝑜)𝑇𝐂𝑥
𝑜−1(𝐱 − 𝐱𝑜) + (𝐱 − 𝐱𝑛)𝑇𝐂𝑥

𝑛−1(𝐱 − 𝐱𝑛) = 𝐽𝑥
𝑛(𝐱)    (3.8) 

 
where 𝑘 is a constant.  This equation defines 𝐽𝑥

𝑛(𝐱), which is known as a “cost” or 

“penalty” function, and it is directly related to the likelihood that (for this problem) the 
prediction is consistent with the observation.  It quantifies the fit of any value of 𝐱 to the 

observation and the prediction.  The first term on the right-hand side represents the fit to 
the observation and the second the fit to the prediction.  Note that, in the case of 
Gaussian PDFs, the logarithmic terms in (3.5) become quadratic terms in (3.8), and this 
is why this form of the cost function is usually convenient.  
 
In 𝐩-space, the equivalent relation is: 

 

 𝐽𝑝
𝑛(𝐩) = (𝐩 − 𝐩𝑜)𝑇𝐂𝑝

𝑜−1(𝐩 − 𝐩𝑜) + (𝐩 − 𝐩𝑛)𝑇𝐂𝑝
𝑛−1(𝐩 − 𝐩𝑛)    (3.9) 

 
Substituting (3.3) and (3.1) into (3.9) gives: 
 

 𝐽𝑝
𝑛(𝐱) = (𝐱 − 𝐱𝑜)𝑇𝐁𝑇(𝐁𝐂𝑥

𝑜𝐁𝑇)−1𝐁(𝐱 − 𝐱𝑜) + (𝐱 − 𝐱𝑛)𝑇𝐁𝑇(𝐁𝐂𝑥
𝑛𝐁𝑇)−1𝐁(𝐱 − 𝐱𝑛) 

                           = (𝐱 − 𝐱𝑜)𝑇𝐂𝑥
𝑜−1(𝐱 − 𝐱𝑜) + (𝐱 − 𝐱𝑛)𝑇𝐂𝑥

𝑛−1(𝐱 − 𝐱𝑛) = 𝐽𝑥
𝑛(𝐱)   (3.10) 

 



 

5 
 

This shows that the transformation from 𝐱 to 𝐩 makes no difference to the likelihood that 
the observation is consistent with the prediction, Pn .  It thus resolves the paradox, 
because it shows that there are at least some important cases (i.e. those involving linear 
transformations and Gaussian PDFs) where the quantitative fit of observation to 
prediction, and hence the ranking of theories, is unaffected by the transformation 
between spaces. 
 
 
4. Some examples 
 
In the example given by Popper (1979), 𝐀 and 𝐁 are 2x2 matrices: 
 

𝐀 = [
−2 1
−3 2

]     and  𝐁 = [
−2 1
−3 2

]    .    (4.1) 

 
(The fact that 𝐀 = 𝐁 here appears to be purely coincidental; nothing relies on this, as the 

proof in section 3 shows.  The example given by Miller (1975a) does not have this 
property.) 
 
Let the two theories, T1 and T2, lead to predictions P1 and P2 respectively.  In the 
example given, these predictions have values: 
 

 𝐱1 = [
0.1
1

] and so 𝐩1 = [
0.8
1.7

] , and 𝐱2 = [
0.15

1.225
] and so 𝐩2 = [

0.925
2

] . 

 
We are also given 
 

 𝐱𝑜 = [
0
1

] and so 𝐩𝑜 = [
1
2

] . 

 
Let us first consider the (limiting and unrealistic) case where the predictions are exact.  
Then 𝑃(𝐱|𝐱𝑛) is non-zero only at 𝐱 = 𝐱𝑛.  The last term in (3.8), the fit to prediction, 

becomes infinite for 𝐱 ≠ 𝐱𝑛.   Therefore we need only consider the fit to observation for 
𝐱 = 𝐱𝑛.   

 

If we choose, as an example, 𝐂𝑥
𝑜 = 𝑎2 [

1 0
0 1

], where 𝑎 is a constant defining the 

magnitude of the uncertainty, then, through (3.3) and (4.1),  𝐂𝑝
𝑜 = 𝑎2 [

5 8
8 13

].  

Substituting these values into (3.10) gives 
  

 𝐽𝑝
1 = 𝐽𝑥

1 = 0.01/𝑎2 

 

and 𝐽𝑝
2 = 𝐽𝑥

2 = 0.073125/𝑎2. 

 
Therefore, whether measured in the space of 𝐱 or 𝐩 , the “cost” of the observation O with 
prediction P2 is 7.3125 times higher than the cost with prediction P1.   
 
These results are plotted (to scale) in Figure 1, with the data points offset such that the 
observation is placed at the origin in each diagram.  All points on the circle (left) or 
ellipse (right) are points of equal probability that the true value (of 𝐱 or 𝐩) will lie at these 
points in the plane.  Points inside the circle/ellipse are more likely and those outside less 
likely.  Figure 1 illustrates the resolution of the paradox: the transformation from 𝐱- to 𝐩-

space does not change the ranking of P1 and P2 in terms of their closeness to O – P1 
remains more likely than P2.  Also, Figure 1 shows that the shorter Euclidean distance 
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does not necessarily represent the “closer” fit of prediction to observation; the 
uncertainties in the observation must be taken into account. 
 

 
Fig 1.   Illustrating the example in the 𝐱-space (left) and the 𝐩-space (right). “O”, “P1” and 

“P2” are the locations of the observation, prediction P1 and prediction P2 
respectively.  The circle (left) and ellipse (right) are surfaces of equal probability 
passing through P1.  

 
Let us now consider the case in which both observations and predictions are uncertain.  
This is illustrated in Figure 2, where we have chosen an error covariance for each 
prediction equal to that for the observation.  The regions of overlap between the 
circles/ellipses in Fig.2 can be roughly interpreted as the regions of consistency between 
observation and prediction.   Again, the closeness-of-fit of prediction to observation is 
not affected by the transformation from 𝐱-space to 𝐩-space.   
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Fig 2.   As Fig.1, including the effects of uncertainties in the predictions.  The circles (left) 
and ellipses (right) are surfaces of equal probability centred on O, P1 and P2.  
The magnitudes of the uncertainties in observation and prediction have been set 
equal to each other. 

 

The value of 𝐂𝑥
𝑛 is crucial in determining the utility of the prediction.  As 𝐂𝑥

𝑛 becomes very 
large (compared to 𝐂𝑥

𝑜) the second term in (3.10) becomes negligible; the most probable 

value of 𝐱 (i.e. the minimum of 𝐽) is determined only by the observation.  This means that 
any observation is consistent with the theory and (in Popperian terms) that the theory is 
very weak. 

 
Conversely, as 𝐂𝑥

𝑛 becomes very small, the region of 𝐱-space (or 𝐩-space) for which the 

probability of the prediction (given the theory) is significant becomes very small.  
Therefore the theory is very strong; it is, a priori, improbable and easy to falsify given 
sufficiently precise observations.  If the PDFs of 𝐱𝑜 and 𝐱𝑛 do not significantly overlap, 
then the likelihood of any value of 𝐱 being the true value is very low (given theory Tn); 

high cost (low likelihood) shows that the theory is inconsistent with the observation.  This 
is what is meant by “falsification” in probablistic terms. 
 
In the limit that both observation and prediction are exact and have different values, the 
cost is infinite (and the joint likelihood zero) for all values of 𝐱.  The theory is therefore 

false, and the quantitative cost or distance measure loses its meaning.  This is 
effectively the limiting case considered by Miller and Popper.  In this limit, the ranking of 
predictions based on “closeness” measures breaks down, consistent with Miller’s original 
result.  However, this result is not relevant to science, because in science uncertainty is 
always with us.  The introduction of finite uncertainty resolves the paradox, and the 
parameters describing uncertainty lead to natural metrics for evaluating “agreement” or 
“consistency” between prediction and observation. 
 
When we consider predictions P1 and P2, we can see that: 
(i) If the values of 𝐂𝑥

1 and 𝐂𝑥
2 are sufficiently large that the PDFs of 𝐱1 and 𝐱2 are 

substantially overlapping, then an observation can falsify both or neither. 

(ii) If the values of 𝐂𝑥
1 and 𝐂𝑥

2 are sufficiently small that the PDFs of 𝐱1 and 𝐱2 do not 
overlap, then an observation can falsify one theory or the other or both.  

(iii) The value of 𝐂𝑥
𝑜 is crucial in determining the potential of the observation to falsify 

either theory.  
These points are illustrated in Figure 3. 

 

The above conclusions are only valid if the estimates 𝐂𝑥
𝑜, 𝐂𝑥

1 and 𝐂𝑥
2 are sufficiently 

accurate.  Non-overlap of PDFs can arise because the uncertainties have been 
underestimated.  It is prudent, therefore, to re-examine the uncertainties in the 
observations and/or the predictions, both their magnitudes and the forms of their PDFs, 
before rejecting the theories.  
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Fig 3.   Illustrating the effects of varying the magnitudes of uncertainty in observations 

and predictions (in the 𝐱-space).  On the left they have been decreased relative 

to Fig.2 (left panel) and on the right increased.  The circles show the associated 
surfaces of equal probability.  

 
 
5. Nonlinear transformations and non-Gaussian error distributions 
 
The extension of the theory presented in section 3 to the general case of nonlinear 
transformations is given in the Appendix, where the two nonlinear examples studied by 
Miller (2006) are analysed.  Both examples exhibit essentially the same behaviour as 
found for the linear case; PDFs of uncertainty that are circular in 𝐱-space distort to 

become near-elliptical or oval in 𝐩-space, and in such a way that the ranking of 
“closeness” between prediction and observation is preserved by the transformation.  
Numerical experiments (not shown) confirm this, generating diagrams similar to Fig.2. 
 
In the example in section 4, in order to keep the algebra simple, we chose a PDF of 
uncertainty centred on the observed/predicted value with a 2-dimensional Gaussian 
distribution about this value.  We have shown that, in this case, the value of the penalty 
function is independent of the space in which it is calculated. 
 
However, this result can be generalised; it will arise whatever the PDFs.  The PDFs are 
defined for a specific space, in this case the 𝐱-space.  The values of 𝐱𝑜 and 𝐱𝑛 lie at 
positions with specific values of the PDFs in this space.  Transformation to another 
space (e.g. the 𝐩-space) will transform both the predicted values and the PDFs in the 
same way, giving the same values of the PDFs at the equivalent locations in the new 
space. 
 
The computation of the cost function generalises in the same way: (3.8) remains 
 
 𝐽𝑥

𝑛 = −2 ln{𝑃(𝐱|𝐱𝑜 , 𝐱𝑛)} + 𝑘 .       (5.1) 

 
This can be used to evaluate the cost of the prediction relative to the observation, 
provided that mathematical expressions and quantitative values can be given for the 
conditional probabilities, 𝑃(𝐱|𝐱𝑜) and 𝑃(𝐱|𝐱𝑛). 
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Note that the two issues discussed in this section interact: a nonlinear transformation will 
convert a PDF that is Gaussian in one space into a PDF that is non-Gaussian in another. 
 
 
6. Discussion 
 
In response to the original statement of the problem by Miller (1975a), Good (1975) 
sketched briefly a response with similarities to the one given in section 3 of this paper.  
He warned that “closeness” is not necessarily best measured by Euclidean distance, that 
the PDFs of errors need to be considered, and that “the ratio of the probability densities 
… is invariant under all differentiable non-singular transformations of the plane”.  He also 
illustrated this with a diagram similar to Fig.1.  However, as pointed out by Miller (1975b) 
in reply, Good’s diagram did not show what it purported to show.  In summary, however,  
Good’s response was on the right track; the current paper attempts to give a more 
thorough analysis of the problem, with extensions to consider the effects of uncertainties 
in both predictions and uncertainties, and to consider in more depth the implications of 
the resolution of the paradox.   
 
Miller (1975a, 1975b) placed great stress on the symmetry of the problem, i.e. of the 
symmetric transformation between the 𝐱-space and the 𝐩-space.  We have shown here 

how the introduction of the relevant error covariances and PDFs breaks this symmetry, 
as illustrated in Fig.1 and Fig.2.  However, a new symmetry is introduced: if a PDF is 
elliptical in 𝐱-space then, with a suitable transformation, it will become circular in 𝐩-

space. 
 
Popper (1979) speculated that the resolution of this problem, i.e. of how to avoid theory-
choice being arbitrary, may lie with “the parameters that enter into the evaluation of 
competing physical theories”.  The analysis presented above shows how objective 
choice is possible; the relevant “parameters” are those describing the PDFs of 
uncertainty.  These will never be known perfectly, but evidence from the real world of 
science suggests that (a) they are often known accurately enough and (b) their 
conjectural nature will require their periodic re-evaluation. 
 
Both Popper and Miller presented the problem as applying only to the choice between 
false theories.  This is because, if the theories are true and exact predictions from them 
are compared with perfect observations, then there will be no difference between them 
and the paradox will not arise.  However, this is never the case – observations are 
always uncertain and predictions from theories, even true theories, are uncertain, if only 
because the initial conditions are uncertain.  Therefore, the analysis in this paper applies 
to both true and false/approximate theories.  In fact, sections 3 and 4 show how the 
effects of errors in theories themselves and in errors arising from other sources of 
uncertainty in the predictions can be separated; if observation and prediction differ by 
more than their expected uncertainties, then this indicates a problem with the theory 
itself (or else that the uncertainties have been mis-specified, either in their magnitudes or 
the shapes of their PDFs). 
 
Moreover, in order to establish that a theory is false, a procedure similar to the one 
outlined in this paper must be followed; a theory will be judged false if its predictions are 
inconsistent with observations, and the judgement of “inconsistency” relies on 
quantification of uncertainty. More generally, the concepts of “closeness”, “consistency”, 
“agreement”, etc., imply some concept of uncertainty; neglect of uncertainty lies at the 
heart of the paradoxical nature of the original problem. 
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As emphasised above, the values used for the PDFs of error of both observations and 
predictions play an important role in quantifying closeness-to-observation and, in 
practice, an important part of science involves the quantification of parameters 
describing these PDFs to an adequate approximation.  One specific problem is 
systematic error (bias) in the observations.  Biased observations can give erroneous 
support to predictions that happen to be biased in the same direction. 
 
It could be argued that observational error can be reduced by averaging over many 
observations.  However, it can never be reduced to zero.  Also, although random error 
can be reduced by averaging, systematic error will remain and will eventually become 
dominant.  Observational error is always with us! 
 
In the figures in section 4, no values have been assigned to the equi-probability 
surfaces.  It is not necessary to do so in order to demonstrate that the ranking of 
predictions is unaffected by the transformation between spaces.  Moreover, no specific 
value of likelihood or cost can be associated with the judgement that a prediction is or is 
not inconsistent with an observation.  Sufficient to say that the judgement on consistency 
is not a yes/no decision. 
 
Although, it is suggested, the paradox as originally stated has been resolved – and this 
means that theory choice is not always rationally undecidable – it does not mean that it 
is decidable in all cases.  This is for (at least) two reasons.  Firstly, we have assessed 
quantitatively the case of predictions and/or observations with Gaussian errors.  PDFs of 
relevant error distributions can be highly non-Gaussian.  In fact, nonlinearity of 
theories/models is a major cause of non-Gaussianity in the errors of their predictions.  
As a result, the associated cost functions can become multi-modal and, in such cases, 
the measure of closeness-to-observation does not give a unique answer.  Secondly, one 
false/approximate theory may give predictions that are closer to observations in some 
variables whereas another theory may be closer for other variables.  Then, the question 
of theory choice is a pragmatic one, concerning the applications for which the predictions 
will be used.     
 
We have assumed in this analysis that truth is point-like (as in the original paradox).  
However, it seems plausible that the analysis could be extended also to cover a 
probabilistic notion of the truth, provided that it remained sufficiently “local”.  We have 
also assumed that the observed and predicted values are of continuous variables.  It 
seems plausible that the analysis could be extended to cover non-continuous (discrete) 
variables with suitably specified PDFs. 
 
 
7. Conclusions 
 
It is suggested that the paradox presented by Miller and Popper has been resolved.  The 
paradox arises because of the neglect of the role of inevitable uncertainties, in 
observations and in predictions from theories.  This supports confidence in the method 
that scientists normally adopt; science proceeds from one false theory, with a certain fit 
to observations, to another false theory, with a better fit to observations.   
 
It has been shown how measures of “closeness-to-observation” can indeed be used in 
the choice between competing theories or models implementing these theories, provided 
that the closeness metric is grounded in probability theory and uses appropriate 
estimates of uncertainty.  As pointed out by Good (1975), a simple Euclidean metric can 
be very misleading.  (Consider the plight of the hungry traveller for whom the inn many 
miles down the road may, in practice, be “closer” than the one just across the raging 
river.)   
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Of course, comparisons with different observations can lead to conflicting results.  This 
is normal in science; it requires the scientist to suspend judgement until more work has 
been done.  Even then, one approximate theory may be closer in some respects and 
another in other respects.  However, this need not always be true: it is possible for one 
approximate theory to be closer to observations (in a statistical sense) than is another in 
all respects, and irrespective of the space in which the closeness is measured.     
 
Popper (1979) and Miller (1975a) both considered the topic of this paper alongside the 
problem of verisimilitude.  The two are clearly different, the latter referring to the content 
of theories and the former to the closeness-to-observation of predictions from theories.  
However, it is also clear that there is a link between the two, and it is conjectured that a 
better understanding of “closeness-to-observation” may shed new light on the problem of 
verisimilitude.  
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where 𝐴 and 𝐵 are nonlinear matrix functions.  We still assume, for this problem, that 𝐱 
and 𝐩 have the same dimension. 

   
Small departures from 𝐱 and 𝐩 are related by 

 
 𝐱 ≈ 𝐀(𝐩)𝐩    and    𝐩 ≈ 𝐁(𝐱)𝐱  ,    (A.2)  
 
where 𝐀(𝐩) = 𝐩𝐴(𝐩), 𝐁(𝐱) = 𝐱𝐵(𝐱) and 𝐁(𝐱) = 𝐀(𝐩)−1.  The relations in A.2 become 

exact as 𝐱 → 𝟎 and 𝐩 → 𝟎. 

 
Therefore (3.2) becomes 
 

𝛆𝑝 ≈ 𝐁(𝐱)𝛆𝑥 ,         (A.3) 

 
and (3.3) becomes  
 
 𝐂𝑝(𝐩) ≈ 𝐁(𝐱)𝐂𝑥(𝐱)𝐁(𝐱)𝑇 .       (A.4) 

 
Then (3.10) becomes 
 
 𝐽𝑝

𝑛(𝐱) ≈ 𝐽𝑥
𝑛(𝐱)  ,        (A.5) 

 
and this also becomes exact in the linear limit and in the limit of small errors. 
 
Consider the two examples of nonlinear transformations given by Miller (2006). 
 
Example 1.  Transformation from the length and breadth of a rectangle to its area and 
perimeter. 
 
In this case, (2.1) (ii) becomes p = xy  and  q = 2(x + y).   

Differentiation gives 𝐁 = 𝐀−1 = [
y x
2 2

].   

Then, if 𝐂𝑥 = 𝑎2 [
1 0
0 1

], 𝐂𝑝 = 𝑎2 [
y2 + 4 xy + 4

xy + 4 x2 + 4
] . 

 
Therefore, for a circular 𝐂𝑥, 𝐂𝑝 has an elliptical shape for small uncertainties and 

becomes a distorted ellipse (oval) for large uncertainties.  For the example given by 
Miller (a rectangle of 34x23), 𝐂𝑝 is highly elliptical, and it also becomes singular when 

x = y.  Moreover, the elliptical nature of 𝐂𝑝 is such that the ellipse for the prediction that 

is closer to observation in 𝐱-space remains closer in 𝐩-space (similar to Fig.2). 
 
Example 2.  Transformation from Cartesian to polar coordinates. 
 
In this case (2.1) becomes 

(i) x = p cos q   and y= p sin q  , 

(ii) p = √x2 + y2   and q = tan−1 (y x)⁄   . 

 

Differentiation gives 𝐀 = [
cos q −p sin q
sin q p cos q

] = [
x p⁄ −y

y p⁄ x
] , 

and  𝐁 = 𝐀−1 =
1

p
[

x y

−y p⁄ x p⁄ ] . 

Then, if 𝐂𝑥 = 𝑎2 [
1 0
0 1

] , 𝐂𝑝 = 𝑎2 [
1 0
0 1 p⁄ ] . 
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Therefore, for a circular 𝐂𝑥, 𝐂𝑝 has an elliptical shape for small uncertainties and 

becomes a distorted ellipse (oval) for large uncertainties.   
 
Note that, for a given value of (y x)⁄ , q = tan−1 (y x)⁄  can take values, q + n𝛑, where n is 

any integer.  This makes the transformation from 𝐱-space to 𝐩-space multi-valued.  

However, this ambiguity can easily be resolved when the computing the “closeness” 
between two points, by considering only values of q with the least difference between 

them.  
 
The transformation collapses at p = 0. Also, when p is small (smaller than the 

uncertainty in x and y), the ellipse of uncertainty in 𝐩-space distorts such that it no longer 
surrounds the point 𝐩.  This issue suggests that some transformations, whilst 

mathematically possible, are not physically realistic.  
 
 


